WorldWideScience

Sample records for biological radiation effects

  1. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  2. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. Biological radiation effects

    International Nuclear Information System (INIS)

    The book covers all aspects of biological radiation effects and provides the fundamental basis for understanding the necessity of radiation protection as well as applications in radiotherapy. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are thoroughly discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects). It can be used by graduate students as an introduction and as a source book for all who want to become acquainted with this important field. It is an extended version of the original German book containing updated information and new material. (orig.) With 273 figs

  4. Biological radiation effects

    International Nuclear Information System (INIS)

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man

  5. Biological radiation effects

    International Nuclear Information System (INIS)

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed

  6. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  7. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  8. Biological radiation effects

    International Nuclear Information System (INIS)

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices

  9. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  10. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    The efficient dose of ionizing radiation (I.R.), expressed in sievert is a weighting of the deposited energy (absorbed dose in grays) by factors that take into account the radiation hazard and tissues radiosensitivity. it is useful in radiation protection because it allows to add exposures to ionizing radiation of different nature. for low doses, it has no probabilistic value. The determinist effects of ionizing radiation are observed from thresholds of several hundred of milli sievert. The seriousness grows with the dose. The whole-body doses exceeding 8 Sv are always lethal. The radio-induced cancers are observed only for doses exceeding 100 to 200 mSv for adults, delivered at a self important dose rate. Their seriousness does not depend on the dose. Their appear fortuity (stochastic effect) with a various individual susceptibility, genetically determined. The number of eventual radio-induced cancers coming from the exposure of a high number of persons to low dose of ionizing radiation (<100 mSv) cannot be evaluated with a linear without threshold model. these models, however usually used, do not take into account the biological reality of cell defense mechanisms, tissues or whole body defense mechanisms, these one being different against low or high doses of ionizing radiation. Against low doses, the preponderant mechanism is the elimination of potentially dangerous damaged cells. Against high doses, the repair of damaged cells is imperative to preserve the tissue functions. It can lead to DNA repair errors (radio-induced mutations) and canceration. The radio-induced congenital malformations are effects with threshold. The radio-induced carcinogenesis in utero is a stochastic effect. The radio-induced hereditary congenital malformations have never been highlighted for man. (N.C.)

  11. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1949-11-16

    This paper discusses procedures for research on biological effects of radiation, using mouse tissue: activation trace analysis including methods and proceedures for handling samples before during and after irradiation; methods and procedures for ion exchange study; method of separation and recovery of copper, iron, zinc, cobalt, pubidium and cesium. Also included are studies of trace elements with radioactive isotopes: the distribution of cobalt 60, zinc 65, and copper 64 in the cytoplasm and nuclei of normal mice and those with tumors. 16 figs., 2 tabs.

  12. Doses and biological effect of ionizing radiation

    International Nuclear Information System (INIS)

    Basic values and their symbols as well as units of physical dosimetry are given. The most important information about biological radiation effects is presented. Polish radiation protection standards are cited. (A.S.)

  13. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  14. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  15. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  16. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  17. E. Biological effects of radiation on man

    International Nuclear Information System (INIS)

    This report firstly summarises information on the biological hazards of radiation and their relation to radiation dose, and hence estimates the biological risks associated with nuclear power production. Secondly, it describes the basis and present status of radiation protection standards in the nuclear power industry

  18. Biological effects of synchrotron radiation on crops

    Institute of Scientific and Technical Information of China (English)

    唐掌雄; 董保中; 等

    1996-01-01

    The sensitivity of germinating seeds of barley,winter wheat and spring one to synchrotron ultraviolet radiation is barley>winter wheat and spring one.But when dry seeds of the three crops are irradiated by 3.5-22keV X-rays,the sequence of their sensitivity to radiation can be changed.for irradiation of 0.6-3keV ultra soft X-rays,0.40-0.90 of the seedlings of the first generation appear mutation of striped chlorophyll defect.This biological effect has never been found for irradiation of other rays.

  19. Biological effect of low dose radiation

    International Nuclear Information System (INIS)

    This document describes the recent findings in studies of low dose radiation effect with those by authors' group. The low dose radiation must be considered in assessment of radiation effects because it induces the biological influence unexpected hitherto; i.e., the bystander effect and genetic instability. The former is a non-targeted effect that non-irradiated cells undergo the influence of directly irradiated cells nearby, which involves cell death, chromosome aberration, micronucleus formation, mutation and carcinogenesis through cellular gap junction and/or by signal factors released. Authors' group has found the radical(s) possessing as long life time as >20 hr released from the targeted cells, a possible mediator of the effect; the generation of aneuploid cells as an early carcinogenetic change; and at dose level <10 Gy, activation of MAPK signal pathway leading to relaxation of chromatin structure. The genetic instability means the loss of stability where replication and conservation of genome are normally maintained, and is also a cause of the late radiation effect. The group has revealed that active oxygen molecules can affect the late effect like delayed cell death, giant cell formation and chromosome aberration, all of which lead to the instability, and is investigating the hypothesis that the telomere instability resulted from the abnormal post-exposure interaction with its nuclear membrane or between chromatin and nuclear matrix, is enhanced by structural distortion of nuclear genes. As well, shown is the possible suppression of carcinogenesis by p53. The group, to elucidate the mechanism underlying the low dose radiation effect, is conducting their studies in consideration of the sequential bases of physical, chemical and biological processes. (R.T.)

  20. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  1. Ionizing radiation effects on biological macromolecules

    International Nuclear Information System (INIS)

    Ionizing radiation is one of the main environmental factors for life, particularly for human beings. The primary effects of ionizing radiation produce the perturbation of biomacromolecules functionality (DNA and proteins). This effect occurs by direct action and by the indirect way of water molecules radiolysis. These primary effects result in a cascade of biochemical and biological consequences that may finally influence the general functions of the organism. In the last five decades the research activity in this field was focused on the detailed description of the effects on DNA molecules and their biochemical and biological consequences. The reason for this is the importance of the integrity of DNA for the cell life evolution, especially for the cell recovery processes or for the programmed cell death after irradiation. These aspects have main applications in very important fields as radioprotection and radiotherapy. In the present paper the mechanisms of ionizing radiation action at the molecular level will be reviewed, with focus on the protein level effects. Although comparatively a lower number of results was reported concerning the effects of ionizing radiation on the proteins, during the last years this field was reconsidered in the context of a new research trend in the field of genomics and proteomics. The structural changes which occur most often in the proteins are the breaks of chemical links, the chemical moieties ionization (for instance, the oxidation of the proteins) and the inter - protein new links (cross-linking). These changes result in a gradual loss of protein functionality, influencing particularly the ionic transport, the signal transduction across the membrane or intermolecular recognition processes of antibody-antigen type. Some studies on the ion artificial channels (as gramicidin and amphotericin) incorporated in model membranes (BLM-s or liposomes) describe structural and functional changes of the peptides after the exposure to

  2. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  3. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  4. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  5. The late biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  6. Microwave radiation: biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1981-01-01

    The thermal effects of microwave radiation are well recognized and are discussed with particular reference to cataractogenesis; the possibility of an association cannot be questioned. Postulated nonthermal effects comprise an asthenic syndrome, and for the most part the disturbances lie within clinical norms and tolerances, and are reversible. World opinion on safe exposure levels for microwave radiation is varied, and this had led to national standards disparate by three to four orders of magnitude. The US and UK exposure standard of 10 mW/cm/sup 2/ was determined over two decades ago; the possibility of a change to a more restrictive level, in line with other countries, in the near future is examined. It is concluded that such a change, without scientific rationale, is not justified. Some biological implications of the microwave radiation from the solar power satellite are considered in terms of precautions to be taken by personnel working in the vicinity of the rectenna, effects on cardiac pacemakers, and any potential effects on birds. 14 references.

  7. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  8. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  9. 2.3.1 Biological Effects of Ionizing Radiations

    Science.gov (United States)

    Kaul, A.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.1 Biological Effects of Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the comtents:

  10. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 106 person-years at risk per WLM (range 5-15 x 10-6 PYR-1 WLM-1). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  11. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  12. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  13. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  14. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    Science.gov (United States)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  15. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  16. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  17. Biological radiation effects of Radon in Drosophila

    International Nuclear Information System (INIS)

    In order to contribute to the knowledge on the effects of radon and its decay products, the aim of this investigation is to study the biological effects of radon using Drosophila melanogaster throught the somatic mutation and recombination test (SMART) and the analysis of some adaptative factors exposing larvaes to controlled radon atmosphers, considering that this insect could be used as biological monitor. Using the somatic mutation test a mutagenic effect was observed proportional to radon concentration, into an interval of 1 ± 0.3 to 111 ± 7.4 KBq/m3 equivalent to doses under 0.0106 Gy. The correlation analysis gives a linear (r=0.80) relationship with a positive slope of 0.2217. The same happens when gamma rays are used in the interval of 1 to 20 Gy, given a linear dose-dependent effect (r=0.878) is obtained; nevetheless the slop is smaller (m=0.003) than for radon. Analysing the results of adaptative factors of the nine exposed generations, it was found that probably radon exposition induced dominant lethals during gametogenesis or/and a selection of the more component gamets of the treated individuals in larval state. It was reflected in the significant decrease on fecundity of the generation exposed. Nevertheless the laying eggs had an increase in egg-to-adult viability and the develop velocity was higher than in control for 3 KBq/m3, this suggest that radon concentrations used were able to induce repair mechanisms. These data agree with the Hormesis hypothesis that says: low doses have positive effects on health. It was not possible to obtain a dose-effect relationship except with the develop velocity where it was found a dose-effect inverse proportion. In conclusion, Drosophila melanogaster could be a good system to obtain in vivo damaged induction concentration dependent of radon and its decay products, as well as to study the effects in an exposed population by the analysis of adaptative factors. (Author)

  18. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  19. Biological effects of high energy radiations

    International Nuclear Information System (INIS)

    The author present the first results obtained by the determination of the survival of germ cells of mice exposed to X- and γ-radiation, to 400-600 MeV neutron beams, and irradiation by negative pions. (HSI)

  20. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed. PMID:25722878

  1. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  2. Oxygen effect in radiation biology: caffeine and serendipity

    International Nuclear Information System (INIS)

    The 'hit theory' developed in 1920s to explain the actions of ionizing radiation on cells and organisms was purely physical, and its limitation was its inadequacy to address the contemporary findings such as the oxygen enhancement of radiobiological damage, and the increased radio- sensitivity of dividing compared to non-dividing cells. The textbooks written prior to 1970s did not either refer at all to oxygen as a radiosensitizer, or had mentioned it only in a passing manner; yet 'oxygen effect' was emerging as the central dogma in radiation biology. The oxygen effect in radiation biology is highly interdisciplinary encompassing atomic physics (i.e. interaction of photon with matter), radiation chemistry (formation of reactive oxygen species), molecular signalling, gene expression and genetic alterations in cells (mutation, cancer) or the cell death (apoptosis, necrosis, mitotic catastrophe, etc.). Cell death in higher organisms is now recognized as the precursor of possible error-free cell replacement repair. (author)

  3. Thermal effects of laser radiation in biological tissue.

    OpenAIRE

    Cummins, L; Nauenberg, M.

    1983-01-01

    A theoretical model is presented that simulates the thermal effects of laser radiation incident on biological tissue. The multiple scattering and absorption of the laser beam and the thermal diffusion process in the tissue are evaluated by a numerical technique that is well suited for microcomputers. Results are compared with recent empirical observations.

  4. Spatial interpolation of biologically effective UV radiation over Poland

    Science.gov (United States)

    Walawender, J.; Ustrnul, Z.

    2010-09-01

    The ultraviolet(UV) radiation plays an important role in the Earth-Atmosphere System. It has a positive influence on both human health and natural environment but it may also be very harmful if UV exposure exceeds "safe" limits. For that reason knowledge about spatial distribution of biologically effective UV doses seems to be crucial in minimization or complete elimination of the negative UV effects. The main purpose of this study is to find the most appropriate interpolation method in order to create reliable maps of the biologically effective UV radiation over Poland. As the broadband UV measurement network in Poland is very sparse, erythemaly weighted UV radiation data reconstructed from homogeneous global solar radiation records were used. UV reconstruction model was developed in Centre of Aerology (Institute of Meteorology and Water Management) within COST Action 726 - ‘Long term changes and climatology of UV radiation over Europe'. The model made it possible to reconstruct daily erythemal UV doses for 21 solar radiation measurement stations in the period 1985 - 2008. Mapping methodology included the following processing steps: exploratory spatial data analysis, verification of additional variables, selection and parameterization of interpolation model, accuracy assessment and cartographic visualization. Several different stochastic and deterministic interpolation methods along with various empirical semivariogram models were tested. Multiple regression analysis was performed in order to examine statistical relationship between UV radiation and additional environmental variables such as: elevation, latitude, stratospheric ozone content and cloud cover. The data were integrated, processed and visualized within GIS environment.

  5. Countermeasures for space radiation induced adverse biologic effects

    Science.gov (United States)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  6. Effects of UV and microwave radiation on biological material

    International Nuclear Information System (INIS)

    For the present study, ten publications on the effect of UV radiation were analyzed. In vitro tests were carried out with one biological substance and seven different human or animal organs and biocytocultures. In vivo, three bacterial strains were irradiated and four irradiation experiments were carried out on mice. As to the effect of microwave radiation, eleven publications were analyzed. In vitro tests were carried out with one biological substance and three animal organs. In vivo, one bacterial strain was irradiated and eight irradiation experiments were carried out on different types of animals. The study's aim was to obtain a survey on biochemical changes of the organisms. Phenomenological changes were given only when the corresponding articles contained further investigation results. Behavioral changes were not taken into account. The results published by the authors of the original papers were compiled in a kind of dictionary. All relevant data are listed in a defined order. (orig.)

  7. Biological effects of low-intensity millimetric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Betskiy, O.V.; Putvinskiy, A.V.

    1986-10-01

    The authors discuss a possible role of strong absorption of millimetric (MM) waves by water molecules in the primary mechanism of the reaction of biological systems to MM irradiation. Data are given on the interaction of MM radiation with simple aqueous systems. Primary attention is given to the phenomenon of convective mixing of aqueous solutions under the effect of low-intensity MM waves (1 ... 10 mW/cm/sup 2/). 12 references, 6 figures.

  8. New Scientific Pearl about Biologic Effect of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    S. A. Alamdaran

    2008-01-01

    Full Text Available Soon after the discovery of X-ray by Rontgen in 1895, it became evident that radiation can cause some somatic damage to tissues. The hazards of X-ray exposure were clearly known when many large hospitals had radiology departments. The greatest increased in knowledge about X-ray risks had accrued from the dropping of the two atomic bombs in Japan in 1945 and some other atomic accident. For example, among the Japanese bomb survivors from Hiroshima and Nagasaki, there have been about 400 extra cancer deaths. These were the origin of radiology personnel and people fear from radiation exposure and resistant in against simple X-ray exam (radiophobia. However, new scientific data on the effects radiation on survivors, especially about biologic effect of ionizing rays, background radiation exposure, amount of endogenous radiation, hormosis phenomenon and comparison radiation risk with other risk over lifetime are still being continuously revised and risk estimates updated. Fundamentally, this risk is much"nlower than whatever already estimated and it is insignificant in diagnostic domain. Better perception of physician from these instances help to prevent of false radiophobia and to make proper use of diagnostic and therapeutic advantages of ionizing beam.

  9. Introduction to radiation biology

    International Nuclear Information System (INIS)

    This book is arranged in a logical sequence, starting from radiation physics and radiation chemistry, followed by molecular, subcellular and cellular effects and going on to the level of organism. Topics covered include applied radiobiology like modifiers of radiosensitivity, predictive assay, health physics, human genetics and radiopharmaceuticals. The topics covered are : 1. Radiation Physics, 2. Detection and Measurement of Radiation, 3. Radiation Chemistry, 4. DNA Damage and Repair, 5. Chromosomal Aberrations and Gene Mutations, 6. Cellular Radiobiology 7. Acute Radiation Effects, 8. Delayed Effects of Radiation, 9. Biological Basis of Radiotherapy, 10. Chemical Modifiers of Radiosensitivity, 11. Hyperthermia, 12. High LET Radiations in Cancer, Therapy, 13. Predictive Assays, 14. Radiation Effects on Embryos, 15. Human Radiation Genetics, 16. Radiolabelled Compounds in Biology and Medicine and 17. Radiological Health

  10. Biological effects of low level exposures to chemicals and radiation

    International Nuclear Information System (INIS)

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on 'Effects of low-dose radiation on the immune response' was presented as well as 'Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies

  11. Inner-shell ionization and biological radiations effects

    International Nuclear Information System (INIS)

    Biological effects of K-ionizations followed by Auger cascades have been much studied to elucidate mechanisms of cell inactivation and DNA repair and to develop therapeutic applications. Experiments performed with incorporated radionuclides (125I) or incorporated elements (Br, I, P) photoionized in the K-shell using synchrotron radiation all displayed a K + Auger enhancement. The interest in K-ionization rose again when recent works suggested that K-ionizations in C, N, 0 atoms of DNA could be the primary physical events responsible for cell death induced by heavy ions. Photoabsorption experiments at the C-K threshold support this hypothesis. (authors)

  12. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  13. Biological effects of radiation and health risks from exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    The very fact that ionizing radiation produces biological effects is known from many years. The first case of injury reported by Sir Roentgen was reported just after a few months after discovery of X-rays in 1895. As early as 1902, the first case of X-ray induced cancer was reported in the literature. Early human evidence of harmful effects as a result of exposure to radiation in large amounts existed in the 1920s and 1930s, based upon the experience of early radiologists, miners exposed to airborne radioactivity underground, persons working in the radium industry, and other special occupational groups. The long-term biological significance of smaller, repeated doses of radiation, however, was not widely appreciated until relatively recently, and most of our knowledge of the biological effects of radiation has been accumulated since World War II. The mechanisms that lead to adverse health effects after exposure to ionizing radiation are still not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the body. Some of these molecular changes are so complex that it may be difficult for the body's repair mechanisms to mend them correctly. However, the evidence is that only a small fraction of such changes would be expected to result in cancer or other health effects. The most thoroughly studied individuals for the evaluation of health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombings, a large population that includes all ages and both sexes.The Radiation Effects Research Foundation (RERF) in Japan has conducted followup studies on these survivors for more than 50 years. An important finding from these studies is that the occurrence of solid cancers increases in proportion to radiation dose. More than 60% of exposed survivors received a dose of radiation of less than 100 mSv (the definition of low dose used by the BEIR VII report). (author)

  14. Stochastic Effects in Computational Biology of Space Radiation Cancer Risk

    Science.gov (United States)

    Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter

    2007-01-01

    Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.

  15. Health and biological effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during this conference day on the biological and health effects of non-ionizing radiations. Sixteen presentations out of 17 are assembled in the document and deal with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes; 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - modulation of brain activity during a tapping task after exposure to a 3000 μT magnetic field at 60 Hz (M. Souques and A. Legros); 10 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 11 - French population exposure to the 50 Hz magnetic field (I. Magne); 12 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Veyret); 13 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 14 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 15 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); French physicians and electromagnetic fields (M. Souques). (J.S.)

  16. Radiation effects on biological molecules: Influence of the local environment

    International Nuclear Information System (INIS)

    Because it crystallizes with several different molecular environments (e.g. hydrated, anhydrous, and HCl), and in several slightly modified molecular forms, the amino acid proline has been chosen as a probe of possible local effects on the radiation chemistry of biological molecules. In all systems studied so far (proline, proline/sup ./H/sub 2/O, proline /sup ./HCl, hydroxyl-proline, thioproline, and oxoproline), evidence for the ''deamination'' radical has been detected. This product, shown to arise from the primary carboxyl anion in hydroxyproline, is probably the result of electron attack in the other cases, also from the α-carbon. Evidence for the other products is currently under analysis and is discussed along with a summary of the results

  17. Scientific projection paper on biologic effects of ionizing radiation

    International Nuclear Information System (INIS)

    There is widespread knowledge about the effects of radiation in human populations but the studies have had some limitations which have left gaps in our knowledge. Most populations have had exposure to high doses with little information on the effect of dose rate. The characteristics of the populations have been restricted by the location of the disaster, the occupational limitations, or the basic risks associated with the under-lying disease for which radiation was given. All doses have been estimated and such values are subject to marked variability particularly when they rely on sources of data such as hospital records. The biological data although extensive have several deficits in information. Which are the sites in which cancer is produced by irradiation and what are the cell types which are produced. The sensitivity of various tissues and organs are not similar and it is important to rank them according to susceptibility. This has been done in the past but the results are not complete for all cell types and organs. The temporal patterns for tumor development, the latent period, the period of expressed excess, the life-time risks need to be defined more precisely for the cancers. Many populations have not been followed long enough to express the complete risk

  18. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  19. Biological and sanitary effects of non ionizing radiations

    International Nuclear Information System (INIS)

    The objective of this day was to encourage the collaborations, especially multidisciplinary, on the biological, clinical, epidemiological and dosimetry aspects. The different presentations are as follow: the magneto reception among animals; the health and radio frequencies foundation; expo-metry to radio frequency fields: dosemeters evaluation; the electro-optical probes as tool of hyper frequency dosimetry; characterisation of emissions produced by the low consumption fluo-compact lamps in the perspective of persons exposure; strong and weak points of epidemiology; numerical dosimetry in low frequency magnetic and/or electric field; exposure of the French population to the 50 Hz magnetic field: first results for the Ile-de-france and Rhone alpes areas; characterisation of the exposure to the very low frequency magnetic fields in the town of Champlan; measurement of the residential exposure of children to the extremely low frequency, very low frequency and radiofrequency (E.L.F., V.L.F. and R.F.) fields and modeling of the high voltage magnetic field face to the child leukemia; effects of radiofrequency signals of wireless communications on the young animals; study of combined effects of 2.45 GHz microwaves and a known mutagen on DNA by two different approaches; effects on the oxidizing stress of nervous cells exposure to an (enhanced data rates for GSM evolution) E.D.G.E. signal; is environmental epidemiology still a science; cardiac implants and exposure to 50 Hz electromagnetic fields in occupational environment; the tanning by artificial UV radiation: norms and legislation; mobiles phones, Wi Fi and other wireless communications; effects on health of 50-60 Hz electromagnetic fields; natural and artificial ultraviolet radiations: a proved risk. (N.C.)

  20. 2.3.2 Biological Effects of Non-Ionizing Radiations

    Science.gov (United States)

    Bernhardt, J. H.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.2 Biological Effects of Non-Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the contents:

  1. Biological dosimetry by the radiation effects on the skin

    International Nuclear Information System (INIS)

    In cases of partial body over-exposure, the dose estimation with personal monitors or with reconstruction of exposed conditions is often impossible without considerable error. Clinical signs of irradiated skin, such as epilation or moist desquamation have been used as the indicators of doses in the radiological accidents, because each sign has the threshold dose. As hair growth is known to be sensitive to radiation, the dose-effect relationship of the delay of hair regrowth and the reduction in hair length of mice after irradiation were examined to investigate if they can be used as biological dosimeters. Hairs on the dorsal skin of 290 ICR mice (8 weeks old) were shaved and irradiated with a Sr-90/Y-90 β-ray source in the early anagen and the midanagen stages of the hair cycle. Skin doses were from 0.5 to 10 Gy. The time of hair regrowth and the hair length were examined with the scaling loupe. Dose-effect relationship of the delay of hair regrowth and reduction in hair length were both clearly dose dependent, fitting the L-Q or L function depending on the stage. Dose estimation functions were derived from the dose-effect relationship curves. The histological observations suggested that hair growth retardation caused by irradiation in midanagen might be due to the cell death and the depression of mitosis in the hair matrix cells. This dose estimation method was applied to the case who was over-exposed to X-ray on his hand and fingers. The findings showed that hair regrowth delay was a sensitive biological dosimeter in the case of partial body over-exposure, which could be applied as early as a few days after over-exposure. The method was simple and non-invasive to the exposed patient. (author)

  2. Biologic discussions augmenting radiation effects and model systems

    International Nuclear Information System (INIS)

    It appears that there is a great deal of indirect evidence that hypoxic cells exist in human tumors, and that they affect the dose of radiation required to control the tumor. Given a suitable method for decreasing the effect of hypoxic cells the way is open to the possible use of lower doses of radiation. This should decrease complication rates, or allow an increased volume to be treated and a consequent increase in control rates

  3. The effect of green tea on radiation-induced late biological effect in mice

    International Nuclear Information System (INIS)

    This study was performed to determine the effect of Green tea on the late biological effect of mice irradiated with 3 Gy of gamma-radiation. There were various findings including hematopoietic and lymphoid tumor, lung cancer, ovarian cancer and cancer of other lesions. Further studies are needed to characterize better the protective nature of active compounds

  4. Radiation biology for environment

    International Nuclear Information System (INIS)

    Environmental pollution problems such as the green-house effect by increase of CO2, acid rain caused by flue gases, and contamination of chemicals and pesticides in foods and water, have become serious in the world with the rapid development of industry and agriculture. To solve some of these problems, radiation treatment has being applied for the removal of the contaminants from flue gases and waste water from industrial plants. On the other hand, the contribution of radiation biology for these environmental pollution problems is not direct but it has contributed indirectly in many fields. This paper describes the contributions of radiation biology for environment in the following two topics: 1) control of insects and microorganisms, and 2) application of radiation for agricultural wastes

  5. A Novel Biological Dosimetry Method for Monitoring Occupational Radiation Exposure in Diagnostic and Therapeutic Wards: From Radiation Dosimetry to Biological Effects

    OpenAIRE

    Heydarheydari, S.; Haghparast, A.; Eivazi, M.T.

    2016-01-01

    Background and Objective Professional radiation workers are occupationally exposed to long-term low levels of ionizing radiation. Occupational health hazards from radiation exposure, in a large occupational segment of the population, are of special concern. Biological dosimetry can be performed in addition to physical dosimetry with the aim of individual dose assessment and biological effects. Methods In this biodosimetry study, some hematological parameters have been examined in 40 exposed a...

  6. Low doses of ionizing radiation: Biological effects and regulatory control. Contributed papers

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency and the World Health Organization, in cooperation with the United Nations Scientific Committee on the Effects of Atomic Radiation, organized an international conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, held in seville, Spain, from 17 to 21 November 1997. This technical document contains concise papers submitted to the conference

  7. Biological effects

    International Nuclear Information System (INIS)

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  8. Biological Effectiveness and Application of Heavy Ions in Radiation Therapy Described by a Physical and Biological Model

    DEFF Research Database (Denmark)

    Olsen, Kjeld J.; Hansen, Johnny W.

    A description is given of the physical basis for applying track structure theory in the determination of the effectiveness of heavy-ion irradiation of single- and multi-hit target systems. It will be shown that for applying the theory to biological systems the effectiveness of heavy-ion irradiation......-LET radiation applied simultaneously in therapy....

  9. IAEA activities related to radiation biology and health effects of radiation

    International Nuclear Information System (INIS)

    The IAEA is involved in capacity building with regard to the radiobiological sciences in its member states through its technical cooperation programme. Research projects/programmes are normally carried out within the framework of coordinated research projects (CRPs). Under this programme, two CRPs have been approved which are relevant to nuclear/radiation accidents: (1) stem cell therapeutics to modify radiation-induced damage to normal tissue, and (2) strengthening biological dosimetry in IAEA member states. (note)

  10. Effects of low-level radiation on biologic systems: a literature review

    International Nuclear Information System (INIS)

    This review presents an organized survey of scientific literature dealing with the biologic effects of low-level radiation. It includes brief discussions of topics of particular interest, a listing of useful review articles, an extensive bibliography, and listings of sources that can be used to update this document in the future. The topics discussed include experimental studies, the linear hypothesis, medical effects, occupational effects, effects of exposure to naturally occurring radiation, consumer products, and laws and regulations

  11. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pmetabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.

  12. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    Science.gov (United States)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  13. Advances in the biological effects of terahertz wave radiation

    OpenAIRE

    Zhao, Li; Hao, Yan-Hui; Rui-yun PENG

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies o...

  14. The need for and the importance of biological indicators of radiation effects with special reference to injuries in radiation accidents

    International Nuclear Information System (INIS)

    The need for further research on the existing and new biological indicators of radiation injury has been expressed. The studies on the radiation-induced alterations of membrane structure and function stimulated investigations aiming to develop an indicator based on membrane-phenomena. The co-ordinated research programme on ''Cell Membrane Probes as Biological Indicators of Radiation Injury in Radiation Accidents'' was initiated in mid 1977 and terminated in 1980. Within this programme many basic observations were made in connection with altered features of various animal and human cell membranes. Molecular, biophysical, biochemical and cell biological approaches were performed. The rapid reaction within minutes or hours of membranes against relatively low doses of various types of irradiations were described and the effects proved to be transitory, i.e. membrane regeneration occurred within hours. These dose- and timedependent alterations suggest the possibility of developing a biological indicator which would give signals at the earliest period after radiation injury when no other biological informations are available. The importance of a system of biological indicators is emphasized. (author)

  15. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    Science.gov (United States)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (pquantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism

  16. The effects on populations of exposure to low levels of ionizing radiation. Report of the Advisory Committee on the Biological Effects of Ionizing Radiations

    International Nuclear Information System (INIS)

    In the summer of 1970, the Federal Radiation Council (whose activities have since been transferred to the Radiation Office of the EPA) asked the National Academy of Sciences for information relevant to an evaluation of present radiation protection guides. This report is in response to that request. It presents a summary and analysis, by members of the Advisory Committee on the Biological Effects of Ionizing Radiations and its subcommittees, of current knowledge relating to risks from exposure to ionizing radiation. In many respects, the report is a sequel to the reports of the Committee on the Biological Effects of Atomic Radiation, published by the NAS-NRC from 1956 to 1961

  17. Relative biological effectiveness and radiation weighting factors in the context of animals and plants

    International Nuclear Information System (INIS)

    Radiation weighting factors have long been employed to modify absorbed dose as part of the process of evaluating radiological impact to humans. Their use represents an acknowledgement of the fundamental difference in energy deposition patterns of charged and uncharged particles, and how this can translate into varying degrees of biological impact. Weighting factors used in human radiation protection are derived from a variety of endpoints taken from in-vitro experiments that include human and animal cell lines, as well as in-vivo experiments with animals. Nonetheless, the application of radiation weighting factors in the context of dose assessment of animals and plants is not without some controversy. Specifically, radiation protection of biota has largely focused on limiting deterministic effects, such as reduced reproductive fitness. Consequently, the application of conventional stochastic-based radiation weighting factors (when used for human protection) appears inappropriate. While based on research, radiation weighting factors represent the parsing of extensive laboratory studies on relative biological effectiveness. These studies demonstrate that the magnitude of a biological effect depends not just on dose, but also on other factors including the rate at which the dose is delivered, the type and energy of the radiation delivering the dose, and, most importantly, the endpoint under consideration. This article discusses the efforts taken to develop a logical, transparent, and defensible approach to establishing radiation weighting factors for use in assessing impact to non-human biota, and the challenges found in differentiating stochastic from deterministic impacts.

  18. History, biological effects, and dosimetry of beta radiation

    International Nuclear Information System (INIS)

    There has been a renewed interest in the dosimetry of beta radiation, particularly in the nuclear power industry. This interest is fueled by the current regulatory concern over exposure to hot particles. Hot particles are small, usually microscopic particles of fuel material or activated products produced as a result of neutron activation in a nuclear reactor. In addition, these particles are characterized as having very high specific activity and being composed primarily of beta-emitting radionuclides. Of primary interest in the dosimetry of hot particles is the absorbed dose and/or dose equivalent to the basal layer of the skin. Current federal regulations, as well as international and national radiation protection standards, do not address adequately the exposure of small areas of the skin from a single point source. In this paper, the history of beta dosimetry is reviewed with an emphasis on early beta-radiation exposures, such as those associated with fallout from nuclear weapons. Beta burns due to the black rain associated with the Japanese bombings and fallout studies at the Nevada test site and in the Pacific testing area provided much of the earliest data. Many survivors of the Japanese bombings were exposed to high-intensity beta radiation when they were caught in a rainout of material that had been sucked up into the fireball of the weapon

  19. Cytogenetic effects of low ionising radiation doses and biological dosimetry

    OpenAIRE

    Gricienė, Birutė

    2010-01-01

    The intensive use of ionising radiation (IR) sources and development of IR technology is related to increased exposure and adverse health risk to workers and public. The unstable chromosome aberration analysis in the group of nuclear energy workers (N=84) has shown that doses below annual dose limit (50 mSv) can induce chromosome aberrations in human peripheral blood lymphocytes. Significantly higher frequencies of the total chromosome aberrations were determened in the study group when compa...

  20. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  1. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  2. New Scientific Pearl about Biologic Effect of Ionizing Radiation

    OpenAIRE

    S. A. Alamdaran

    2008-01-01

    Soon after the discovery of X-ray by Rontgen in 1895, it became evident that radiation can cause some somatic damage to tissues. The hazards of X-ray exposure were clearly known when many large hospitals had radiology departments. The greatest increased in knowledge about X-ray risks had accrued from the dropping of the two atomic bombs in Japan in 1945 and some other atomic accident. For example, among the Japanese bomb survivors from Hiroshima and Nagasaki, there have been about 400 extra c...

  3. Information on biological health effects of ionizing radiation and radionuclides: the rule of a web site

    International Nuclear Information System (INIS)

    The purpose of this project is to provide a source of information on biological and health effects of radionuclides and ionizing radiation in an easy to use format. Reported work is made up of two distinct parts: data sheets for selected radionuclides and a web file. Data sheets: Specific radiation data sheets provide an overview of the properties, the environmental behaviour, the different pathways of human exposure and the biological and health consequences of selected radionuclides. Radionuclides that have been selected are those commonly dealt with in nuclear industry (and in other areas such as medicine) and released to the environment or naturally occurring (plutonium, tritium, carbon 14). Data sheets corresponding to the different radionuclides are based on the main sources of scientific information in dosimetry, epidemiology, radiobiology and radiation protection. These data sheets are intended for radiation protection specialists and physicians. They include: main physical and chemical characteristics, main radiation protection data: dose coefficients (public, workers), dose limits sources, total released estimate (nuclear industry, atmospheric tests, main pathway of human exposure and biological behaviour, biological and health effects, medical supervision, treatment a list of the main references, appendix providing accurate information. Web file: http://www-dsv.cea.fr/doc/carmin_ext/fond.php This web file provides a source of information on biological and health effects of ionizing radiation and biological basic knowledge of radiation protection. Available for consultation via Internet, compiled information provides, in a same file, subjects as varied as biological mechanisms, ionizing radiations action, biological and health effects, risk assessment This file is mainly intended to assist in informing and training of non-specialist readership (students, teaching on radiation protection basic knowledge. This electronic document is divided in three

  4. Relative biological efficiency of 592 MeV protons. Analysis of the biological effect of secondary radiation

    International Nuclear Information System (INIS)

    The relative biological efficiency (RBE) of high energy protons is of importance because of their effects in the field of radioprotection around large accelerators and during space-flights. The nature of the interactions between 592 MeV protons and biological tissues makes it necessary to take into consideration the contribution of secondary radiation to the biological effect. Since it is not possible to obtain from a synchrotron a beam having a sufficiently large cross-section to irradiate large animals, one has to resort to certain devices concerning the mode of exposure when small laboratory animals are used. By irradiating rats individually and in groups, and by using the lethal test as a function of time, the authors show that the value of the RBE is different for animals of the same species having the same biological parameters. Thus there appears an increase in the biological effect due to secondary radiation produced in nuclear cascades which develop in a large volume, for example that of a human being. (author)

  5. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations

    International Nuclear Information System (INIS)

    Information on Japanese A-bomb survivors exposed to gamma radiation has been used to estimate cancer risks for the whole range of photon (x-rays) and electron energies which are commonly encountered by radiation workers in the work place or by patients and workers in diagnostic radiology. However, there is some uncertainty regarding the radiation effectiveness of various low-linear energy transfer (low-LET) radiations (x-rays, gamma radiation and electrons). In this paper we review information on the effectiveness of low-LET radiations on the basis of epidemiological and in vitro radiobiological studies. Data from various experimental studies for chromosome aberrations and cell transformation in human lymphocytes and from epidemiological studies of the Japanese A-bomb survivors, patients medically exposed to radiation for diagnostic and therapeutic procedures, and occupational exposures of nuclear workers are considered. On the basis of in vitro cellular radiobiology, there is considerable evidence that the relative biological effectiveness (RBE) of high-energy low-LET radiation (gamma radiation, electrons) is less than that of low-energy low-LET radiation (x-rays, betas). This is a factor of about 3 to 4 for 29 kVp x-rays (e.g. as in diagnostic radiation exposures of the female breast) and for tritium beta-rays (encountered in parts of the nuclear industry) relative to Co-60 gamma radiation and 2-5 MeV gamma-rays (as received by the Japanese A-bomb survivors). In epidemiological studies, although for thyroid and breast cancer there appears to be a small tendency for the excess relative risks to decrease as the radiation energy increases for low-LET radiations, it is not statistically feasible to draw any conclusion regarding an underlying dependence of cancer risk on LET for the nominally low-LET radiations. (review)

  6. III. Biological effects of radiation from external and internal sources

    Energy Technology Data Exchange (ETDEWEB)

    Stone, R.S.

    1948-05-24

    This report focuses on the hemotological effects of total body irradiation from external and internal sources observed in patients treated for arthritis with radioactive phosphorus administered intravenously.

  7. Biological effects of radiation in combination with other physical, chemical or biological agents. Annex L

    International Nuclear Information System (INIS)

    This Annex considers the combined action of radiation with potentially important environmental conditions. Since there is a scarcity of systematic data on which an analysis of combined effects can be based, this Annex will be more hypothetical and will attempt to suggest definitions, to identify suitable methods of analysis, to select from a large amount of diffuse information the conditions and the data of importance for further consideration and to provide suggestions for future research. For humans in environmental circumstances the UNSCEAR Committee has been unable to document any clear case of synergistic interaction between radiation and other agents, which could lead to substantial modifications of the risk estimates for significant sections of the population

  8. Radiation and man - evaluation of biological and environmental low level radiation effects

    International Nuclear Information System (INIS)

    The harmful effects of acute radiation cannot be resolved by statistical means and require clearer knowledge of mechanisms of action and much wider collection of human experience before any definite sound stand can be taken. Much information has accumulated from animal experiments, and still the interpretations are not always clearcut, but for human experience it is only the occasional accident which can give a direct answer. Some of the phenomena attributed to low dose radiation are summarized. There are regions of radiation exposure about which we have only limited positive knowledge, an all low-dose risk estimates have been based on effects observed at relatively high doses. Much information has been gathered which does not support the severity of former basic principles, especially our knowledge of mechanisms of repair existing in most cells as natural defence against the damages caused by radiation as well as by many chemicals which act as mutagenic and carcinogenic agents. Understanding these mechanism, their scope of action and their availability to a damaged cell and organism will lead towards modification of the acceptable permissible exposures, in some cases towards severity, but in most cases towards leniency and higher values. For the evaluation of the effects of low level low dose-rate radiations, whether external, or from internal deposition of isotopes, only late somatic and genetic effects should be considered. (B.G.)

  9. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    International Nuclear Information System (INIS)

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C-0.68, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  10. Radiation degradation of alginate and some results of biological effect of degraded alginate on plants

    Energy Technology Data Exchange (ETDEWEB)

    Hien, N.Q.; Hai, L.; Luan, L.Q.; Hanh, T.T. [Nuclear Research Institute, Dalat (Viet Nam); Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi, Keizo; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation degradation yields (Gd) of alginate in aqueous solution with different concentration were determined by viscometry method. The relationship between Gd and the alginate concentration was found out as: Gd=33.5 x C{sup -0.68}, with C% (w/v) and dry alginate referred to C=100%. An empirical equation for preparing degraded alginate with the desired low viscometry average molecular weight (Mv) by radiation was proposed. Alginate extracted directly horn seaweed'Sagassum, degraded by radiation was used for field experiments and results of the biological effect on plants (tea, carrot, chrysanthemum) were presented. (author)

  11. 'K' contribution to the biological effect of ionizing radiations

    International Nuclear Information System (INIS)

    The aim of this work is to determine the importance of 'K' ionizations on DNA as critical physical events initiating the biological effects of ionizing radiation, in particular in human cells. Ultra-soft X-rays are used as a probe of core ionization events. A decisive test consists in comparing the biological effects at 250 eV and 350 eV (before and after the carbon K - threshold). The results show a sharp increase of the biological efficiency for both cellular inactivation and chromosomal exchange aberration above the carbon K-threshold, correlated with the one of core events occurring in DNA atoms. The heavy ion irradiation displays again the paradoxical behaviour of cellular inactivation cross sections as a function of LET. Finally, the 'K' event contribution to cellular inactivation of usual low LET radiation is estimated to be about 75%. (author)

  12. Biological effects of electromagnetic radiations - 7. International Conference, La Valette, Malta, 8-12 October 2012

    International Nuclear Information System (INIS)

    This document proposes a synthesis of a conference on the biological effects of electromagnetic radiations. With reference to epidemiological studies, different issues have been addressed: pathological effects (either of static fields, or of extremely low frequencies, or of radio-frequencies), biological effects (methodological issues, case of extremely low frequencies and of radio-frequencies), medical applications of electromagnetic fields (tumour removal, neurological disorders, consolidation, wound healing and recovery), assessment of electromagnetic fields (existing directives and regulations, case of electric lines and of radio-frequencies), exposure to electromagnetic fields (occupational exposure in medical or industrial applications, specific devices such as telephones, regulation)

  13. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (pplant. Keywords: Heavy-ion radiation; Low dose; Stimulation effect; Inhibition effect; Rice.

  14. Radiation, its biological effects and uses: past experiences and future perspectives

    International Nuclear Information System (INIS)

    Radiation refers to electromagnetic energy that travels through space in the form of particles or waves. It is energy such as heat, light, sound, radio waves and radar. It is everywhere including in the food we eat and the air that we breathe. Biological effects of radiation including cell killing, mutagenesis and carcinogenesis are all due to damage to DNA; Radiation releases OH ions from water molecules, which cause the cell damage due to their oxidizing effect. The mechanism by which radiation causes damage to human tissue, or any other material, is by ionization of atoms in the material. Genetic or heritable effects appear in the future generations of the exposed person as a result of radiation damage to the reproductive cells. Radiation may alter the DNA within any cell. Cell damage and death that result from mutations in somatic cells occur only in the organism in which the mutation occurred and are therefore termed somatic or no heritable effects. Acute radiation dose is defined as a large dose delivered during a short period of time. Genetic or heritable effects appear in the future generations of the exposed person as a result of radiation damage to the reproductive cells. The radiation used for cancer treatment may come from a machine outside the body, or it may come from radioactive material placed in the body near tumor cells or injected into the bloodstream. Radiation is used to help remove toxic pollutants, such as exhaust gases from coal-fired power stations and industry. For example, electron beam radiation can remove dangerous sulphur dioxides and nitrogen oxides from our environment and used to help remove toxic pollutants, such as exhaust gases from coal-fired power stations and industry. (author)

  15. Radiation physics, biophysics, and radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  16. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent

  17. X-ray imaging and the skin: Radiation biology, patient dosimetry and observed effects

    International Nuclear Information System (INIS)

    A wide variety of radiation-induced deterministic skin effects have been observed after X-ray guided interventions ranging from mild effects, such as transient erythema or temporary epilation, to severe effects, such as desquamation and necrosis. Radiation biologists have identified, in addition to absorbed dose to the skin, other factors that strongly influence the type and severity of a skin reaction, including exposure-related factors (dose rate, fractionation, the size of the exposed area and its site), biological factors (age, oxygen status, capillary density, hormonal status and genetic factors) and ethnic differences. A peak entrance skin dose of 2 Gy is an arbitrary, but pragmatic, threshold for radiation-induced skin effects after X-ray guided interventions. Transient skin injury originating in the epidermis is not expected in the average patient population at peak entrance skin doses up to 6 Gy. Serious skin effects are not likely to occur in clinical practice when optimised X-ray equipment is used in combination with good techniques for fluoroscopy and imaging. However, this might not be true for patients with biological factors that are associated with an increased sensitivity for radiation-induced skin reactions. (authors)

  18. Status of research on biological effects and safety of electromagnetic radiation: telecommunications frequencies

    International Nuclear Information System (INIS)

    The possible adverse effects on human health of exposure to radiofrequency (RF) and microwave electromagnetic fields and radiation are of public concern. As the ambient electromagnetic environment continues to intensify (e.g. cellular and portable phones, wireless communications, LANs, PCNs) the effects of exposure from cumulative sources and prolonged exposure to low levels needs to be addressed. This review considers RF and microwave radiation above 100 kHz. It is acknowledged that there are several possible areas of biological interaction which have health implications and about which current knowledge is limited. Advice is based on the assessment of risks to health resulting from these exposures as derived from studies on the effects of RF radiation on animals and volunteers and from epidemiological studies of exposed populations. 360 refs., 9 tabs., 1 fig

  19. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    International Nuclear Information System (INIS)

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/μm. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm2 of material is used

  20. Radiation effects analysis in a group of interventional radiologists using biological and physical dosimetry methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, M., E-mail: WEMLmirapas@iqn.upv.e [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montoro, A.; Almonacid, M. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Ferrer, S. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Barquinero, J.F. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Tortosa, R. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain); Verdu, G. [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Rodriguez, P. [Biological Dosimetry Service, Unit of Anthropology, Department of Animal and Vegetable Biology and Ecology, Universitat Autonoma de Barcelona (UAB) (Spain); Barrios, L.L. [Department of Physiology and Cellular Biology, Unit of Cellular Biology (UAB) (Spain); Villaescusa, J.I. [Radiation Protection Service, Hospital Universitario La Fe Valencia (Spain)

    2010-08-15

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the effects of direct and scattered radiation, in deterministic effects (radiodermitis, aged skin, cataracts, telangiectasia in nasal region, vasocellular epitelioms, hands depilation) and/or stochastic ones (cancer incidence). A methodology has been proposed for estimating the radiation risk or detriment from a group of six exposed interventional radiologists of the Hospital Universitario La Fe (Valencia, Spain), which had developed general exposition symptoms attributable to deterministic effects of ionizing radiation. Equivalent doses have been periodically registered using TLD's and wrist dosimeters, H{sub p}(10) and H{sub p}(0.07), respectively, and estimated through the observation of translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The software RADRISK has been applied for estimating radiation risks in these occupational radiation exposures. This software is based on transport models from epidemiological studies of population exposed to external sources of ionizing radiation, such as Hiroshima and Nagasaki atomic bomb survivors [UNSCEAR, Sources and effects of ionizing radiation: 2006 report to the general assembly, with scientific annexes. New York: United Nations; 2006]. The minimum and maximum average excess ratio for skin cancer has been, using wrist physical doses, of [1.03x10{sup -3}, 5.06x10{sup -2}], concluding that there is not an increased risk of skin cancer incidence. The minimum and maximum average excess ratio for leukemia has been, using TLD physical doses, of [7.84x10{sup -2}, 3.36x10{sup -1}], and using biological doses, of [1.40x10{sup -1}, 1.51], which is considerably higher than incidence rates, showing an

  1. Radiation physics, biophysics, and radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  2. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ''biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons

  3. Integrative radiation systems biology.

    Science.gov (United States)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  4. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  5. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    Science.gov (United States)

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation. PMID:26520385

  6. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  7. A perspective on dose limits and biological effects of radiation on the foetus

    International Nuclear Information System (INIS)

    The potential biological effects of radiation doses to pregnant workers consistent with Canadian regulations and ICRP recommendations are reviewed. These hazards are in general very small compared to the normal hazards associated with human development. Potential carcinogenic effects may well be the major biological problem associated with foetal exposures. Radiation hazards to the embryo are essentially zero for exposures occurring during the first four weeks after conception. The new ICRP recommendations on exposures of pregnant women suggest a number of problems to be solved. These include (a) improvements in current methods of measuring both external radiation doses and intakes of certain radionuclides in Canada, (b) further research on the metabolism of radionuclides in pregnant women, including concentrations of certain radionuclides in foetal/embryonic tissues and also in adjacent tissues of the mother; and (c) socio-economic problems that may be involved in the implementation of the recommendations on exposures of pregnant workers, particularly in small facilities such as nuclear medicine departments in hospitals. (Author) 3 tabs., 21 refs

  8. Biological effects induced by low-density heavy ions of space radiation in medaka

    International Nuclear Information System (INIS)

    Starting Japanese astronauts staying in the International Space Station (ISS), influences of the radiation on human is becoming one of the important risks during space flight. Although the biological effect with high-dose acute irradiation has been examined by epidemiological studies for many years, the risks either acute or chronic with low-dose or low-fluence irradiation equivalent of space environment can only be estimated based on the data with high-dose or high-fluence at present. Our aim is to understand biological influences on living organisms induced by low-dose and low-fluence chronic irradiation (1 mGy/7-8 h) that assumes the space radiation in ISS. So that we focused on the gene and protein expression, and the possibility on carcinogenesis induced by low-dose and -fluence radiation, and planed the experiments to irradiate medaka carbon ions using Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS). This year, we established the irradiation method to treat medaka with low-dose and -fluence (1 mGy/7-8 h) carbon ions. Also we extracted total RNA from medaka scales and skins to evaluate the effect of irradiation. (author)

  9. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H2O2(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H2O2)-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H2O2(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  10. Biological Research for Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-15

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H{sub 2}O{sub 2}(toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H{sub 2}O{sub 2})-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H{sub 2}O{sub 2}(or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells.

  11. Effects of gamma radiations on some aspects of the biology of salmonella

    International Nuclear Information System (INIS)

    This work aimed at the study of the effect of gamma radiation on certain aspects of the biology of Salmonella, few works joined this type and gamma radiations. The lethal effect of ionizing radiations was associated at other bacterial types, to an oxidative stress due to the presence of reactive spices of oxygen and leading to deteriorations of membrane cells, proteins and nucleic acids.Thus, we proceeded to an analysis of the viability of four Salmonella serovars subject to different radiation doses going from 0.5 to 2 KGy. The results showed a viability reduction dose dependent with a differential behavior, statistically significant. In order to detect possible radio induced changes at the restriction site of the enzymes XbaI and BlnI usually used for the typing of Salmonella, we carried out a DNA restriction profile analyse of the four serovars by pulsed filed gel electrophoresis. The results showed that no change appeared on the level of these restriction sites for the used enzymes following an irradiation of 2KGy. The study of the sensitivity of Salmonella to antibiotics after a gamma radiation showed that gamma radiation has increased the sensitivity of Salmonella isolates to porin associated antibiotics. Statistical analyses showed that the effect of different irradiation dose treatment on the antibiotic sensitivity is increasingly significant. The irradiation didn't induce modifications of the sensitivity to other antibiotics, probably because of their nature, of their penetration mode inside the cell or their action way. To tray to explain the differential behavior of different serovars to irradiation. We analyzed by Quantitative real time PCR (RT- PCR), the expression level of the ARNm of the genes KATN (catalase non-hemique), DNAK (protein of thermal shock), RNA polymerase as well as of the 16S rRNA. The results showed either a repression or an induction of certain genes under the effect of an irradiation of 2 KGy. (Author)

  12. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    Science.gov (United States)

    Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)

    1993-01-01

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.

  13. Early biological effects of low doses of ionizing radiation on yeast cells

    International Nuclear Information System (INIS)

    The biological effectiveness of different radiation types for variety organisms requires further study. For fundamental studies of this problem it is worthwhile to use the most thoroughly investigated biological objects, for example, yeasts. The yeast Saccharomyces cerevisiae was used as the test eukaryotic organism which gives the experimenter complete control over its chemical and physical environment. The aim of the study consisted in comparative analysis of early effects induced by low doses of low LET (60Co and 137Cs) and high LET ( α-particles 239Pu, neutrons) radiation on eukaryotic cells (cell survival about 100%). Biological effects of low doses of ionizing radiation were studied by two criteria: 1.delay of cell division and kinetics of yeast cells micro-colonies formation; 2.morphology of micro-colonies at different temperature. The results have shown that only small part of irradiated cell population (∼10%) divided at the same rate as unirradiated cells. Other part of cells had a delayed division. Unirradiated control cells formed typical micro-colonies at the solid nutrient media (YEPD) after 10 15 h of incubation. The fraction of cells population (20- 25%) exposed to low doses of?-particles or neutrons formed spectrum of untypical micro-colonies for the same incubation time, which consisted of small number of larger and more elongated cells. Some of these micro-colonies had 10 50 cells were of exotic forms ('spider'), differed from other micro-colonies in population. Using this method we can reveal an early response of cells at very low doses (survival about 100%) and determine the number non-lethally damaged cells. (author)

  14. The impact of 137Cs ionising radiation on the biological effects of plants

    International Nuclear Information System (INIS)

    Biological effects of exposure to low ionising radiation, especially of long-lasting exposure, have not yet been investigated thoroughly.The goal of this study was to determine internal irradiation doses caused by accumulated 137Cs in test plants and organisms. Environmental exposure of 11 test plant species to 137Cs ionising radiation reached internal irradiation doses of up to 32 micro Sv, which can already cause genotoxic changes in plants sensitive to ionising radiation. Laboratory experiments demonstrated that internal irradiation of the test organism Tradescantia with 0.5 micro Sv of 137Cs was lethal for 25 % of nonviable stamen hairs and for 1.3 % of somatic cells.Under laboratory conditions, negligible internal (0.6-600 micro Sv) and external (40-5500 micro Sv) ionising radiation doses of 137Cs stimulated root growth in Lepidium sativum and reduced the length of the cells nearest to the meristem, but no dose-dependent effect was observed.(author)

  15. Effect of column ozone on the variability of biologically effective UV radiation at high southern latitudes.

    Science.gov (United States)

    Sobolev, I

    2000-12-01

    Solar irradiance measurements from Ushuaia (Argentina) and Palmer and McMurdo Stations in Antarctica covering four seasons from mid-1993 through early 1997 have been analyzed and their variations compared with column ozone changes. UV irradiances were weighted for biological effectiveness using a published biological weighting function for dose-dependent inhibition of photosynthesis by phytoplankton from the Weddell Sea. All calculations involved integrated daily UV doses and visible exposures (weighted UV and unweighted visible irradiances, respectively). The results show that daily biologically effective total UV doses underwent large short-term variations at all three sites, with day-to-day increases up to 236% at Ushuaia, 285% at Palmer and 99% at McMurdo. Parallel changes in visible exposure indicated that the total UV changes were preponderantly due to variations in cloudiness. On a 12-month basis, daily biologically effective UV doses correlated strongly with visible exposures (R > or = 0.99). Anticorrelations of total UV with ozone, on the other hand, were poor (R > -0.11). The largest daily biologically effective UV doses, and their day-to-day increases, occurred as part of the normal variability related to cloud cover and were seldom associated with significant ozone depletion. UV dose/visible exposure ratios tended to reflect ozone depletion events somewhat more consistently than UV doses alone. With the Weddell Sea phytoplankton weighting function used in this study, antarctic ozone hole events were seldom readily discernible in the biologically effective UV record. The results suggest that, where the UV sensitivity of organisms was similar to that of the Weddell Sea phytoplankton, seasonal ozone depletion had no appreciable effect on annual primary productivity during the 1993-1997 period. Additional data on the geographical and seasonal variation of biological weighting functions are desirable for more comprehensive assessments of ozone depletion

  16. Emerging frontiers in radiation biology

    International Nuclear Information System (INIS)

    Radiation biology owes its origin to the spectacular success in the treatment of human diseases by x-rays and radium, just after their respective discoveries in 1895-96. From the very inception it has attracted researchers from all disciplines of science. The target and hit theory developed by physicists, dominated the scene till the advent of radiation chemistry concepts which offered an entirely different perspective to the mechanisms involved in biological effects of radiations and their modification by endogenous and exogenous agents like radioprotectors and radiosensitisers including hyperthermia. The applied aspect of radiation biology mainly relates to radiation therapy of cancer which, in spite of its long existence, is still to achieve scientific perfection. Nevertheless, it did not wait -and fortunately so-, for its radiobiological rationality but continued its development to be the main modality for cancer treatment today. Several approaches are now being attempted to improve its efficacy by selectively damaging the cancerous cells while sparing the normal tissues and also by devising suitable predictive assays for radioresponse of different tumours to enable individualisation of treatment schedules. (author). 99 refs., 1 fig., 2 tabs

  17. Radiation biology of low doses

    International Nuclear Information System (INIS)

    Present risk assessments and standards in radiation protection are based on the so-called linear no-threshold (LNT) dose - effect hypothesis, i.e., on a linear, proportional relationship between radiation doses and their effects on biological systems. This concept presupposes that any dose, irrespective of its level and time of occurrence, carries the same risk coefficient and, moreover, that no individual biological effects are taken into account. This contribution presents studies of low energy transfer (LET) radiation which deal with the risk of cancer to individual cells. According to the LNT hypothesis, the relationship for the occurrence of these potential effects should be constant over the dose range: successful repair, cell death, mutation with potential carcinogenesis. The results of the studies presented here indicate more differentiated effects as a function of dose application as far as damage to cellular DNA by ionizing radiation is concerned. At the same overall dose level, multiple exposures to low doses sometimes give rise to much smaller effects than those arising from one single exposure to the total dose. These adaptive effects of cells are known from other studies. The results of the study allow the conclusion to be drawn that non-linear relationships must be assumed to exist for the LET radiation considered. Correspondingly, the linear no-threshold hypothesis model should at least be reconsidered with respect to the low dose range in the light of recent biological findings. The inclusion of other topical research findings also could give rise to a new, revised, risk-oriented approach in radiological protection. (orig.)

  18. Low doses of ionizing radiation: Biological effects and regulatory control. Invited papers and discussions. Proceedings of an international conference

    International Nuclear Information System (INIS)

    The levels and biological effects resulting from exposure to ionizing radiation are continuously reviewed by the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR). Since its creation in 1928, the International Commission on Radiological Protection (ICRP) has issued recommendations on protection against ionizing radiation. The UNSCEAR estimates and the ICRP recommendations have served as the basis for national and international safety standards on radiation safety, including those developed by the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO). Concerning health effects of low doses of ionizing radiation, the international standards are based on the plausible assumption that, above the unavoidable background radiation dose, the probability of effects increases linearly with dose, i.e. on a 'linear, no threshold' (LNT) assumption. However, in recent years the biological estimates of health effects of low doses of ionizing radiation and the regulatory approach to the control of low level radiation exposure have been much debated. To foster information exchange on the relevant issues, an International Conference on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control, jointly sponsored by the IAEA and WHO in co-operation with UNSCEAR, was held from 17-21 November 1997 at Seville, Spain. These Proceedings contain the invited special reports, keynote papers, summaries of discussions, session summaries and addresses presented at the opening and closing of the Conference

  19. Research into the biological effects of ionizing radiation somatic effects II: non-cancer

    International Nuclear Information System (INIS)

    Somatic effects of radiation can be considered in two categories: low and high level effects. In the low level exposure region (defined here arbitrarily as a single dose of the order of 10 rads or less, or higher doses at very low dose rates), the only somatic effects other than cancer known definitely at present to have health significance are those on fertiltiy and on the developing individual from conception to near birth. Knowledge of these effects is inadequate at present, and the bulk of this report will be devoted to discussing the types of additional investigations required. With respect to non-cancer somatic effects of radiation at intermediate to high doses and dose rates, enough is known to describe in general the course of early (over the first days to perhaps six weeks) effects, following different doses of external radiation. In particular, the non-cancer late effects of intermediate to high doses of internal and external radiation need better definition. The distinction between non-cancer and cancer-related somatic effects is blurred, at least at high dose levels

  20. Proceedings of the colloquium on the biological and health effects of non-ionizing radiations

    International Nuclear Information System (INIS)

    This colloquium was organized by the 'non-ionizing radiations section' of the French Society of Radiation Protection (SFRP). Its goal is to review the works carried out in France regarding the electromagnetic fields risk, the wave-matter interactions and the medical applications. This conference day is the occasion for the scientific actors of the domain to exchange and encourage the pluri-disciplinary collaborations on the biological, clinical, epidemiological, dosimetric and regulatory aspects of the exposure to non-ionizing radiations. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Retinal risk in blue light: standard requirements for LED lighting systems (S. Point); 2 - RETINALED: in-vivo study of blue light-related risk - towards a better understanding of retinal pathologies and a better risk assessment (P. Boulenguez); 3 - Can solar UV radiations have a beneficial effect for some cancers? The HeLME-UV project: domestic exposure to solar UV light and malignant lymphoid homeopathies of the child (J.F. Dore); 4 - A major public health problem: UV tanning devices should be prohibited (J.F. Dore); 5 - Is electro-hypersensitivity the result of a nocebo effect? (M. Dieudonne); 6 - Effects of repeated Wi-Fi signal exposure on glial and micro-glial activation in the mouse (I. Lagroye); 7 - RF residential exposure measurements in the French program of the Operative Committee (R. De Seze); 8 - Real-time study of RF fields global cellular effects (Y. Percherencier); 9 - Electromagnetic fields and neuro-degenerative diseases (I. Lagroye); 10 - Example of direct biophysical effect in the domain of ultra-low frequencies: the perception of magnetic phosphenes (A. Legros); 11 - French population exposure to the 50 Hz magnetic field: update of the Expers study (I. Magne); 12 - Cardiac implants immunity with respect to 50/60 Hz electric fields (C. Gercek); 13 - Cardiac implants and

  1. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer

    International Nuclear Information System (INIS)

    Locoregional hyperthermia combined with radiotherapy significantly improves locoregional control and overall survival for cervical tumors compared to radiotherapy alone. In this study biological modelling is applied to quantify the effect of radiosensitization for three cervical cancer patients to evaluate the improvement in equivalent dose for the combination treatment with radiotherapy and hyperthermia. The Linear-Quadratic (LQ) model extended with temperature-dependent LQ-parameters α and β was used to model radiosensitization by hyperthermia and to calculate the conventional radiation dose that is equivalent in biological effect to the combined radiotherapy and hyperthermia treatment. External beam radiotherapy planning was performed based on a prescription dose of 46Gy in 23 fractions of 2Gy. Hyperthermia treatment using the AMC-4 system was simulated based on the actual optimized system settings used during treatment. The simulated hyperthermia treatments for the 3 patients yielded a T50 of 40.1 °C, 40.5 °C, 41.1 °C and a T90 of 39.2 °C, 39.7 °C, 40.4 °C, respectively. The combined radiotherapy and hyperthermia treatment resulted in a D95 of 52.5Gy, 55.5Gy, 56.9Gy in the GTV, a dose escalation of 7.3–11.9Gy compared to radiotherapy alone (D95 = 45.0–45.5Gy). This study applied biological modelling to evaluate radiosensitization by hyperthermia as a radiation-dose escalation for cervical cancer patients. This model is very useful to compare the effectiveness of different treatment schedules for combined radiotherapy and hyperthermia treatments and to guide the design of clinical studies on dose escalation using hyperthermia in a multi-modality setting

  2. Biology relevant to space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1997-04-30

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration.

  3. The combined biological effects of low dose radiation, carbon monoxide, benzene and noise on rats

    International Nuclear Information System (INIS)

    Objective: To investigate the combined biological effects of low dose radiation, carbon monoxide,benzene and noise on rats. Methods: Sixteen male SD rats were randomly divided into experiment group and control group. The experiment group was exposed to carbon monoxide, benzene, low dose radiation and noise daily, the control group was in common environment. Peripheral blood, organ index, and marrow DNA content were detected. Two-dimensional electrophoresis (2-DE) was performed on serum protein analysis. Differential expressed proteins were identified by a matrix assisted laser desorption/ionization time of flight mass spectrometry (MAIDI-TOF-MS). Results: Compared to control group, the liver index, spleen index, thymus index, leukocytes, platelets count, and marrow DNA content of the experiment group were decreased significantly (t=2.732, 4.141, 3.053, 2.211, 2.668, 11.592, P<0.05). 12 altered proteins were detected and through identification, 3 proteins were definite in terms of serum amyloid A-4 protein (SAA4), trichoplein keratin filament-binding protein (TCHP) and tubulin alpha-4A chain (TUBA4A). Conclusions: The hematopoietic system and immune system of rats are damaged significantly with the changes of several serum protein expressions by the combined exposure of low dose radiation, carbon monoxide, benzene and noise. This study may provide new information for the mechanism of the combination effects. (authors)

  4. Biological effects of the ionizing radiation. Press breakfast; Effets biologiques des rayonnements ionisants. Petit dejeuner de presse

    Energy Technology Data Exchange (ETDEWEB)

    Flury-Herard, A. [CEA, Direction des Sciences du Vivant, DSV, 75 - Paris (France); Boiteux, S.; Dutrillaux, B. [CEA/Fontenay-aux-Roses, Direction des Sciences du Vivant, DSV, 92 (France); Toledano, M. [CEA Saclay, Direction des Sciences du Vivant, DSV, 91 - Gif-sur-Yvette (France)

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  5. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days

    International Nuclear Information System (INIS)

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photo-keratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process. (authors)

  6. The study of biological effects of electromagnetic mobile phone radiation on experimental animals by combining numerical modeling and experimental research

    Directory of Open Access Journals (Sweden)

    Dejan Krstić

    2012-12-01

    Full Text Available In order to study biological effects of electromagneticradiation, it is essential to know the real values of field componentsthat penetrated the tissue. The study of biological effects is usuallyperformed on experimental animals. The biological effects observedon experimental animals should be linked with penetrating field inthe tissue. The penetrating electromagnetic field is almost impossibleto measure; therefore, modeling process must be carried out and thefield components in models of experimental animals could becalculated. This paper presents an approach to modeling of fieldpenetration and gives contribution to understanding the real effects of the fields and the sensitivity of tissues to electromagnetic radiation generated by mobile phone.

  7. Biological effect produced by ionizing radiations on occupational workers in Carlos Andrade Marin Hospital

    International Nuclear Information System (INIS)

    The objective of this study was to establish the biological effects on occupational workers. In this study, have made a bibliographic review of the changes on skin of 217 professionals; between 21 and 70 years radiologists, X-ray technicians, radioisotope workers, nurses and others, which were exposed to ionizing radiation, in the departments of Diagnosis and Treatment of the Hospital Carlos Andrade Marin of the Quito city. From this universe 133 workers were excluded of the analysis. From the totality of lesions produced on the skin; the depilation constituted 40.18%, hyper pigmentation 19.34%, hypo pigmentation 9 %, capillary fragility 13.39%, erythema 13.39%, alopecia 5.37%. From the totality of lesions produced in blood: the leukopenia constituted 20.23% between all workers. The percentage method was used for statical calculation. A bibliographic update is done and the most relevant clinical aspects are reviewed. (The author)

  8. Radiation biology of mosquitoes

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2009-11-01

    Full Text Available Abstract There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi- field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators.

  9. Biology responses to low dose radiation

    International Nuclear Information System (INIS)

    Biology responses to low dose radiation is the most important problem of medical radiation and radiation protection. The especial mechanism of low dose or low dose rate induced cell responses, has been found independent with linear no-threshold model. This article emphasize to introduce low dose or low dose rate induced biology responses of adaptive response, by-effect, super-sensitivity and genomic instability. (authors)

  10. Development of advanced diagnostic technology to study initial radiation effects on biological specimens

    International Nuclear Information System (INIS)

    In order to understand radiation damages on biological specimens, it is important to investigate from molecular level to cell level in size and femto-second to hours in time. Three key techniques such as molecular simulation, ultra-fast spectroscopy, and single shot x-ray microscopy has been developed. Combining those techniques, total image of radiation damaging process from molecular level to cell level are going to be established. (author)

  11. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  12. Biological improvement of radiation resistance

    International Nuclear Information System (INIS)

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes

  13. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  14. Simulated studies on the biological effects of space radiation on quiescent human fibroblasts

    Science.gov (United States)

    Ding, Nan; Pei, Hailong; He, Jinpeng; Furusawa, Yoshiya; Hirayama, Ryoichi; Liu, Cuihua; Matsumoto, Yoshitaka; Li, He; Hu, Wentao; Li, Yinghui; Wang, Jufang; Wang, Tieshan; Zhou, Guangming

    2013-10-01

    High charge and energy (HZE) particles are severe risk to manned long-term outer space exploration. Studies on the biological effects of space HZE particles and the underlying mechanisms are essential to the accurate risk assessment and the development of efficient countermeasure. Since majority of the cells in human body stay quiescent (G0 phase), in this study, we established G0 cell and G1 cell models by releasing human normal embryonic lung fibroblast cells from contact inhibition and studied the radiation toxicity of various kinds of HZE particles. Results showed that all of the particles were dose-dependently lethal and G0 cells were more radioresistant than G1 cells. We also found that 53BP1 foci were induced in a LET- and fluence-dependent manner and fewer foci were induced in G0 cells than G1 cells, however, the decrease of foci in 24 h after irradiation was highly relevant to the type of particles. These results imply that even though health risk of space radiation is probably overestimated by the data obtained with exponentially growing cells, whose radiosensitivity is similar to G1 cells, the risk of space HZE particles is un-ignorable and accurate assessment and mechanistic studies should be deepened. The diverse abilities of G0 cells and G1 cells in repairing DNA damages induced by HZE particles emphasize the importance in studying the impact of HZE particles on DNA damage repair pathways.

  15. The status of the seventh report in the series Biological Effects of Ionizing Radiations and a revised dosimetry for the Radiation Effects Research Foundation's A-bomb studies

    International Nuclear Information System (INIS)

    Results of a National Academies workshop and feasibility study led US Governmental agencies to request the Board on Radiation Effects Research of the National Research Council to commence a risk assessment study in 1998 as the seventh report in the series Biological Effects of Ionizing Radiations (BEIR VII). Originally targeted for completion in the autumn of 2001, the study Potential Health Effects of Exposure to Low Dose, Low-LET Ionizing Radiation was extended until the autumn of 2003 at the request of the sponsors. Two factors contributing to this decision are discussed: a revised dosimetry to update DS86 for the Radiation Effects Research Foundation's A-bomb-survivor studies and the potential for new information to become available from low-dose studies that are under way. Epidemiological and biological data since BEIR V are being considered by a BEIR VII committee composed of 17 members. The committee's statement of task is reviewed along with the major recommendations of the recent National Research Council report on the status of DS86 - recommendations that are being implemented by US and Japan dosimetry working groups. (author)

  16. Novel biological approaches for testing the contributions of single-DSBs and DSB-clusters to the biological effects of high-LET-radiation

    Directory of Open Access Journals (Sweden)

    Veronika eMladenova

    2016-06-01

    Full Text Available The adverse biological effects of ionizing radiation (IR are commonly attributed to the generation of DNA double-strand-breaks (DSBs. IR-induced DSBs are generated by clusters of ionizations, bear damaged terminal nucleotides and frequently comprise base damages and single strand breaks in the vicinity generating a unique DNA damage-clustering effect that increases DSB complexity. The number of ionizations in clusters of different radiation modalities increases with increasing linear-energy-transfer (LET, and is thought to determine the long-known LET-dependence of the relative biological effectiveness (RBE. Multiple ionizations may also lead to the formation of DSB-clusters comprising two or more DSBs that destabilize chromatin further and compromise overall processing. DSB complexity and DSB-cluster formation are increasingly considered in the development of mathematical models of radiation action, which are then tested by fitting available experimental data. Despite a plethora of such mathematical models the ultimate goal, i.e. the a-priori prediction of the radiation effect, has not yet been achieved. The difficulty partly arises from unsurmountable difficulties in testing the fundamental assumptions of such mathematical models in defined biological model systems capable of providing conclusive answers. Recently, revolutionary advances in methods allowing the generation of enzymatic DSBs at random or in well-defined locations in the genome, generate unique testing opportunities for several key assumptions frequently fed into mathematical modeling – including the role of DSB-clusters in the overall effect. Here, we review the problematic of DSB-cluster formation in radiation action and present novel biological technologies that promise to revolutionize the way we address the biological consequences of such lesions. We describe new ways of exploiting the I-SceI endonuclease to generate DSB-clusters at random locations in the genome and

  17. Development of radiation biological dosimetry

    International Nuclear Information System (INIS)

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay

  18. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  19. Health and biological effects of non-ionizing radiations. Meeting of the non-ionizing radiation section of the French radiation protection society (SFRP). Meeting review

    International Nuclear Information System (INIS)

    This document makes a review of this conference day on biological and health effects of non-ionizing radiations. The program comprised three sessions with a total of 17 presentations dealing with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes); 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - In vitro study of the extremely low frequencies (ELF) effect on genes expression (J.F. Collard); 10 - modulation of brain activity during a tapping task after exposure to a 3000 μT magnetic field at 60 Hz (M. Souques and A. Legros); 11 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 12 - French population exposure to the 50 Hz magnetic field (I. Magne); 13 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Vey. Veyret); 14 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 15 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 16 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); 17 - French physicians and electromagnetic fields (M. Souques). (J.S.)

  20. Biological effects of high level natural background radiation on human population residing in Kerala coast, South West India

    International Nuclear Information System (INIS)

    The populations residing in Kerala coast are exposed to elevated natural background radiation since many generations. Extensive studies conducted by Bio-Medical group, Bhabha Atomic Research Center have generated wealth of data from this area dealing with epidemiology, monitoring the newborns for malformations, Health Audit Survey, Dosimetry and biological studies using cytogenetic and molecular biology techniques. Our studies on congenital malformations and chromosomal anomalies in children born to parents residing in High Level Natural Radiation Areas in Kerala have not shown any significant difference from normal radiation areas. Screening of over 1,25,000 consecutively born children showed an incidence rate which is comparable in both areas. Other factors such as consanguinity, maternal age and gravida status are more significant contributors than radiation dose to the risk for having malformation in child. Radiation prevalent in the HLNRA is in the dose range of above 1.5 to about 50 mGy per year which translates to doses in the range of nGy per hour. This clearly indicate the number of cells exposed to radiations will be one in few thousand or ten thousands. This throws up challenges in our capability to investigate the effects of radiation on cells. It has become imperative to develop and exploit techniques which will detect responses in single cells and would be able screen large number of cells at a time. Developments in cell biology and molecular biology are now giving us these capabilities. Use of flowcytometer and next generation sequencing would enable us to address many of these questions and provide meaningful approaches to understand the effects of such low dose radiation

  1. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  2. Influence of hyperthermia on the biological effects of low LET-radiation with different energy spectra

    International Nuclear Information System (INIS)

    In this work the impact of hyperthermia or radiation alone and of hyperthermia in combination with radiation had been studied with a view to the survival of CHO-cells (hyoptetraploid, so-called 4n, and diploid, 2n) in the colony-test and with a view to the fabrication of DNA-strand breaks. The results are studied in close relation to the LET-dependence of the RBW already studied for densely ionizing radiation and, as far as already known, of the TVF. Possible fundamentals of the enhancement of the radiation effect by hyperthermia are discussed. (orig./MG)

  3. Biologically efficient solar radiation

    OpenAIRE

    Grigalavicius, Mantas; Juzeniene, Asta; Baturaite, Zivile; Dahlback, Arne; Moan, Johan

    2013-01-01

    Solar ultraviolet (UV) radiation is the main source of vitamin D production and is also the most important environmental risk factor for cutaneous malignant melanoma (CMM) development. In the present study the relationships between daily or seasonal UV radiation doses and vitamin D status, dietary vitamin D intake and CMM incidence rates at different geographical latitudes were investigated. North-South gradients of 25-hydroxyvitamin D (25(OH)D) generation and CMM induction were calculated, b...

  4. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair

  5. Backscatter radiation at tissue-titanium interfaces; Biological effects from diagnostic 65 kVp X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, B. (Department of Radiation Sciences, Uppsala University (Sweden) Dept. of Oncology, University Hospital, Bergen (Norway)); Wulff, L. (Dept. of Oral and Maxillofacial Surgery, Central Hospital, Boden (Sweden)); Carlsson, E. (Department of Radiation Sciences, Uppsala University (Sweden)); Carlsson, J. (Department of Radiation Sciences, Uppsala University (Sweden)); Strid, K.G. (Dept. of Handicap Research, Goeteborg Univ. (Sweden)); Montelius, A. (Dept. of Hospital Physics, University Hospital, Uppsala (Sweden))

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.).

  6. Biological effects of radiation accidents on humans. (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    The bibliography contains citations concerning the impact of radiation accidents on humans. Radiation exposure assessment for determining appropriate medical treatment is discussed. The effects of ingesting food or inhaling air irradiated by accidental fallout are considered. Follow-up studies of the survivors of specific nuclear accidents are included in an attempt to evaluate long and short term health effects of accidents. (Contains 250 citations and includes a subject term index and title list.)

  7. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  8. Biological research for radiation protection

    International Nuclear Information System (INIS)

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  9. Areas of research in radiation chemistry fundamental to radiation biology

    International Nuclear Information System (INIS)

    Among all the environmental hazards to which man is exposed, ionizing radiation is the most thoroughly investigated and the most responsibly monitored and controlled. Nevertheless, because of the importance of radiation in modern society from both the hazard as well as the utilitarian standpoints, much more information concerning the biological effects induced and their modification and reversal is required. Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. The necessity of understanding the chemistry of any system, biological or not, that is to be manipulated and controlled, is so obvious as to make trivial a statement to that effect. If any natural phenomenon is to be put to our use, surely the elements of it must be studied and appreciated fully. In the preliminary statements of the various panels of this general group, the need for additional information on the basic radiation chemistry concerned in radiation-induced biological effects pervades throughout

  10. Radiation biology for pediatric radiologists

    International Nuclear Information System (INIS)

    The biological effects of radiation result primarily from damage to DNA. There are three effects of concern to the radiologist that determine the need for radiation protection and the dose principle of ALARA (As Low As Reasonably Achievable). (1) Heritable effects. These were thought to be most important in the 1950s, but concern has declined in recent years. The current ICRP risk estimate is very small at 0.2%/Sv. (2) Effects on the developing embryo and fetus include weight retardation, congenital anomalies, microcephaly and mental retardation. During the sensitive period of 8 to 15 weeks of gestation, the risk estimate for mental retardation is very high at 40%/Sv, but because it is a deterministic effect, there is likely to be a threshold of about 200 mSv. (3) Carcinogenesis is considered to be the most important consequence of low doses of radiation, with a risk of fatal cancer of about 5%/Sv, and is therefore of most concern in radiology. Our knowledge of radiation carcinogenesis comes principally from the 60-year study of the A-bomb survivors. The use of radiation for diagnostic purposes has increased dramatically in recent years. The annual collective population dose has increased by 750% since 1980 to 930,000 person Sv. One of the principal reasons is the burgeoning use of CT scans. In 2006, more than 60 million CT scans were performed in the U.S., with about 6 million of them in children. As a rule of thumb, an abdominal CT scan in a 1-year-old child results in a life-time mortality risk of about one in a thousand. While the risk to the individual is small and acceptable when the scan is clinically justified, even a small risk when multiplied by an increasingly large number is likely to produce a significant public health concern. It is for this reason that every effort should be made to reduce the doses associated with procedures such as CT scans, particularly in children, in the spirit of ALARA. (orig.)

  11. Radiation biology for pediatric radiologists

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Eric J. [Columbia University Medical Center, New York, NY (United States)

    2009-02-15

    The biological effects of radiation result primarily from damage to DNA. There are three effects of concern to the radiologist that determine the need for radiation protection and the dose principle of ALARA (As Low As Reasonably Achievable). (1) Heritable effects. These were thought to be most important in the 1950s, but concern has declined in recent years. The current ICRP risk estimate is very small at 0.2%/Sv. (2) Effects on the developing embryo and fetus include weight retardation, congenital anomalies, microcephaly and mental retardation. During the sensitive period of 8 to 15 weeks of gestation, the risk estimate for mental retardation is very high at 40%/Sv, but because it is a deterministic effect, there is likely to be a threshold of about 200 mSv. (3) Carcinogenesis is considered to be the most important consequence of low doses of radiation, with a risk of fatal cancer of about 5%/Sv, and is therefore of most concern in radiology. Our knowledge of radiation carcinogenesis comes principally from the 60-year study of the A-bomb survivors. The use of radiation for diagnostic purposes has increased dramatically in recent years. The annual collective population dose has increased by 750% since 1980 to 930,000 person Sv. One of the principal reasons is the burgeoning use of CT scans. In 2006, more than 60 million CT scans were performed in the U.S., with about 6 million of them in children. As a rule of thumb, an abdominal CT scan in a 1-year-old child results in a life-time mortality risk of about one in a thousand. While the risk to the individual is small and acceptable when the scan is clinically justified, even a small risk when multiplied by an increasingly large number is likely to produce a significant public health concern. It is for this reason that every effort should be made to reduce the doses associated with procedures such as CT scans, particularly in children, in the spirit of ALARA. (orig.)

  12. The effect of radiation on bioluminescent bacteria: possible use of luminescent bacteria as a biological dosemeter

    International Nuclear Information System (INIS)

    The purpose of the study was to investigate the response of the bioluminescent Photobacterium phosphoreum to radiation, and the possible use of the bacteria as a biological radiation dosemeter, i.e. a water-equivalent biological system that will compare beams not merely on the basis of absorbed dose, but also have intrinsic RBE values for different radiation beams. Samples were irradiated by a 12 MeV electron beam at a dose rate of 3.0 Gy min-1, by 60Co gamma rays at 2.85 Gy min-1, and by 100 kVsub(p) x-rays at a dose rate of 2.13 Gy min-1. To study dose-rate dependence, the survival fraction was obtained for a 12 MeV electron beam at 0.50 and 12 Gy min-1 for 20.0 Gy. The survival fraction proved to be independent of dose rate in this range. The results presented in this work indicate that by using bioluminescent bacteria, RBE measurements can be markedly simplified and the results interpreted unequivocally. (U.K.)

  13. Radiation biology and oncology

    International Nuclear Information System (INIS)

    Chinese hamster indicated (line CHO) were cultured under hypoxic conditions and their clonogenicity and cell cycle distributions were measured as a function of the gassing period. Cells cultured under 1000 ppM O2 exhibited a biphasic reduction in cell survival. Cell cycle analyses indicd that hypoxic cells traversed the cell cycle at a reduced rate depending on the level of oxygen tension. The radiosensitivity of CHO cells cultured under hypoxic conditions was also measured at 24 h intervals for 96 h. Radiation survival curves also indicated that the hypoxic cells traversed the cell cycle at slow rates, exhibiting a slightly increased radiosensitivity of the hypoxic cells at 24 h, followed by decreased radiosensitivity at 72 h. These results indicate that hypoxia induced a partial synchronization of cells which persisted over prolonged periods (i.e., up to six times the normal culture doubling time). To test whether the radiation-induced delay in cell progression is dependent on the level of cell survival, CHO cells were first exposed to nitrogen gas for a period of 1 h followed by x-irradiation under the same nitrogen gassing or under aerated conditions. The results indicated that for a given dose, the cell progression delay was considerably less for hypoxic cells. These findings suggest that radiation-induced cell progression delay is cell-survival dependent. In another study, interactions between x rays or alpha particles from plutonium and drugs [nitrogen mustard (NM), actinomycin D (AMD)] were measured using V79 cells. Cells were exposed to radiation first, followed by drug exposure for 1 h. The data indicated that there seems to be no significant difference between x-ray-NM and alpha-NM interactions. A study using AMD instead of NM indicated that drug treatment after alpha irradiation resulted in an increased steepening of the survival curve, suggesting that there is an interaction between alpha particles and AMD

  14. Impact of Radiation Biology on Fundamental Insights in Biology

    Science.gov (United States)

    Setlow, Richard B.

    1982-07-27

    Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.

  15. A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: The physical and potential biological advantages of proton and carbon ions have not been fully exploited in radiation therapy for the treatment of cancer. In this work, an approach to predict proton and carbon ion relative biological effectiveness (RBE) in a representative spread-out Bragg peak (SOBP) is derived using the repair-misrepair-fixation (RMF) model. Methods and Materials: Formulas linking dose-averaged linear-quadratic parameters to DSB induction and processing are derived from the RMF model. The Monte Carlo Damage Simulation (MCDS) software is used to quantify the effects of radiation quality on the induction of DNA double-strand breaks (DSB). Trends in parameters α and β for clinically relevant proton and carbon ion kinetic energies are determined. Results: Proton and carbon ion RBE are shown to increase as particle energy, dose, and tissue α/β ratios decrease. Entrance RBE is ∼1.0 and ∼1.3 for protons and carbon ions, respectively. For doses in the range of 0.5 to 10 Gy, proton RBE ranges from 1.02 (proximal edge) to 1.4 (distal edge). Over the same dose range, the RBE for carbon ions ranges from 1.5 on the proximal edge to 6.7 on the distal edge. Conclusions: The proposed approach is advantageous because the RBE for clinically relevant particle distributions is guided by well-established physical and biological (track structure) considerations. The use of an independently tested Monte Carlo model to predict the effects of radiation quality on DSB induction also minimizes the number of ad hoc biological parameters that must be determined to predict RBE. Large variations in predicted RBE across an SOBP may produce undesirable biological hot and cold spots. These results highlight the potential for the optimization of physical dose for a uniform biological effect.

  16. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  17. Are biological effects of space radiation really altered under the microgravity environment?

    Science.gov (United States)

    Yatagai, Fumio; Ishioka, Noriaki

    2014-10-01

    Two major factors of space environment are space radiation and microgravity. It is generally considered that a high level of ionizing radiation (IR) in space has an influence on living organisms including humans; therefore, the possible alteration of space-radiation influences by the microgravity environment is of great concern. In fact, examination of such a possibility has been extensively conducted since the early days of space experiments, suggesting a possible synergistic effect of radiation and microgravity in some experiments but a negative observation in others. Because these complicated results remain not well understood, we propose a solution to this problem. Gene expression analysis is one of the solutions to the problem. In fact, gene expression may be changed by microgravity, and further modification may be possible through IR. This result could reveal an interactive effect of both factors on the cellular responses, which could in turn reveal whether the human-health abnormalities expected under the microgravity environment can be altered by space radiation. We believe that this is a new aspect in the study of the interactive effect of radiation and microgravity. However, further improvements in space experimental technologies are required for future studies.

  18. Biology with neutron radiation

    International Nuclear Information System (INIS)

    Neutron diffraction, elastic and inelastic neutron scattering experiments provide important information on the structure, interactions and dynamics of biological molecules. This arises from the unique properties of the neutron and of its interaction with matter. Coherent and incoherent neutron scattering amplitudes and cross-sections are very different for H and 2H (deuterium). Deuterium labelling by chemical or biochemical methods and H2O:2H2O exchange is the basis of high resolution crystallography experiments to locate functionally important H-atoms in protein molecules. It is also very important in low resolution crystallography and small angle scattering experiments to solve large complex structures, such as protein-nucleic acid complexes or biological membrane systems, by using contrast variation techniques. The energies of neutrons with a wavelength of the order of 1 - 10 A are similar to thermal energies and inelastic neutron scattering experiments have been done with different energy resolutions (≥∼ 1 μeV) to characterise the functional dynamics of proteins in solution and in membranes. (author)

  19. Biological effects of some plant oils, gamma radiation and their interactive effects on callosobruchus maculatus (F.)

    International Nuclear Information System (INIS)

    Garlic, lemon and castor oils were evaluated for the control of infestation of Callosobruchus maculatus (F.). Oviposition, hatch ability, adult emergence were evaluated, Egg deposition was completely inhibited when cowpea seeds were treated with garlic, lemon and castor oils at doses 80,120 and 1300μl. Mean number of eggs laid by a female was significantly reduced by subjecting all developmental stages to increased radiation doses when the targeted sex was male, female or both. Egg deposition was. completely inhibited depending, on the irradiated sex and the developmental stage

  20. Antioxidants and biological radiation protection

    International Nuclear Information System (INIS)

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  1. Antioxidants and biological radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Lenten, K.J.; Greenstock, C.L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1998-07-01

    Antioxidants and antioxidant enzymes, by combatting oxygen radical-mediated radiation-induced oxidative stress, may prevent the accumulation of damage involved in tumor initiation, promotion and progression, and thus serve to protect us against ionizing radiation. We are testing the possible role of dietary antioxidants, and other biological response modifiers, in determining individual radiation response. These experiments use the fluorescent protein beta-phycoerythrin as a target and biomolecular marker for radiation-induced oxidative stress. Antioxidants are ranked according to their radioprotectiveness by their ability to compete with beta-phycoerythrin for radiolytic oxygen radicals. Samples of blood serum from cancer patients have been analyzed using this technique. There is a trend towards decreasing antioxidant levels with increasing donor age, and this is consistent with data showing an increasing radiosensitivity with age. We are presently monitoring antioxidant and antioxidant enzyme levels in atomic radiation workers and the general public, in order to assess whether they influence individual radiosensitivity. Knowledge of this source of biological response modification will be useful in applying radiation protection practices to those individuals or groups most at risk, and for estimating individual risks associated with radiation exposure. (author)

  2. [The present state of atomic bomb survivors, with special reference to biological late-effects of radiation].

    Science.gov (United States)

    Kamada, Nanao

    2004-03-01

    Atomic bombs were dropped on Hiroshima and Nagasaki in August 1945. Within a few months, the bomb blast, heat and radiation emitted by the atomic explosions led to approximately 114,000 fatalities in Hiroshima and about 70,000 in Nagasaki. The radiation in particular continued to exert effects on the human body over a long period of time, resulting in the development of tumors and functional abnormalities in various organs. This paper briefly outlines the diseases caused by radiation as well as the biological late-effects on the survivors without any specific diseases, and stresses the necessity of our enthusiastic opposition to the use of any kind of nuclear weapons. PMID:15137319

  3. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  4. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  5. Radiation biology: a century of hopes and disappointments

    International Nuclear Information System (INIS)

    In the history of science, radiation biology will rank perhaps as the most popular subject to have attracted researchers from many disciplines of basic as well as applied sciences. Apart from the excitement arising in clinics relating to radiation treatment of cancers the tragedies in Hiroshima and Nagasaki brought numerous scientists together to investigate the harmful biological effects of ionizing radiation. It is then radiation biology picked up a great momentum. It started developing in two different directions what may be called basic radiation biology and radiation biology applied to radiotherapy of cancer. While great strides were being made in basic radiation biology trying to understand the biological effects of radiation and mechanisms thereof, clinical aspect remained confined mainly to the medical fraternity where empiricalism became the rule

  6. Multi-mutational model for cancer based on age-time patterns of radiation effects: 2. Biological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.; Pierce, P.A.

    1997-09-04

    Biological properties of relevance when modeling cancers induced in the atom bomb survivors include the wide distribution of the induced cancers across all organs, their biological indistinguishability from background cancers, their rates being proportional to background cancer rates, their rates steadily increasing over at least 50 years as the survivors age, and their radiation dose response being linear. We have successfully described this array of properties with a modified Armitage-Doll model using 5 to 6 somatic mutations, no intermediate growth, and the dose-related replacement of any one of these time-driven mutations by a radiation-induced mutation. Such a model is contrasted to prevailing models that use fewer mutations combined with intervening growth. While the rationale and effectiveness of our model is compelling for carcinogenesis in the atom bomb survivors, the lack of a promotional component may limit the generality of the model for other types of human carcinogenesis.

  7. Biological effects of low doses of ionizing radiation: Conflict between assumptions and observations

    International Nuclear Information System (INIS)

    Recent epidemiological data on cancer incidence among the A-bomb survivors and more importantly experimental studies in cell and molecular radiobiology do not lend unequivocal support to the ''linear, no threshold'' (LNT) hypothesis; in fact, the discernible evidence that low and high doses of ionizing radiations induce qualitatively different/opposite effects cannot be summarily rejected. A time has come to examine the mechanistic aspects of ''radiation hormesis'' and ''radioadaptive response'' seriously rather than proclaiming one's profound disbelief about these phenomena. To put the discussion in a serious scientific mode, we briefly catalogue here reports in the literature on gene expression differentially influenced by low and high doses. These are not explicable in terms of the current radiation paradigm. (author)

  8. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N2O4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60Co. Methemoglobin was determined in the interval of 15-180 min after NaNO2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  9. The effects of radiation on the biology and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    The effect of irradiating male Helicoverpa armigera with a substerilizing dose (100 Gy) of gamma radiation on the growth, development and reproduction of subsequent generations was studied in the laboratory. This dose of gamma radiation had no significant detrimental effects on larval and pupal weights or on the duration of the pupal period in the F1 progeny. However, it lengthened the duration of the larval period by two days. In the F2 generation, the progeny of the Tf1FxTf1M cross had significantly lighter pupae. The effects of this substerilizing dose of radiation and of the resulting inherited sterility on the reproduction of Helicoverpa armigera were similar to those described for other species of Lepidoptera. No detrimental effects on P1 and F1 female fecundity were recorded. Crosses involving Tf1 females laid only about one half the number of eggs laid by the controls, however the range in the number of eggs laid by these females fell within the normal range for Helicoverpa armigera. Fertility of crosses involving P1 males was greatly affected; fertility in these females was only 61% of that exhibited by the controls. This deleterious effect was inherited in the F1 and F2 generations and was maximally expressed when F1 progeny of the NFxTM cross were inbred. Egg hatch was almost completely inhibited in sibling crosses while outcrosses of the F1 progeny showed a 64-70% reduction in egg hatch when compared to controls. (author)

  10. Studies about space radiation promote new fields in radiation biology

    International Nuclear Information System (INIS)

    Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation. (author)

  11. RBE [relative biological effectiveness] of tritium beta radiation to gamma radiation and x-rays analyzed by both molecular and genetic methods

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) of tritium beta radiation to 60Co gamma radiation was determined using sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa as the biological effect. The SLRL test, a measure of mutations induced in germ cells transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. From these ratios of the slopes of the 3H beta and the 60 Co gamma radiation linear dose response curves, an RBE of 2.7 is observed. When sources of error are considered, this observation suggests that the tritium beta particle is 2.7 ± 0.3 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generation than 60Co gamma radiation. Ion tracks with a high density of ions (high LET) are more efficient than tracks with a low ion density (low LET) in inducing transmissible mutations, suggesting interaction among products of ionization. Molecular analysis of x-ray induced mutations shows that most mutations are deletions ranging from a few base pairs as determined from sequence data to multi locus deletions as determined from complementation tests and Southern blots. 14 refs., 1 fig

  12. Biophysical models in radiation biology

    International Nuclear Information System (INIS)

    Models serve a variety of purposes: to link physics and biology; to interpolate and extrapolate to dose regions where direct biological measurements of statistical significance are not feasible; to address basic mechanisms; to suggest new experiments designed to test hypotheses predicted by the model. In the past, the modeling arena has been dominated by dose-response curves for cell killing which have slowly but surely incorporated more and more of the biological factors that are known to be important. At the present time, the modelers urgently need to follow the revolution in the new biology as quantitative data become available. There are several areas involved: i. the relation between DNA strand breaks, initial breaks as measured by the premature chromosome condensation technique and cell lethality. ii. modeling of oncogenic transformation as a function of dose and of radiation quality. iii. modeling of oncogenic transformation as a function of oncogene activation. iv. modeling of oncogene activation and suppressor cell deletion as a function of radiation dose and radiation quality. (author)

  13. Biological Effect of Ganoderma lucidum in Mice Suffering from Ehrlich Carcinoma and Gamma Radiation

    International Nuclear Information System (INIS)

    The popular edible mushroom Ganoderma lucidum (G. lucidum) has been widely used for the general promotion of health and longevity in oriental countries. The present study was performed to investigate the antitumor effect of G. lucidum on Ehrlich carcinoma (EC) cells and/or gamma radiation-induced oxidative stress, kidney dysfunction and histopathological changes in the albino mouse. G. lucidum was orally administered via gavages to mice for a period of 3 weeks at a dose of 100 mg/kg body weight begins on the 10th day of tumor inoculation. Animals were exposed to 4 Gy whole body γ radiation after 2 weeks of tumor inoculation. The antitumor effect of G. lucidum was evident in terms of a reduction in tumor viable cells count, inhibited both weight loss and tumor growth rate of EC-tumor bearing mice alone and in combination with gamma-radiation. Inoculation of mice with EC cells resulted in biochemical and histopathological changes leading to kidney damage. Oral administration of G. lucidum improved kidney functions through a recovery of the elevated levels of serum urea, creatinine, uric acid and increased albumin level and decreased the levels of tumor markers. Also, treatment of mice with G. lucidum induced a reduction of lipid peroxidation (MDA) level, improvement in glutathione content (GSH) and superoxide dismutase (SOD) activity in the kidney compared with those EC and /or irradiated damaged mice. On the other hand, treatment EC bearing mice with gamma radiation or G. lucidum combined showed increase in MDA level and decrease in GSH content and SOD activity, as compared to EC bearing mice. Histopathological studies showed that suffering from EC caused fatty degeneration, presence of necrosis and enlargement of kidney cells nuclei. Furthermore, an elevation of tail DNA % was recorded in the tumor tissue of mice treated with G. lucidum and/or γ radiation compared to EC control group. Treatment of EC bearing mice with G. lucidum and/or γ radiation exhibited

  14. Biological consequences of radiation: risk factors

    International Nuclear Information System (INIS)

    This publication is a syllabus of a course on Radiation Protection. The publication offers an overview of the biological radiation effects at cellular level. For that purpose, different forms of cancers and their incidence are first discussed; structure and functioning of normal cells are considered and an introduction in genetics is given. Finally, an overview is presented of the character of tissue damage after high-dose irradiation. (G.J.P.)

  15. Comparative study on biological effects of gamma-radiation and volatile organic compound with the plant bioassay

    International Nuclear Information System (INIS)

    This research examined the presence of hazardous materials in chemical workplace field by means of an integrated biological monitoring. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end- point as sessing their effect. A parallel series of experiment using five increasing doses of gamma- ray at 10, 20, 30, 40 and 50 cGy was conducted. The MCN frequencies showed a good dose-response relationship in the range of radiation applied and yielded a correlation coefficient of 0.95. On the other hand, the MCN frequency resulted in a good response to exposure time in the workplace field. In case of in situ monitoring with the Tradescantia micronucleus assay, the frequencies were 6.2± 0.5, 8.2±1.0, and 15.7± 0.8 MCN/ 100 tetrads for 2, 6, and 9 hours exposure, respectively. Inhalation of the workplace air by workers may result in chronic damage to their health as proven by micronucleus formations in Tradescantia pollen mother cells. The combination of chemical/ biological monitoring is very effective to evaluate hazardous materials in workplace field and can be alternatively used for screening hazardous materials

  16. The use of apoptosis in human lymphocytes peripheral as alternative methods in biological dosimetry of radiation effects from cobalt-60

    International Nuclear Information System (INIS)

    Gamma rays affect cells in dose-response manner, resulting in cell death, as in cancer radiotherapy. The ionizing radiation acts by transferring energy, mainly by free radicals from water radiolysis that result in nucleic acid damage and other effects in lipids and proteins, The level of exposure is indirectly estimated by physical dosimetry, but the biological dosimetry can measure the direct radiation effect, mainly in post-dividing cells by classical cytogenetic approach. Recently, it was reported that irradiated cells develop an induced programmed death or apoptosis. With a biological dosimetric technique, we measured apoptotic cell fraction in 60Co in vitro irradiated blood cells from voluntary healthy donors. The agarose gel electrophoresis showed a low sensitivity, because cell DNA presented the characteristic pattern only when the cells were exposed to 100 c Gy or more. Using a terminal DNA labeling technique we observed that the apoptotic cell fraction proportionally increases with irradiation. Similar sensitivity was observed when compared to classical cytogenetics (3 c Gy minimum detection level). These techniques are easier to perform, do not need cell culture and all cells, including interphase ones, can be analyzed, providing a good tool in biological dosimetry. (author)

  17. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  18. Notions of radiation chemistry in biological systems

    International Nuclear Information System (INIS)

    The present paper examines some aspects of the direct and indirect biological radiation effects: pair formation, free radicals, superoxide ion, hydrogen peroxide, hydroxyl radical, oxygen singlet together with the endogen radioprotector mechanisms of organisms and the ways in which an improved radioresistance of biochemical systems can be achieved. (author)

  19. Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation

    International Nuclear Information System (INIS)

    Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the extent of the exposure. However, the biokinetics and biological effects of nuclear fuel compounds have been investigated in a number of experimental studies using various cellular systems and laboratory animals. In this article, we review the biokinetic properties and effects of insoluble nuclear fuel compounds, with special reference to UO2, PuO2, and nonvolatile, long-lived β-emitters Zr, Nb, Ru, and Ce. First, the data on hot particles, including sources, dosimetry, and human exposure are discussed. Second, the biokinetics of insoluble nuclear fuel compounds in the gastrointestinal tract and respiratory tract are reviewed. Finally, short- and long-term biological effects of nonuniform α- and β-irradiation on the gastrointestinal tract, lungs, and skin are discussed. 191 refs., 1 fig., 3 tabs

  20. A technical review and assessment of the BEIR V [Biological Effects of Ionizing Radiation V] report

    International Nuclear Information System (INIS)

    This report was prepared by the DOE BEIR V Technical Review Committee (TRC) to provide a technical review and assessment of the National Research Council's Bilogical Effects of Ionizing Radiation (BEIR) Committee's Report entitled ''Health Effects of Exposure to Low Levels of Ionizing Radiation'' (BEIR V). This report contains seven sections. The first section serves as an introduction and reviews the charge to the TRC. The second section is a chapter-by- chapter summary of the BEIR V Report. The third section is a summary of the risk estimates and conclusions of the BEIR V Committee for genetic effects, cancer induction, and in utero effects. The fourth section is a summary and analysis of the new scientific information used by the BEIR V Committee in developing its risk recommendations and conclusions. The fifth section is an assessment of the scientific information and methods used by the BEIR V Committee in developing their risk estimates and conclusions and an analysis of the key assumptions underlying the use of these risk estimates in risk assessment. The sixth section is the TRC'S assessment of the regulatory implications of the BEIR V risk estimates and conclusions for DOE nuclear operations. The seventh and final section is the TRC'S recommended actions for DOE's consideration concerning the BEIR V Report risk estimates and conclusions. 23 refs., 5 tabs

  1. Biological imaging in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, A.L.; Wiedenmann, N.; Molls, M. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie Klinikum rechts der Isar, Technical Univ. of Munich (Germany)

    2005-07-01

    The goal of this study was to discuss the value of integrating biological imaging (PET, SPECT, MRS etc.) in radiation treatment planning and monitoring. Studies in patients with brain tumors have shown that, compared to CT and MRI alone, the image fusion of CT/MRI and amino acid SPECT or PET allows a more correct delineation of gross tumor volume (GTV) and planning target volume (PTV). For FDG-PET, comparable results with different techniques are reported in the literature also for bronchial carcinoma, ear-nose-and-throat tumors, and cervical carcinoma, or, in the case of MRS, for prostate cancer. Imaging of hypoxia, cell proliferation, apoptosis, tumor angiogenesis, and gene expression leads to the identification of differently aggressive areas of a biologically inhomogeneous tumor mass that can be individually and more appropriately targeted using innovative IMRT. Thus, a biological, inhomogeneous dose distribution can be generated, the so-called dose painting. In addition, the biological imaging can play a significant role in the evaluation of the therapy response after radiochemotherapy. Clinical studies in ear-nose-and-throat tumors, bronchial carcinoma, esophagus carcinoma, and cervical carcinoma suggest that the sensitivity and specificity of FDG-PET for the therapy response are higher compared to anatomical imaging (CT and MRI). Clinical and experimental studies are required to define the real impact of these investigations in radiation treatment planning, and especially in the evaluation of therapy response. (orig.)

  2. European Society for Radiation Biology 21. annual meeting

    International Nuclear Information System (INIS)

    The volume contains about 100 abstracts of lectures presented to the conference covering a large variety of topics like: Radiobiology as a base for radiotherapy, radiation carcinogenesis and cellular effects, late and secondary effects of radiotherapy, radioprotection and radiosensitization, heavy ions in radiobiology and space research, microdosimetry and biological dosimetry, radiation effects on the mature and the developing central nervous system, DNA damage and repair and cellular mutations, the imact of radiation on the environment, free radicals in radiation biology

  3. Biological effects benchmarks for the protection of aquatic organisms against radiation

    International Nuclear Information System (INIS)

    In Canada, regulations developed under the Nuclear Safety Control Act require that license applicants describe the effects on the environment of the nuclear facility to be licensed. For the purpose of assessing risks to the environment the Canadian Nuclear Safety Commission recommends the use of an ecological risk assessment approach. It is based on toxicity benchmarks from chronic exposure studies of reproduction and survival in sensitive species. The benchmarks or Estimated No Effect Values (ENEVs) for the various taxonomic groups are determined from literature data using an ecotoxicological approach. The ENEVs derived for radiation effects on aquatic biota are: 0.6 mGyxd-1 for fish, 2 mGyxd-1 for amphibians and reptiles, 2.4 mGyxd-1 for algae and macrophytes and 4.6 mGyxd-1 for benthic invertebrates. (author)

  4. biological and biochemical effects of biocides and gamma radiation on pathogen attacked some horticulture crops

    International Nuclear Information System (INIS)

    the present investigation was aimed to study the possibility of formulation of some essential oils having antimicrobial activity to be used as biocides. the results of this study showed that fennel, peppermint and caraway oils were the most inhibitory effective oils against some post harvest pathogens. the used oils. were formulated as biocides using different emulsifiers with the addition of different types of fixed oils . the prepared biocides were effective for controlling the growth of the studied microorganisms in vitro and in vivo on the host plant products. also , the interaction of biocides and different doses of gamma radiation were effective for extending the shelf life of potato tubers and orange fruits during storage at room temperature for periods of 150 and 75 days, respectively. biochemical changes in potato tubers and orange fruits as a result of treatments were studied

  5. Biologic Effect of Low-Intensity Electromagnetic Radiation on Myocardium in Experimental Ischemia

    Directory of Open Access Journals (Sweden)

    S.L. Malinovskaya

    2015-06-01

    Full Text Available The aim of the investigation was to study modification of lipid peroxidation level and myocardium microstructure in rats exposed to low-intensity laser radiation (LILR as compared to the effects caused by broadband red light (BBRL. Materials and Methods. The research was performed on 91 white outbred male rats weighing 250 to 280 g. The experimental animals were divided in two test groups and two control ones: control group 1 (n=23, spurious irradiation without ischemia; control group 2 (n=22, ischemia + spurious irradiation; test group 1 (n=21, ischemia + exposure to LILR; test group 2 (n=25, ischemia + exposure to BBRL. Cardiac ischemia was modelled by blocking the rats' left coronary artery in situ for 5 min. In the test groups light irradiation was performed during 10 min immediately after the ligature removal. Helium neon laser LG-13 and self-developed luminescent fiber optic apparatus were used as light sources. Results and Discussion. Exposure of myocardium both to laser radiation and broadband light decreased the peroxidation level in the myocardium tissues. The exceptions were observed in content of trienoic conjugates in the group exposed to laser light. A more effective decrease in the level of primary peroxidation products was found in the group irradiated by BBRL. Electron microscopic study of the myocardium tissues microstructure demonstrated a reduced condition of cardiomyocytes exposed to LILR; presence of sarcomeres dilatation, hypertrophic mitochondria and their swelling; dialation of sarcoplasmic reticulum; insignificant quantity of granule cells. At the same time, in the samples exposed to BBRL we observed no signs of sarcoplasm clearing; mitochondria were slightly swollen with preserved cristae, Golgi complex well-marked ; granule cells content in the sarcoplasm was greater than in the control group with ischemia and spurious irradiation and much greater than in the group exposed to LILR. The dispersed chromatin nuclei

  6. The combined effect of gamma radiation and heat on some biological aspects of onion bulb fly Eumerus amoenus Loew

    International Nuclear Information System (INIS)

    The effect of sub-sterilizing doses of gamma radiation, in combination with three degrees of temperature (20, 25 and 30 degree C). on some biological parameters of Eumerus Amoenus Loew were studied. The combined effect of radiation and heat were carried out on developmental stages namely; larval, pupal stages. Larval duration decreased significantly by increasing rearing temperature and increased by raising heat regardless larval instar. The same trend was observed in percent pupation, percent emergence. Irradiation of larvae decreases the adult emergence percentage under all temperatures. The results indicate that no adult male emergence when irradiated 4-d-old larvae at all doses when kept at 20 and 25 degree C. life-span of adults emerged from pupae irradiated as 5 and 7 day-old with sterilizing and sub-sterilizing doses was affected depending upon the dose level, temperatures and age of pupae at the time of irradiation. Fecundity of a female decreased by decreasing temperature degree or increasing radiation dose. Also, fertility of males decreased by radiation dose and by mating to irradiated females, this decrease was increased by increasing age of male and by decreasing temperature

  7. Biological indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    After an introductory report on the present level of practical experience in using biological indicator systems to identify and assess doses from radiation exposures, the state of the art in the field of biochemical, cytological and immunological indicators was presented as a basis for discussions in working groups. With reference to the type of radiation - gamma radiation, electrons, neutrons - the question was examined how and to which extent body doses could be evaluated on the basis of results from biological indicator systems. The indicator systems were examined and evaluated in working groups under the aspects of practical use, validity of results and demand of research according to uniform criteria. These were, among others, dose effect relationship, detection limit, reproducibility and specificity, interference factors, stress and reasonable inconvenience of the examined person, earliest possible availability of results and the maximum time needed to identify a biological effect after radiation exposure, as well as the possible maximum number of persons examined from a population group of radiation exposed individuals. The results of the working groups discussions were compiled and summarized in recommendations. (orig./MG)

  8. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix

  9. biological and biomatrial effects of gamma radiation on the mosquito Culex Pipiens L. Vol. 4

    International Nuclear Information System (INIS)

    The mosquito, Culex Pipiens L. Was irradiated in the pupal stage with three gamma doses (40, 60 and 80 Gy). The effect of irradiation on the biology and ovarian development of the adult stage were assayed in comparison with a non-irradiated control group. The results showed that the gamma doses used decreased significantly adult emergence and increased malformations, while the sex ratio was not affected. fecundity of irradiated females was severely affected at 40 and 60 Gy, and 80 Gy produced in fecund females. Egg hatch ability was severely affected when males were irradiated at all doses. The gamma doses used decreased the number of ovarioles that reached the 5 th stage of christopher cycle. these ovarioles failed to produce mature eggs normally. The size of the irradiated female ovary was decreased either in length or in width at all doses used particularly at 80 Gy where the ovarian development was completely stopped on the first day of feeding. 6 figs

  10. The biological effect of gamma radiation on in vitro culture in rice

    International Nuclear Information System (INIS)

    Radiobiological effects of gamma radiation on different types of rice before or during in vitro culture, combined treatments of 137Cs γ-rays and NaN3 on mature embryo culture, and irradiation on growth of calli derived from anther in rice were studied. The dose-effects relations of callus induction rate and callus growth rate could be fitted according to the multi-target and single-hit model. Effect of somatic cultures of different types in rice was different. Increase in plant regeneration capacity was found with 100, 150 Gy gamma rays. Decrease of callus induction rate, callus growth rate and callus differentiation rate (especially in the 1st culture) were observed in combined treatments of γ-rays and NaN3. However, mutagenic effects of treatments with γ-rays were much higher than those of combined treatment of γ-rays and NaN3 in the 2nd and the 3rd culture. Combined treatments of 137Cs γ-rays with 200 Gy and 2 mmol NaN3 were suitable for explant in rice before culture. To irradiate the calli derived from anther in rice with 30 Gy gamma rays can rise plant regeneration capacity during continuing culture

  11. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  12. Health and biological effects of non-ionizing radiations; Effets biologiques et sanitaires des rayonnements non ionisants

    Energy Technology Data Exchange (ETDEWEB)

    De Seze, R.; Souques, M.; Aurengo, A.; Bach, V.; Burais, N.; Cesarini, J.P.; Cherin, A.; Decobert, V.; Dubois, G.; Hours, M.; Lagroye, I.; Leveque, Ph.; Libert, J.P.; Lombard, J.; Loos, N.; Mir, L.; Perrin, A.; Poulletier De Gannes, F.; Thuroczy, G.; Wiart, J.; Lehericy, St.; Pelletier, A.; Marc-Vergnes, J.P.; Douki, Th.; Guibal, F.; Tordjman, I.; Gaillot de Saintignon, J.; Collard, J.F.; Scoretti, R.; Magne, I.; Veyret, B.; Katrib, J.

    2011-07-01

    This document gathers the slides of the available presentations given during this conference day on the biological and health effects of non-ionizing radiations. Sixteen presentations out of 17 are assembled in the document and deal with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes; 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - modulation of brain activity during a tapping task after exposure to a 3000 {mu}T magnetic field at 60 Hz (M. Souques and A. Legros); 10 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 11 - French population exposure to the 50 Hz magnetic field (I. Magne); 12 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Veyret); 13 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 14 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 15 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); French physicians and electromagnetic fields (M. Souques). (J.S.)

  13. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    An important event of the year was the designation of our Laboratory as a Center for Radiological Research by the Dean of the Faculty of Medicine and Vice-President for Health Sciences. Center status acknowledges the size and importance of the research efforts in this area, and allows a greater measure of independence in administrative matters. While the name has changed from a Laboratory to a Center within the Medical School, the mission and charge remain the same. The efforts of the Center are a multidisciplinary mix of physics, chemistry, and biology, mostly at a basic level, with the admixture of a small proportion of pragmatic or applied research in support of radiation protection or radiation therapy. About a quarter of our funding, mostly individual research awards, could be regarded as in direct support of radiotherapy, with the remainder (an NCI program project grant and DOE grants) being in support of research addressing more basic issues. An important effort currently underway concerns ab-initio calculations of the dielectric response function of condensed water. This investigation has received the coveted designation, ''Grand Challenge Project,'' awarded by DOE to research work which represents ''distinct advance on a major scientific or engineering problem that is broadly recognized as important within the mission of the Department.''

  14. The different biological effects of single, fractioned and continuous low dose rate radiation on CL187 colorectal cancer cell line

    International Nuclear Information System (INIS)

    Objective: To investigate the effect and underlying mechanism of single, fractioned and continuous low dose rate radiation on CL187 colorectal cancer cell line. Methods: CL187 cells were exposed to 6 MV X-rays at a high dose rate of 4 Gy/min and 125I seed at a low dose rate of 2.77 cGy/h with three groups:single dose radiation group (SDR), fractioned dose radiation group (FDR) by 2 Gy/f, and continuous low dose rate radiation group (CLDR). The radiation doses were 0, 2, 4 and 8 Gy. Total cell number and cell viability were determined by trypan blue. Clone forming assay was used to evaluate the cell proliferation ability. The percentage of apoptosis cells was analyzed by flow cytometry. Western blot was used to detect the protein expression levels of PHLPP2, PTEN and Bax. Results: Compared with SDR and FDR groups, the total cell number and survival fraction of CLDR group decreased. The relative biological effect (RBE) for 125I seeds compared with 6 MV X-rays was 1.41. The percentage of apoptosis cells of CLDR group was significantly increased (t=-15.08, -11.99, P<0.05). The expression level of Bax increased in CLDR group, while no obvious changes were observed on PHLPP2 and PTEN among three groups. Conclusions: The expression level of PHLPP2 increases in SDR, FDR and CLDR group, while it seems that it was not influenced by dose rate. The expression level of Bax increased in three groups, while more colorectal CL187 cells in CLDR group may be killed due to the increase of Bax expression. (authors)

  15. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  16. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    International Nuclear Information System (INIS)

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 ± 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 ± 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  17. Biological effects of radiation: The induction of malignant transformation and programmed cell death

    International Nuclear Information System (INIS)

    In the Chernobyl explosions and fire, powderized nuclear fuel was released from the reactor core, causing an unexpected fallout. X-ray analysis and scanning electron microscopy showed that the isolated single particles were essentially pure uranium. These uranium aerosols contained all of the nonvolatile fission products, including the b-emitters, 95Zr, 103Ru, 106Ru, 141Ce, and 144Ce. The hot particles are extremely effective in inducing malignant transformation in mouse fibroblast cells in vitro. The major factor responsible for this effect is focus promotion caused by a wound-mediated permanent increase in cell proliferation (mitogenesis associated with mutagenesis). Transformed foci were analysed for the activation of c-abl, c-erb-A, c-erb-B, c-fms, c-fos, c-myb, c-myc, c-Ha-ras, c-Ki-ras, c-sis, and c-raf oncogenes at the transcriptional level. The pattern of oncogene activation was found to vary from focus to focus. Long interspersed repeated DNA (L1 or LINE makes up a class of mobile genetic elements which can amplify in the cell genome by retroposition. This element is spontaneously transcriptionally activated at a critical population density and later amplified in rat chloroleukaemia cells. UV light and ionizing radiation induce this activation prematurely, and the activation is followed by programmed cell death (apoptosis) in a sequence of events identical to that seen in LIRn activation occurring spontaneously

  18. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  19. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Tatsuhiko, E-mail: t_imaoka@nirs.go.jp [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Nishimura, Mayumi; Daino, Kazuhiro [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Kokubo, Toshiaki [Department of Technical Support and Development, Research Development and Support Center, National Institute of Radiological Sciences, Chiba (Japan); Doi, Kazutaka [Regulatory Sciences Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Iizuka, Daisuke [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Nishimura, Yukiko [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Okutani, Tomomi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Biology, Graduate School of Science, Chiba University, Chiba (Japan); Takabatake, Masaru [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo (Japan); Kakinuma, Shizuko; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  20. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    International Nuclear Information System (INIS)

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with 137Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation

  1. Effects of ionizing radiation

    International Nuclear Information System (INIS)

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on

  2. The Effect of Gamma Radiation on some Biological Aspects of Peach Fruit Fly, Bactrocera zonata (Saunders)

    International Nuclear Information System (INIS)

    Effect of gamma-irradiation on certain biological aspects of the peach fruit fly, Bactrocera zonata following gamma irradiation of 5 days old pupae were studied. Treatment led to a decrease in percentage adult emergence which was 3.66, 9.22, 14.77.18.55 and 22.66, following irradiation with 10, 30, 50, 70 and 90 Gy, respectively. Some emerged flies exhibited malformation being 3.3, 5, 6.7, 8.3 and 11.7% in flies irradiated as pupae with the respective mentioned doses. Sex ratio of emerged flies were shifted towards females. When male flies, emerging from irradiated pupae with 10, 30, 50, 70 or 90 Gy were paired with untreated females the mean number of deposited eggs was reduced to 211.3, 197.3, 184, 173 and 161.3 eggs /female as compared to 220 eggs/ female in the control. Percentages of hatched eggs were 62.1, 40.2, 26.6, 7.9 and zero as compared to 81.8 in the control. The effect on reproductive potential was more evident when unirradiated males were paired with female flies emerging from irradiated 5 day old pupa. In females emerged of pupae irradiated with 10 and 30 Gy mated with unirradiated male; the mean number of eggs laid per female were 135.1 and 72.3 eggs comparing to 233.4 in control. The percentages of eggs hatch were 57.4 and 35.3% in at doses 10 and 30 Gy, respectively in comparing to 82.2% in control. No eggs laid by females emerged from pupae exposed to the higher considered doses of 50, 70 or 90 Gy

  3. Biophysical radiation effects

    International Nuclear Information System (INIS)

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.)

  4. SU-E-T-549: Modeling Relative Biological Effectiveness of Protons for Radiation Induced Brain Necrosis

    International Nuclear Information System (INIS)

    Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used to determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions

  5. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    This annual report contains a summary of our current research. Some highlights include: experimental microdosimetry, track structure, extension of the Dual Radiation Action model to be time dependent, experiments showing that the reverse dose-rate effect for onogenic transformation, first rated for neutrons, has also been observed for charged particles of intermediate LET, an analysis of low dose-rate, research in hyperthermia, studies in molecular cloning, low dose rate studies, experimental studies on high LET, and molecular studies on DNA. 42 figs., 11 tabs

  6. Evaluation of the protective and curative role of curcumin and venoruton against biological effects of radiation

    International Nuclear Information System (INIS)

    Curcumin (diferuloyl methane) and venoruton [O-(beta-hydroxyethyl)-rutosides] are powerful antioxidants and are important in protecting the cells from damage. The present study aims to evaluate the role of curcumin alone and curcumin with venoruton on radiation-induced changes in male rats exposed to a dose of 5 Gy gamma irradiation. Experimental analyses were performed 1, 7 and 14 days post-irradiation in all animal groups. Exposure to ionizing radiation resulted in decrease in glutathione content and SOD, G6PD and CPK activities and increase in lactate dehydrogenase and GOT activities and creatinine level. The results obtained showed that treatment of rats with olive oil pre and post-irradiation has significantly minimized radiation-induced changes. Curcumin dissolved in olive oil pre and post-irradiation significantly improved the radiation-induced changes while administration of venoruton with curcumin in olive oil provided a better amelioration. It could be concluded that, curcumin in olive oil plus venoruton showed an obvious protective and curative role against the hazards of gamma radiation in male rats

  7. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  8. Cell Hydration as a Biomarker for Estimation of Biological Effects of Nonionizing Radiation on Cells and Organisms

    Directory of Open Access Journals (Sweden)

    Sinerik Ayrapetyan

    2014-01-01

    Full Text Available “Changes in cell hydration” have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR. To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV, static magnetic field (SMF, extremely low frequency electromagnetic field (ELF EMF, and microwave (MW pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q10 of seed hydration in distilled water (DW was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48–72 hours seeds hydration exhibited temperature sensitivity Q10>2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  9. Biological responses to ionizing radiation

    International Nuclear Information System (INIS)

    Post-nuclear war local and global fall-out distribution and levels are discussed in relation to fission products and neutron activation radionuclides. Tables are presented of the sensitivities of the major ecosystems to ionising radiations, of the sensitivity of dormant seed, of small animals and birds, and of the main factors affecting plant sensitivity to radiation. Representative bioconcentration factors for Co, Cs and Sr for various species are listed, together with whole-body dose estimates to marine biota from 10,000 MT nuclear war. Internal doses, and pathways to humans are discussed. It is concluded that the direct effects of fallout on humans would far exceed the indirect effects resulting from destruction or disturbance of ecological systems. (UK)

  10. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  11. Effect of low dose radiation (LDR) on biological activity of NK cell

    International Nuclear Information System (INIS)

    Objective: To study the in vitro and in vivo effect of LDR on the proliferation and killing activity of mouse NK cells with exploitation of the related mechanism of signal transduction. The effect of infused NK cells on inhibiton of oncogenesis and tumor burden regression was also studied. Methods: Mononuclear cells extracted from mouse spleen were treated with immunomagnetic bead for the isolation of CD3-/CD16+, CD56+ cells. After verified with flowcytometry, these NK cells were cultured with mice splenic cells (irradiated with 20Gy 60Co gamma ray) as feeder cells and rhIL-2 as induction factor for 3 rounds (5 days each round). Specimens of cultured NK cells were treated with different doses of radiation (25mGy, 75mGy, 200mGy, 500mGy), the proliferation index (PI) with tumoreidal activity on K562 cells (with 3H-TdR) incorporation was examined at 4h, 24h, 48h, 72h after irradiation respectively. The role of P38MAPK signal pathway in the LDR effect was examined with adding either inhibitor (SB203580) or activator (P79350) of P38MAPK into the culture and measuring the PI, Killing activity (as expression of the related factors IFN-gamma, FasL, perforin) of NK cells thereafter. The in vivo test involved exposing mice to whole body 25mGy irradiation, harvesting splenic NK cells at 4h, 24h, 48h, 72h later respectively and performing the above-described in vitro procedures. Inhibition of oncogenesis was examined in vivo with infusion of cultured NK cells (LDR treated vs LDR non-treated) 10 days after infusion of K562 cells into mice and examination of hepatic/splenic CD13+, S-stage cells and peripheral blood tumor cells in the sacrificed animal another 10 days later. Also, K562 cells were innoculated subcutaneously into mice. After tumor nodule formation (2.0 x 2.0 mm), NK cells (LDR treated vs non-treated) were infused and regression of the tumor nodule with the weight of hepatic tumor mass was noticed in sacrificed animals on d 8 and the survival rate on d 40 recorded

  12. Influence of yeast cell ploidy on relative biological effectiveness of densely ionizing radiation

    International Nuclear Information System (INIS)

    A study was made of radiosensitivity of haploid and diploid yeast Saccharomyces cerevisiae and Pichia pinus exposed to γ- quanta (137Cs) and α-rays (239Pu). On the basis of the experimental data obained a theoretical formula was deduced correla. ting RBE of radiation of different quality for haploid and diploid cells

  13. Biological research for the radiation protection

    International Nuclear Information System (INIS)

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about polyamine effect on cell death triggered ionizing radiation, H2O2 and toxic agents. In this paper, to elucidate the role of polyamines as mediator in lysosomal damage and stress(H2O2)- induced apoptosis, we utilized α-DiFluoroMethylOrnithine (DFMO), which inhibited ornithine decarboxylase and depleted intracellular putrescine, and investigated the effects of polyamine on the apoptosis caused by H2O2, ionizing radiation and paraquat. We also showed that MGBG, inhibitor of polyamine biosynthesis, treatment affected intracellular redox steady states, intracellular ROS levels and protein oxidation. Thereafter we also investigated whether MGBG may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation or H2O2 because such compounds are able to potentiate the cell-killing effects. In addition, ceruloplasmin and thioredoxin, possible antioxidant proteins, were shown to have protective effect on radiation- or H2O2(or chemicals)-induced macromolecular damage or cell death

  14. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG)

  15. Biological Sensors for Solar Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André P. Schuch

    2011-04-01

    Full Text Available Solar ultraviolet (UV radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products.

  16. SU-E-T-253: Open-Source Automatic Software for Quantifying Biological Assays of Radiation Effects

    International Nuclear Information System (INIS)

    Purpose: Clonogenic cell survival is a common assay for quantifying the effect of drugs and radiation. Manual counting of surviving colonies can take 30–90seconds per plate, a major limitation for large studies. Currently available automatic counting tools are not easily modified for radiation oncology research. Our goal is to provide an open-source toolkit for precise, accurate and fast analysis of biological assays in radiation oncology. Methods: As an example analysis, we used HeLa cells incubated with gadolinium nanoparticles prior to irradiation. After treatment, the cells are grown for 14days to allow for colony formation. To analyze the colony growth, we capture images of each dish for archiving and automatic computer-based analysis. A FujifilmX20 camera is placed at the top of a box setup, 20cm above the sample, which is backlit by a LED lamp placed at the bottom of the box. We use a Gaussian filter (width=1.3mm) and color threshold (19–255). The minimum size for a colony to be counted is 1mm. For this example, 20 dishes with a large range of colonies were analyzed. Each dish was counted 3 times manually by 3 different users and then compared to our counter. Results: Automatic counting of cell colonies takes an average of 7seconds, enabling the analysis process to be accelerated 4–12 times. The average precision of the automatic counter was 1.7%. The Student t-test demonstrated the non-significant differences between the two counting methods (p=0.64). The ICC demonstrated the reliability of each method with ICC>0.999 (automatic) and ICC=0.95 (manual). Conclusion: We developed an open-source automatic toolkit for the analysis of biological assays in radiation oncology and demonstrated the accuracy, precision and effort savings for clonogenic cell survival quantification. This toolkit is currently being used in two laboratories for routine experimental analysis and will be made freely available on our departmental website

  17. The effect of radiation-sterilization conditions and preservation procedures on physico-chemical and biological properties of bone allografts

    International Nuclear Information System (INIS)

    Radiation-sterilization of connective tissue allografts (bone including) with a dose of 35 kGy is routinely used in the Central Tissue Bank in Warsaw since 1963. This method of sterilization offers many advantages: good penetration ability, relatively low temperature rise, and possibility of sterilization of grafts in closed beforehand vials, which protects against secondary contamination. It should be kept in mind, however that high doses of ionizing radiation (in the range of 20-35 kGy) used for sterilization evoke many chemical and physical changes which may influence biological properties of grafts. These changes have been studied using various methodological approaches. Using electron paramagnetic resonance (EPR) spectrometry it has been found that in radiation-sterilized bone two types of paramagnetic entities are generated: i/ coliagen radicals which are unstable and disappear completely in the presence of air oxygen, ii/ very stable at room temperature paramagnetic defects (centers) localized in the crystalline lattice of bone mineral. These stable paramagnetic defects have been treated as a new kind of markers and used for: a/ quantitative evaluation of remodeling process of radiation-sterilized bone allografts preserved by lyophilization or deep freezing; b/ estimation of the dose of ionizing radiation absorbed by living organism in the case of accidental exposure (skeleton serving as a dosimeter) and for control of radiation-sterilization process. The effect of radiation-sterilization and preservation procedures on bone allografts was studied using a model of heterotopically induced osteogenesis and measuring the solubility of bone collagen in vitro. It has been observed that lyophilized bone allografts irradiated at room temp. with doses of 35 and 50 kGy, respectively, were very quickly resorbed in vivo and did not induce osteogenesis, while lyophilized as well as deep-frozen matrices irradiated at -7OoC were slowly resorbed and induced de novo bone fon

  18. Paradigm Shift in Radiation Biology/Radiation Oncology-Exploitation of the "H₂O₂ Effect" for Radiotherapy Using Low-LET (Linear Energy Transfer) Radiation such as X-rays and High-Energy Electrons.

    Science.gov (United States)

    Ogawa, Yasuhiro

    2016-01-01

    Most radiation biologists/radiation oncologists have long accepted the concept that the biologic effects of radiation principally involve damage to deoxyribonucleic acid (DNA), which is the critical target, as described in "Radiobiology for the Radiologist", by E.J. Hall and A.J. Giaccia [1]. Although the concepts of direct and indirect effects of radiation are fully applicable to low-LET (linear energy transfer) radioresistant tumor cells/normal tissues such as osteosarcoma cells and chondrocytes, it is believed that radiation-associated damage to DNA does not play a major role in the mechanism of cell death in low-LET radiosensitive tumors/normal tissues such as malignant lymphoma cells and lymphocytes. Hall and Giaccia describe lymphocytes as very radiosensitive, based largely on apoptosis subsequent to irradiation. As described in this review, apoptosis of lymphocytes and lymphoma cells is actually induced by the "hydrogen peroxide (H₂O₂) effect", which I propose in this review article for the first time. The mechanism of lymphocyte death via the H₂O₂ effect represents an ideal model to develop the enhancement method of radiosensitivity for radiation therapy of malignant neoplasms. In terms of imitating the high radiosensitivity of lymphocytes, osteosarcoma cells (representative of low-LET radioresistant cells) might be the ideal model for indicating the conversion of cells from radioresistant to radiosensitive utilizing the H₂O₂ effect. External beam radiation such as X-rays and high-energy electrons for use in modern radiotherapy are generally produced using a linear accelerator. We theorized that when tumors are irradiated in the presence of H₂O₂, the activities of anti-oxidative enzymes such as peroxidases and catalase are blocked and oxygen molecules are produced at the same time via the H₂O₂ effect, resulting in oxidative damage to low-LET radioresistant tumor cells, thereby rendering them highly sensitive to irradiation. In this

  19. The study of biological effects of electromagnetic mobile phone radiation on experimental animals by combining numerical modeling and experimental research

    OpenAIRE

    Dejan Krstić; Darko Zigar; Dušan Sokolović; Boris Đinđić; Branka Đorđević; Momir Dunjić; Goran Ristić

    2012-01-01

    In order to study biological effects of electromagneticradiation, it is essential to know the real values of field componentsthat penetrated the tissue. The study of biological effects is usuallyperformed on experimental animals. The biological effects observedon experimental animals should be linked with penetrating field inthe tissue. The penetrating electromagnetic field is almost impossibleto measure; therefore, modeling process must be carried out and thefield components in models of exp...

  20. The impact of biology on risk assessment -- Workshop of the National Research Council's board on radiation effects research. Meeting report

    International Nuclear Information System (INIS)

    The linear, nonthreshold extrapolation from a dose-response relationship for ionizing radiation derived at higher doses to doses for which regulatory standards are proposed is being challenged by some scientists and defended by others. It appears that the risks associated with exposures to doses of interest are below the risks that can be measured with epidemiologic studies. Therefore, many have looked to biology to provide information relevant to risk assessment. The workshop reported here, ''The Impact of biology on Risk Assessment,'' was planned to address the need for further information by bringing together scientists who have been working in key fields of biology and others who have been contemplating the issues associated specifically with this question. The goals of the workshop were to summarize and review the status of the relevant biology, to determine how the reported biologic data might influence risk assessment, and to identify subjects on which more data is needed

  1. Radioisotopes and ionizing radiations in biological research

    International Nuclear Information System (INIS)

    This book deals with the use of radioisotopes and ionizing radiations in the various aspects of biological research. The following topics were presented: labelled compounds; conformation-function relationships of hormonal polypeptides and their spectroscopic study; neutron scattering and neutron diffraction for biological studies; high resolution autoradiography; radioimmunoassay; nuclear medicine; transfer of excitation energy in photosynthesis; radioagronomy; radiation preservation of food

  2. Experience on the studies of medical-biological effects of radiation incidents in the Urals

    International Nuclear Information System (INIS)

    In 1948 a facility for production of plutonium for atomic weapon (Mayak industrial complex) was put on line in the Southern Urals near the city of Chelyabinsk. In the early years the operation of the plant brought about several accidental situations. Of these incidents the most heavy ones, with respect to the impacts on the population of the nearby communities, were connected with large amounts of radioactive wastes resulting from plutonium separation. Inadequacy of the methods used for waste storage and lack of experience in radioactive waste management were the key factors which led to radioactive contamination of some territories in the Urals region and radiation exposures of the residents. From 1949 through 1956 medium- and high-level wastes (about 3 million Ci) were discharged into the Techa-Iset-Tobol river-system. On September 29, 1957, a thermo-chemical blast occurred in one of the storage tanks containing 20 million Ci of high-level wastes. The radioactive plume with total activity of 2 million Ci passed over Chelyabinsk, Sverdlovsk and Tyumen Regions and formed the so-called East-Urals Radiation Trace (EURT). The third major radiation situation developed in the spring of 1967 due to a downwind transfer of radioactive silt deposits (total activity amounted to 600 Ci) from the dried up shoreline of the lake Karachay, an open depot of liquid radioactive wastes. The population of the contaminated territory was exposed to a combined (internal and external) irradiation. The external exposure was due to an elevated gamma-background level on the Techa floodlands and on the territories of the villages, while internal exposure resulted from Sr-90 and Cs-137 body intakes with water and foodstuffs produced in the contaminated area. The critical organs in cases of population exposures were the skeleton and red bone marrow (RBM). The maximum values of the equivalent dose to RBM amounted to 4-5 Sv for the Techa riverside residents and 0.9 Sv for the EURT residents. The

  3. Characterization of biologically effective UV radiation at mid-latitudes sites: innovative method for the calculation of the human vitamin D exposure

    OpenAIRE

    Modesti, Sarah

    2012-01-01

    The Italian territory has the potential for receiving high solar ultraviolet (UV) doses during most of the year. This may represent a serious hazard for human health as UV radiation is responsible for skin cancer: Italy is in the third place, after Australia and USA, for melanoma occurrences. It ought to be remember that UV radiation has well-established beneficial effects on the skin, most notably the synthesis of vitamin D3. However a climatological characterization of biologically effecti...

  4. 生物电磁辐射实验装置的设计%Design of biological electromagnetic radiation devices for biological effects experiment

    Institute of Scientific and Technical Information of China (English)

    杨思凡; 庞小峰; 李斌

    2011-01-01

    In recent years, people pay much attention to our health, but our life space is full of all kinds of strength of electric fields and magnetic fields. Due to the complexity of biological effects, the harm level of electromagnetic radiation pollution on hum%近年来,人们对健康的呼声越来越高,而现代生活空间中充满了各种强度的电场、磁场。由于生物效应的复杂性,这些电磁辐射污染对人体健康的危害程度以及是否会引起生物效应在学术界还存在分歧。因此要比较准确的研究电磁辐射危害健康的机理以及指导采取医学防护的措施就需要大量的动物实验或者人体实验。基于这一需要,设计一个可以比较科学的模拟空间电磁环境的实验装置就非常有必要了。这样就可以定量和定性分析电场、磁场以及更复杂的混合场对生物体产生的影响。

  5. Modern uses of proteome to identify the biological effects of radiation

    International Nuclear Information System (INIS)

    Recent advances in molecular biology, genetics, and clinical research are transforming the understanding of the molecular mechanisms of human diseases and in particular of endocrine disorders. It is now clear, more than ever, that disease is a function of genes, whether they are involved directly or indirectly through the environment. The significant advances have occurred through the completion of the sequencing of human genome. Proteomics have gained much attention as a drug development platform because disease processes and treatments are often manifested at the protein level. Protein expression profiles are used in cancer research to identify tumor subtypes and to achieve a more reliable and objective classification. Molecular analysis allows for subgrouping based on genomic or proteomic profiles together with histopathology evaluation in colorectal cancer, breast cancer, lung cancer, lymphomas and others. The identification of markers for bladder cancer was reported that defines the degree of differentiation. It could be a new field for studying and detecting irradiation induced physiological changes on protein expressions rather than on the chromosome as a whole. (author)

  6. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and

  7. Biological effects of radiation and dosimetry in X-ray diagnostics of children

    International Nuclear Information System (INIS)

    The chest radiograms represent the basic radiological examinations of thorax. The basis for radiation protection especially in pediatrics is the exact determination of doses. The risk estimation of genome damages can be received in human peripheral blood lymphocytes using alkaline version of Comet Assay. The aim of this work was assessment and quantification of the level of DNA damage in peripheral blood lymphocytes of children during airways X-ray examinations of chest and to compare data to the dose of exposure. Doses were determined using thermoluminescence (TL) dosimetry and radiophotoluminescent (RPL) glass dosimetry system. Twenty children with pulmonary diseases, ages between 5 and 14 years were assessed. Dose measurements were conducted for poster-anterior (PA) projection on the forehead, thyroid gland, gonads, chest and back. We used a 150 kV Shimadzu CH-200 M X-ray unit. Peripheral blood samples were taken from children after and prior to X-ray exposure and were examined with the alkaline Comet Assay. Comet Assay is one of the standard techniques for assessing genome damage with variety applications in genotoxicity testing as well as fundamental research in DNA damage and repair. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of group after irradiation was 14.04 ± 1.74 as opposed to mean value of group before irradiation that was 13.15 ± 1.33. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). In addition, correlation was found between doses in primary beam (measured on the back) and the ratio of tail length (DNA damage) before and after irradiation. Doses measured with TL and RPL dosimeters showed satisfactory agreement and both dosimetry methods are suitable for dosimetric measurements in X-ray diagnostics. (author)

  8. Nanodosimetry, from radiation physics to radiation biology.

    Science.gov (United States)

    Grosswendt, B

    2005-01-01

    In view of the fact that early damage to genes and cells by ionising radiation starts with the early damage to segments of the DNA, it is a great challenge to radiation research to describe the general behaviour of ionising radiation in nanometric target volumes (nanodosimetry). After summarising basic aspects of nanodosimetry, an overview is given about its present state. As far as experimental procedures are concerned, main emphasis is laid on single-ion counting and single-electron counting methods, which use millimetric target volumes filled with a low-pressure gas to simulate nanometric target volumes at unit density. Afterwards, physical principles are discussed, which can be used to convert experimental ionisation cluster-size distributions into those caused by ionising radiation in liquid water. In the final section, possibilities are analysed of how to relate parameters derived from the probability of cluster-size formation in liquid water to parameters derived from radiobiological experiments. PMID:16381675

  9. Nanodosimetry, from radiation physics to radiation biology

    International Nuclear Information System (INIS)

    In view of the fact that early damage to genes and cells by ionising radiation starts with the early damage to segments of the DNA, it is a great challenge to radiation research to describe the general behaviour of ionising radiation in nano-metric target volumes (nanodosimetry). After summarising basic aspects of nanodosimetry, an overview is given about its present state. As far as experimental procedures are concerned, main emphasis is laid on single-ion counting and single-electron counting methods, which use millimetric target volumes filled with a low-pressure gas to simulate nano-metric target volumes at unit density. Afterwards, physical principles are discussed, which can be used to convert experimental ionisation cluster-size distributions into those caused by ionising radiation in liquid water. In the final section, possibilities are analysed of how to relate parameters derived from the probability of cluster-size formation in liquid water to parameters derived from radiobiological experiments. (authors)

  10. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  11. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  12. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  13. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text: In the year 2000 we completed our study of the genotoxic influence of occupational exposure to pesticides on human cells, and their susceptibility to radiation in particular. Examining blood samples from four countries: Greece, Hungary, Poland and Spain we found that exposure to pesticides usually resulted in an increased susceptibility to the UV-C radiation, although statistical significance could only be concluded for inhabitants of Poland. In Spain, exposure to pesticides was proved to impair the lymphocyte DNA repair capability, while for the Polish group this repair capability appeared enhanced in people exposed to pesticides (see the research reports below). The possible influence of lifestyle or particular diet on the observed national differences would probably be worth analyzing. We also investigate the biological effectiveness of therapeutic beams (neutrons and X-rays). Experimental part of such study, concerning neutrons of different mean energies, is over and the results are now being processed. Our work covers hot issues of environmental and radiation biology making us research partners to many domestic and foreign scientific institutions. Our proficiency in the field is also reflected by membership in various expert boards (e.g. evaluating research applications for the Fifth EU Framework Programme for RTD and Demonstration Activities in the field 'Environment and Health', lecturing in the 2000 NATO IOS Life Science Books). We have entered the 5th EU Programme Scheme within the EXPAH project starting January 1, 2001. (author)

  14. Biological effects of radiation and chemical agents with special regard to repair processes

    International Nuclear Information System (INIS)

    It is reasonably certain that the introduction or increase of pollutants in the environment can augment mutagenic and carcinogenic effects. These effects are operationally definable, but the genetic organization and the underlying mechanisms of DNA repair, mutagenesis and carcinogenesis are so complex as to make the extrapolation of results from mutagenicity test data to carcinogenicity somewhat uncertain. The subject is reviewed. Recent discoveries in gene organization and expression include overlapping genes in bacteriophages, split genes, processing of RNA and splicing, translocation of genes in eukaryotes, inactivation of the X-chromosome in mammals, etc. Apart from the genetic regulation, plasmids, insertion sequences and mutators can additionally affect mutation frequency. Cancers due to gene mutations, viruses, chemicals and physical agents are known. However, little is known about the epigenetic mechanisms involved. The value of mutagenicity test data is beyond question, but in view of the extraordinary complexities encountered our extrapolations will be more sound if the data have the underpinning of basic information. (author)

  15. Biokinetics of nuclear fuel compounds and biological effects of nonuniform radiation.

    OpenAIRE

    Lang, S.; Servomaa, K.; Kosma, V M; Rytömaa, T

    1995-01-01

    Environmental releases of insoluble nuclear fuel compounds may occur at nuclear power plants during normal operation, after nuclear power plant accidents, and as a consequence of nuclear weapons testing. For example, the Chernobyl fallout contained extensive amounts of pulverized nuclear fuel composed of uranium and its nonvolatile fission products. The effects of these highly radioactive particles, also called hot particles, on humans are not well known due to lack of reliable data on the ex...

  16. Biological effect of radiation-degraded alginate on flower plants in tissue culture.

    Science.gov (United States)

    Le, Q Luan; Nguyen, Q Hien; Nagasawa, Naotsugu; Kume, Tamikazu; Yoshii, Fumio; Nakanishi, Tomoko M

    2003-12-01

    Alginate with a weight-average molecular mass (Mw) of approx. 9.04 x 10(5) Da was irradiated at 10-200 kGy in 4% (w/v) aqueous solution. The degraded alginate product was used to study its effectiveness as a growth promoter for plants in tissue culture. Alginate irradiated at 75 kGy with an Mw of approx. 1.43 x 10(4) Da had the highest positive effect in the growth of flower plants, namely limonium, lisianthus and chrysanthemum. Treatment of plants with irradiated alginate at concentrations of 30-200 mg/l increased the shoot multiplication rate from 17.5 to 40.5% compared with control. In plantlet culture, 100 mg/l irradiated alginate supplementation enhanced shoot height (9.7-23.2%), root length (9.7-39.4%) and fresh biomass (8.1-19.4%) of chrysanthemum, lisianthus and limonium compared with that of the untreated control. The survival ratios of the transferred flower plantlets treated with irradiated alginate were almost the same as the control value under greenhouse conditions. However, better growth was attained for the treated plantlets. PMID:12901723

  17. Biological aspects of radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Radiotherapy with unsealed radionuclides differs from external radiotherapy with regard to the radiation quality and energy range, the regional dose uniformity and the time course of irradiation regimen. External radiotherapy is planned precisely and can be applied to a target volume independently from blood flow during a course of irradiation fractions. In contrary, administered radiopharmaceuticals distribute according to their pharmacokinetic properties and generate a continuous irradiation corresponding to the effective halflife. The resulting dose rates are approximately 1 Gy/min and 1 Gy/h, respectively. The bio-kinetics of radiopharmaceuticals involves cellular accumulation and retention with highly variable affinity to specific organs that can be modulated as well. A remarkable dose gradient is found at the edge of volumes with enhanced uptake. The biological effect of an irradiation with decreasing intensity can be compared with the radiation effect caused by conventional fractionation with 2 Gy a day in external beam therapy by means of the linear-quadratic model. However, the experimental validation of this translation is still under investigation. Radionuclide therapy is usually performed in several cycles some month apart. This procedure fails to meet external radiotherapy. The vision of a combined external-internal radiotherapy requires efforts for a common dosimetry approach both in vitro and in vivo with a physical and biological verification of the results. (orig.)

  18. Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts - a review.

    Science.gov (United States)

    Antonio, Amilcar L; Carocho, Márcio; Bento, Albino; Quintana, Begoña; Luisa Botelho, M; Ferreira, Isabel C F R

    2012-09-01

    Gamma radiation has been used as a post-harvest food preservation process for many years. Chestnuts are a seasonal product consumed fresh or processed, and gamma irradiation emerged recently as a possible alternative technology for their post-harvest processing, to fulfil the requirements of international phytosanitary trade laws. After harvest and storage, several problems may occur, such as the presence of infestations and development of microorganisms, namely rotting and fungi. These diminish the quality and safety of the product, decreasing the yield along the production chain. In fruits, gamma irradiation treatment is for two main purposes: conservation (ripening delay) and insect disinfestation (phytosanitary treatment). In this review, the application of gamma irradiation to chestnuts is discussed, including production data, the irradiated species and the effects on biological (sprouting, rotting, respiration rate, insects, worms and fungi), physico-chemical (color, texture, and drying rate), nutritional (energetic value, proteins, sugars and fatty acids) and antioxidant (tocopherols, ascorbic acid, phenolics, flavonoids and antioxidant activity) parameters. These changes are the basis for detecting if the food product has been irradiated or not. The validation of standards used for detection of food irradiation, as applied to chestnuts, is also discussed. PMID:22735498

  19. Treatment of Animal Feeds with Ionizing Radiation II: Effects of Gamma Radicidation on the Biological Value of Poultry Feed

    International Nuclear Information System (INIS)

    Poultry is a major local meat source which is often contaminated with salmonella. A major source of contamination was found to be salmonella-infected poultry feed. Since gamma radiation at doses of up to 1 Mrad reduced salmonella populations in feed by 6 to 7 logs, this study was undertaken to determine if radicidized poultry feed can be used as a step in reducing contamination of poultry without affecting breeder flock performance and longevity. Two breeder flocks, each comprising 300 hens and 50 roosters, were kept in separate coops. One flock was fed untreated feed, while the feed of the other was radicidized at 1 Mrad, which resulted in a level of less than 10 enterobacteria per gram. The flocks Were studied for over 12 months, from the emergence of chicks to the end of 6 months of egg production. The quantity of feed supply was controlled to ensure early detection of detrimental effects on the biological value of the feed. For the first 8 weeks, when the feed was freely supplied, no differences were observed in feed utilization or growth. After limited feeding was started, no significant differences were observed in feed utilization and in total amount of feed consumed. The number of fertile eggs, the feed consumption per egg, the age at which the first egg was laid, mortality and the total weight after 22 weeks and 12¼ months were practically equivalent in both flocks. Chicks obtained from both flocks showed no significant differences in weight or in feed utilization. (author)

  20. Biologically effective dose and definitive radiation treatment for localized prostate cancer. Treatment gaps do affect the risk of biochemical failure

    International Nuclear Information System (INIS)

    It is not clear if prolongation of definitive external radiation therapy for prostate cancer has an effect on biochemical failure. The aim of this work was to evaluate whether the biologically effective dose (BED), and in particular the duration of radiotherapy, intended as overall treatment time, has an effect on biochemical failure rates and to develop a nomogram useful to predict the 6-year probability of biochemical failure. A total of 670 patients with T1-3 N0 prostate cancer were treated with external beam definitive radiotherapy, to a total dose of 72-79.2 Gy in 40-44 fractions. The computed BED values were treated with restricted cubic splines. Variables were checked for colinearity using Spearman's test. The Kaplan-Meier method was used to calculate freedom from biochemical relapse (FFBR) rates. The Cox regression analysis was used to identify prognostic factors of biochemical relapse in the final most performing model and to create a nomogram. Concordance probability estimate and calibration methods were used to validate the nomogram. Neoadjuvant and concomitant androgen deprivation was administered to 475 patients (70 %). The median follow-up was 80 months (range 20-129 months). Overall, the 6-year FFBR rate was 88.3 %. BED values were associated with higher biochemical failure risk. Age, iPSA, risk category, and days of radiotherapy treatment were independent variables of biochemical failure. A prolongation of RT (lower BED values) is associated with an increased risk of biochemical failure. The nomogram may be helpful in decision making for the individual patient. (orig.)

  1. Radiation biology in cancer research

    International Nuclear Information System (INIS)

    This book contains the proceedings of a symposium held in February and March 1979. The publication of the book in early 1980 represents a timely appearance of the 40 scientific presentations and conference summary from a rather large meeting. The papers are organized into six categories ranging from basic biophysics of radiation damage to new methods and combinations in radiation therapy of human malignancies. This organization, going from the basic mechanisms of radiation damage to new therapy applications, is a logical one, and the relatively large emphasis on papers in the first category is a refreshing change for a symposium of this sort. The quality of editing, production, and illustrations is high

  2. Radiation sterilization of biological tissues

    International Nuclear Information System (INIS)

    After years of neglect, the value of sterile non-viable (allograft) tissue grafts in transplant surgery is now being recognised. Sterilization using γ-radiation is now becoming the method of choice for a wide range of tissues in a spectrum of Human Tissues banks throughout the world. The radiation treatment can initiate physical and chemical damage in the tissues. Where necessary methods of protection have been developed. Examples are given of the successful utilization of radiation for tissue sterilization and use. (author)

  3. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  4. Radiation physics, biophysics and radiation biology. Progress report, October 1, 1980-September 30, 1981

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for the 29 papers in this progress report which deal with radiobiological physics, the biological effects of ionizing radiations, and the modification of these effects by chemical and pharmacological agents

  5. Radiation induced sterility to control tsetse flies. The effect of ionising radiation and hybridisation on tsetse biology and the use of the sterile insect technique in integrated tsetse control.

    OpenAIRE

    Vreysen, M. J. B.

    1995-01-01

    The induction of dominant lethal mutations by exposing tsetse flies as pupae or adult insects to ionising radiation and the use of hybrid sterility resulting from crosses of closely related tsetse species or subspecies, are potential methods of genetic control of tsetse flies. In this thesis the effects of radiation and hybridisation on the reproductive biology and fitness of several species of tsetse flies has been examined. In addition, aspects of field releases of sterile insects have also...

  6. Treatment of animal feeds with ionizing radiation. II. Effects of gamma radicidation on the biological value of poultry feed

    International Nuclear Information System (INIS)

    Poultry is a major local meat source which is often contaminated with salmonella. A major source of contamination was found to be salmonella-infected poultry feed. Since gamma radiation at doses of up to 1 Mrad reduced salmonella populations in feed by 6 to 7 logs, this study was undertaken to determine if radicidized poultry feed can be used as a step in reducing contamination of poultry without affecting breeder flock performance and longevity. Two breeder flocks, each comprising 300 hens and 50 roosters, were kept in separate coops. One flock was fed untreated feed, while the feed of the other was radicidized at 1 Mrad, which resulted in a level of less than 10 enterobacteria per gram. The flocks were studied for over 12 months, from the emergence of chicks to the end of 6 months of egg production. The quantity of feed supply was controlled to ensure early detection of detrimental effects on the biological value of the feed. For the first 8 weeks, when the feed was freely supplied, no differences were observed in feed utilization or growth. After limited feeding was started, no significant differences were observed in feed utilization and in total amount of feed consumed. The number of fertile eggs, the feed consumption per egg, the age at which the first egg was laid, mortality and the total weight after 22 weeks and 12 1/4 months were practically equivalent in both flocks. Chicks obtained from both flocks showed no significant differences in weight or in feed utilization. (author)

  7. Biophysical interpretation on the biological actions of radiations

    International Nuclear Information System (INIS)

    It is known that nuclear radiations such as alpha, beta, gamma, x-rays and neutron, proton and other heavy ion beams have many different actions on living cells; as killing, delaying growth, abnormal cell divisions and various genetical mutations and chromosomal aberrations. This document describes the mechanisms and kinetics of biological effects of ionizing radiation

  8. Early mechanisms in radiation-induced biological damage

    International Nuclear Information System (INIS)

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical

  9. The RBE of tritium-beta exposure for the induction of the adaptive response and apoptosis; cellular defense mechanisms against the biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Adaption to radiation is one of a few biological responses that has been demonstrated to occur in mammalian cells exposed to doses of ionizing radiation in the occupational exposure range. The adaptive response has been well characterized in the yeast Saccharomyces cerevisiae, although the doses required to induce the response are higher than in mammalian cells. When yeast cells are primed with sublethal doses of gamma-radiation, they subsequently undergo an adaptive response and develop resistance to radiation, heat the chemical mutagens in a time and dose dependent manner. We have used this model system to assess the relative ability of tritium-beta radiation to induce the adaptive response the examined tritium-induced radiation resistance, thermal tolerance and suppression of mutation. The results show that sublethal priming doses of tritium caused yeast cells to develop resistance to radiation, heat, and a chemical mutagen MNNG. The magnitude and kinetics of the response, per unit dose, were the same for tritium and gamma-radiation. Therefore, the relative biological effectiveness (RBE) of tritium induction of the adaptive response was about 1.0. Apoptosis is a genetically programmed cell death or cell suicide. Cells damaged by radiation can be selectively removed from the population by apoptosis and therefore eliminated as a potential cancer risk to the organism. Since we have previously shown that apoptosis is a sensitive indicator of radiation damage in human lymphocytes exposed to low doses, we have used this endpoint to investigate the potency of tritium-beta radiation. Initially, tritium was compared to X-rays for relative effectiveness at inducing apoptosis. The results showed the lymphocytes irradiated in vitro with X-rays or tritium had similar levels of apoptosis per unit dose. Therefore the relative biology effectiveness of tritium for induction of apoptosis in human lymphocytes was also about 1. In the work presented here, we have demonstrated that

  10. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text:The year 1999 we devoted mainly to the activities concerning our basic research, and requirements and expectations of three research projects. The environmental project from the European Community was supporting our research in the issues of human monitoring of occupational exposure to pesticides. The two other radiobiology projects from the State Committee of Research were supporting our search on the biological efficiency and its enhancement of radio-therapeutic sources of various LET radiation. We succeeded fruitful co-operation with colleagues from Academy of Mining and Metallurgy that let us go faster with modernization of our laboratory by automation of our methods for screening cytogenetic damages. A lot of efforts were paid to modify our work by automatic reports of the coordinates of aberrant metaphases, and to make a smooth work of our new and own metaphase finder. We are sure that our new and unique research tool will not only enhance the accuracy and speed of measurements, but will also be useful for the purpose of the retrospective biological dosimetry of absorbed doses. We have applied fluorescent in situ hybridization (FISH) for cytogenetic studies of biological effects induced by neutrons. Now, we are looking forward to apply this technique in a combination with the DNA damage measures done by SCGE assay, to our research on mechanisms of the induction and repair, or interaction of the lesions induced by genotoxic agents. Understanding of the regulation of these processes could be a good goal for the new century to come. (author)

  11. The combined effect of uranium and gamma radiation on biological responses and oxidative stress induced in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.b [Belgian Nuclear Research Centre (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele; Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Centre (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2010-11-15

    Uranium never occurs as a single pollutant in the environment, but always in combination with other stressors such as ionizing radiation. As effects induced by multiple contaminants can differ markedly from the effects induced by the individual stressors, this multiple pollution context should not be neglected. In this study, effects on growth, nutrient uptake and oxidative stress induced by the single stressors uranium and gamma radiation are compared with the effects induced by the combination of both stressors. By doing this, we aim to better understand the effects induced by the combined stressors but also to get more insight in stressor-specific response mechanisms. Eighteen-day-old Arabidopsis thaliana seedlings were exposed for 3 days to 10 {mu}M uranium and 3.5 Gy gamma radiation. Gamma radiation interfered with uranium uptake, resulting in decreased uranium concentrations in the roots, but with higher transport to the leaves. This resulted in a better root growth but increased leaf lipid peroxidation. For the other endpoints studied, effects under combined exposure were mostly determined by uranium presence and only limited influenced by gamma presence. Furthermore, an important role is suggested for CAT1/2/3 gene expression under uranium and mixed stressor conditions in the leaves.

  12. Biological effects of gamma radiation on stored product insects. 4 - radiation effects on sex pheromone production and perception by the rust-red flour beetle. Tribolium castaneum (herbst)

    OpenAIRE

    Abdu, R. M.; Abdel-Kader, Maissa M.; M. A. Hussein; Abdel-Rahman, H. A.

    1985-01-01

    Irradiation of the rust-red flour beetle, T. castaneum at different doses of gamma radiation considerably affected sex pheromone production by females and perception by males. The production of sex pheromone by virgin females decreased with the increase of radiation doses from 4 to 10 krad., and a dose of 12 krad could almost inhibit pheromone production. Males were more radiosensitive in their response to sex pheromone; and a radiation dose of 8 krad could brought inhibition of male respo...

  13. Effects of ionizing radiation

    International Nuclear Information System (INIS)

    A sound evaluation of the consequences of releases of radioactivity into the environment, especially of those large amounts, and of the effectiveness of different protective measures, requires thorough concern of the various aspects of the radiological effects. The effects of ionizing radiation were reviewed according to the following characterization: Affected subject (somatic, genetic and psychological effects); Duration of irradiation (acute and chronic irradiation); Latent period (early and late effects); Dose-effect relationship (stochastic and non-stochastic effects); Population affected (e.g. children, pregnant women). In addition to the lethal effects which are generally considered extensively in all the evaluations of the consequences of radioactivity releases, such effects as early symptoms and morbidity are emphasized in this review. The dependence of the effects on dose rates, repair mechanism and medical treatment is discussed, and the uncertainties involved with their evaluation is highlighted. The differences between QF (quality factor) and RBE (relative biological effectiveness) of different radiation sources are interpreted. Synergystic effects and the effectiveness of various means of medication are discussed. It is suggested that all radiological effects, including those resulting from relatively low radiation doses, e.g. foetus deformations, fertility impairment, prodomal - leading to psychological effects, should be considered within the evaluation of the consequences of radioactivity releases and of the effectiveness of protective measures. Limits of the repair factors to be considered within the evaluation of the effects of chronic exposures are proposed

  14. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C [Wayne State University, Grosse Pointe, MI (United States); Borras, C [Radiological Physics and Health Services, Washington, DC (United States); Carlson, D [Yale University School of Medicine, New Haven, CT (United States)

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  15. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    International Nuclear Information System (INIS)

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  16. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure

    DEFF Research Database (Denmark)

    Mason, Anna J.; Giusti, Valerio; Green, Stuart;

    2011-01-01

    The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any...

  17. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  18. DEGRO 2009. Radiation oncology - medical physics - radiation biology. Abstracts

    International Nuclear Information System (INIS)

    The special volume of the journal covers the abstracts of the DEGRO 2009 meeting on radiation oncology, medical physics, and radiation biology, covering the following topics: seldom diseases, gastrointestinal tumors, radiation reactions and radiation protection, medical care and science, central nervous system, medical physics, the non-parvicellular lung carcinomas, ear-nose-and throat, target-oriented radiotherapy plus ''X'', radio-oncology - young academics, lymphomas, mammary glands, modern radiotherapy, life quality and palliative radiotherapy, radiotherapy of the prostate carcinoma, imaging for planning and therapy, the digital documentation in clinics and practical experiences, NMR imaging and tomography, hadrons - actual status in Germany, urinal tract oncology, radiotoxicity

  19. European activities in space radiation biology and exobiology

    Energy Technology Data Exchange (ETDEWEB)

    Horneck, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1996-12-31

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  20. Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects.

    NARCIS (Netherlands)

    Hoffmann, A.L.; Hertog, D. den; Siem, A.Y.; Kaanders, J.H.A.M.; Huizenga, H.

    2008-01-01

    Finding fluence maps for intensity-modulated radiation therapy (IMRT) can be formulated as a multi-criteria optimization problem for which Pareto optimal treatment plans exist. To account for the dose-per-fraction effect of fractionated IMRT, it is desirable to exploit radiobiological treatment plan

  1. Effects from climatic changes and increased UV radiation. How is this dealt with in the research program on biologic variety

    International Nuclear Information System (INIS)

    The aim of the project is to widen the knowledge on a sustainable use of biological resources and conservation of the particularity and versatility of the nature. The ecosystems natural composition, function and dynamics will be investigated as well as human impacts on these ecosystems. Analysis of the reasons for the threats and the efficiency of various dispositions will be carried out. The main areas of the program are: 1) Biological diversity, composition, function and dynamics. 2) Effects of damage in habitats. 3) Introductions of strange species and genotypes, including genetically modified organisms. 4) Management of the versatility. Currently the program has 9 projects

  2. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Testa, Mauro; Tang, Shikui [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gheorghiu, Liliana [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Biggs, Peter; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  3. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    International Nuclear Information System (INIS)

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and 137Cs γ-rays were used. To estimate the RBE of protons relative to 60Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation

  4. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  5. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. PMID:22150399

  6. Radiation biology: Major advances and perspectives for radiotherapy

    International Nuclear Information System (INIS)

    At the beginning of the 21. century, radiation biology is at a major turning point in its history. It must meet the expectations of the radiation oncologists, radiologists and the general public, but its purpose remains the same: to understand the molecular, cellular and tissue levels of lethal and carcinogenic effects of ionizing radiation in order to better protect healthy tissues and to develop treatments more effective against tumours. Four major aspects of radiobiology that marked this decade will be discussed: technological developments, the importance of signalling and repair of radiation-induced deoxyribonucleic acid (DNA) damage, the impact of individual factor in the response to radiation and the contribution of radiobiology to better choose innovative therapies such as proton-therapy or stereotactic body radiation therapy (SBRT). A translational radiobiology should emerge with the help of radiotherapists and radiation physicists and by facilitating access to the new radio and/or chemotherapy modalities. (authors)

  7. Biologically effective dose and definitive radiation treatment for localized prostate cancer. Treatment gaps do affect the risk of biochemical failure

    Energy Technology Data Exchange (ETDEWEB)

    Sanpaolo, P.; Barbieri, V. [CROB, Rionero in Vulture (Italy). Radiation Oncology Dept.; Genovesi, D. [' ' G. D' Annunzio Univ., Chieti (Italy). Radiation Oncology Dept.

    2014-08-15

    It is not clear if prolongation of definitive external radiation therapy for prostate cancer has an effect on biochemical failure. The aim of this work was to evaluate whether the biologically effective dose (BED), and in particular the duration of radiotherapy, intended as overall treatment time, has an effect on biochemical failure rates and to develop a nomogram useful to predict the 6-year probability of biochemical failure. A total of 670 patients with T1-3 N0 prostate cancer were treated with external beam definitive radiotherapy, to a total dose of 72-79.2 Gy in 40-44 fractions. The computed BED values were treated with restricted cubic splines. Variables were checked for colinearity using Spearman's test. The Kaplan-Meier method was used to calculate freedom from biochemical relapse (FFBR) rates. The Cox regression analysis was used to identify prognostic factors of biochemical relapse in the final most performing model and to create a nomogram. Concordance probability estimate and calibration methods were used to validate the nomogram. Neoadjuvant and concomitant androgen deprivation was administered to 475 patients (70 %). The median follow-up was 80 months (range 20-129 months). Overall, the 6-year FFBR rate was 88.3 %. BED values were associated with higher biochemical failure risk. Age, iPSA, risk category, and days of radiotherapy treatment were independent variables of biochemical failure. A prolongation of RT (lower BED values) is associated with an increased risk of biochemical failure. The nomogram may be helpful in decision making for the individual patient. (orig.) [German] Es ist nicht geklaert, ob die Verlaengerung einer definitiven Strahlentherapie bei der Behandlung von Prostatakarzinompatienten einen Effekt auf das biochemische Versagen hat. Die vorliegende Studie hat das Ziel zu evaluieren, ob biologisch die effektive Dosis und insbesondere die Gesamtdauer der Behandlung eine Wirkung auf das biochemisches Rezidiv haben koennte. Ferner

  8. The effects and control of radiation

    International Nuclear Information System (INIS)

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  9. Radiation biology in Canada 1962-63

    International Nuclear Information System (INIS)

    A survey of the research projects in radiation biology being carried out in Canada during the fiscal year 1962-63. The report includes the names of the investigators, their location, a brief description of the projects and information on the financial support being provided. A classification of the projects into areas of specific interest is also included. (author)

  10. Climatic and biological effects

    International Nuclear Information System (INIS)

    The ozone-climate problem has received considerable attention since concern was raised regarding possible threats to stratospheric ozone. Early climatic assessments of reduced ozone focused on the direct solar and longwave effects. Now a number of important feedback mechanisms are recognized as contributing significantly to indirect climatic effects. Although the focus in this chapter is on the climatic effect of reduced ozone, the discussion must include other trace gases as well. Many of the trace gases that interact photochemically to reduce ozone also have important radiative properties. Examples are chlorofluorocarbons (CFCl3 and CF2Cl2), nitrous oxide (N2O), and methane (CH4). Other gases, such as CO2, affect the temperature profile in the atmosphere, which can have an indirect effect on ozone through temperature-dependent reaction rates. The change in ozone, in turn, alters the change in temperature. The direct radiative effect of gases comes about through absorption of solar radiation and absorption and emission of longwave radiation (also referred to as thermal, terrestrial, or infrared radiation). The spectral distribution of solar and longwave radiation is shown. The principal gaseous absorbers of solar radiation are O2 and O3 in the stratosphere and H2O in the troposphere. As discussed in Chapter 2, ozone has absorption bands in the ultraviolet (uv) and visible regions of the solar spectrum. Water vapor absorbs primarily in the near-infrared spectral region

  11. SU-E-T-146: Effects of Uncertainties of Radiation Sensitivity of Biological Modelling for Treatment Planning

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x106 cells/ml). The hypoxic cultures were treated with 95% N2−5% CO2 gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xray unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D50 were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D50 as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning

  12. SU-E-T-146: Effects of Uncertainties of Radiation Sensitivity of Biological Modelling for Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Oita, M [Department of Radiological Technology, Graduate School of Health Sciences, Okayama University (Japan); Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University (Japan); Uto, Y; Hori, H [Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University (Japan); Tominaga, M [Department of Radiological Technology, Institute of Health Biosciences, Graduate School, The Tokushima University (Japan); Sasaki, M [Department of Radiology, Tokushima University Hospital (Japan)

    2014-06-01

    Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x10{sup 6} cells/ml). The hypoxic cultures were treated with 95% N{sub 2}−5% CO{sub 2} gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xray unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D{sub 50} were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D{sub 50} as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning.

  13. Request for Travel Funds for Systems Radiation Biology Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [NYU School of Medicine

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  14. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field.

    Science.gov (United States)

    Kampinga, Harm H

    2006-05-01

    Hyperthermia results in protein unfolding that, if not properly chaperoned by Heat Shock Proteins (HSP), can lead to irreversible and toxic protein aggregates. Elevating HSP prior to heating makes cells thermotolerant. Hyperthermia also can enhance the sensitivity of cells to radiation and drugs. This sensitization to drugs or radiation is not directly related to altered HSP expression. However, altering HSP expression before heat and radiation or drug treatment will affect the extent of thermal sensitization because the HSP will attenuate the heat-induced protein damage that is responsible for radiation- or drug-sensitization. For thermal radiosensitization, nuclear protein damage is considered to be responsible for hyperthermic effects on DNA repair, in particular base excision repair. Hyperthermic drug sensitization can be seen for a number of anti-cancer drugs, especially of alkylating agents. Synergy between heat and drugs may arise from multiple events such as heat damage to ABC transporters (drug accumulation), intra-cellular drug detoxification pathways and repair of drug-induced DNA adducts. This may be why cells with acquired drug resistance (often multi-factorial) can be made responsive to drugs again by combining the drug treatment with heat. PMID:16754338

  15. Effects of 60Co γ-rays radiation on biological characters of Platanus acerifolia Willd. weed and seedlings

    International Nuclear Information System (INIS)

    The dry seeds of Platanus acerifolia Willd. were irradiated by different doses of 60Co γ-rays, and the effect of the radiation on M1 were investigated. Results showed that the seed germination rate, emerged seedling rate and survival seedling rate of Platanus aceriflia Willd. Decreased with dose increase at the dose of 50-400 Gy, as well as the plant height, fresh weight and length of root. The radiation inhibited the seeding growth significantly. Compared with CK, the true leaf emerging time of samples irradiated at 50-250 Gy was late for 2, 5, 9 and 14d, respectively. But the young seedlings of samples treated at 300-400 Gy were severely twisted and abnormal, and gradually died after 15d. Based on the data of seeding rate and root growth, it is concluded that the semi-lethal radiation dose of Platanus acerifolia Willd. dry seed was 50 Gy, and the suitable dose range for radiation breeding was 50 to 250 Gy. (authors)

  16. Breast cancer biology for the radiation oncologist

    International Nuclear Information System (INIS)

    This is the first textbook of its kind devoted to describing the biological complexities of breast cancer in a way that is relevant to the radiation oncologist. Radiation Oncology has long treated breast cancer as a single biological entity, with all treatment decisions being based on clinical and pathologic risk factors. We are now beginning to understand that biological subtypes of breast cancer may have different risks of recurrence as well as different intrinsic sensitivity to radiotherapy. Multi-gene arrays that have for years been used to predict the risk of distant recurrence and the value of systemic chemotherapy may also have utility in predicting the risk of local recurrence. Additionally, the targeted agents used to treat breast cancer may interact with radiotherapy in ways that can be beneficial or undesirable. All of these emerging issues are extensively discussed in this book, and practical evidence-based treatment recommendations are presented whenever possible.

  17. Breast cancer biology for the radiation oncologist

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Jonathan [Northwestern Univ., Chicago, IL (United States). Dept. of Radiation Oncology; Small, William [Loyola Univ. Chicago, Maywood, IL (United States). Stritch School of Medicine, Cardianl Bernardin Cancer Center; Woloschak, Gayle E. (ed.) [Northwestern Univ. Feinberg, Chicago, IL (United States). School of Medicine

    2015-10-01

    This is the first textbook of its kind devoted to describing the biological complexities of breast cancer in a way that is relevant to the radiation oncologist. Radiation Oncology has long treated breast cancer as a single biological entity, with all treatment decisions being based on clinical and pathologic risk factors. We are now beginning to understand that biological subtypes of breast cancer may have different risks of recurrence as well as different intrinsic sensitivity to radiotherapy. Multi-gene arrays that have for years been used to predict the risk of distant recurrence and the value of systemic chemotherapy may also have utility in predicting the risk of local recurrence. Additionally, the targeted agents used to treat breast cancer may interact with radiotherapy in ways that can be beneficial or undesirable. All of these emerging issues are extensively discussed in this book, and practical evidence-based treatment recommendations are presented whenever possible.

  18. Systems biology perspectives on the carcinogenic potential of radiation

    International Nuclear Information System (INIS)

    This review focuses on recent experimental and modeling studies that attempt to define the physiological context in which high linear energy transfer (LET) radiation increases epithelial cancer risk and the efficiency with which it does so. Radiation carcinogenesis is a two-compartment problem: ionizing radiation can alter genomic sequence as a result of damage due to targeted effects (TE) from the interaction of energy and DNA; it can also alter phenotype and multicellular interactions that contribute to cancer by poorly understood non-targeted effects (NTE). Rather than being secondary to DNA damage and mutations that can initiate cancer, radiation NTE create the critical context in which to promote cancer. Systems biology modeling using comprehensive experimental data that integrates different levels of biological organization and time-scales is a means of identifying the key processes underlying the carcinogenic potential of high-LET radiation. We hypothesize that inflammation is a key process, and thus cancer susceptibility will depend on specific genetic predisposition to the type and duration of this response. Systems genetics using novel mouse models can be used to identify such determinants of susceptibility to cancer in radiation sensitive tissues following high-LET radiation. Improved understanding of radiation carcinogenesis achieved by defining the relative contribution of NTE carcinogenic effects and identifying the genetic determinants of the high-LET cancer susceptibility will help reduce uncertainties in radiation risk assessment

  19. Radiation physics, biophysics and radiation biology. Progress report, December 1, 1984-November 30, 1985

    International Nuclear Information System (INIS)

    This is the annual progress report for the Radiological Research Laboratory, Department of Radiology, Columbia University. The report consists of 17 individual reports plus an overall summary. Reports survey research results in neutron dosimetry, microdosimetry of electron beams and x-radiation, development of theoretical models for biological radiation effects and induction of oncogenic transformations. Individual abstracts were also prepared for each paper

  20. Radon and radiation biology of the lung

    International Nuclear Information System (INIS)

    The main papers presented at the meeting dealt with the behaviour of radon and the indoor environment, radiation biology of the lung, lung dosis and the possible cancer risk caused by radon in homes, contamination of the room air. A series of special papers treated the radon problem in detail: sources and transport mechanisms of radon, geological aspects of the radon radiation burden in Switzerland, radon in homes, search for radon sources, and the Swiss radon-programme RAPROS. 67 figs., 13 tabs., 75 refs

  1. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text: The year 2001 started for us with new demanding tasks connected with participation in a new research project performed in collaboration with a excellent teams from six countries under the 5th EU the Quality of Life Programme. The aim of the project EXPAH is to propose methods of molecular epidemiology for the risk assessment of exposure to polycyclic aromatic hydrocarbons in the air. The exploration of cause-effect relationships for carcinogenic agents will be based on the study of exogenous and endogenous influence on DNA damage in exposed population, and will determine the relationship between biomarkers of exposure, effects and susceptibility in the exposed populations. Analysis of this damage is carried out using highly specialising multidisciplinary techniques brought together by seven laboratories specialised in chemical, biochemical and biological techniques for analysing DNA damage and repair, together with access to populations exposed to environmental pollution and experience in collecting samples. In the year 2001 all the members of the department put much effort in co-organizing 12. Meeting of the Maria Sklodowska-Curie Polish Radiation Research Society. The Meeting was held in the September in Cracow and rewarded hard work of everybody with many applauding comments for the high scientific and organization level. Our parallel activities were concentrated on arrangement and preparation of the forthcoming Course on Human Monitoring for Genetic Effects proposed to us by the Alexander Hollaender Committee of the International Environmental Mutagenesis Society. The Alexander Hollaender ''HUMOGEF'' Course will concentrate on the commonly measured biomarkers (chromosome aberrations; micronuclei; DNA damage), but others (p53 protein levels; metabolic genotypes) will also be addressed. Scientists of international standing from the fields of toxicology, molecular biology, cytogenetics, mutation, and epidemiology, will present and discuss the state

  2. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  3. Review of studies validating the protective efficacy of a new technology designed to compensate adverse biological effects caused by vdu and GSM cell phone radiation

    International Nuclear Information System (INIS)

    A total of 13 studies were initiated and coordinated by Technolab Research Center in 6 laboratories from 3 countries (France, UK, Japan). These studies were aimed at: 1) investigating potential adverse biological effects associated with exposure to non ionizing radiation emitted by two types of communication devices, video display units and cell phones; 2) assessing the efficacy of a compensation magnetic oscillating technology designed to protect from non ionizing radiation. Five types of biological systems including chicken embryos, young chickens, healthy mice, mice suffering from cancer and humans were used. A set of 10 biological parameters were assessed, including embryonic mortality, hormones, antibodies, haematological parameters, stress, mood, ocular damage, neurogenesis, micronuclei formation and intracellular calcium. Overall endpoints were affected by irradiation, in terms of increased embryonic mortality, immune depression, depletion of hormones crucial for the regulation of the immune system, changes in haematological parameters, increased stress, mood alteration, induction of ophthalmologic disorders, inhibition of the neurogenesis in brain areas associated with memory processes, induction of symptoms of cell dysfunction, apoptosis or cancer, and disruption of trans-membrane fluxes of calcium. On the other hand, the compensation magnetic oscillation technology tested allowed significant correction of altered physiological parameters, as well as improvement or disappearance of observed pathological symptoms (author)

  4. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix

  5. The role of intercellular communication and oxidative metabolism in the propagation of ionizing radiation-induced biological effects

    Science.gov (United States)

    Autsavapromporn, Narongchai

    Coordinated interactions of specific molecular and biochemical processes are likely involved in the cellular responses to stresses induced by different ionizing radiations with distinctive linear energy transfer (LET) properties. Here, we investigated the roles and mechanisms of gap junction intercellular communication and oxidative metabolism in modulating cell killing and repair of potentially lethal damage (PLDR) in confluent AG1522 human fibroblasts exposed to 1 GeV protons (LET˜0.2 keV/μm), 137Cs γ rays (LET˜0.9 keV/μm), 241Am α particles (LET˜122 keV/μm) or 1 GeV/u iron ions (LET˜151 keV/μm) at doses by which all cells in the exposed cultures are irradiated. As expected, α-particles and iron ions were more effective than protons and γ rays at inducing cell killing. Holding γ- or proton-irradiated cells in the confluent state for several hours after irradiation promoted increased survival and decreased chromosomal damage. However, maintaining α-particle or iron ion-irradiated cells in the confluent state for various times prior to subculture resulted in increased rather than decreased lethality, and was associated with. persistent DNA damage and increased protein oxidation and lipid peroxidation. Inhibiting gap junction communication with 18-α-glycyrrhetinic acid or by knockdown of connexin43, a constitutive protein of junctional channels in these cells, protected against the toxic effects expressed in these cells during confluent holding. Up-regulation of antioxidant defense by ectopic over-expression of glutathione peroxidase, protected against cell killing by α-particles when cells were analyzed shortly after exposure. However, it did not attenuate the decrease in survival during confluent holding. Together, these findings indicate that the damaging effect of α particles results in oxidative stress, and the toxic effects in the hours following irradiation are amplified by intercellular communication, but the communicated molecule(s) is

  6. Effect of gamma radiation on some biological aspects of the moth prays Citri mill.(Hyponomeutidae, Lepidoptera)

    International Nuclear Information System (INIS)

    The present work deals with the effect 4 doses of gamma radiation (100, 200, 300 and 400 Gy) on 3 pupal ages of prays citri moth (1, 3 and 5 days before adult emergence) on the adult fecundity, fertility, different oviposition periods and adult longevity. Adult fecundity significantly decreased in the earlier pupal ages at different doses and different combinations (Nx I , I x N and I x I). Also, the decrease in adult fertility was significant in the same pupal ages and at different doses and combinations. The differences between the combination I x N and I x I were insignificant while they were significant when comparing each of them with the other combination (N X I ). Pre-oviposition, oviposition and postoviposition periods were affected significantly when the earlier pupal ages were treated with different gamma doses. Adult longevity was also affected significantly when the pupal at different ages were treated with different gamma doses. 2 tabs

  7. Study of the effects of ionizing radiation on the biochemical and biological properties of garlic (Allium sativum)

    International Nuclear Information System (INIS)

    Garlic is used since sevral hundred years to deal with various health issues. During last decades sevral works was interested to specify these problems, in this work we studied the effects of the gamma irradiation on the physico-chemical and biological properties of Allium sativum. This study was undertaken on the bulb irradiated by implying amounts of differents irradiation from 140 to 260Gy. First we proceeded to analyse the effects of these irradiations on the composition of garlic such as : allicin, protein, reducing sugars, total sugars, triglycerides and polyphenols. Second we tested the effect of these extracts radiotreated on the cell multiplication and the enzymatic activity of salmonella Hadar. The obtained results showed that the irradiated garlic extracts, present a slight nonsignificant reduction in the allicine proteinn sugar reducers, triglyceride and polyphenols concentration. However, this reduction is significant during application of the amount 260Ky. In addition, a deterioration of the growth observed after treatment by different concentrations of aqueous irradiated garlic extract. This inhibition is dependent on the concentration of aqueous extract of garlic used and the used irradiation dose. These observations would be in favor that the irradiations induce a slight midification of physico-chemical properties and they affect the anbacterial activity against salmonella Hdar. (Author)

  8. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhongmin Wang

    Full Text Available To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR radiation and 60Co γ-ray high-dose-rate (HDR radiation on non-small cell lung cancer (NSCLC cells.A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM. The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.

  9. Potential health effects of space radiation

    Science.gov (United States)

    Yang, Chui-Hsu; Craise, Laurie M.

    1993-01-01

    Crewmembers on missions to the Moon or Mars will be exposed to radiation belts, galactic cosmic rays, and possibly solar particle events. The potential health hazards due to these space radiations must be considered carefully to ensure the success of space exploration. Because there is no human radioepidemiological data for acute and late effects of high-LET (Linear-Energy-Transfer) radiation, the biological risks of energetic charged particles have to be estimated from experimental results on animals and cultured cells. Experimental data obtained to date indicate that charged particle radiation can be much more effective than photons in causing chromosome aberrations, cell killing, mutation, and tumor induction. The relative biological effectiveness (RBE) varies with biological endpoints and depends on the LET of heavy ions. Most lesions induced by low-LET radiation can be repaired in mammalian cells. Energetic heavy ions, however, can produce large complex DNA damages, which may lead to large deletions and are irreparable. For high-LET radiation, therefore, there are less or no dose rate effects. Physical shielding may not be effective in minimizing the biological effects on energetic heavy ions, since fragments of the primary particles can be effective in causing biological effects. At present the uncertainty of biological effects of heavy particles is still very large. With further understanding of the biological effects of space radiation, the career doses can be kept at acceptable levels so that the space radiation environment need not be a barrier to the exploitation of the promise of space.

  10. Biological and Biochemical Studies on the Effect of Thermal and Gamma Radiation Treatment on the Almond Moth Ephestia cautella (Walker)

    International Nuclear Information System (INIS)

    This study deals with the effects of thermal treatment with 32, 20 and 10 degree C on various biological and biochemical aspects of 100 Gy gamma-irradiated Ephestia cautella among three successive generations P1, F1 and F2. The thermal treatment, gamma-irradiation and their combinations clearly affected the insect by decreasing their fecundity, fertility, pupation and adult emergence percentage, percentage of larvae surviving to adult hood and most likely mating percentage. The least value of fecundity was observed at 100 Gy+32 degree C which was 87.18% at the parental generation, while the least fertility observed was at 100 Gy+10 degree C at F1 generation which was 17.94%. The least value of larvae, surviving to adult hood, took place at 100 Gy+32 degree C at F1 generation which was 38.66%. Also, either treatment or its combinations obviously increased the corrected sterility percentage. At the treatment of 100 Gy+10 degree C, the larvae and pupae developmental periods were markedly strengthened; they were 20.82 and 8.98 day respectively at F2 generation. The biochemical studies revealed that either thermal treatment or gamma irradiation or both seem to have a clear effect on the protein pattern of adult males and their molecular weight. The highest molecular weight deduced at the treatment of 20 degree C at P1 and F1 generations, they were 256 and 164 K. Dalton respectively. Observed Cryo-protectants as glycerol and trehalose increased as a result of either treatment or its combination among F1 generation compared to their parents and also did the free fatty acids. Generally, 10 degree C was the most effective temperature used.

  11. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  12. Biological effectiveness of neutrons: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  13. Biological effectiveness of neutrons: Research needs

    International Nuclear Information System (INIS)

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy

  14. Quantum Effects in Biology

    Science.gov (United States)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  15. Effects of two IGRs and gamma radiation on some biological aspects of the mediterranean fruit fly, ceratitis capitata

    International Nuclear Information System (INIS)

    Eggs of the mediterranean fruit fly, ceratitis capitata (24 h. old) were dipped in solutions of 5 or 160 ppm of dimilin for 24 hours, the produced pupae were irradiated with 70 or 90 Gy gamma radiation. This dipping led to a decrease in the fertility and an increase in mating competitiveness of the produced males. However, when the LC50 of either dimilin or IKI was mixed with the larval medium on which eggs were planted, and the produced pupae were irradiated (70 or 90 Gy) neither adult emergence adult survival was affected. However, egg hatch ability was affected by radiation and insignificantly affected by using either chemical applied separately, and significantly decreased when applying radiation and either chemical in combination together. Male mating competitiveness was not significantly when radiation and either chemical was applied together. 5 tabs

  16. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem.

  17. Low-level radiation: biological interactions, risks, and benefits. A bibliography

    International Nuclear Information System (INIS)

    The bibliography contains 3294 references that were selected from the Department of Energy's data base (EDB). The subjects covered are lower-level radiation effects on man, environmental radiation, and other biological interactions of radiation that appear to be applicable to the low-level radiation problem

  18. Ultrashort relativistic electron bunches and spatio-temporal radiation biology

    Science.gov (United States)

    Gauduel, Y. A.; Faure, J.; Malka, V.

    2008-08-01

    The intensive developments of terawatt Ti:Sa lasers permit to extend laser-plasma interactions into the relativistic regime, providing very-short electron or proton bunches. Experimental researches developed at the interface of laser physics and radiation biology, using the combination of sub-picosecond electron beams in the energy range 2-15 MeV with femtosecond near-IR optical pulses might conjecture the real-time investigation of penetrating radiation effects. A perfect synchronization between the particle beam (pump) and optical beam at 820 nm (probe) allows subpicosecond time resolution. This emerging domain involves high-energy radiation femtochemistry (HERF) for which the early spatial energy deposition is decisive for the prediction of cellular and tissular radiation damages. With vacuum-focused intensities of 2.7 x 1019 W cm-2 and a high energy electron total charge of 2.5 nC, radiation events have been investigated in the temporal range 10-13 - 10-10s. The early radiation effects of secondary electron on biomolecular sensors may be investigated inside sub-micrometric ionisation, considering the radial direction of Gaussian electron bunches. It is shown that short range electron-biosensor interactions lower than 10 A take place in nascent track structures triggered by penetrating radiation bunches. The very high dose delivery 1013 Gy s-1 performed with laser plasma accelerator may challenge our understanding of nanodosimetry on the time scale of molecular target motions. High-quality ultrashort penetrating radiation beams open promising opportunities for the development of spatio-temporal radiation biology, a crucial domain of cancer therapy, and would favor novating applications in nanomedicine such as highly-selective shortrange pro-drug activation.

  19. Decontamination of biological ferment by gamma radiation

    International Nuclear Information System (INIS)

    Biological ferment is a product obtained from pure yeast (Saccharomyces cerevisiae) culture by a suitable technological process and employed to increase the size and porosity of the baker's products. Foods containing high microorganisms count indicate that Good Manufacturing Practices were not applied. The aim of this study was to observe the viability of Dry Biological Ferment after the radiation process using different doses of 60Co gamma rays and different storage times. Dry baker's yeast Saccharomyces cerevisiae samples were purchased from a local supermarket in Sao Paulo (Brazil) and irradiated at IPEN in a Gammacell source at 0.5, 1.0, 2.0 and 3.0 kGy doses (dose-rate of 3.51 kGy/h) at room temperature (25 deg C). The fluorescent method was performed to observe the viability of yeast cells. The viability decrease with the increase of the radiation dose, as shown: the amount of the viable cell found in the non-irradiated samples (control) at 0 day was 87.2%; 30 days 67.7%; 60 days 77.4% and 90 days 60.1%. With 1.0 kGy at 0 day was 61.4%; 30 days 22.7%; 60 days 56.9% and 90 days 24.2%. With 3.0 kGy at 0 day was 57.00%; at the next periods the most of the cells become not viable. (author)

  20. Decontamination of biological ferment by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sabundjian, Ingrid T.; Salum, Debora C.; Silva, Priscila V.; Furgeri, Camilo; Duarte, Renato; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br

    2007-07-01

    Biological ferment is a product obtained from pure yeast (Saccharomyces cerevisiae) culture by a suitable technological process and employed to increase the size and porosity of the baker's products. Foods containing high microorganisms count indicate that Good Manufacturing Practices were not applied. The aim of this study was to observe the viability of Dry Biological Ferment after the radiation process using different doses of {sup 60}Co gamma rays and different storage times. Dry baker's yeast Saccharomyces cerevisiae samples were purchased from a local supermarket in Sao Paulo (Brazil) and irradiated at IPEN in a Gammacell source at 0.5, 1.0, 2.0 and 3.0 kGy doses (dose-rate of 3.51 kGy/h) at room temperature (25 deg C). The fluorescent method was performed to observe the viability of yeast cells. The viability decrease with the increase of the radiation dose, as shown: the amount of the viable cell found in the non-irradiated samples (control) at 0 day was 87.2%; 30 days 67.7%; 60 days 77.4% and 90 days 60.1%. With 1.0 kGy at 0 day was 61.4%; 30 days 22.7%; 60 days 56.9% and 90 days 24.2%. With 3.0 kGy at 0 day was 57.00%; at the next periods the most of the cells become not viable. (author)

  1. Radiation chemistry of biologically compatible polymers

    International Nuclear Information System (INIS)

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the γ irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain

  2. Radiation chemistry of biologically compatible polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.J. T.; Pomery, P.J.; Saadat, G.; Whittaker, A.K. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the {gamma} irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain.

  3. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  4. Effect of Mospilan (Acetamiprid) and gamma radiation on some biological and biochemical aspects of the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Full text: Mospilan was applied at different concentrations in an attempt to assess its effect on C. capitata in combination with gamma radiation. Studies were carried on some biological and biochemical aspects. Larval diet, drinking water, experimental cages and pupation medium (sand) were treated with mospilan at different concentrations. Experimental cages were treated with mospilan in two ways, as a spray and/or as a powder. Pupae treated as larvae in the larval diet were irradiated with gamma radiation at 8-9 days of age with two doses (50 and 90 Gy). Biochemical studies were done in order to evaluate GOT, GPT and AchE (glutamic oxalo acetic transaminaze, glutamic pyrofic transaminaze and acetyl choline esterase). Biological studies revealed that a drastic decrease occurred with increasing concentration of mospilan to be zero at the highest concentration (32 ppm). Adult mortality reached 100% in the two genders with the concentrations of 500 and 1000 ppm in treating drinking water and in spraying the experimental cages, respectively. Mortality of adults in treating experimental cages with mospilan, as a powder, was also 100% for all doses applied (from 0.1 to 0.5 mg) with each of the two genders. Treating of pupation medium revealed that the increase in the concentration drastically decreased adult emergence, especially at the highest concentrations (600, 700, 800, 900 and 1000 ppm). The biochemical data revealed that pupae were generally less affected than adult males and females. Irradiation, especially with 50 Gy, inhibited GOT and GPT more than AchE. Mospilan treatment enhanced GOT and GPT activity but caused a decrease in that of AchE. The combination of mospilan and irradiation caused a further decreasing effect on AchE, but on the contrary GPT was more activated. (author)

  5. 电磁辐射对生物体损伤的研究进展*%Progress about biological damage effect of electromagnetic radiation

    Institute of Scientific and Technical Information of China (English)

    祝青鸾; 李俊堂; 高春芳

    2015-01-01

    The electromagnetic wave has been currently widely used in wireless communication, military, medicine, etc. The biological effects on human health have been arousing great concerns of people. Electromagnetic radiation can cause multi -system and multi -organ damage. In this paper , the damaged mechanism of electromagnetic radiation and its related effects on some important organs or systems such as brain , heart, blood and eyes were reviewed.%电磁波目前广泛应用于无线通信、军事、医疗等领域,与此同时,电磁辐射的生物效应和对健康的影响也愈来愈受人们的重视。电磁辐射可引起机体多系统、多脏器的损伤,本文就电磁辐射的损伤机制及其对大脑、心脏、眼睛和血液等重要器官系统影响的研究进展作一综述。

  6. Molecular effects of radiation

    International Nuclear Information System (INIS)

    The basis of radiobiology based on the effects of radiation in cells and tissues. Though the primary constituents of tissues are DNA and chromosomes, thus we need to know the effects of radiation in its molecular level before going for its effect in tissue level. The most abundant molecule inside the body is water molecule, and any type of radiation effect to water molecule might affect the whole body functionality. Brief knowledge about the effect of radiation in molecular level on the basis of hydrolysis of water; and radiation damage to DNA and chromosome will be helpful to understand the basics of radiobiology. (author)

  7. Radiation effects on pharmaceuticals and related materials

    International Nuclear Information System (INIS)

    Radiation sterilization is the method of choice for many medical supplies and devices. However, because of the ionizing nature of gamma radiation, one must consider the effect of such radiation on the physical and chemical properties and on the biological behaviour of pharmaceutical and related materials before the feasibility of radiation sterilization for such products is established. The results of such feasibility studies can lead to an appropriate decision on the suitability of radiation sterilization for a particular pharmaceutical. (author)

  8. Biological Effects after Prenatal Irradiation

    International Nuclear Information System (INIS)

    A Task Group of the International Commission on Radiological Protection (ICRP) has finished a report Biological Effects after Prenatal Irradiation (Embryo and Fetus) which has been approved by the Main Commission and Will be Published. Some new important scientific data shall be discussed in this contribution. During the preimplantation period lethality of the mammalian embryo is the dominating radiation effect. However, in mouse strains with genetic predispositions it has been shown that also malformations can be caused. This effect is genetically determined and its mechanisms is different from the induction of malformations during major organogenesis. Radiation exposures during this prenatal period leads ato an increase of genomic instability of cells in the normal appearing fetuses. These radiation effects can be transmitted to the next generation. A renewed analysis of individuals with severe mental retardation after exposures during the 8th to 15th week post conception in Hiroshima and Nagasaki gives evidence that a threshold dose exists for this effect around 300 mGy. This is supported by a number of experimental animal data which have been obtained from cellular and molecular investigations during the brain development. The data show the high radiosensitivity of the developing brain but also the various compensatory mechanisms and the enormous plasticity of these processes. The radiosensitivity varies strongly during the prenatal development. The highest sensitivity is found during the early and mid fetal period which is coinciding with weeks 8-15 post conception in humans. The lowest doses causing persistent damage are in the range of 100 to 300 mGy. For intelligence quotient scores a linear dose response model provides a satisfactory fit. From the experimental data it can be concluded that the fetal stage is most sensitive to the carcinogenic effect in comparison to the other prenatal stages. Such as clear situation cannot be obtained from the

  9. Final report of the group research. Genome analysis on the biological effects of radiation. Second research group of NIRS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    This report concerns investigations on the title conducted by 5 subgroups of National Institute of Radiological Sciences (NIRS) during the period of 1993-2001. The report involves the organization of research teams and summary reports from the subgroups for Genome sequencing and informatics, Genome analysis on model organisms, The genome analysis on the specific chromosomal region related to radiation-sensitivity, Molecular analysis on the structure and function of particular regions of human genome, and Generation and characterization of DNA repair-deficient model mice. Significant results are as follows: Sequencing of the radiation sensitivity gene ATM, finding of a novel cell cycle regulator gene NPAT and regulation of gene expression of ATM/NPAT; Findings that the cause of the variability related to instability of human genome is derived from particular repeat structures of 5 and 35 bases and of the instability mutation, from the mutation of EPILS (mRNA synthase gene); Program development for novel human genome finding in the DNA sequences and making novel human gene as a resource by polymerase chain reaction (PCR) technique; and generation of the highly UV-sensitive mouse model for human xeroderma pigmentosum G. Conclusion is that findings will contribute for better understanding of the genes functioning radiation sensitivity and also biodefense mechanism against radiation and other environmental stress. (N.I.)

  10. Final report of the group research. Genome analysis on the biological effects of radiation. Second research group of NIRS

    International Nuclear Information System (INIS)

    This report concerns investigations on the title conducted by 5 subgroups of National Institute of Radiological Sciences (NIRS) during the period of 1993-2001. The report involves the organization of research teams and summary reports from the subgroups for Genome sequencing and informatics, Genome analysis on model organisms, The genome analysis on the specific chromosomal region related to radiation-sensitivity, Molecular analysis on the structure and function of particular regions of human genome, and Generation and characterization of DNA repair-deficient model mice. Significant results are as follows: Sequencing of the radiation sensitivity gene ATM, finding of a novel cell cycle regulator gene NPAT and regulation of gene expression of ATM/NPAT; Findings that the cause of the variability related to instability of human genome is derived from particular repeat structures of 5 and 35 bases and of the instability mutation, from the mutation of EPILS (mRNA synthase gene); Program development for novel human genome finding in the DNA sequences and making novel human gene as a resource by polymerase chain reaction (PCR) technique; and generation of the highly UV-sensitive mouse model for human xeroderma pigmentosum G. Conclusion is that findings will contribute for better understanding of the genes functioning radiation sensitivity and also biodefense mechanism against radiation and other environmental stress. (N.I.)

  11. A Hypothesis on Biological Protection from Space Radiation Through the Use of Therapeutic Gases

    Science.gov (United States)

    Schoenfeld, Michael

    2011-01-01

    This slide presentation proposes a hypothesis to use therapeutic gases in space to enhance the biological protection for astronauts from space radiation. The fundamental role in how radiation causes biological damage appears to be radiolysis, the dissociation of water by radiation. A chain of events appears to cause molecular and biological transformations that ultimately manifest into medical diseases. The hypothesis of this work is that applying medical gases may increase resistance to radiation, by possessing the chemical properties that effectively improve the radical scavenging and enhance bond repair and to induce biological processes which enhance and support natural resistance and repair mechanisms.

  12. Protective Role of Carnitine against the Harmful Biological Effects of Paracetamol and Radiation Exposure in Male Albino Rats

    International Nuclear Information System (INIS)

    L-carnitine, a natural component of mammalian tissue, is a necessary factor in the utilization of long-chain fatty acids to produce energy. Furthermore it has been shown to protect cells from per oxidative stress. The objective of the present study was to evaluate the efficacy of L-carnitine on hepatotoxicity and nephrotoxicity induced by paracetamol, γ-radiation, and paracetamol + γ-radiation. Male albino rats were divided into 8 groups. 1-Control group: rats not subject to any treatment, 2-Carnitine group: rats received L-carnitine (0.5 ml/Kg body weight) via intraperitoneal injection during 21 days, 3-Paracetamol group: rats received paracetamol (50 mg/kg body) via intraperi-toneal injection during 21 days, 4- Carnitine + Paracetamol group: rats received L-carnitine in parallel to paracetamol treatment, 5- Radiation groups: rats were whole body gamma irradiated with 7 Gy, 6- Carnitine + Radiation group: rats received L-carnitine for 21 days before whole body gamma irradiation with 7Gy, 7- Paracetamol + Radiation group: rats received paracetamol during 21 days before whole body gamma irradiation, 8- Carnitine + Paracetamol + Radiation group: rats received L-carnitine parallel to paracetamol during 21 days before whole body gamma irradiation.The results demonstrated that rats receiving paracetamol, as well as whole body gamma irradiated rats and rats receiving paracetamol and irradiated showed a significant increase of alanine amino transferase (ALT), aspartate amino transferase (AST), and alkaline phosphatase (ALP) activities, and a significant decrease of gamma-glutamyl transpeptidase (GGT) activity indicating liver injury. A significant increase of urea, creatinine and uric acid levels was recorded also indicating kidney damage. Alteration in liver and kidney functions was accompanied by a significant increase in the content of thiobarbituric acid reactive substances (TBARS) associated with a significant decrease in glutathione (GSH) content and superoxide

  13. Biological effects of neutrons

    International Nuclear Information System (INIS)

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  14. Radiation protection and health effects

    International Nuclear Information System (INIS)

    The use of ionizing radiation in nuclear medicine carries with it a responsibility to both patient and personnel to maximize the diagnostic and therapeutic benefit while minimizing the potential for any adverse health effects. Shortly after the discovery of the x-ray in 1895 the potential for acute health hazards of ionizing radiation became apparent. However, the risks of ionizing radiation were poorly understood and many early users did not believe that anyone could be hurt by something that could not be detected by any of the human senses. Many experiments on the biologic effects of ionizing radiation began in the early 1900s, and the first radiation protection standards were proposed by the British Roentgen Society in 1915. We now realize that these pioneers had a very limited knowledge of the potential hazards and radiation protection principles. Today more scientific data are available on the health effects of, detection of, and protection from ionizing radiation than any other physical agent or chemical known. In addition, use of many forms of ionizing radiation is heavily regulated at both national and state levels. This paper discusses how maternal contamination with radionuclides may cause irradiation of the fetus even if the radionuclide is not transferred across the placenta. This is mostly true for radionuclides that decay yielding relatively penetrating radiations

  15. Space radiation effects

    International Nuclear Information System (INIS)

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  16. Radiation effects in space

    International Nuclear Information System (INIS)

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  17. Effects of radiation therapy for Hodgkin's disease in a child with ataxia telangiectasia: a clinical, biological and pathologic study

    International Nuclear Information System (INIS)

    Stage I lymphocyte-predominant Hodgkin's disease was diagnosed in a 44-month-old girl. Although immune deficiency was suspected and IgA deficiency demonstrated, the diagnosis of an ataxia-telangiectasia (AT)-like syndrome was not confirmed until eight weeks later when results of studies on the radiosensitivity of cultured skin fibroblasts were available. The child had none of the usual physical stigmata of AT. Severe acute radiation damage followed the treatment of this child with standard doses of radiation therapy. Clinical, pathologic, and radiobiologic correlations are drawn. The diagnosis of a malignant lymphoma disorder in children under the age of five should alert clinicians to the possibility of immune deficiency and, even in the absence of classical physical signs, to AT in particular. Suggestions for the management of future similar cases are put forward

  18. Effects of gamma radiation on the biological, physico-chemical, nutritional and antioxidant parameters of chestnuts - a review

    OpenAIRE

    Antonio, Amilcar L.; Carocho, Márcio; Bento, Albino; Quintana, Begoña; Botelho, M. Luísa; Ferreira, Isabel C. F. R.

    2012-01-01

    Gamma radiation has been used as a post-harvest food preservation process for many years. Chestnuts are a seasonal product consumed fresh or processed, and gamma irradiation emerged recently as a possible alternative technology for their post-harvest processing, to fulfil the requirements of international phytosanitary trade laws. After harvest and storage, several problems may occur, such as the presence of infestations and development of microorganisms, namely rotting and fungi. These dimin...

  19. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  20. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  1. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ``biological fingerprint`` of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  2. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  3. Future radiation effects

    International Nuclear Information System (INIS)

    A review is given of the units used in radiation protection. The radiation hazards incurred by human populations can be divided into early and late somatic radiation effects and genetic radiation effects. Examples and motivations of risk analysis estimates are given. For genetic radiation effects, the siginificance dose and the doubling dose are defined. The minimum permissible dose for different human populations are compared with the doses received from natural radioactivity with medical applications. The risk caused by nuclear reactors and fall-out and its consequences are given for the year 1972 and estimated for the year 2000

  4. The impact of biology on risk assessment -- Workshop of the National Research Council`s board on radiation effects research. Meeting report

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M. [Oak Ridge National Lab., TN (United States); Grosovsky, A. [Univ. of California, Riverside, CA (United States); Hanawalt, P.C. [Stanford Univ., CA (United States). Dept. of Biological Sciences; Jostes, R.F. [National Academy of Sciences, Washington, DC (United States). Board on Radiation Effects Research; Little, J.B. [Harvard School of Public Health, Boston, MA (United States). Dept. of Cancer Biology; Morgan, W.F. [Univ. of California, San Francisco, CA (United States). Dept. of Radiation Oncology; Oleinick, N.L. [Case Western Reserve Univ., Cleveland, OH (United States); Ullrich, R.L. [Univ. of Texas Medical Branch, Galveston, TX (United States). Dept. of Radiation Therapy

    1997-12-31

    The linear, nonthreshold extrapolation from a dose-response relationship for ionizing radiation derived at higher doses to doses for which regulatory standards are proposed is being challenged by some scientists and defended by others. It appears that the risks associated with exposures to doses of interest are below the risks that can be measured with epidemiologic studies. Therefore, many have looked to biology to provide information relevant to risk assessment. The workshop reported here, ``The Impact of biology on Risk Assessment,`` was planned to address the need for further information by bringing together scientists who have been working in key fields of biology and others who have been contemplating the issues associated specifically with this question. The goals of the workshop were to summarize and review the status of the relevant biology, to determine how the reported biologic data might influence risk assessment, and to identify subjects on which more data is needed.

  5. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  6. The biological bases of radiation protection

    International Nuclear Information System (INIS)

    Radiation protection is based on a large number of human data collected during the past 80 years. For dose levels of a few hundred rads, risks can be evaluated very accurately. Yet it is difficult to derive from them the risks due to low doses because of the uncertainty on the dose-effect relationship. In the practice, pessimistic assumptions are used, which involves an over-estimation of risks. However, even in these unfavorable conditions, risks associated to occupational activities implying radiation exposure seem to be less important than in most industries. Radiation protection has played a historical and essential part in the quantitative assessment of risks and opened a new era of occupational medicine and environmental health investigations. Many substances, such as radiations, are mutagenic and/or carcinogenic at very low doses, and in many cases human exposure cannot be avoided. Therefore, a policy advocating refusal of any risk whatsoever and absolute safety will lure with unattainable and misleading prospects. The only method is to assess the quantitative importance of the various risks in order to decide how far a damage may be tolerable in the various cases when exposure cannot be avoided

  7. European low-dose radiation risk research strategy: future of research on biological effects at low doses

    International Nuclear Information System (INIS)

    In 2009, the European High Level and Expert Group identified key policy and scientific questions to be addressed through a strategic research agenda for low-dose radiation risk. This initiated the establishment of a European Research Platform, called MELODI (Multidisciplinary European Low Dose Research Initiative). In 2010, the DoReMi Network of Excellence was launched in the Euratom 7. Framework Programme. DoReMi has acted as an operational tool for the sustained development of the MELODI platform during its early years. A long-term Strategic Research Agenda for European low-dose radiation risk research has been developed by MELODI. Strategic planning of DoReMi research activities is carried out in close collaboration with MELODI. The research priorities for DoReMi are designed to focus on objectives that are achievable within the 6-y lifetime of the project and that are in areas where stimulus and support can help progress towards the longer-term strategic objectives. (authors)

  8. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  9. The biological effects of low doses of ionizing radiation: Chernobyl nuclear accident and spreading of hemoblastoses in Moldova

    International Nuclear Information System (INIS)

    The study of morbidity by hematologic neoplasms before and after the Chernobyl Nuclear Accident in regions of Moldova differently affected by radiation and some immuno- metabolic disturbances in people from these regions was the object of the present work. An increase of standardized (world) incidence of hemoblastoses during the 10 years after the Accident, especially in children under 10 years old and in persons over 60 years old, was registered. A decrease of immunologic indices and the alterations of the amino acids content in blood serum and erythrocytes of healthy persons from the regions with higher radioactive impact after the Accident were established as well. A possible correlation between mentioned modifications are discussed. (author)

  10. Effects of radiation on erythropoiesis

    International Nuclear Information System (INIS)

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD50/30 dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays

  11. Advances in radiation biology: Radiosensitization in DNA and living cells

    Science.gov (United States)

    Lacombe, S.; Sech, C. Le

    2009-06-01

    One fundamental goal of radiation biology is the evolution of concepts and methods for the elaboration of new approaches and protocols for the treatment of cancers. In this context, the use of fast ions as ionizing particles offers the advantage of optimizing cell killing inside the tumor whilst preserving the surrounding healthy tissues. One extremely promising strategy investigated recently is the addition of radiosensitizers in the targeted tissue. The optimization of radiotherapy with fast ions implies a multidisciplinary approach to ionizing radiation effects on complex living systems, ranging from studies on single molecules to investigations of entire organisms. In this article we review recent studies on ion induced damages in simple and complex biological systems, from DNA to living cells. The specific aspect of radiosensitization induced by metallic atoms is described. As a fundamental result, the addition of sensitizing compounds with ion irradiation may improve therapeutic index in cancer therapy. In conclusion, new perspectives are proposed based on the experience and contribution of different communities including Surface Sciences, to improve the development of radiation biology.

  12. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Progress report, October 15, 1978-October 14, 1981

    International Nuclear Information System (INIS)

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S020 /sub w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA11), or more accurately, the zero shear rate reduced recoil (GAMMA11 /sub r,O/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A/sub DNA/D37 of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule

  13. Effects of radiation

    International Nuclear Information System (INIS)

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  14. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  15. Radiation carcinogenesis: Epidemiology and biological significance

    International Nuclear Information System (INIS)

    Epidemiologic studies of populations exposed to radiation have led to the identification of a preventable cause of cancer, but in the long run perhaps the most important contribution of radiation studies will be to provide insights into the basic processes of human carcinogenesis. In this volume, key investigators of major epidemiologic projects summarize their observations to date, including information to help assess the effects of low-level exposures. Experimentalists and theorists emphasize the relevance of laboratory and epidemiologic data in elucidating carcinogenic risks and mechanisms in man. This volume was prepared with several objectives in mind: (a) organize and synthesize knowledge on radiation carcinogenesis through epidemiologic and experimental approaches; (b) illustrate and explore ways of utilizing this information to gain insights into the fundamental mechanisms of cancer development; (c) stimulate the formation of hypotheses suited to experimental or epidemiologic testing, theoretical modeling, and multidisciplinary approaches; and (d) identify recent advances that clarify dose-response relationships and the influence of low-dose exposures, provide leads to carcinogenic mechanisms and host-environmental interactions, and suggest strategies for future research and preventive action

  16. Effect of Gamma Radiation on some Biological Performance of Cucurbit Fruit Fly Dacus ciliatus(Loew)(Diptera:Tephritidae)

    International Nuclear Information System (INIS)

    The effect of gamma rays on males and females cucurbit fruit fly Dacus ciliatus (Loew) exposed as pupae at age of 5 days was investigated. The results revealed that the dose of 75 and 90 Gray caused complete sterility in females and males, respectively.Furthermore,the result of this study showed the exposing females and males as pupae to dose of 45 Gray or higher and mated either to gather or to unirradiated sex caused reduction in their production of the eggs and its percent of hatch. Finally results showed that all dosed of gamma rays had no effect on sex ratio of produced adults. (author)

  17. Radiation effects in space

    International Nuclear Information System (INIS)

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  18. 电磁辐射的细胞生物学效应研究进展%Progress in biological effects on the cellular level of electromagnetic radiation

    Institute of Scientific and Technical Information of China (English)

    丁真; 李劲涛; 吴水才; 曾毅

    2015-01-01

    With the rapid development of communication industry, the man⁃made electromagnetic pollution which was mainly caused by convenient electronic appliances has been a worldwide concern� Studies indicated that electromagnetic radiation ( EMR) could be harmful to human health, by affecting the nervous system, immune system, genital system and cardiocerebral vascular system� However, the cellular and molecular mechanisms were still unclear� The EMR impacts on cell viability, apoptosis, cell membrane function, cell receptor, cell signal transduction and genetic expression were illustrated and discussed here� The biological effects on the cellular level caused by EMR were summarized to provide evidences for further study on biological mechanism of EMR.%随着工业、信息行业的飞速发展,各种电子产品在给人类日常生活带来巨大便利的同时,产生的电磁污染也引起了人们的广泛关注。已有大量研究表明电磁辐射能从神经系统、免疫系统、生殖系统以及心脑血管系统等各个方面对人体产生不良影响,但具体微观作用机制还不能确定。本文综述了电磁辐射对细胞增殖、凋亡、细胞膜、受体分子、跨膜信号转导以及基因表达等方面的影响,详细介绍了细胞水平上电磁辐射的生物学效应,以期进一步对电磁辐射生物效应机制进行详细深入的研究。

  19. Radiation Biology: A Handbook for Teachers and Students

    International Nuclear Information System (INIS)

    Knowledge of the radiobiology of normal tissues and tumours is a core prerequisite for the practice of radiation oncology. As such the study of radiobiology is mandatory for gaining qualification as a radiation oncologist in most countries. Teaching is done partly by qualified radiobiologists in some countries, and this is supplemented by teaching from knowledgeable radiation oncologists. In low and middle income (LMI) countries the teachers are often radiation oncologists and/or medical physicists. In Europe, a master's course on radiobiology is taught jointly by a consortium of five European Universities. This is aimed at young scientists from both Western and Eastern Europe, training in this discipline. Recently the European Society for Therapeutic Radiology and Oncology (ESTRO) initiated the launch of a radiobiology teaching course outside Europe (Beijing, 2007; Shanghai, 2009). Radiation protection activities are governed by many regulations and recommendations. These are based on knowledge gained from epidemiological studies of health effects from low as well as from high dose radiation exposures. Organizations like the International Commission on Radiological Protection (ICRP) have put a lot of effort into reviewing and evaluating the biological basis to radiological protection practices. Personnel being trained as future radiation protection personnel should have a basic understanding of the biological and clinical basis to the exposure limitations that they are subject to and that they implement for industrial workers and the public at large. It is for these reasons that aspects of Radiobiology related to protection issues are included in this teaching syllabus. In LMI countries, many more teachers are needed in radiobiology, and the establishment of regional training centres or special regional training courses in radiobiology, are really the only options to solve the obvious deficit in knowledge of radiobiology in such countries. Radiobiology teaching

  20. Radiation-induced cardiovascular effects

    Science.gov (United States)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  1. Biological dosimetry of ionizing radiation in the high dose range

    International Nuclear Information System (INIS)

    The report reviews briefly methods of dose evaluation after exposure to high doses of ionizing radiation. Validation of two methods also is described: micronucleus (Mn) frequency estimation according Muller and Rode and premature chromosome condensation (PCC) combined with painting of 3 pairs of chromosomes in human lymphocytes. According to Muller and Rode, micronucleus frequency per binucleated cells with at least one Mn linearly increases with dose up to 15 Gy and is suitable end-point for biological dosimetry. These authors, however, examined cells from only one donor. The data reported below were obtained for 5 donors; they point to a considerable individual variation of thus measured response to irradiation. Due to the high degree of inter-donor variability, there is no possibility to apply this approach in biological dosimetry in the dose range 5 - 20 Gy gamma 60Co radiation. A linear response up to 10 Gy was observed only in the case of certain donors. In contrast, determination of the dose-effect relationship with the PCC method gave good results (small inter-individual variation, no plateau effect up to dose 10 Gy), so that with a calibration curve it could be used for dose estimation after exposure to doses up to 10 Gy of X or gamma 60Co radiation. (author)

  2. Study on the biological effect of radiation-degraded alginate and chitosan on plant in tissue culture

    International Nuclear Information System (INIS)

    The solution of chitosan (10%) and alginate (4%) were irradiated at doses of 10-250 kGy for degradation and the products were used for testing of plant growth promotion effect. The chitosan and alginate irradiated at 100 kGy and 75 kGy, respectively showed the strongest growth-promotion effect for plants namely L. latifolium, E. grandiflorum and C. morifolium in tissue culture. For shoot multiplication, the suitable concentrations are found to be ca. 50-200 mg/l for C. morifolium, 70-100 mg/l for L. latifolium and 30-100 mg/l E. grandiflorum with irradiated chitosan, while with irradiated alginate, it was 30-200 mg/l, 30-50 mg/l and 10-200 mg/l, respectively. The optimum concentrations for C. morifolium, E. grandiflorum, L. latifolium incubated on rooting medium are ca. 100 mg/l, 30 mg/l and 40 mg/l, respectively for irradiated chitosan and 100 mg/l for irradiated alginate. After acclimatizing for 30 days in the greenhouse, the survival ratio of the transferred C. morifolium, E. grandiflorum, L. latifolium plantlets treated with irradiated chitosan was improved 18%, 39% and 13%, respectively. (author)

  3. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author)

  4. Radiation physics, biophysics and radiation biology. Progress report, October 1, 1982-November 1983

    International Nuclear Information System (INIS)

    A wide range of research is carried out at the Radiological Research Laboratory, from computer simulation of particle tracks to the determination of oncogenic transformation in mammalian cells. Mechanistic studies remain the central mission in an attempt to understand the biological action of ionizing radiations. Collaborative research is carried out on the use of radiosensitizers on chemosensitizers on the effect of hormones on oncogenic transformation and on cataractogenesis

  5. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs

  6. Biological effects of radiation accidents on humans. September 1970-February 1990 (a Bibliography from the NTIS data base). Report for September 1970-February 1990

    International Nuclear Information System (INIS)

    This bibliography contains citations concerning the impact of radiation accidents on humans. Radiation exposure assessment for determining appropriate medical treatment is discussed. The effects of ingesting food or inhaling air irradiated by accident fallout are considered. Follow-up studies of the survivors of specific nuclear accidents are included in an attempt to evaluate long and short term health effects of accidents. (This updated bibliography contains 224 citations, 62 of which are new entries to the previous edition.)

  7. Effect of ionizing radiations of lymphocyte membranes. Part of a coordinated programme on cell membrane probes as biological indicators in radiation accidents

    International Nuclear Information System (INIS)

    A study of the effects of low doses of irradiation on membrane receptors of lymphoid cells indicated that doses as low as 10 rads induced detectable changes in the antigen receptors of cell surfaces. Lymphoid cells from mice or rabbit lymph nodes, or circulating lymphocytes from human volunteers were irradiated and studied for their ability to bind antisera against the IgG membrane receptors. The isolated lymphoid cells were x-irradiated, and tested versus non-irradiated controls. They were incubated at 370C for different times, and IgG-positive cells stained by the direct or indirect immunofluorescence technique. The percentage of IgG-positive cells was reduced by low-dose irradiation, and proved dose -and temperature-dependent. The disappearance phenomenon depends on the microtubular structure, metabolic energy, and levels of C-AMP. Only the reappearance phase is temperature-dependent and not affected by the drugs tested. The phenomenon is dose-rate dependent, showing greater sensitivity at lower dose/rates. Experiments using anti-Fc and anti-Fab portions of the surface molecule, appear to confirm a partial internatlization of the surface molecule as cause (at least in rabbit cells). Similar experiments with human cells did not show a differential effect. Human T-cells and FC receptors of Mast cells did, however, indicate that these surface molecules are also modified by irradiation

  8. Abstracts of the 28. annual meeting of the Austrian Radiation Oncology, Radiation Biology and Medical Radiation Physics Society (OeGRO 2011)

    International Nuclear Information System (INIS)

    The second part of the volume includes the abstracts of the 28th annual meeting of the Austrian Radiation Oncology, Radiation Biology and Medical Radiation Physics Society (OeGRO 2011), covering the following topics: extracranial stereotactic radiotherapy; brachytherapy, hyperthermia; radiotherapy side effects; psycho-oncology in radiotherapy; head-neck carcinomas; radiation source implants for carcinoma irradiation; MRI-supported adaptive radiotherapy; CT-guided radiotherapy; mammary carcinomas; prostate carcinomas; magnetic nanoparticles for future medical applications.

  9. Nuclear energy: biological effects and environmental impact

    International Nuclear Information System (INIS)

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed

  10. THz waves: biological effects, industrial and medical

    International Nuclear Information System (INIS)

    Following the debates about body scanners installed in airports for passengers security control, the non-ionizing radiations (NIR) section of the French radiation protection society (SFR) has organized a conference day to take stock of the present day knowledge about the physical aspects and the biological effects of this frequency range as well as about their medical, and industrial applications (both civil and military). This document gathers the slides of the available presentations: 1 - introduction and general considerations about THz waves, the THz physical phenomenon among NIR (J.L. Coutaz); 2 - interaction of millimeter waves with living material: from dosimetry to biological impacts (Y. Le Drean and M. Zhadobov); 3 - Tera-Hertz: standards and recommendations (B. Veyret); 4 - THz spectro-imaging technique: status and perspectives (P. Mounaix); 5 - THz technology: seeing the invisible? (J.P. Caumes); 6 - Tera-Hertz: biological and medical applications (G. Gallot); 7 - Biological applications of THz radiation: a review of events and a glance to the future (G.P. Gallerano); 8 - Industrial and military applications - liquids and solids detection in the THz domain (F. Garet); 9 - THz radiation and its civil and military applications - gas detection and quantifying (G. Mouret); 10 - Body scanners and civil aviation security (J.C. Guilpin, presentation not available). (J.S.)

  11. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    International Nuclear Information System (INIS)

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD5) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a comparable

  12. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)

  13. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48V and 62Zn. (author)

  14. Vanguards of paradigm shift in radiation biology. Radiation-induced adaptive and bystander responses

    International Nuclear Information System (INIS)

    The risks of exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to high dose radiation, using a linear no-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. In other words, there are accumulated findings which cannot be explained by the classical ''target theory'' of radiation biology. The radioadaptive response, radiation-induced bystander effects, low-dose radio-hypersensitivity, and genomic instability are specifically observed in response to low dose/low dose-rate radiation, and the mechanisms underlying these responses often involve biochemical/molecular signals that respond to targeted and non-targeted events. Recently, correlations between the radioadaptive and bystander responses have been increasingly reported. The present review focuses on the latter two phenomena by summarizing observations supporting their existence, and discussing the linkage between them from the aspect of production of reactive oxygen and nitrogen species. (author)

  15. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  16. Nuclear radiation and its effect on man

    International Nuclear Information System (INIS)

    A brief presentation is made of the biological effects on man of nuclear radiation. The sources of such radiation, natural and artificial, are summarised. The philosophy on which the maximum permissible doses to various groups and to the population are based is briefly described. Tables are given illustrating the various aspects discussed. (JIW)

  17. AINSE conference on radiation biology and chemistry. Conference handbook

    International Nuclear Information System (INIS)

    The conference handbook contains 60 oral and poster presentations dealing with recent advances in radiation chemistry applied to biological studies, radiopharmaceuticals, radiosensitizers as well as to solid state chemical physics

  18. AINSE conference on radiation biology and chemistry. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference handbook contains 60 oral and poster presentations dealing with recent advances in radiation chemistry applied to biological studies, radiopharmaceuticals, radiosensitizers as well as to solid state chemical physics.

  19. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  20. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Tomohiko, E-mail: matsutomo_llp@yahoo.co.jp [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan); Kogo, Kasei [Kumamoto Radiosurgery Clinic, Kumamoto (Japan); Oya, Natsuo [Department of Radiation Oncology, Kumamoto University, Kumamoto (Japan)

    2013-03-15

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy{sub 10}. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients.

  1. Increased Biological Effective Dose of Radiation Correlates with Prolonged Survival of Patients with Limited-Stage Small Cell Lung Cancer: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Lucheng Zhu

    Full Text Available Thoracic radiotherapy (TRT is a critical component of the treatment of limited-stage small cell lung cancer (LS-SCLC. However, the optimal radiation dose/fractionation remains elusive. This study reviewed current evidence and explored the dose-response relationship in patients with LS-SCLC who were treated with radiochemotherapy.A quantitative analysis was performed through a systematic search of PubMed, Web of Science, and the Cochrane Library. The correlations between the biological effective dose (BED and median overall survival (mOS, median progression-free survival (mPFS, 1-, 3-, and 5-year overall survival (OS as well as local relapse (LR were evaluated.In all, 2389 patients in 19 trials were included in this study. Among these 19 trials, seven were conducted in Europe, eight were conducted in Asia and four were conducted in the United States. The 19 trials that were included consisted of 29 arms with 24 concurrent and 5 sequential TRT arms. For all included studies, the results showed that a higher BED prolonged the mOS (R2 = 0.198, p<0.001 and the mPFS (R2 = 0.045, p<0.001. The results also showed that increased BED improved the 1-, 3-, and 5-year OS. A 10-Gy increment added a 6.3%, a 5.1% and a 3.7% benefit for the 1-, 3-, and 5-year OS, respectively. Additionally, BED was negatively correlated with LR (R2 = 0.09, p<0.001. A subgroup analysis of concurrent TRT showed that a high BED prolonged the mOS (p<0.001 and the mPFS (p<0.001, improved the 1-, 3-, and 5-year OS (p<0.001 and decreased the rate of LR (p<0.001.This study showed that an increased BED was associated with improved OS, PFS and decreased LR in patients with LS-SCLC who were treated with combined chemoradiotherapy, which indicates that the strategy of radiation dose escalation over a limited time frame is worth exploring in a prospective clinical trial.

  2. Clinical Outcomes of Biological Effective Dose-Based Fractionated Stereotactic Radiation Therapy for Metastatic Brain Tumors From Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy and toxicity of fractionated stereotactic radiation therapy (FSRT) based on biological effective dose (BED), a novel approach to deliver a fixed BED irrespective of dose fractionation, for brain metastases from non-small cell lung cancer (NSCLC). Methods and Materials: Between March 2005 and March 2009 we treated 299 patients with 1 to 5 lesions from NSCLC (573 total brain metastases) with FSRT using Novalis. The dose fractionation schedules were individually determined to deliver a peripheral BED10 (α/β ratio = 10) of approximately 80 Gy10. The median number of fractions was 3 (range, 2-10), the median peripheral BED10 was 83.2 Gy (range, 19.1-89.6 Gy). Patients were followed up with magnetic resonance imaging (MRI) studies performed at 1- to 2-month intervals. The local tumor control rate and overall local progression-free and intracranial relapse-free survival were calculated by the Kaplan-Meier method. Results: Local control rates for all 573 lesions at 6 and 12 months were 96.3% and 94.5%, respectively. By multivariate analysis the tumor diameter was the only factor predictive of the local control rate (P=.001). The median overall survival, local progression-free survival, and intracranial relapse-free survival were 17.1, 14.9, and 4.4 months, respectively. The overall survival, local progression-free survival, and intracranial relapse-free survival rates at 6 and 12 months were 78.5% and 63.3%, 74.3% and 57.8%, and 41.0% and 21.8%, respectively. Six patients (2%) manifested progressive radiation injury to the brain even during therapy with corticosteroids; they underwent hyperbaric oxygen therapy, and follow-up MRI showed improvement. Conclusions: This study showed that BED-based FSRT for brain metastases from NSCLC is a promising strategy that may yield excellent outcomes with acceptable toxicity. Criteria must be established to determine the optimal dose fractionation for individual patients

  3. Towards Space Exploration of Moon, Mars Neos: Radiation Biological Basis

    Science.gov (United States)

    Hellweg, Christine; Baumstark-Khan, Christa; Berger, Thomas; Reitz, Guenther

    2016-07-01

    Radiation has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. Astronauts are constantly exposed to galactic cosmic radiation (GCR) of various energies with a low dose rate. Primarily late tissue sequels like genetic alterations, cancer and non-cancer effects, i.e. cataracts and degenerative diseases of e.g. the central nervous system or the cardiovascular system, are the potential risks. Cataracts were observed to occur earlier and more often in astronauts exposed to higher proportions of galactic ions (Cucinotta et al., 2001). Predictions of cancer risk and acceptable radiation exposure in space are subject to many uncertainties including the relative biological effectiveness (RBE) of space radiation especially heavy ions, dose-rate effects and possible interaction with microgravity and other spaceflight environmental factors. The initial cellular response to radiation exposure paves the way to late sequelae and starts with damage to the DNA which complexity depends on the linear energy transfer (LET) of the radiation. Repair of such complex DNA damage is more challenging and requires more time than the repair of simple DNA double strand breaks (DSB) which can be visualized by immunofluorescence staining of the phosphorylated histone 2AX (γH2AX) and might explain the observed prolonged cell cycle arrests induced by high-LET in comparison to low-LET irradiation. Unrepaired or mis-repaired DNA DSB are proposed to be responsible for cell death, mutations, chromosomal aberrations and oncogenic cell transformation. Cell killing and mutation induction are most efficient in an LET range of 90-200 keV/µm. Also the activation of transcription factors such as Nuclear Factor κB (NF-κB) and gene expression shaping the cellular radiation response depend on the LET with a peak RBE between 90 and 300 keV/µm. Such LET-RBE relationships were observed for cataract and cancer induction by heavy ions in laboratory animals

  4. Current research in Radiation Biology and Biochemistry Division

    International Nuclear Information System (INIS)

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented

  5. Predicting the effect of ionising radiation on biological populations: testing of a non-linear Leslie model applied to a small mammal population

    International Nuclear Information System (INIS)

    The present work describes the application of a non-linear Leslie model for predicting the effects of ionising radiation on wild populations. The model assumes that, for protracted chronic irradiation, the effect-dose relationship is linear. In particular, the effects of radiation are modelled by relating the increase in the mortality rates of the individuals to the dose rates through a proportionality factor C. The model was tested using independent data and information from a series of experiments that were aimed at assessing the response to radiation of wild populations of meadow voles and whose results were described in the international literature. The comparison of the model results with the data selected from the above mentioned experiments showed that the model overestimated the detrimental effects of radiation on the size of irradiated populations when the values of C were within the range derived from the median lethal dose (L50) for small mammals. The described non-linear model suggests that the non-expressed biotic potential of the species whose growth is limited by processes of environmental resistance, such as the competition among the individuals of the same or of different species for the exploitation of the available resources, can be a factor that determines a more effective response of population to the radiation effects. -- Highlights: • A model to assess the radiation effects on wild population is described. • The model is based on non-linear Leslie matrix. • The model is applied to small mammals living in an irradiated meadow. • Model output is conservative if effect-dose factor estimated from L50 is used. • Systemic response to stress of populations in competitive conditions may be more effective

  6. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  7. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  8. Physical and biological characterization of a seawater ultraviolet radiation sterilizer

    International Nuclear Information System (INIS)

    The physical and biological characterization of a seawater ultraviolet (UV) sterilizer is described. The physical characterization was performed using radiochromic dye films by evaluating the uniformity of the radiant exposure along each lamp, the effect of the radiation from one lamp on the array of adjacent lamps, and by measuring the UV radiation absorption of seawater with respect to distilled water. The biological characterization was performed by measuring the amount of reduction of bacteria in stored seawater after different filtration and UV treatments. Among the filtration methods tested, differential filtration (5, 3 and 0.45 μm filters connected in series) caused the highest bacterial reduction factor of 60%. UV radiant exposures of 212, 424, 636 and 848 J m-2 yielded bacteria reduction factors of 99.86, 99.969, 99.997 and 100%, respectively, for populations of Vibrio and Pseudomonas bacteria present in stored seawater. It is concluded that the system is useful for water disinfection when 1, 2 or 3 lamps are on; when 4 lamps are used the treated water becomes sterile. (author)

  9. Radiation biology: Major advances and perspectives for radiotherapy; Biologie des radiations: avancees majeures et perspectives pour la radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, A. [Societe Magelis, lotissement Bel-Air, 6, rue Frederic-Mistral, 84160 Cadenet (France); Vogin, G.; Granzotto, A. [CR-U1052, centre de recherche en cancerologie de Lyon, Inserm, batiment Cheney A, 28, rue Laennec, 69008 Lyon (France); Centre d' hadrontherapie etoile, 60, avenue Rockfeller, 69008 Lyon (France); Devic, C.; Viau, M.; Thomas, C.; Foray, N. [CR-U1052, centre de recherche en cancerologie de Lyon, Inserm, batiment Cheney A, 28, rue Laennec, 69008 Lyon (France); Maalouf, M. [CR-U1052, centre de recherche en cancerologie de Lyon, Inserm, batiment Cheney A, 28, rue Laennec, 69008 Lyon (France); Centre national d' etudes spatiales, 2, place Maurice-Quentin, 75039 Paris cedex 01 (France); Colin, C. [EA3738, faculte de medecine Lyon-Sud, 69921 Oullins (France); Service de radiologie, centre hospitalo-universitaire Lyon-Sud, chemin du Grand-Revoyet, 69495 Pierre-Benite (France)

    2011-08-15

    At the beginning of the 21. century, radiation biology is at a major turning point in its history. It must meet the expectations of the radiation oncologists, radiologists and the general public, but its purpose remains the same: to understand the molecular, cellular and tissue levels of lethal and carcinogenic effects of ionizing radiation in order to better protect healthy tissues and to develop treatments more effective against tumours. Four major aspects of radiobiology that marked this decade will be discussed: technological developments, the importance of signalling and repair of radiation-induced deoxyribonucleic acid (DNA) damage, the impact of individual factor in the response to radiation and the contribution of radiobiology to better choose innovative therapies such as proton-therapy or stereotactic body radiation therapy (SBRT). A translational radiobiology should emerge with the help of radiotherapists and radiation physicists and by facilitating access to the new radio and/or chemotherapy modalities. (authors)

  10. Biological effects of radium

    International Nuclear Information System (INIS)

    It is evident from a survey of the current literature that a problem exists in finding the correlation between the exposure of the human body to radiation, with the subsequent development of diseases, particularly for certain types of cancer. A brief history of the early experiences of radium incorporation into humans is given followed by data collected on some important polulation groups exposed to radium body burden, such as miners in rare metal and uranium mines, dial painters and some groups of patients. The medical and technical applications of radium are discussed. A summary is also given of the natural occurence of radium and the amounts in which it is present in the environment. Incorporation, retention and excretion pathways are outlined. In order to study the metabolism and the induction of diseases by radium several animal studies have been performed. The ICRP regards radium-226 as the best known and most studied radionuclide. It can thus serve as a guideline for setting limits for other radionuclides, e.g. plutonium. The valid limiting value for radium-226 of 0.1 μCi for whole body exposure is generally accepted and regarded as sufficiently safe. Finally, transfer factors have been collected as fas as they were available in the literature. (orig./MG)

  11. Low Level Laser Therapy: laser radiation absorption in biological tissues

    Science.gov (United States)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  12. A Mathematical Model for Estimating Biological Damage Caused by Radiation

    CERN Document Server

    Manabe, Yuichiro; Bando, Masako

    2012-01-01

    We propose a mathematical model for estimating biological damage caused by low-dose irradiation. We understand that the Linear Non Threshold (LNT) hypothesis is realized only in the case of no recovery effects. In order to treat the realistic living objects, our model takes into account various types of recovery as well as proliferation mechanism, which may change the resultant damage, especially for the case of lower dose rate irradiation. It turns out that the lower the radiation dose rate, the safer the irradiated system of living object (which is called symbolically "tissue" hereafter) can have chances to survive, which can reproduce the so-called dose and dose-rate effectiveness factor (DDREF).

  13. A Mathematical Model for Estimating Biological Damage Caused by Radiation

    Science.gov (United States)

    Manabe, Yuichiro; Ichikawa, Kento; Bando, Masako

    2012-10-01

    We propose a mathematical model for estimating biological damage caused by low-dose irradiation. We understand that the linear non threshold (LNT) hypothesis is realized only in the case of no recovery effects. In order to treat the realistic living objects, our model takes into account various types of recovery as well as proliferation mechanism, which may change the resultant damage, especially for the case of lower dose rate irradiation. It turns out that the lower the radiation dose rate, the safer the irradiated system of living object (which is called symbolically ``tissue'' hereafter) can have chances to survive, which can reproduce the so-called dose and dose-rate effectiveness factor (DDREF).

  14. Biological monitoring of radiation using indicators

    International Nuclear Information System (INIS)

    KAERI and INP(Poland) have been carried out parallel study and joint experiments on the major topics according to MOU about their cooperative project. The experimental materials were T-4430 clones. Main results of the cooperative project were made on response of TSH mutation to low LET radiation, response of TSH mutation to neutrons, response of TSH to mixed irradiation with different radiations and synergism between radiation and environmental factors such as photo period and diurnal temperature difference. Both institutes have established wide variety of research techniques applicable to tradescantia study through the cooperation. These result of research can make the role of fundamental basis for the better relationship between Korea and Poland. (author). 46 refs., 11 tabs., 31 figs

  15. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described

  16. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1994-05-01

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described.

  17. Applying radiation health effects data to radiation protection policies

    International Nuclear Information System (INIS)

    Data from the peer-reviewed scientific literature establish a sound basis to define a low-dose, low-dose-rate, dose-response. These data include human health dose-response studies; immunologically 'whole' animal studies; and cellular and molecular biological studies of complete biological systems for the relevant immunological and physiological responses. Initiatives are required to constructively apply these data to both radiation research and radiation protection policies. First, current low level radiation health effects research must apply existing data to define research projects to integrate and confirm existing dose-response data, with specific emphasis on the biological bases that exist in definitive and reproducible cellular and biological dose-response. Second, dose-response assessment must identify and incorporate all existing substantial and confirmed data, including natural radiation sources, to establish the bases for radiation protection policy for interventions to protect public health and safety. A preliminary assessment of these data is applied to: 1) Specify research that can be constructively applied to describe radiation health effects dose-response. 2) Apply health effects dose-response to radiation and radioactivity applications policies to maximize radiation health effects interventions for occupational applications, medical applications, and other radiation and radioactive materials applications controls to cost-effectively assure public health and safety. An assessment of the proposed revisions to ICRP radiation protection policies is provided that associates the basis for administrative limits with the previous proposal of the US NRC for a 'Below Regulatory Concern' (BRC) policy. This proposal ignores the context of the fact that very low levels of radiation exposure are far within the variations of natural radiation exposures, and therefore can have no gross net consequences. The equivalent failure of the BRC proposal resulted in quick

  18. Accounting for biological effectiveness in radiological protection

    International Nuclear Information System (INIS)

    Relative biological effectiveness (RBE) presents a practical problem to radiological protection when attempts are made to ensure that the assessed risks from different types of radiation and different modes of exposure to radiation are commensurate with one another. Unfortunately, the theoretical understanding of RBE is still in the stage of competing explanations and hypotheses. Furthermore, the division of the concept of dose equivalent into a set of concepts for risk assessment and another set for measurement and control has introduced conflicting requirements of a practical nature that are difficult to resolve. Many of those working in radiobiology and radiation protection have perceived the need to increase the quality factors for photon and neutron radiations. It may be more reasonable to change the quality factors for neutrons than for other radiations. The advantages and disadvantages of different methods for accommodating such changes within the dose-equivalent concepts are to be examined. The method of accommodating such a change that has the least practical disadvantages is to increase the quality factors for all secondary particles produced in tissue by neutron radiations by a constant factor. The only disadvantage would be the perception that the quality factors for these secondary particles were not treated in a consistent fashion for all types of ionising radiation. (author)

  19. Biological basis of combination therapy with radiation and bleomycin

    International Nuclear Information System (INIS)

    The biological basis for combination therapy with radiation and bleomycin (BLM) was studied on C2W cells growing in vitro. When BLM was added to the medium before or after irradiation, a potentiating effect was observed. The potentiation remained for 4-6 hours after irradiation. To make clear the mechanism, both type of repair from radiation damage (Elkind type and PLD) by BLM were examined. BLM didn't inhibit the Elkind type recovery but it did inhibit the repair of potentially lethal damage (PLD repair). Plateau phase C2W cells were irradiated, incubated at 370C for a various number of hours, then trypsinized for colony formation. PLD repair was inhibited when BLM was added immediately after irradiation. Based on such experimental results, we treated lung cancer with combination of radiation and BLM. BLM was injected intravenously within 30 minutes after irradiation. Although it seems too early to discuss the result of the combination therapy, it is very promising. (J.P.N.)

  20. Biology panel: coming to a clinic near you. Translational research in radiation biology

    International Nuclear Information System (INIS)

    The explosion of knowledge in molecular biology coupled with the rapid and continuing development of molecular techniques allow a new level of research in radiation biology aimed at understanding the processes that govern radiation damage and response in both tumors and normal tissues. The challenge to radiation biologists and radiation oncologists is to use this knowledge to improve the therapeutic ratio in the management of human tumors by rapidly translating these new findings into clinical practice. This panel will focus on both sides of the therapeutic ratio coin, the manipulation of tumor control by manipulating the processes that control cell cycle regulation and apoptosis, and the reduction of normal tissue morbidity by applying the emerging information on the genetic basis of radiosensitivity. Apoptosis is a form of cell death believed to represent a minor component of the clinical effects of radiation. However, if apoptosis is regulated by anti-apoptotic mechanisms, then it may be possible to produce a pro-apoptotic phenotype in the tumor cell population by modulating the balance between pro- and anti-apoptotic mechanisms by pharmacological intervention. Thus signaling-based apoptosis therapy, designed to overcome the relative resistance to radiation-induced apoptosis, may improve the therapeutic ratio in the management of human tumors. The explosion of information concerning cell cycle regulation in both normal and tumor cells has provided the opportunity for insights into the mechanism of action of chemotherapeutic agents that can act as radiosensitizers. The second talk will explore the hypothesis that the dysregulation of cell cycle checkpoints in some cancers can be exploited to improve the therapeutic index of radiation sensitizers, specifically the fluoropyrimidines which appear to act at the G1/S transition. Finally, efforts to increase tumor control will be translated into clinical practice only if such treatments do not increase the complication

  1. Radiation damage effects

    International Nuclear Information System (INIS)

    The summarized data suggest that both glass and crystalline waste forms may sustain substantial doses of α-decay damage and still retain their durability. Radiation effects in glasses are less pronounced and less complicated than that in single or poly-phase ceramics; thus, the latter category requires careful research and consideration. Perhaps the most important conclusion is that short-term actinide doping experiments in crystalline phases provide a realistic simulation of long-term effects based on the comparison of observed radiation effects in Pu-doped zircon and naturally damaged zircon (there is a 107 difference in dose rate). Deviations from the similarity in effect (e.g., saturation dose) may be attributed to low-temperature, long-term annealing effects

  2. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases

    Science.gov (United States)

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2011-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  3. Radiation biology of human tumour xenografts

    International Nuclear Information System (INIS)

    The radiation response of human tumour xenografts can be measured with sufficient accuracy using cell survival in vitro and tumour growth delay in vivo as endpoints. There is evidence that radiation response of xenografts mirrors clinical radioresponsiveness of corresponding tumours in patients. Thus xenografts may have a significant potential in experimental radiotherapeutic research, e.g. in development of in vitro and in vivo predictive assays of clinical radioresponsiveness. There are at least three main disadvantages with xenografts as models for human cancer. Firstly, volume doubling time is usually shorter for xenografts than for tumours in patients. Secondly, the haematological system and vascular network of xenografts originate from the host. Thirdly, host defence mechanisms may be active against xenografts. These disadvantages may limit the usefulness of xenografts as models for human cancer in some types of radiobiological studies. (author)

  4. Biological Sensors for Solar Ultraviolet Radiation

    OpenAIRE

    André P. Schuch; Teiti Yagura; Kazuo Makita; Hiromasa Yamamoto; Carlos F.M. Menck

    2011-01-01

    Solar ultraviolet (UV) radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage...

  5. Biological effects of inhaled radionuclides

    International Nuclear Information System (INIS)

    This report focuses on various types of radionuclides that may be inhaled and deposited in the respiratory tract. One of the primary goals of this ICRP Task Group is to assess specifically the biological implications of inhaled plutonium. Because other transuranics are becoming more abundant, information on americium, curium and einsteinium is included. Data are also included from studies of polonium and of several beta-gamma emitting isotopes. The Task Group evaluated most of the data on the biological effects of inhaled radionuclides in experimental animals to identify the tissues at risk and to assess possible dose-response relationships. Few data from human cases of inhaled radionuclides are available for this assessment. The biological effects of nonradioactive air pollutants were also considered to provide the perspective that all air pollutants can have a deleterious effect on human life and to emphasize the possibility for combined or synergistic effects of nonradioactive and radioactive substances on the respiratory tract. (orig./HP)

  6. Radiation effects on living systems

    International Nuclear Information System (INIS)

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  7. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Data are reviewed from studies on the genetic effects of x radiation in mice and the extrapolation of the findings for estimating genetic hazards in man is discussed. Data are included on the frequency of mutation induction following acute or chronic irradiation of male or female mice at various doses and dose rates

  8. Biological effects of mutagenic agents

    International Nuclear Information System (INIS)

    There is an increasing body of evidence that mutagenic agents (biological, chemical and physical) play an important role in the etiology of human diseases. Mutations may occur in the germinal as well as in the somatic cells. Mutations of the germ cells may result on infertility or fertilization of damaged cells, the later leading to abortion or birth of a malformed fetus. Somatic-cells mutations may have various biological effects, depending on the period of the human life at which the mutation occurs. If it occurs during the prenatal life, a teratogenic or carcinogenic effect will be observed. If the somatic cell is damaged during the postnatal life, this will lead to neoplastic transformation. Therefore it is extremely important to know the mutagenic, teratogenic and carcinogenic effects of various biological, chemical and physical agents in order to eliminate them from our environment. (author). 13 refs, 4 figs, 1 tab

  9. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    International Nuclear Information System (INIS)

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay

  10. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  11. BGRT: Biologically guided radiation therapy - The future is fast approaching!

    International Nuclear Information System (INIS)

    Rapid advances in functional and biological imaging, predictive assays, and our understanding of the molecular and cellular responses underpinning treatment outcomes herald the coming of the long-sought goal of implementing patient-specific biologically guided radiation therapy (BGRT) in the clinic. Biological imaging and predictive assays have the potential to provide patient-specific, three-dimensional information to characterize the radiation response characteristics of tumor and normal structures. Within the next decade, it will be possible to combine such information with advanced delivery technologies to design and deliver biologically conformed, individualized therapies in the clinic. The full implementation of BGRT in the clinic will require new technologies and additional research. However, even the partial implementation of BGRT treatment planning may have the potential to substantially impact clinical outcomes

  12. Biological dose assessment of 15 victims in Haerbin radiation accident

    International Nuclear Information System (INIS)

    Full text: a) On July 5 and 8, 2005, Two patients with bone marrow suppression were successively hospitalized by the First Affiliated Hospital of Haerbin Medical University. Examination results showed that the patients seemed to get suspicious radiation disease. On July 13, 2005, a radioactive source was found in the patients' dwelling. The radiation source is Iridium-192 with 0.5 Ci(1.85 x 1010Bq) radioactivity. The radiation source is a metal bar which is a kind of radioactive industrial detection source for welding. The source is currently stored in the urban radioactive waste storehouse of Heilongjiang province. After finding the radioactive source on July 13, The Haerbin municipal government initiated an emergency response plan and developed medical rescue, radioactive source examination and case detection through organizing ministries involving health, environmental protection and public security. After receiving a report at 17:00 on July 14, 2005, Chinese Ministry of Health immediately sent experts to the spot for investigation, dose estimation and direction of patients' rescue. Health authority carried out physical examination twice on 113 residents within 30 meters to the source, among which 4 got radiation sickness, 5 showed abnormal hemotogram, and others showed no abnormal response. Of 4 patients with radiation sickness, one 81 year old patient has died of severe bone marrow form of sub acute radiation sickness coupled with lung infection and prostrate apparatus at 13:00 on Oct., 20. Two children have been treated in Beitaiping Road Hospital in Beijing, another patient has been treated in local hospital. b) Biological dosimetry using conventional chromosome aberration analysis in human peripheral blood lymphocytes has been shown as a reliable and useful tool in medical management of radiation accident victims. Peripheral blood lymphocytes of the victims were cultured using conventional culture medium with colchicine added at the beginning. Chromosome

  13. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  14. Sterilization of biological tissues with ionizing radiation

    International Nuclear Information System (INIS)

    On June 1994, the National Institute of Nuclear Research (ININ) and the South Central Hospital for High Specialty of PEMEX (HCSAE) began a joint work with the finality to obtain radio sterilized amniotic membranes for to be used as cover (biological bandage) in burnt patients. Subsequently the Chemistry Faculty of UNAM and the National Institute of Cardiology began to collaborate this last with interest on cardiac valves for graft. Starting from 1997, the International Atomic Energy Agency (IAEA) supports this project (MEX/7/008) whose main objective is to set up the basis to establish in Mexico a Radio sterilized Tissue Bank (amniotic membranes, skin, bones, tendons, cardiac valves, etc.) to be used with therapeutic purposes (grafts). The IAEA support has consisted in the equipment acquisition which is fundamental for the Tissue Bank performance such as an experimental irradiator, laminar flow bell, lyophilizer, vacuum sealer and special knives for tissues. Also visits to Mexico of experts have been authorized with the aim of advising to the personnel which participate in the project and scientific visits of this personnel to another tissue banks (Sri Lanka and Argentine). The establishment in Mexico of a Tissue bank will be a great benefit because it will have availability of distinct tissues for grafts and it will reduce the synthetic materials importation which is very expensive. (Author)

  15. Radiation effects in metals

    International Nuclear Information System (INIS)

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  16. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  17. Flow-cytometry techniques in radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, K.F.; Hale, M.L.

    1988-01-01

    Considerable evidence exists that all blood cells are derived from HSC. These cells are of interest to radiobiologists because they are highly sensitive to low doses of ionizing radiation. Hematopoietic stem cells (HSC) are present in the marrow at a concentration of approximately 2-3 HSC per 1000 nucleated marrow cells. In the past, only clonogenic assays requiring 8-13 days and ten irradiated recipient rodents were available for assaying HSC. Because of the importance of HSC in the post-irradiation syndrome, the authors developed a new rapid method based on flow cytometry not only to assay but also to purify and characterize HSC. This new method makes extensive use of non-clonal antibodies conjugated to fluorescent phycobiliproteins through the sulfhydryls of the hinge region of the IgG molecule. An optical bench arrangement with a dye laser and an argon laser was used for dual excitation of the phycobiliprotein-monoclonal antibody conjugates and various cellular and DNA probes. Using 4', 6-diamidino 2-phenylindole dihydrochloride (DAP) exclusion to identify viable cells, it was possible to follow regeneration of post-irradiated rat marrow HSC.

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  19. Biological effectiveness of antiproton annihilation

    CERN Document Server

    Holzscheiter, Michael H.; Bassler, Niels; Beyer, Gerd; De Marco, John J.; Doser, Michael; Ichioka, Toshiyasu; Iwamoto, Keisuke S.; Knudsen, Helge V.; Landua, Rolf; Maggiore, Carl; McBride, William H.; Møller, Søren Pape; Petersen, Jorgen; Smathers, James B.; Skarsgard, Lloyd D.; Solberg, Timothy D.; Uggerhøj, Ulrik I.; Withers, H.Rodney; Vranjes, Sanja; Wong, Michelle; Wouters, Bradly G.

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in “biological dose” in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct measurement of the biological effects of antiproton annihilation. The experiment has been approved by the CERN Research Board for running at the CERN Antiproton Decelerator (AD) as AD-4/ACE (Antiproton Cell Experiment) and has begun data taking in June of 2003. The background, description and the current status of the experiment are given.

  20. The effects of radiation on angiogenesis.

    Science.gov (United States)

    Grabham, Peter; Sharma, Preety

    2013-01-01

    The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis. PMID:24160185

  1. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text: The year 1998 might again be called as the ''Comet Year''. The rain of bolides expected in the sky resembles pictures of DNA damages in shapes, numbers, mysterious processes and sometimes challenges to detect them. It was in this year that we detected, in a fluorescent light under the microscope, another ''shinning star'' a long time expected translocation induced by neutrons and then transferred to its glitter through fluorescence in situ hybridization technic. The year was filled in with measurements and brought plenty of scientific events that are partly reflected in the following pages; strong will and hard work to maintain research standards equal to technologically advanced partners in Europe and in other parts of the World; the USA, Sth Korea. We mainly devoted the year 1998 to the activities concerning our basic research, and requirements and expectations of various Committees in the issues of three research projects. We gather results on genotoxicity of pesticides, occupational exposures, and also the importance of life styles as factors affecting the levels of damage induced in human cells. We have also succeeded to go faster with modernization of our methodology by transferring the single cell ''Comet Assay'' to the routine work for the analysis of DNA damage induced by UV and X-rays radiation and for the studies on individual variability in the damage repair capacity. On January 13th we installed a new powerful RTG machine. Polish Atomic Energy supported this investment. And this was really the meaningful celebration of 100 anniversary of the discovery of POLONIUM and RADIUM. So, now, before a new therapeutic tool will be used in routine applications for radiotherapy, we with our new beautiful and powerful roentgen machine are deeply involved in the exploration of the strength of radiotherapeutic efficiency of sources and schedules. With the use of gene mutations in TSH-assay, we have finally established good dose response curves for

  2. The influence of low doses of ionizing radiation on biological systems

    International Nuclear Information System (INIS)

    Recent results concerning possible beneficial effects of low doses of ionizing radiation on biological systems are summarized. It is also pointed out on the basis of existing evidence that harmful effects on living organisms take place not only in the case of excess but also in the case of deficiency of ionizing radiation. Possibility of using radio-enhanced ultralow luminescence for studying hormesis phenomena is discussed. 24 refs., 4 figs. (author)

  3. Lunar biological effects and the magnetosphere.

    Science.gov (United States)

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual electromagnetic radiation are known to affect animals and 10-20% of the human population. There is now evidence for mechanisms such as calcium flux, melatonin disruption, magnetite and cryptochromes. Both environmental and receptor variations explain confounding factors and inconsistencies in the evidence. Electromagnetic effects might also account for some evolutionary changes. Further research on lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. PMID:26462435

  4. Further approaches to biological indicators of radiation injury

    International Nuclear Information System (INIS)

    Despite of the decades-long investigations, the search for proper biological indicator of radiation injuries did not result in techniques fulfilling all the requirements. So far, the most reliable assay is the dicentric chromosome aberration analysis. New developments have been made recently on a cytogenetic technique, the micronucleus assay, and for local injuries on the application of thermography

  5. Biological effects of prenatal irradiation

    International Nuclear Information System (INIS)

    After large releases of radionuclides, exposure of the embryo or fetus can take place by external irradiation or uptake of radionuclies. The embryo and fetus are radiosensitive throughout prenatal development. The quality and extent of radiation effects depend on the development stage. During the preimplantation period (one to 10 days postconception, p.c.) a radiation exposure of at least 0.2 Gy can cause the death of the embryo. Malformations are only observed in rare cases when genetic predisposition exist. Macroscopic, anatomical malformations are induced only after irradiation during the major organogenesis (two to eight weeks p.c.). A radiation dose of about 0.2 Gy is a doubling dose for the malformation risks as extrapolated from experiments with rodents. The human embryo may be more radioresistant. During early fetogenesis (8-15 weeks p.c.) a high radiosensitivity exists for the developmental of the brain. Radiation doses of 1.0 Gy cause severe mental retardation in about 40% of the exposed fetuses. It must be taken into account that a radiation exposure during the fetal period can also induce cancer. It is generally assumed that the risk exists at about the same level as for children. (Author)

  6. The interaction between Terahertz radiation and biological tissue

    International Nuclear Information System (INIS)

    Terahertz (THz) radiation occupies that region of the electromagnetic (EM) spectrum between approximately 0.3 and 20 THz. Recent advances in methods of producing THz radiation have stimulated interest in studying the interaction between radiation and biological molecules and tissue. Given that the photon energies associated with this region of the spectrum are 2.0x10-22 to 1.3x10-20 J, an analysis of the interactions requires an understanding of the permittivity and conductivity of the medium (which describe the bulk motions of the molecules) and the possible transitions between the molecular energy levels. This paper reviews current understanding of the interactions between THz radiation and biological molecules, cells and tissues. At frequencies below approximately 6 THz, the interaction may be understood as a classical EM wave interaction (using the parameters of permittivity and conductivity), whereas at higher frequencies, transitions between different molecular vibrational and rotational energy levels become increasingly important and are more readily understood using a quantum-mechanical framework. The latter is of particular interest in using THz to probe transitions between different vibrational modes of deoxyribonucleic acid. Much additional experimental work is required in order to fully understand the interactions between THz radiation and biological molecules and tissue. (author)

  7. Cumulative radiation effect

    International Nuclear Information System (INIS)

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  8. Biological dosimetry in case of combined radiation injuries

    International Nuclear Information System (INIS)

    The state of biological dosimetry methods and prospects for their development are considered. Attention is paid to biological indicators of radiation injuries caused by nuclear weapons. It is noted, that determination of the number of lymphocytes in the blood in case of combined radiation injuries should be concerned with great care and in each case the analysis results should reffered to critically and supported by the data from other investigations. Promissing are the methods related to dermination of reticulocyte number in the peripheral blood within the irradiation dose range, causing bone marrow form of radiation syndrome, method of leukocyte adhesion and some other methods based on the change of biophysical caracteristics of cell membranes. To increase the information efficiency it is necessary to combine these methods with the methods, based on genetic change registration, and to develop a combined method

  9. Health and biological effects of non-ionizing radiations. Meeting of the non-ionizing radiation section of the French radiation protection society (SFRP). Meeting review; Les effets biologiques et sanitaires des rayonnements non ionisants. Journee scientifique de la section RNI de la SFRP - Compte rendu de congres

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, A.; Souques, M. [Electricite de France (EDF), 75 - Paris (France)

    2011-07-15

    This document makes a review of this conference day on biological and health effects of non-ionizing radiations. The program comprised three sessions with a total of 17 presentations dealing with: 1 - NMR: biological effects and implications of Directive 2004/40 on electromagnetic fields (S. Lehericy); 2 - impact of RF frequencies from mobile telephone antennas on body homeostasis (A. Pelletier); 3 - expression of stress markers in the brain and blood of rats exposed in-utero to a Wi-Fi signal (I. Lagroye); 4 - people exposure to electromagnetic waves: the challenge of variability and the contribution of statistics to dosimetry (J. Wiart); 5 - status of knowledge about electromagnetic fields hyper-sensitivity (J.P. Marc-Vergnes); 6 - geno-toxicity of UV radiation: respective impact of UVB and UVA (T. Douki); 7 - National day of prevention and screening for skin cancers (F. Guibal); 8 - UV tan devices: status of knowledge about cancer risks (I. Tordjman, and J. Gaillot de Saintignon); 9 - In vitro study of the extremely low frequencies (ELF) effect on genes expression (J.F. Collard); 10 - modulation of brain activity during a tapping task after exposure to a 3000 {mu}T magnetic field at 60 Hz (M. Souques and A. Legros); 11 - calculation of ELF electromagnetic fields in the human body by the finite elements method (R. Scoretti); 12 - French population exposure to the 50 Hz magnetic field (I. Magne); 13 - LF and static fields, new ICNIRP recommendations: what has changed, what remains (B. Vey. Veyret); 14 - risk assessment of low energy lighting systems - DELs and CFLs (J.P. Cesarini); 15 - biological effects to the rat of a chronic exposure to high power microwaves (R. De Seze); 16 - theoretical and experimental electromagnetic compatibility approaches of active medical implants in the 10-50 Hz frequency range: the case of implantable cardiac defibrillators (J. Katrib); 17 - French physicians and electromagnetic fields (M. Souques). (J.S.)

  10. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  11. Stimulation of biological activities using low radiation doses

    International Nuclear Information System (INIS)

    Hormesis is the excitation, or stimulation, by low doses of any agent in any system; high doses inhibit but low doses stimulate. Don Luckey from the University of Florida identified the phenomenon of radiation hormesis, in 1982. After nearly ten years of data surveys and animal tests in many universities to examine the truth about radiation hormesis, we realized the scientific significance of the stimulating effects caused by low levels of radiation exposure. Stimulation with Ionizing radiation presented evidence of increased vigor in plants, bacteria, invertebrates and vertebrates. Most physiologic reactions in living cells are stimulated by low doses of ionizing radiation. This stimulating effect includes enzyme induction, photosynthesis, respiration and growth. Radiation stimulation to the immune system decreases infection and premature death in radiation exposed individuals. (author)

  12. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  13. Laser device for the protection of biological objects from the damaging action of ionizing radiation

    International Nuclear Information System (INIS)

    The search for ideal protective agents for use in radiotherapy or post-exposure treatment of victims of radiation accidents is one of the actual problems of radiation protection. Laser irradiation device for the protection of biological objects from the action of ionizing radiation to be used in practice has been manufactured (invention patent RU 2 428 228 C2). This device is used to study the action of various doses of laser radiation and combined irradiation with laser and gamma-radiation, on peripheral blood parameters and number of bone marrow karyocytes of the experimental mice line C57BL/6. The mice were irradiated with ionizing and laser radiation, separately one by one in a special bench. The time interval between two types of irradiation did not exceed 30 min. First, the mice were exposed to γ-radiation then to laser radiation. It was shown that laser radiation can be applied to improve the recovery of hemato genesis after the action of ionizing radiation on biological objects. Then, experiments were conducted to study the action of γ- rays and the combined action of laser radiation and γ -rays on survival, weight and skin of experimental mice. The authors investigated also the action of gamma-rays and combined effects of 650 nm laser radiation and gamma-rays on general mitotic index of bone marrow cells of mice. The method of the laser radiation-protection of biological objects contributes to an increase in the viability of mice, prevents the damages of skin and also increases the mitotic activity of mice bone marrow cells. (authors)

  14. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6 and l5 months) were given five doses (20, 60, 180, 540, and 1620 rads) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rads/day and 25 rads/min). Forty to sixty mice were used in each of the approximately 119 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replicaton. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the l5-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used. It was also concluded that radiaton-induced neoplastic transformaton was significantly greater in mice with a known genetic sensitivity to neoplastic disease than in mammals which do not normally have a significant incidence of tumours. (author)

  15. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  16. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  17. 5. Conference cycle. The radiations and the Biological Sciences

    International Nuclear Information System (INIS)

    Nuclear technologies and their development have influenced many aspects of modern life. Besides used for electricity production nuclear technologies are applied in many other fields, especially in biological sciences. In genetics and molecular biology they enable research resulting in increased food production and better food preservation. Usage in material sciences lead to new varieties of plastics or improved characteristics. Nuclear applications are used in pe troleum industries and in forecasting geothermic power. Radiobiology and radiotherapy enable diagnosis and therapy of several diseases, e.g. cancer. Nuclear technologies also contribute to preserve the environment. They offer methods to analyse as well as decrease the environmental impacts. The 5. conference cyle entitled 'The Radiations and the Biological Sciences' aims to inform students of biological sciences about new nuclear technologies applied in their field of interest

  18. Ionizing radiation - one of the most important link of the energetic chain in biological cell

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, W. [Technical Univ. Poznan, Radio- and Photochemistry Dept., Poznan (Poland)

    1999-09-01

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation ('bio-positive') effects by low-level doses of ionizing radiation are called radiation hormesis. It is still controversial idea, however it was found that some biological objects (yeast, seeds, animals) after gamma irradiation by low-level doses (10-50 times more NBR) can increase their development. The result of present researches demonstrate that the excitation of living system by gamma quanta (high energy) initiates prolonged secondary emission that influences biota and activates many important processes in biological systems. According to the excitation theory of bio-molecules the author suggests that gamma irradiation in low-level doses excites such molecules as DNA and proteins, and this being followed by a long-termed secondary coherent radiation. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. The data obtaining by using SPC method (single photon counting) make possible a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to UV emission from biological systems during mitotic processes. The experiments with humic acid (high doses) and glycine (low doses) confirm the author hypothesis that gamma-irradiated organic compounds are capable to emit secondary radiation. This secondary radiation probably plays very significant role in the intercellular communication inside the living systems. In conclusion the author proposed de-excitation processes in bio-molecules as a common denominator of UV and ionizing radiation interacting with living cells. Finally he refers to the Cerenkov radiation which is created inside the biological cells

  19. Ionizing radiation - one of the most important link of the energetic chain in biological cell

    International Nuclear Information System (INIS)

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation ('bio-positive') effects by low-level doses of ionizing radiation are called radiation hormesis. It is still controversial idea, however it was found that some biological objects (yeast, seeds, animals) after gamma irradiation by low-level doses (10-50 times more NBR) can increase their development. The result of present researches demonstrate that the excitation of living system by gamma quanta (high energy) initiates prolonged secondary emission that influences biota and activates many important processes in biological systems. According to the excitation theory of bio-molecules the author suggests that gamma irradiation in low-level doses excites such molecules as DNA and proteins, and this being followed by a long-termed secondary coherent radiation. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. The data obtaining by using SPC method (single photon counting) make possible a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to UV emission from biological systems during mitotic processes. The experiments with humic acid (high doses) and glycine (low doses) confirm the author hypothesis that gamma-irradiated organic compounds are capable to emit secondary radiation. This secondary radiation probably plays very significant role in the intercellular communication inside the living systems. In conclusion the author proposed de-excitation processes in bio-molecules as a common denominator of UV and ionizing radiation interacting with living cells. Finally he refers to the Cerenkov radiation which is created inside the biological cells. Because

  20. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review

    International Nuclear Information System (INIS)

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  1. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  2. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.N. [Harvard Medical School (United States). Joint Center for Radiation Therapy

    1999-07-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies.

  3. Biological imaging in radiation therapy: role of positron emission tomography

    International Nuclear Information System (INIS)

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  4. Laboratory of Radiation Biology progress report, August 15, 1975--August 14, 1976

    International Nuclear Information System (INIS)

    Studies on action of inorganic radiation sensitizers included the following: roles of e-aq.OH and H2O2; metal ions and biological radiation sensitivity; iron as a sensitizer; and cellular uptake of solutes. Studies on organic sensitizers and protectors included the following: anoxic protection; anoxic desensitization when PNAP is present; effects of additives in air; and oxygen-dependent sensitization. Studies were also conducted on radioinduced mutations in spores of Bacillus megaterium and effects of radiation on inactivation of DNA in Bacillus Subtilis

  5. DEGRO 2009. Radiation oncology - medical physics - radiation biology. Abstracts; DEGRO 2009. Radioonkologie - Medizinische Physik - Strahlenbiologie. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    The special volume of the journal covers the abstracts of the DEGRO 2009 meeting on radiation oncology, medical physics, and radiation biology, covering the following topics: seldom diseases, gastrointestinal tumors, radiation reactions and radiation protection, medical care and science, central nervous system, medical physics, the non-parvicellular lung carcinomas, ear-nose-and throat, target-oriented radiotherapy plus ''X'', radio-oncology - young academics, lymphomas, mammary glands, modern radiotherapy, life quality and palliative radiotherapy, radiotherapy of the prostate carcinoma, imaging for planning and therapy, the digital documentation in clinics and practical experiences, NMR imaging and tomography, hadrons - actual status in Germany, urinal tract oncology, radiotoxicity.

  6. Quantum Effects in Biological Systems

    Science.gov (United States)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  7. Research on radiation-biology effects of 3H. Pt. 4. Effect of HTO on nucleolar fibrous core of chlamydomonas reinhardtii dangeard

    International Nuclear Information System (INIS)

    Effect of HTO (tritiated water) on nucleolar fibrous core is studied by using new silver staining and electro-microscopic examination. Nucleolar fibrous core of interphase of Chlamydomonas reinhardtii Dangeard appears as convoluted rope-like structure which is composed of some thin strings. After having been cultured with low-level tritiated water (HTO) (37 x 10 kBq/mL) for 1400 hours convoluted rope-like structure of nucleolar fibrous core is expanded and relaxed, volume of fibrous core increased and string-like structure becomes more clear; After having been cultured with middle-level HTO (37 x 102kBq/mL) for 1400 hours, rope-like structure of fibrous core is disintegrated obviously, and the contour of rope-like structure becomes more indistinct after have been cultured with high-level HTO (37 x 10:3 kBq/mL), the convoluted rope-like structure of fibrous core is disintegrated completely, it appears as relaxed thin string-like structure, and acidic proteins, which are involved in the rRNA-transcription process, decrease obviously

  8. Document sheet no.3. The sanitary effects and the medical uses of the radioactivity, the radiations, the biological effects, the medical uses; Fiche documentaire no.3. Les effets sanitaires et les usages medicaux de la radioactivite, rayonnements ionisants, les effets biologiques, les usages medicaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In order to inform the public the ANCLI published information sheets. This sheet no.3 deals with the sanitary effects and the medical uses of the radioactivity. It presents the radiations definitions (the internal and external irradiation, the doses levels, the absorbed doses), the biological effects (deterministic effects, random effects and chronicity effects), and the medical uses (radiotherapy and monitoring of chemotherapy). (A.L.B.)

  9. Deuterium effects in cancer biology

    International Nuclear Information System (INIS)

    Since its discovery many experiments were conducted for explaining the effects of deuterium on biological systems. It was observed, in many studies, that by increasing the deuterium concentration, structural, metabolic and functional alterations at different extents are produced, which can lead to organism's death. On the other hand effects of concentration reduction are much less studied. Existing data in literature, with regard to intrinsic deuterium reduction effects on different carcinomas are rather scarce. In vitro studies of deuterium level reduction has evidenced an inhibiting effect upon the cellular proliferation in different tumoral cellular lines: M14 cellular lines (human melanoma), PC3 (prostate cancer) and MCF7 (breast cancer). In vivo researches made on experimental tumours, have shown that the deuterium level reduction determines partial or complete regressions in xenotransplanted tumours, while in veterinary oncological clinic, partial or total tumoral regression were observed in different spontaneous tumours in dogs and cats. (authors)

  10. Radiation biology of Caenorhabditis elegans. Germ cell response, aging and behavior

    International Nuclear Information System (INIS)

    The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good 'in vivo' model system in the field of radiation biology. (author)

  11. Frontiers of radiation technology for biological and medical application in Japan

    International Nuclear Information System (INIS)

    Radiation technologies have been greatly contributed to biological and medical sciences and technology in Japan. For the first time in the world, we have been developing heavy-ion microbeam system for understanding cellular radiation response, ion-beam breeding for generating new gene resources, and radioisotopes and positron-emitting tracer imaging system for medical and plant physiological studies. Now we will drive forward to pioneering new radiation science and technology for life sciences on the basis of elucidation of mechanisms involved in radiation interaction with living organisms. The biological effects of heavy ions, or ion beams, have been found to possess a high relative biological effectiveness (RBE) in lethality, mutation, and so on, compared to low linear energy transfer (LET) radiation such as gamma-rays, X-rays and electrons. In recent years in Japan, ion beams have been positively used for cancer therapy, plant breeding, creating new isotopes for medical and other uses. In order to elucidate cellular response of ion beams, heavy-ion microbeam system has been constructed in Japan Atomic Energy Institute (JAEA). The biological advantage in the microbeam comes from its potential to specify energy absorption by a cell in terms of location, time, and hit-ion number. Radiation-induced bystander effect manifests cell killing and other effects in cells that are not irradiated but are close to irradiated cells via intercellular and intracellular signaling. It is necessary to clear the mechanism of bystander effect in order to estimate the potential risks of low dose radiation accurately

  12. Biological effect of radioprotectors. 2. Biological effect of aminothiol radioprotectors

    International Nuclear Information System (INIS)

    The section describes about radio-protective effects on cells and animals, and suppressive effects of mutagenesis and carcinogenesis of aminothiols. Amifostine, NH2-(CH2)3-NH-(CH2)2-SPO3H2 (WR-2721, prodrug), WR-1065 (amifostine-SH form, active principle of WR-2721) and WR-33278 (S-S oxidized form of WR-1065) are mainly discussed. In cells exposed in vitro to 4 mM WR-1065, their survival rates are usually elevated regardless of their types after radiation treatment. In vivo, the author employs the administration dose of 400 mg/kg, which is 2/3 LD50 of amifostine. The prodrug is less toxic than the active form in vivo and reduces the mortality by radiation. Amifostine is an FDA-registered medical for reduction of xerostomia during radiotherapy of head and neck cancer, and of renal toxicity of cisplatin during chemotherapy of advanced ovarian cancer. Hypoxanthine phosphoribosyl transferase (HPRT) mutagenic assay in vitro has revealed anti-mutagenic effect of WR-1065 at 40 M, and also in vivo, the effect is seen in mice after irradiation of X-ray and neutron beam at lower administration doses than that used for lethality test mentioned above. WR-2721 at 400 mg/kg and another aminothiol (WR-151327) have anti-caricinogenic effects in mice against lymphoreticular tumors induced by γ-ray or neutron beam and in rats, at 100 mg/kg WR-2721, against hepatoma development and at 50 mg/kg, against mammary cancer. The compounds are shown to suppress the tumor metastasis in animal models. In vitro, WR-1065 has been shown to reduce the frequency of cell transformation after X-ray or neutron exposure. (T.I.)

  13. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  14. Dosimetry and biological effects of fast neutrons

    International Nuclear Information System (INIS)

    This thesis contains studies on two types of cellular damage: cell reproductive death and chromosome aberrations induced by irradiation with X rays, gamma rays and fast neutrons of different energies. A prerequisite for the performance of radiobiological experiments is the determination of the absorbed dose with a sufficient degree of accuracy and precision. Basic concepts of energy deposition by ionizing radiation and practical aspects of neutron dosimetry for biomedical purposes are discussed. Information on the relative neutron sensitivity of GM counters and on the effective point of measurement of ionization chambers for dosimetry of neutron and photon beams under free-in-air conditions and inside phantoms which are used to simulate the biological objects is presented. Different methods for neutron dosimetry are compared and the experimental techniques used for the investigations of cell reproductive death and chromosome aberrations induced by ionizing radiation of different qualities are presented. Dose-effect relations for induction cell inactivation and chromsome aberrations in three cultured cell lines for different radiation qualities are presented. (Auth.)

  15. MEASUREMENT OF MICROWAVE RADIATION ABSORBED BY BIOLOGICAL SYSTEMS, 2, ANALYSIS BY DEWAR-FLASK CALORIMETRY

    Science.gov (United States)

    Free-field power density has long been used as an index of energy dosing in studies of biological effects of microwave radiation. However, this method of quantifying dose can lead to considerable error if it is used as an index of the rate of energy actually being absorbed by a s...

  16. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  17. Radiation effects on living systems

    International Nuclear Information System (INIS)

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  18. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  19. Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter

    International Nuclear Information System (INIS)

    The final report is on the work carried out under the Agency research contract 3173/RB entitled ''Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter'', at the Clinical Hospital Centre ''Zvezdara'' in Belgrade, Yugoslavia. In co-operation and co-ordination dissemination with an international team of cytogeneticists under the IAEA CRP, the development of a suitable biological dosimetry system has been accomplished at the national institute to assist reliably in the absorbed radiation-dose assessment of accidentally-over-exposed personnel. The quantitative yield of asymmetrical chromosomal aberrations, such as dicentrics, rings and fragments consequent to exposure(s) to radiation overdose, help in such estimation of vital prognostic and radiation protection significance. This biological dosimeter system is particularly essential where the exposed person was not wearing any physical dosemeter during the accident. Prerequisite for implementation of an effective biological dosimetry is the availability of a reliable standard dose-response curve and an adherence to a protocol for lymphocytic chromosome analysis in first division phase of lymphocytes. The validation of the reported biological dosimeter is established through its successful analysis of a simulated over-exposure incident, with the associated error of less than 10%. Analytical cytogenetic methods for whole- and part-body acute exposures have been discussed. Part of the results have been reported in the publications under the CRP concerned

  20. Electrosmog. Molecular-biological proof of the biological effects of electromagnetic fields and radiation. Scientific documentation. 2. ed.; Elektrosmog. Molekularbiologischer Nachweis ueber die biologische Wirkung elektromagnetischer Felder und Strahlen. Wissenschaftliche Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    Varga, A. [Heidelberg Univ. (Germany)

    2001-09-01

    The book intends to show and prove the effects of electromagnetic fields and radiation on living objects. Theoretical fundamentals are discussed, and measured results and practical experience are presented. The theory focuses on two aspects, i.e. the cell membrane and its many functions on the one hand and the field of bioreactions on the other hand, in which short-lived radicals and ions have an important role. Subjects like electricity and magnetism, nature and technology, biosignals and electrosensitivity, cell communication and the pineal gland, calcium and cancer are gone into. The author reports animal experiments, cites international research findings, points out health hazards, criticizes official limiting values and warns of uninformed handling of magnetic fields in everyday life. (orig.)

  1. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  2. Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control. Invited papers and discussions from a conference in Seville, Spain, 17-21 November 1997

    International Nuclear Information System (INIS)

    Radiological protection is concerned with the limitation of the consequential risks from exposure to ionising radiation. In recent years, there has been much debate about the validity of one of the fundamental bases of the present system for the limitation of these risks, i.e., at the low dose rates with which we are usually concerned in routine activities, the incremental increase in the risk of stochastic effects (primarily cancer) is linearly related to the additional radiation dose above that from the natural background. This is the linear, no-threshold (LNT) dose-response paradigm adopted by the ICRP in developing its recommendations. Re-analysis and interpretation of existing data, and new data on effects that may (or may not) be of relevance to cancer induction, have led to proposals for contrary supralinear, threshold and hormetic (beneficial) response relationships at low doses. It was the purpose of this conference to provide a forum to examine the latest information and debate the issues. A detailed meeting report has been given in an earlier issue of this journal (Wakeford R and Tawn E J 1998 J. Radiol. Prot. 18 52-6), and the majority of the short papers presented at the conference were issued, at that time, as an IAEA Technical Document (IAEA TECDOC-976, available free of charge from the IAEA in Vienna). This publication provides the keynote papers, summaries of the discussions and the session chairmen's summaries for each of the set of ten fora, a special session and a final round-table discussion that constituted the main body of the conference. Also included are the papers presented in two introductory background sessions that provided some context for the conference. All of the keynote papers provide, as might be expected, useful summaries of the state of the art in the respective fields. This is particularly so for the fora 8-10 that introduced the discussion of control measures and criteria for intervention, in which circumstance there is, at

  3. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  4. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  5. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  6. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  7. Biological effect of fast neutrons

    International Nuclear Information System (INIS)

    The efficiency of fast neutrons of the energy range from 1.7 to 5 MeV in reducing the reticulocyte count and in diminishing the spleen weight was studied in male NMRI mice and compared with the effects of 250 kV X-rays. The neutron induced decrease of reticulocyte number in the peripheral blood is complete two days after irradiation. At this time even low doses cause a maximal effect. The relation between the rise of effect and the increase of exposure is great in the range of low doses and small in high doses. The relative biological effectiveness of neutrons in reducing the reticulocyte count is 2.5 after low doses and 1.2 after high doses. The spleen of irradiated mice shows a marked loss of weight, the lowest weight values are observed at the second day after irradiation. The relative effectiveness of neutrons in diminishing the spleen weight is 2.1 at low doses, the RBE decreases to 1.4 and rises again to 1.9 at higher doses. These results are compared with previous findings on mortality response and leucocyte and lymphocyte decrease in mice after neutron irradiation. Reticulocyte and lymphocyte count are found to be useful indicators for the detection and evaluation of neutron damage in the sublethal dose range. (orig.)

  8. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Science.gov (United States)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  9. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    International Nuclear Information System (INIS)

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders

  10. Advances in microbeam technologies and applications to radiation biology.

    Science.gov (United States)

    Barberet, P; Seznec, H

    2015-09-01

    Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology. PMID:25911406

  11. Radiation physics, biophysics, and radiation biology: Progress report, December 1, 1987-November 30, 1988

    International Nuclear Information System (INIS)

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiation therapy. At the current level of funding, approximately one quarter of the research of the Laboratory could be regarded as in support of radiotherapy, with the remainder addressing more basic issues. The new initiatives have been in two directions. First, there has been an increased emphasis on research in radiation chemistry, inasmuch as this subject which involves the study of free radicals and fast radiation chemistry processes starts to bridge the gap between physics and biology, between the initial deposition of radiant energy and its final expression in terms of biological consequences. Second, the emphasis in the biological research has moved towards studies at the molecular level, with the appointment of new members of staff with expertise in this area. Individual chapters were processed separately for the data base

  12. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  13. Contrast media: Biologic effects and clinical application

    International Nuclear Information System (INIS)

    An overview is presented of the recent developments in contrast media and their clinical applications, plus the current state-of-the-art in computerized tomography, digital subtraction angiography, ultrasound and magnetic resonance imaging (MRI). Contents of these volumes include: an in-depth review of the historical development, modern perspectives in structure-function relationships, biologic effects on hemostats, gastrointestinal, cardiovascular systems and drug interactions. Critical and basic issues, including cellular toxicity, mutagenesis, synergism between radiation and contrast agents, mechanisms in contrast-induced reactions, and the management of such reactions in high-risk patients are also presented. Specific applications of paramagnetic compounds in MRI and the recent concept of liposome-encapsulated and particulate suspension of contrast materials in diagnostic imaging are thoroughly discussed

  14. Contrast media: Biologic effects and clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Parvez, Z.; Moncada, R.; Sovak, M.

    1987-01-01

    An overview is presented of the recent developments in contrast media and their clinical applications, plus the current state-of-the-art in computerized tomography, digital subtraction angiography, ultrasound and magnetic resonance imaging (MRI). Contents of these volumes include: an in-depth review of the historical development, modern perspectives in structure-function relationships, biologic effects on hemostats, gastrointestinal, cardiovascular systems and drug interactions. Critical and basic issues, including cellular toxicity, mutagenesis, synergism between radiation and contrast agents, mechanisms in contrast-induced reactions, and the management of such reactions in high-risk patients are also presented. Specific applications of paramagnetic compounds in MRI and the recent concept of liposome-encapsulated and particulate suspension of contrast materials in diagnostic imaging are thoroughly discussed.

  15. Laser radiation effects on Mycoplasma agalactiae

    Science.gov (United States)

    Dinu, Cerasela Z.; Grigoriu, Constantin; Dinescu, Maria; Pascale, Florentina; Popovici, Adrian; Gheorghescu, Lavinia; Cismileanu, Ana; Avram, Eugenia

    2002-08-01

    The biological effects of the laser radiation emitted by the Nd:YAG laser (second harmonic, wavelength 532 nm /fluence 32 mJ/cm2/pulse duration 6 ns) on the Mycoplasma agalactiae bacterium were studied. The radiation was found to intensify the multiplication of the bacteria irradiated in TRIS buffer (0.125 M), without however affecting the proteinic composition of the cell membrane. When the bacteria were irradiated in their growth medium (PPLO broth) being later cultivated on a solid medium (PPLO agar), the exclusive presence of the atypical colonies (granular and T-like ones) was noticed.

  16. Alternative statistical methods for cytogenetic radiation biological dosimetry

    CERN Document Server

    Fornalski, Krzysztof Wojciech

    2014-01-01

    The paper presents alternative statistical methods for biological dosimetry, such as the Bayesian and Monte Carlo method. The classical Gaussian and robust Bayesian fit algorithms for the linear, linear-quadratic as well as saturated and critical calibration curves are described. The Bayesian model selection algorithm for those curves is also presented. In addition, five methods of dose estimation for a mixed neutron and gamma irradiation field were described: two classical methods, two Bayesian methods and one Monte Carlo method. Bayesian methods were also enhanced and generalized for situations with many types of mixed radiation. All algorithms were presented in easy-to-use form, which can be applied to any computational programming language. The presented algorithm is universal, although it was originally dedicated to cytogenetic biological dosimetry of victims of a nuclear reactor accident.

  17. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    International Nuclear Information System (INIS)

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y =α + β1D + β2D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs

  18. Biological rhythms for rehabilitation of radiation damage of population

    International Nuclear Information System (INIS)

    Considerable disturbances in biological eurhythmycal structure of redoracu were discovered for people living in Borodulikha area of the Semipalatinsk test site. The deep desynchronise may result in a development of the cardiovascular, bronco-pulmonary, endocrine, oncologic, neuro psychic diseases. A method to correct the biological eurhythmycal structure was developed. Homeopathic doses of melatonin ('rhythm driver' managing the most regenerating and immune systems) and uthynol (promoting production of dehydroepiandrosterone of maternal prehormone of 27 hormones) were used to provide the general correction. The endocrine diseases are not practically subjected to the homeopathic correction. The sub correction was sometimes carried out after 5 months. The developed methods of rehabilitation of the radiation damages are unique, since they allow performing the homeopathic correction using the acupuncture monitoring

  19. Cerenkov Radiation: A Multi-functional Approach for Biological Sciences

    Directory of Open Access Journals (Sweden)

    Xiaowei eMa

    2014-02-01

    Full Text Available Cerenkov radiation (CR has been used in various biological research fields, which has aroused lots of attention in recent years. Combining optical imaging instruments and most of nuclear medicine imaging or radiotherapy probes, the CR was developed as a new imaging modality for biology studies, called Cerenkov luminescence imaging (CLI. On the other hand, it was novelly used as an internal excitation source to activate some fluorophores for energy transfer imaging. However, it also has some shortages such as relatively weak luminescence intensity and low penetration in tissue. Thus some scientific groups demonstrated to optimize the CLI and demonstrated it to three-dimension tomography. In this article, we elaborate on its principle, history, and applications and discuss a number of directions for technical improvements. Then concluded some advantages and shortages of CR and discuss some prospects of it.

  20. Biological efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes

  1. Radiation exposure and the woman worker: biological and legal parameters

    International Nuclear Information System (INIS)

    The interpretation of federal and state legislation and regulations concerning the radiation protection of women in the workplace has not been a clear and straightforward procedure. On one hand, the safety of all workers, independent of sex, imposes a specific directive for the enforcement of working standards in general. On the other hand, must allowance be made in setting radiation standards for the particular biological characteristics of workers, some of whom are women. Title VII of the Civil Rights Act provides equal employment opportunity for women and is now being enforced. All legal questions aside, men and women are decidedly different in one aspect; only women can conceive and carry a fetus and studies have shown that, in humans, the most radiosensitive stage of the fetus is during the first trimester of pregnancy. Possible legal and socio-economic aspects of questions posed by the employment of women by the nuclear industry are considered

  2. Food irradiation and its biological effects

    International Nuclear Information System (INIS)

    Irradiation of foods drew attention mostly in 1960s for disinfestation of food grains, spices and sprout inhibition in mainly potato and onion. γ-irradiation at 0.25 to 1 kGy dosage levels are usually used for irradiating grains, legumes, spices and sprout-prone vegetables. Irradiation of foods with in permissible dosage levels of 0.25 to 5 kGy is usually considered fairly safe from human consumption point of view not withstanding usual health concerns about its usage in foods. Irradiation of foods, in mostly solid or semi-solid form, at 5 kGy levels of γ-irradiation can achieve radicidation or, radiation equivalent of pasteurization and, if γ-irradiation is used at 10 kGy, it can achieve radappertization or, radiation equivalent of thermal commercial sterilization. However, the food industry uses γ-irradiation at 0.25 to 2 kGy only for mostly disinfestation of food grains/legumes, spices, sprout inhibition in potato and onion and, for surface sanitation of frozen fish, poultry and meat. Exposure to irradiation creates free radicals in foods that are capable of destroying some of the spoilage and pathogenic microflora but the same can also damage vitamins and enzymes besides creating some new harmful new chemical species, called unique radiolytic products (URPs), by combining with certain chemicals that a food may be laced with (like pesticides/fungicides). Exposure to high-energy electron beams are also known to create deleterious biological effects which may even lead to detection of trace amounts of radioactivity in the food. Some possible causes delineated for such harmful biological effects of irradiation include: irradiation induced vitamin deficiencies, the inactivity of enzymes in the foods, DNA damage and toxic radiolytic products in the foods. Irradiation, a non-thermal food preservation technique, has a role in salvaging enormous post harvest losses (25-30%) in developing economies to increase the per capita availability of foods. (author)

  3. 手机辐射生物效应的量子理论研究%The Research of Biological Effects of Mobile Phone Radiation Based on Quantum Theory

    Institute of Scientific and Technical Information of China (English)

    李旸; 逯贵祯

    2009-01-01

    介绍了手机辐射生物效应的研究近况,并列举了一些相关的研究与实验.回顾了以往生物效应的理论研究成果,指出用经典理论解释微观现象可能不准确,方法有待改进.文章提出在微观领域,即细胞核内用量子理论来分析DNA分子与外加电磁波作用的观点.指出电磁生物效应的原因之一是由于DNA分子受外加电磁波的作用,分子能级结构发生改变.给出了量子理论的公式推导和量子效应解释,最后指出微波辐射和DNA分子作用的结果,可能是一种属于"时间长、见效慢"的生物效应.%. This paper presents recent situations about the biological effect of mobile phone radia-tion, and enumerates some relative investigations and experiments. The former theoretic research has been reviewed, and then it indicates that classical theory may be not suitable to explain micro-cosmic phenomena and the methods should be ameliorated. The viewpoint that the interaction be-tween the DNA molecule and adscititious electromagnetic wave can be analyzed with the quantum theory in the microcosmic domain namely in the nucleus has also been given. It is proposed that one reason of the electromagnetic biological effect is due to that the DNA molecule is affected by adscititious electromagnetic waves and then molecular energy level structure changes. The formu-la derivation of the quantum theory is listed and the explanation of its quantum theory effects is put forward. Finally, the paper points out that the results of action between microwave radiation and DNA molecule is probably belong to a kind of biological effect which is long-time and slow-effect.

  4. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    International Nuclear Information System (INIS)

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educators whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.

  5. Biologically weighted measurement of UV radiation in space and on earth with the biofilm technique

    Science.gov (United States)

    Rettberg, P.; Horneck, G.

    Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.

  6. The biological effects of ozone depletion.

    Science.gov (United States)

    Young, A R

    1997-05-01

    Thinning of the ozone layer is predicted to result in increased levels of ultraviolet (UV) B radiation at the earth's surface. This effect has been confirmed by measurements made in relatively unpolluted areas such as Antarctica, the southern part of South America and at mid-to-high latitudes in the northern hemisphere. It has been harder to show in populated northern latitudes because of a number of confounding factors, notably weather systems and low level ozone pollution. Although UVB forms only a small proportion of the UV spectrum it has potent biological effects so that a small increase in penetration of UVB to the earth's surface has profound effects on a wide range of life forms. Most attention has been paid to the effects of an increase in UVB on human health, particularly the effects on skin cancer, resistance to infectious diseases and cataract formation. However, the effects of increased levels of UVB on other parts of the ecosystem, particularly on the primary producers in aquatic and terrestrial food chains, may be of even. PMID:9519507

  7. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  8. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  9. Biological studies with continuous-wave radiofrequency (28 MHz) radiation

    International Nuclear Information System (INIS)

    Effects of high-frequency (28 MHz) continous-wave radiation have been studied in the rat and monkey. No histopathological or hematological changes could be attributed to the radiation. In the monkey there was an increase in urinary calcium concentration which was most likely due to restricted movement. In the rat there was reduced uptake of iodine by the thyroid, lower levels of plasma thyroid-stimulating hormone, and reduced ratio of protein bound to nonprotein bound iodine. Food consumption was also decreased. The changes are likely to have arisen as a compensatory response to an induced heat load. A nonthermal effect of continuous-wave high-frequency radiation has not been shown in this study. The effects were likely to be associated with either physiological compensation for induced heating or restriction of movement

  10. Investigation upon the radiofrequency radiation impact in the biological tissues

    International Nuclear Information System (INIS)

    The radiation with the frequency of 400 MHz was generated within a transverse electromagnetic cell having adequate geometry and sizes. Exposures of different time durations were applied to samples of liver, muscle and bone - characterized by different contents of water, protein and lipids. The extraction of DNA and RNA biomolecules was carried out in adequate selective solvents. Spectrophotometric device type Metertek was used to assay the levels of nucleic acids in the exposed samples in comparison to the control ones. The main results concern the slight stimulatory effect of low radiation doses in contrast with the disruptive effect of high doses. (authors)

  11. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  12. Genetic effects of radiation

    International Nuclear Information System (INIS)

    In this chapter, the BEIR Committee has reviewed and reevaluated the data that are pertinent to the estimation of genetic risks to humans from low levels of ionizing radiation. The present report summarizes the methods and conclusions of previous committees. In deriving new risk figures, it places rather more emphasis on the results of the studies of Japanese atomic-bomb survivors than have previous BEIR reports. However, the committee has also made use of the extensive radiation studies carried out with mice, which are briefly reviewed. 174 ref

  13. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel - maintenance and instrumentation workers, cleaners, administrative personnel, etc. - who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a specific training program in radiation protection to meet the different needs of all workers in a biological research center. This program aims to ensure compliance with the relevant national legislation and to minimize the possibility of radiological incidents and accidents in this kind of center. This study has involved contributions from six nationally and internationally recognized Spanish biological research centers that have active training programs in radiation protection, and the design of the program presented here has been informed by the teaching experience of the training staff involved. The training method is based on introductory and refresher courses for personnel in direct contact with the radioactive facility and also for indirectly associated personnel. The

  14. Abstracts of the 28. annual meeting of the Austrian Radiation Oncology, Radiation Biology and Medical Radiation Physics Society (OeGRO 2011); Abstracts der 28. Jahrestagung der Oesterreichischen Gesellschaft fuer Radioonkologie, Radiobiologie und Medizinische Radiophysik (OeGRO 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-06-15

    The second part of the volume includes the abstracts of the 28th annual meeting of the Austrian Radiation Oncology, Radiation Biology and Medical Radiation Physics Society (OeGRO 2011), covering the following topics: extracranial stereotactic radiotherapy; brachytherapy, hyperthermia; radiotherapy side effects; psycho-oncology in radiotherapy; head-neck carcinomas; radiation source implants for carcinoma irradiation; MRI-supported adaptive radiotherapy; CT-guided radiotherapy; mammary carcinomas; prostate carcinomas; magnetic nanoparticles for future medical applications.

  15. A non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    A microdosimetric-based specific quality factor, q(y), is determined for eight sets of experimental data on cellular inactivation, mutation, chromosome aberration and neoplastic transformation. Bias-free Bayesian and maximum entropy approaches were used. A comparison of the curves q(y) thus determined reveals a surprising degree of uniformity. In our view this is prima facie evidence that the spatial pattern of microscopic energy deposition - rather than the specific end point or cellular system - is the quantity which determines the dependency of the cellular response to the quality of the ionizing radiation. For further applications of this approach to radiation protection experimental microdosimetric spectra are urgently needed. Further improvement in the quality of the q(y) functions could provide important clues on fundamental biophysical mechanisms. (author)

  16. Potential of biological images for radiation therapy of cancer

    International Nuclear Information System (INIS)

    Full text: Recent technical advances in 3D conformal and intensity modulated radiotherapy (3DCRT and IMRT) based, on patient-specific CT and MRI images, have the potential of delivering exquisitely conformal dose distributions to the target volume while avoiding critical structures. Emerging clinical results in terms of reducing treatment-related morbidity and increasing local control appear promising. Recent developments in imaging have suggested that biological images may further positively impact cancer diagnosis, characterization and therapy. While in the past radiological images are largely anatomical, the new types of images can provide metabolic, biochemical, physiological, functional and molecular (genotypic and phenotypic) information. For radiation therapy, images that give information about factors (e.g. tumor hypoxia, Tpot) that influence radiosensitivity and treatment outcome can be regarded as radiobiological images. The ability of IMRT to 'paint' (in 2D) or 'sculpt' (in 3D) the dose, and produce exquisitely conformal dose distributions begs the '64 million dollar question' as to how to paint or sculpt, and whether biological imaging may provide the pertinent information. Can this new approach provide 'radiobiological phenotypes' non-invasively, and incrementally improve upon the predictive assays of radiobiological characteristics such as proliferative activity (Tpot - the potential doubling time), radiosensitivity (SF2 - the surviving fraction at a dose of 2 Gy), energy status (relative to sublethal damage repair), pH (a possible surrogate of hypoxia), tumor hypoxia, etc. as prognosticator(s) of radiation treatment outcome. Important for IMRT, the spatial (geometrical) distribution of the radiobiological phenotypes provide the basis for dose distribution design to conform to both the physical (geometrical) and the biological attributes. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  17. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  18. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    International Nuclear Information System (INIS)

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation

  19. MEDICAL AND ENVIRONMENTAL EFFECTS OF UV RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Organisms living on the earth are exposed to solar radiation, including its ultraviolet (UV) components (for general reviews, the reader is referred to Smith [1] and Young et al. [2]). UV wavelength regions present in sunlight are frequently designated as UVB (290-320 nm) and UVA (320-400 nm). In today's solar spectrum, UVA is the principal UV component, with UVB present at much lower levels. Ozone depletion will increase the levels of UVB reaching the biosphere, but the levels of UVA will not be changed significantly [3]. Because of the high efficiency of UVB in producing damage in biological organisms in the laboratory experiments, it has sometimes been assumed that UVA has little or no adverse biological effects. However, accumulating data [4, 5], including action spectra (efficiency of biological damage as a function of wavelength of radiation; see Section 5) for DNA damage in alfalfa seedlings [6], in human skin [7], and for a variety of plant damages (Caldwell, this volume) indicate that UVA can induce damage in DNA in higher organisms. Thus, understanding the differential effects of UVA and UVB wavebands is essential for estimating the biological consequences of stratospheric ozone depletion.

  20. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures

    Directory of Open Access Journals (Sweden)

    Schoenfeld Michael P

    2012-04-01

    Full Text Available Abstract Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.

  1. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases as Medical Counter Measures

    Science.gov (United States)

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2012-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  2. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  3. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  4. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1985-November 30, 1986

    International Nuclear Information System (INIS)

    This is the annual report of the Radiological Research Laboratory of the Department of Radiation Oncology, Columbia University. The bulk of the research of the Laboratory involves basic and fundamental aims, not confined to radiotherapy. Research carried out in the Laboratory covers the determination of microdosimetry quantities, computer simulation of particle tracks, determination of oncogenic transformation, and the transfection of DNA into cells. The Hallmark of the Laboratory is the interaction between physics and biology

  5. Modern trends in medical and biological prophylaxis in dust radiation carcinogenesis

    International Nuclear Information System (INIS)

    It is emphasized that modern technical devices are not capable to lower dust radiation aerosol concentrations to levels harmless to the body. The conclusion has been drawn that radical prophylaxis in underground work should be based on achievements of modern medicine and biology. For that purpose the authors have turned to a complex of drugs, the inhalation of which stimulates the natural mechanism of self-purification of the lung and eliminates the harmful effect of aerosol absorbed during the inhalation. (author)

  6. Biological fingerprint of high LET radiation. Brenner hypothesis

    International Nuclear Information System (INIS)

    Hypothesis by Brenner et al. (1994) that in chromosome aberrations in human peripheral lymphocytes induced by radiation exposure, F value (dicentrics/rings) differs dependently on the LET and can be a biomarker of high LET radiation like neutron and α-ray was reviewed and evaluated as follows. Radiation and chromosome aberrations; in this section, unstable aberrations like dicentric and rings (r) and stable ones like translocation and pericentric inversions were described. F value. Brenner hypothesis. Bauchinger's refutation. F value determined by FISH method; here, FISH is fluorescence in situ hybridization. F value in studies by author's Radiation Effect Research Facility. Frequency of chromosome aberration in A-bomb survivors and ESR (ESR: electron spin resonance). The cause for fluctuation of F values. The Brenner hypothesis could not be supported by studies by author's facility, suggesting that the rate of inter-chromosomal and intra-chromosomal exchange abnormalities can not be distinguishable by the radiation LET. This might be derived from the difference in detection technology of r rather than in LET. (K.H.)

  7. Analysis of biological reactivity on polymer surface exposed to radiation

    International Nuclear Information System (INIS)

    Using polystyrene and polyurethane polymers, an investigation was made on the changes in surface properties of polymer substance by exposure to (γ-ray radiation or chemical modification and in cellular reactivities on the surface. It is well known that when cells contact with a surface of polymer substance activated oxygen is generated, resulting to elicit luminaol chemiluminescence. The amount of luminescence generated from HL-60 cells derived from human leukemia was determined when cultured in polystyrene dish and exposed to γ-ray. The degree of luminescence was largest at the dose around 1 kGy but there was little changes in the contact-angle (to water) of the polystyrene radiated at 1-10 kGy. This suggested that the production of activated O2 was not correlated with hydrophelicity or hydrophobicity on the surface. For polystyrene exposed to plasma radiation, an increase in the surface polarity and a decrease in activated O2 production from HL-60 cells were observed. And these effects by plasma radiation on polystyrene were larger than those by γ-ray. Whereas the reactivity of HL-60 to polyurethane dose-dependently increased by γ-ray radiation, but there was no significant changes in hydrophilicity or hydrophobicity on its surface. (M.N.)

  8. Biological fingerprint of high LET radiation. Brenner hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yoshiaki; Awa, Akio; Nakamura, Nori [Radiation Effects Research Foundation, Hiroshima (Japan)

    1997-12-01

    Hypothesis by Brenner et al. (1994) that in chromosome aberrations in human peripheral lymphocytes induced by radiation exposure, F value (dicentrics/rings) differs dependently on the LET and can be a biomarker of high LET radiation like neutron and {alpha}-ray was reviewed and evaluated as follows. Radiation and chromosome aberrations; in this section, unstable aberrations like dicentric and rings (r) and stable ones like translocation and pericentric inversions were described. F value. Brenner hypothesis. Bauchinger`s refutation. F value determined by FISH method; here, FISH is fluorescence in situ hybridization. F value in studies by author`s Radiation Effect Research Facility. Frequency of chromosome aberration in A-bomb survivors and ESR (ESR: electron spin resonance). The cause for fluctuation of F values. The Brenner hypothesis could not be supported by studies by author`s facility, suggesting that the rate of inter-chromosomal and intra-chromosomal exchange abnormalities can not be distinguishable by the radiation LET. This might be derived from the difference in detection technology of r rather than in LET. (K.H.)

  9. 13th AINSE radiation biology conference: conference handbook

    International Nuclear Information System (INIS)

    The forty one papers presented at this conference covered the areas of radiation induced lesions, apoptosis, genetics and radiobiological consequences of low level radiation exposure, clinical applications of radiation, mammalian cells radiosensitivity and radiation-activated proteins

  10. Histopathological And Biological Studies On The Role Of Soybean And Broad Bean AgainstRadiation Induce Damage In Rat Kidney

    Directory of Open Access Journals (Sweden)

    Hanaa Fathy Waer, **Abdel El ­ Rahman Mohamed Attia

    2002-09-01

    Full Text Available Most of the physiological and histological activities in the animal body are disturbed after exposure to ionizing radiation. These disturbances are either due to direct harmful effect of radiation on the biological systems or to the indirect effect of free radicals formed in the body after irradiation. There is growing evidence that the type of food plays an important role in the prevention of chronic diseases. The biological disturbance due to ionizing radiation makes search for ways of protecting living organisms essential for controlling the radiation hazards. Much of the world population relies on legumes, as a stable food. Legumes can affectively protect cells and tissues against damage. Our present study was conducted to investigate the hazardous effects of single dose !"#$%#&f the possible protective effect of feeding beans (broad beans and soybeans against radiation exposure. Histopathological, and biological changes of kidney function in irradiated, and bean fed animals were carried out. Animals were weighted and daily food intake was determined. The result obtained revealed that soybean is an extremely rich source of protein and fat as compared to faba bean. Radiations cause a reduction in food intake and weight gain. It causes great changes in the kidney glomeruli and collecting tubules. The recovery of the cells depend on the type of feeding so, feeding soybean gives a significant radiation protection and decreases the extent of changes induced by radiation

  11. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  12. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  13. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    International Nuclear Information System (INIS)

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  14. Effects of ionizing radiation; Effecten van ioniserende straling

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M.; Hardeman, F.; Holmstock, L.; Hurtgen, C.; Mahieu, L.; Sohier, A.; Vandecasteele, C.; Vanhavere, F.; Vanmaercke, H.; Zeevaert, T

    1998-12-01

    Starting with a brief introduction to radiation protection, the report gives an overview of exposure to ionising radiation in Belgium due to activities in relation to the nuclear fuel cycle, processing and disposal of radioactive waste and other artificial or natural sources. Where appropriate, the Belgian situation discussed from an international perspective. The radiological impact of reprocessing and non-reprocessing are compared. The biological effects of ionizing radiation, epidemiological studies as well as surveillance programmes on the Belgian territory are reported on.

  15. Biological effectiveness of antiproton annihilation

    DEFF Research Database (Denmark)

    Holzscheiter, M.H.; Agazaryan, N.; Bassler, Niels;

    2004-01-01

    We describe an experiment designed to determine whether or not the densely ionizing particles emanating from the annihilation of antiprotons produce an increase in ‘‘biological dose’’ in the vicinity of the narrow Bragg peak for antiprotons compared to protons. This experiment is the first direct...

  16. Biological models and computed iso-effect tables for continuous low dose-rate and intermittent fractionated radiation therapy. Chapter 28

    International Nuclear Information System (INIS)

    Iso-effect tables for continuous low dose-rate radiotherapy and intermittent fractionated radiotherapy are computed using a cell population kinetic model and iso-effect programme. In this way equivalent tissue and tumour doses are estimated for varying fractionation schemes and treatment times. Iso-effect predictions are presented for human skin tolerance and human squamous cell carcinoma. Results are also presented for therapeutic ratios of skin tolerance:squamous cancer lethal dose for well-oxygenated tumours and tumours with 10% hypoxic cells. Using such iso-effect tables, optimal radiotherapy exposure times and a best choice of technique can be identified for different tissues and tumours. (U.K.)

  17. Biophysical models for the effectiveness of different radiations

    International Nuclear Information System (INIS)

    The aim of the project is a better understanding of the biological effects of different radiation fields with particular emphasis on low doses and low dose rates. An improvement in our present knowledge should be achieved of somatic and genetic radiation risks in man, and radiation protection instrumentation should be developed which measures the characteristic properties with regard to these endpoints in mixed radiation fields. In addition, the combined action of radiation and chemicals are investigated on a mechanistic level. Objectives and results of the four contributions of the project for the reporting period are presented. (R.P.) 21 refs., 11 figs., 8 tabs

  18. The use of ionizing radiations in the treatment of liquid and solid waste; biological and physico-chemical effects and industrial study

    International Nuclear Information System (INIS)

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture, or animal supplement feed is of great economical and ecological interest. However, it requires strong disinfection. Treatment with ionizing radiation can be used as a complement to conventional methods in the treatment of liquid and solid wastes. An experiment conducted with a high-energy electron beam linear accellerator (10 MeV) is presented. Degradation of undesirable metabolites in wastes occurs at a dose of 50 krad. Undesirable seeds, present in sludge, are destroyed with a 200-krad dose. The same dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of poliovirus (DL 90) is obtained at 400 krad. Higher doses (1000-2000 krad) produce mineralisation of toxic organic mercury or reduce some toxic chemical pollutants present in sludge and improve flocculation. Industrial study shows that waste treatment with high-energy electron beams is technically and economically feasible. The design for a treatment unit of 5 MCi cobalt-equivalent, with a capacity of 500 t/Mrad/24h is presented, with indicative cost calculation

  19. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Triennial progress report, October 15, 1977-October 14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Lange, C.S.

    1980-01-01

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S/sup 0//sub 20,w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA/sub 11/), or more accurately, the zero shear rate reduced recoil (GAMMA/sub 11, r, o/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A /sub DNA/D/sub 37/ of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule.

  20. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Triennial progress report, October 15, 1977-October 14, 1980

    International Nuclear Information System (INIS)

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S0/sub 20,w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA11), or more accurately, the zero shear rate reduced recoil (GAMMA/sub 11, r, o/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A /sub DNA/D37 of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule