WorldWideScience

Sample records for biological phenomena underlying

  1. Ultrashort Phenomena in Biochemistry and Biological Signaling

    Science.gov (United States)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  2. Parallel Information Phenomena of Biology and Astrophysics

    Science.gov (United States)

    Frieden, B. Roy; Soffer, Bernard H.

    The realms of biology and astrophysics are usually regarded as distinct, to be studied within individual frameworks. However, current searches for life in the universe, and the expectation of positive results, are guiding us toward a unification of biology and astrophysics called astrobiology. In this chapter the unifying aspect of Fisher information is shown to form two bridges of astrobiology: (i) In Section 5.1 quarter-power laws are found to both describe attributes of biology, such as metabolism rate, and attributes of the cosmos, in particular its universal constants, (ii) In Section 5.2 we find that the Lotka-Volterra growth equations of biology follow from quantum mechanics. Both these bridges follow, ultimately, from the extreme physical information EPI principle and, hence, are examples of the “cooperative” universe discussed in Chapter 1. That is, the universe cooperates with our goal of understanding it, through participatory observation. The participatory aspect of the effect (i) is the observation of biological and cosmological attributes obeying quarter-power laws. In the Lotka-Volterra quantum effect (ii) the participation is the observation of a general particle member that undergoes scattering by a complex potential. This potential causes the growth or depletion of the particle population levels to obey Lotka-Volterra equations. Effectively, the interaction potentials of a standard Hartree view of the scattering process become corresponding fitness coefficients of the L-V growth equations. The two ostensibly unrelated effects of scattering and biological growth are thereby intimately related; out of a common flow of Fisher information to the observer.

  3. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  4. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  5. Presentation and representation of biological phenomena from a vegetable garden

    Directory of Open Access Journals (Sweden)

    Ana Maria de Andrade Caldeira

    2007-08-01

    Full Text Available This paper proposes a methodology for science education based on the triad perceive/associate/experience. The analysis performed relied upon Charles Sanders Peirce’s semiotics framework. The research was develop at elementary school (nine-yar old students showing that the described methodology enable them the students to percieve, to set up relationships and to experience the natural phenomena, built up from the experienced sequences.

  6. Matching concepts and phenomena: A review of Biological Autonomy

    NARCIS (Netherlands)

    Keijzer, Fred

    2016-01-01

    This paper discusses Moreno and Mossio’s book Biological autonomy: A philosophical and theoretical enquiry. The book provides an up to date overview of the authors’ work within the organizational approach to mind and life, which is linked to the work of Maturana and Varela but which is here

  7. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    Science.gov (United States)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  8. Reservoir management under consideration of stratification and hydraulic phenomena

    NARCIS (Netherlands)

    Nandalal, K.D.W.

    1995-01-01


    Reservoirs are the most important components in a water resources system. They are used to store water to extend its temporal availability. The physical, chemical and biological characteristics of water change when impounded in reservoirs. This implies the possibility of using reservoirs

  9. Optical and electrical phenomena in dielectric materials under irradiation

    CERN Document Server

    Plaksin, O A; Stepanov, P A; Demenkov, P V; Chernov, V M; Krutskikh, A O

    2002-01-01

    Optical and acoustic properties of the materials based on Al sub 2 O sub 3 , SiO sub 2 and BN under 8 MeV proton irradiation (<10 sup 4 Gy/s) have been measured. Electric charge partitioning has been shown to result in charging the microscopic regions in the bulk of the dielectrics under irradiation, which is due to different mobility of free electrons and holes (sapphire), concentration inhomogeneity in the system of charge carrier traps (alumina), or thermodynamic instability of the homogeneous distribution of the filled traps (silica glasses). Prevalent charge carrier recombination in the grain boundaries causes re-crystallization of pyrolytic boron nitride under irradiation, which shows up as simultaneous decrease of the intensity of radiation-induced luminescence (RIL) of the centres in the grain boundaries and the BN. The local charging results in optical inhomogeneity of the silica glasses which is sustained by the optical loss spectra of the irradiated glasses, features of kinetics of bleaching, RI...

  10. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    reduction the number of microorganisms and the diversity of fungi species, repression of cellulose destroying capacity, decrease invertase activity and the rate of humification, intensifying mineralization processes and soil toxicity increasing. Long-term irrigation of ordinary chernozem (Kharkiv Region with fresh water in moderate regime under 7-field crop rotation including alfalfa caused no disturbances of microbial cenosis. In this case parameters of biological indices did not deviate from the level of its non-irrigated analogue. Irrigation with saline water causes more profound negative changes of microbial cenosis of chernozem, which not always can be corrected using agroameliorative techniques. Intensive irrigation with saline water with total mineralization from 1.2 to 2.2 g/l of ordinary chernozem (Odesa Region for 13 years has led to a significant degradation changes in the structure and functioning of its microbial cenosis, its radical alteration such as oppression of microflora, decrease in the number of its main groups by 30 – 40 %, intensification of its mineralization function. Application of agroameliorative techniques (such as annually use of phosphogypsum 3 t/ha or /and complex measures (phosphogypsum 3 t/ha annually + N150P90K60 + manure 18 t/ha of crop rotation enable to regulate of soil biodynamic processes and partially or completely eliminate the phenomena of biological degradation. It was stated that after the cessation of irrigation the degradation changes of ordinary chernozem’s biological properties caused by irrigation with saline water were gradually restored.

  11. The role of fractional calculus in modeling biological phenomena: A review

    Science.gov (United States)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  12. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    Science.gov (United States)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  13. Frontiers in transport phenomena research and education: Energy systems, biological systems, security, information technology and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, T.L.; Faghri, A. [Department of Mechanical Engineering, The University of Connecticut, Storrs, CT 06269-3139 (United States); Viskanta, R. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

    2008-09-15

    A US National Science Foundation-sponsored workshop entitled ''Frontiers in Transport Phenomena Research and Education: Energy Systems, Biological Systems, Security, Information Technology, and Nanotechnology'' was held in May of 2007 at the University of Connecticut. The workshop provided a venue for researchers, educators and policy-makers to identify frontier challenges and associated opportunities in heat and mass transfer. Approximately 300 invited participants from academia, business and government from the US and abroad attended. Based upon the final recommendations on the topical matter of the workshop, several trends become apparent. A strong interest in sustainable energy is evident. A continued need to understand the coupling between broad length (and time) scales persists, but the emerging need to better understand transport phenomena at the macro/mega scale has evolved. The need to develop new metrology techniques to collect and archive reliable property data persists. Societal sustainability received major attention in two of the reports. Matters involving innovation, entrepreneurship, and globalization of the engineering profession have emerged, and the responsibility to improve the technical literacy of the public-at-large is discussed. Integration of research thrusts and education activities is highlighted throughout. Specific recommendations, made by the panelists with input from the international heat transfer community and directed to the National Science Foundation, are included in several reports. (author)

  14. Transport phenomena and kinetic theory applications to gases, semiconductors, photons, and biological systems

    CERN Document Server

    Gabetta, Ester

    2007-01-01

    The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...

  15. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  16. Expansion phenomena of aerosols generated by laser ablation under helium and argon atmosphere

    International Nuclear Information System (INIS)

    Koch, J.; Waelle, M.; Schlamp, S.; Roesgen, T.; Guenther, D.

    2008-01-01

    Specific expansion phenomena of aerosols generated by near infrared femtosecond laser ablation (NIR-fs-LA) of brass under helium and argon atmosphere were studied. For this purpose, particles were visualized by light scattering using a pulsed laser source. Aerosols were found to be captured in symmetric vortices when striking a solid boundary during their kinetic stage of expansion. Furthermore, high-repetitive LA resulted in the formation of a complex, macroscopic flow pattern driven by a pressure gradient locally built up. Our data indicate that aerosols released under those conditions experience only minor losses of around 1% if they get in contact with the inner walls of ablation cells operated at atmospheric pressures

  17. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    Science.gov (United States)

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to

  18. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  19. Earth is speaking: listen her! On-line questionnaire about anomalous geological and biological phenomena

    Science.gov (United States)

    Sciarra, Alessandra; Quattrocchi, Fedora; Cantucci, Barbara; Mazzarini, Francesco

    2014-05-01

    Earthquakes can be associated with non-seismic phenomena which may manifest many weeks before and after the main shock. These phenomena are characterized by ground fractures and soil liquefactions at surface often coupled with degassing events, chemical alterations of water and soils, changes in temperature and/or waters level in the epicentral area. Further manifestations include radio disturbances and light emissions. On the other hand, anomalous behavior of animals has been reported to occur before environmental changes. The co-occurrence of several phenomena may be considered as a signal of subsurface changes, and their analysis may be used as possible forecast indicators for seismic events, landslides, damages in infrastructure (e.g., dam) and groundwaters contamination. In order to obtain an accurate statistical analysis of these factors, a pre-crisis large database over a prolonged period of time is a pre-requisite. To this end, we elaborated a questionnaire for the population to pick up signs about anomalous phenomena like as: animal behavior, geological manifestations, effect on vegetation, degassing, changes on aquifers, wells and springs. After the January 25, 2013, mainshock (ML 4.8) in the Garfagnana seismic district, the Bagni di Lucca Municipality was selected as pilot site for testing this questionnaire. The complexity, variety and extension of this territory (165 kmq) sound suitable for this project. Bagni di Lucca is located in the southern border of the Garfagnana seismogenic source, characterized by the carbonate Mesozoic sequences and the Tertiary terrigenous sedimentary deposits of the Tuscan Nappe. The questionnaire was published on Bagni di Lucca web site (https://docs.google.com/file/d/0Bzw3vOYX47XoTGltTVJRbkJuajA/edit) in collaboration with Municipal Commitee, Local Civil Protection and Local Red Cross, and sent by ordinary mail to the citizenry. It is possible to answer to the questionnaire, also anonymously, direct on line (https

  20. Extinction Phenomena: A Biologic Perspective on How and Why Psychoanalysis Works

    Science.gov (United States)

    Brakel, Linda A. W.

    2011-01-01

    This article presents the view that much of the success of classical psychoanalysis is centrally predicated on its biological potency; focusing not on neuropsychology, but on the biology of conditioning. The argument suggests that features of classic psychoanalytic technique – the couch, meetings several times per week with both parties present, and free association – uniquely facilitate intense transferences of various sorts, and that these in turn constitute the multiple and diverse extinction trials necessary to best approximate extinction. PMID:21927610

  1. Extinction phenomena: A biologic perspective on how and why psychoanalysis works

    Directory of Open Access Journals (Sweden)

    Linda A.W. Brakel

    2011-09-01

    Full Text Available This article presents the view that much of the success of classical psychoanalysis is centrally predicated on its biological potency; focusing not on neuropsychology, but on the biology of conditioning. The argument suggests that features of classic psychoanalytic technique--the couch, meetings several times per week with both parties present, and free association--uniquely facilitate intense transferences of various sorts, and that these in turn constitute the multiple and diverse extinction trials necessary to best approximate extinction.

  2. Transcritical phenomena of autoignited fuel droplet at high pressures under microgravity

    Science.gov (United States)

    Segawa, Daisuke; Kajikawa, Tomoki; Kadoka, Toshikazu

    2005-09-01

    An experimental study has been performed under microgravity to obtain the detailed information needed for the deep understanding of the combustion phenomena of single fuel droplets which autoignite in supercritical gaseous environment. The microgravity environments both in a capsule of a drop shaft and during the parabolic flight of an aircraft were utilized for the experiments. An octadecanol droplet suspended at the tip of a fine quartz fiber in the cold section of the high-pressure combustion chamber was transferred quickly to be subjected to a hot gaseous medium in an electric furnace, this followed by autoignition and combustion of the fuel droplet in supercritical gaseous environment. High-pressure gaseous mixture of oxygen and nitrogen was used as the ambient gas. Temporal variation of temperature of the fuel droplet in supercritical gaseous environment was examined using an embedded fine thermocouple. Sequential backlighted images of the autoignited fuel droplet or the lump of fuel were acquired in supercritical gaseous environment with reduced oxygen concentration. The observed pressure dependence of the ignition delay and that of the burning time of the droplet with the embedded thermocouple were consistent with the previous results. Simultaneous imaging with thermometry showed that the appearance of the fuel changed remarkably at measured fuel temperatures around the critical temperature of the pure fuel. The interface temperature of the fuel rose well beyond the critical temperature of the pure fuel in supercritical gaseous environment. The fuel was gasified long before the end of combustion in supercritical gaseous environment. The proportion of the gasification time to the burning time decreased monotonically with increasing the ambient pressure.

  3. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  4. Lunar Rhythms In Forestry Traditions - Lunar-Correlated Phenomena In Tree Biology And Wood Properties

    Science.gov (United States)

    Zürcher, Ernst

    For more than 2000 years, certain forestry practices and rules regarding tree felling have been carried out in observance to Moon cycles. A general review of the different types of rules followed (known in Europe and on other continents and stemming from both written sources and current practitioners) shows that special timber uses are mentioned in relation to a specific felling date which supposedly ensures advantageous wood properties. These empirical forestry traditions apply to a range of wood uses as diverse as building timber, shingles, wooden chimneys, fuel wood, resonance wood for harmony tables of violins, cheese-boxes, barrels and ploughs. In each of these cases, felling at the ``right date'' is thought to be an important factor to ensure the required properties of the product. Moreover, the rafting of timber used to be limited to certain days of the Moon cycle, when the water was supposed to carry the wood in the best way. The second part presents scientific studies concerned, on the one hand, with ``Moon phases'' factor. They deal with elements of tree biology such as germination and initial growth of tropical trees (where strong and systematic variations and their complicating aspects have been observed), insect attacks on trees and reversible fluctuations of stem diameters. On the other hand, some works concentrate on wood properties and the relation between wood and water. They deal with the durability of wood, with systematic density variations after kiln-drying and with variations in the compression strength of the corresponding samples. An overview tries to find a common link between empirical practices and the scientific results.

  5. Some new and relatively infrequent phenomena by bronchography done under general venous anesthesia and monopulmonary controlled respiration

    International Nuclear Information System (INIS)

    Georgiev, G.; Nikolov, P.

    1977-01-01

    The authors share their experience in studying some new and comparatively rare phenomena found by bronchography done under general venous anestesia and succinylcholine controlled monopulmonary respiration. They discuss the false obturation of the left upper lobar bronchus, dislocation of the bronchi due to a raised diaphragm and a false obturation of a bronchus in a one act bronchoscopy-bronchography with taking of a specimen for a histologic examination. (author)

  6. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions

    International Nuclear Information System (INIS)

    Boglietti, Aldo; Bottauscio, Oriano.; Chiampi, Mario; Lazzari, Mario

    2003-01-01

    The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed

  7. Biological clockwork underlying adaptive rhythmic movements

    Science.gov (United States)

    Iwasaki, Tetsuya; Chen, Jun; Friesen, W. Otto

    2014-01-01

    Owing to the complexity of neuronal circuits, precise mathematical descriptions of brain functions remain an elusive ambition. A more modest focus of many neuroscientists, central pattern generators, are more tractable neuronal circuits specialized to generate rhythmic movements, including locomotion. The relative simplicity and well-defined motor functions of these circuits provide an opportunity for uncovering fundamental principles of neuronal information processing. Here we present the culmination of mathematical analysis that captures the adaptive behaviors emerging from interactions between a central pattern generator, the body, and the physical environment during locomotion. The biologically realistic model describes the undulatory motions of swimming leeches with quantitative accuracy and, without further parameter tuning, predicts the sweeping changes in oscillation patterns of leeches undulating in air or swimming in high-viscosity fluid. The study demonstrates that central pattern generators are capable of adapting oscillations to the environment through sensory feedback, but without guidance from the brain. PMID:24395788

  8. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  9. Modelling of CRUD growth phenomena on PWR fuel rods under nucleate boiling conditions

    International Nuclear Information System (INIS)

    Ferrer, A.; Dacquait, F.; Gall, B.; Ranchoux, G.; Riot, G.

    2012-09-01

    PWR primary circuit materials undergo general corrosion leading to a release of metallic element release and subsequent process of particle deposition and ion precipitation on the primary circuit surfaces. The species accumulated on fuel rods are activated by neutron flux. Consequently, crud erosion and dissolution induce primary coolant contamination. In French PWRs, 58 Co volume activity is generally low and almost constant (< 30 MBq.m -3 ) throughout an ordinary operating cycle. In some specific cases, a significant increase in volume activity is observed after the middle of a cycle (100-1000 MBq.m -3 for 58 Co) when conditions for nucleate boiling are locally reached in certain fuel assemblies. Indeed, it is well known that nucleate boiling intensifies the deposition process. The thickness of the crud layer can reach some micrometers in non-boiling areas, whereas it can reach 100 micrometers in boiling areas. Crud growth in boiling conditions can be related to three phenomena: bubble growth induces deposition process (called boiling deposition), bubbles induce concentration increase at crud-coolant interface (called enrichment and modelled by the enrichment factor, the ratio between the wall concentration and the bulk concentration) and vaporisation induces concentration increase inside the crud. A literature review on the modelling of these phenomena and on the crud structure in nucleate boiling conditions has been carried out. The OSCAR [1] calculation code developed by the CEA to predict surface and volume activities in a single phase PWR primary circuit was chosen as a basis for present study. Ability to describe local nucleate boiling conditions was added to this code leading to realistic modelling of subsequent volume activity increase. In this article, we present the results obtained using a modified version of the OSCAR PC V1.2 calculation code including: - A double phase thermal-hydraulic module, - A model of boiling crud growth, able to calculate

  10. Tonic and phasic phenomena underlying eye movements during sleep in the cat.

    Science.gov (United States)

    Márquez-Ruiz, Javier; Escudero, Miguel

    2008-07-15

    Mammalian sleep is not a homogenous state, and different variables have traditionally been used to distinguish different periods during sleep. Of these variables, eye movement is one of the most paradigmatic, and has been used to differentiate between the so-called rapid eye movement (REM) and non-REM (NREM) sleep periods. Despite this, eye movements during sleep are poorly understood, and the behaviour of the oculomotor system remains almost unknown. In the present work, we recorded binocular eye movements during the sleep-wake cycle of adult cats by the scleral search-coil technique. During alertness, eye movements consisted of conjugated saccades and eye fixations. During NREM sleep, eye movements were slow and mostly unconjugated. The two eyes moved upwardly and in the abducting direction, producing a tonic divergence and elevation of the visual axis. During the transition period between NREM and REM sleep, rapid monocular eye movements of low amplitude in the abducting direction occurred in coincidence with ponto-geniculo-occipital waves. Along REM sleep, the eyes tended to maintain a tonic convergence and depression, broken by high-frequency bursts of complex rapid eye movements. In the horizontal plane, each eye movement in the burst comprised two consecutive movements in opposite directions, which were more evident in the eye that performed the abducting movements. In the vertical plane, rapid eye movements were always upward. Comparisons of the characteristics of eye movements during the sleep-wake cycle reveal the uniqueness of eye movements during sleep, and the noteworthy existence of tonic and phasic phenomena in the oculomotor system, not observed until now.

  11. Relaxation phenomena of polar non-polar liquid mixtures under low ...

    Indian Academy of Sciences (India)

    The hf s in Coulomb metre (C m) when compared with static and reported s indicate that ss favour the monomer formations which combine to form dimers in the hf electric field. The comparison among s shows that a part of the molecule is rotating under X-band electric field [5]. The theoretical theos from available ...

  12. Identification of important phenomena under sodium fire accidents based on PIRT process with factor analysis in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Aoyagi, Mitsuhiro; Uchibori, Akihiro; Kikuchi, Shin; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

    2016-01-01

    The PIRT (Phenomena Identification and Ranking Table) process is an effective method to identify key phenomena involved in safety issues in nuclear power plants. The present PIRT process is aimed to validate sodium fire analysis codes. Because a sodium fire accident in sodium-cooled fast reactor (SFR) involves complex phenomena, various figures of merit (FOMs) could exist in this PIRT process. In addition, importance evaluation of phenomena for each FOM should be implemented in an objective manner under the PIRT process. This paper describes the methodology for specification of FOMs, identification of associated phenomena and importance evaluation of each associated phenomenon in order to complete a ranking table of important phenomena involved in a sodium fire accident in an SFR. The FOMs were specified through factor analysis in this PIRT process. Physical parameters to be quantified by a sodium fire analysis code were identified by considering concerns resulting from sodium fire in the factor analysis. Associated phenomena were identified through the element- and sequence-based phenomena analyses as is often conducted in PIRT processes. Importance of each associated phenomenon was evaluated by considering the sequence-based analysis of associated phenomena correlated with the FOMs. Then, we complete the ranking table through the factor and phenomenon analyses. (author)

  13. Paradox phenomena of proton exchange membrane fuel cells operating under dead-end anode mode

    Science.gov (United States)

    Jiang, Dong; Zeng, Rong; Wang, Shumao; Jiang, Lijun; Varcoe, John R.

    2014-11-01

    By using two spatially separated reference electrodes in a single cell proton-exchange membrane fuel cell (PEMFC), the individual potentials of the anode and cathode are recorded under realistic operating conditions. The PEMFC is operated under dead-end anode (DEA) mode, without any humidification, to mitigate water accumulation at the anode. Although N2 crossover from cathode to anode may play an important role in PEMFCs operating under DEA mode, our results unexpectedly show that the over-potentials of both the anode and cathode concomitantly increased or decreased at the same time. The increases of over-potentials correlate to the increase of the high frequency resistance of the cell (Rhf) imply that the water content in the membrane electrode assemblies is critical. However, the subsequent H2 depletion tests suggest that water may accumulate at the interface between the surface of the catalyst and the ultrathin perfluorosulfonic acid (PFSA) ionomer film and this contradicts the above (the increase in Rhf implies the drying out of the MEAs). This study highlights the need for further research into understanding the water transport properties of the ultrathin PFSA ionomer film (<60 nm): it is clear that these exhibit completely different properties to that of bulk proton-exchange membranes (PEM).

  14. X-Ray Visualisation Of High Speed Phenomena: Application To The Behavior Of Materials Under High Explosives Loading

    Science.gov (United States)

    Hauducoeur, A.; Fischer, D.; Guix, R.

    1983-08-01

    Flash Radiography and Cineradiography allow the visualisation of high speed phenomena and the stop motion effect with recording on film of qualitative and quantitative data on the dynamic state of the matter under very intense shock waves. In this paper, we present a set of experimental devices and results obtained with a large range of flash X-ray generators : - small generators made with Marx discharge circuits coupled to void X-ray tubes, working up to 2.5 MV, - a big flash machine, GREC (presented at this conference (ref.1))used with very absor-bing materials. The presented applications illustrate a large field of experiments in the field of shock waves, interaction of 2 shock or detonation waves, flow visualisation of detonation, Taylor instabilities/metal jetting, spalling in iron...

  15. EFFECT OF FLUCTUATION OF WETTING AND DRYING PHENOMENA ON SOIL FERTILITY STATUS UNDER RICE CULTIVATION IN WETLAND SOIL IN RWANDA

    Directory of Open Access Journals (Sweden)

    Hamudu Rukangantambara

    2014-01-01

    Full Text Available Since 1980, wetland s in Rwanda have been considered as important areas for agriculture intensification through improving food security and incomes to the farmers. However, changes in the soil nutrient status due to repeatedly wetting and drying phenomena may considerably affect soil fertility status thus leading to low crop productivity of the wetlands. This has consequently created fear to the wetland users especially the local farmers, extension workers and agronomists. The comparative study was conducted to assess the effect of drained and irrigated phenomena at Mamba, Rwasave and Rugeramigozi marshlands on soil fertility change under rice growing. 24 samples were taken with 12 samples under drained and 12 under irrigated areas. The samples were collected randomly from top soil ( 0- 20 cm. The following parameters were quantified; soil pH( H 2O in soil water suspension with ratio 1:2.5; Al exchangeable( 1N Kcl, organic carbon( walkely and black method in Sumner method modified (1984, Total nitrogen kjeldahl (TNK in Bremner modified method, available phosphorus ( bray 1. Bases exchangeable with 1 N ammonium acetate following AAS and CEC and available Fe, Zn, Cu and Mn (DTDA diethylenetriaminepentaacetic acid. Data analyses were processed with GEN STAT version 3. The results showed that the fluctuation of wet and dry water have significantly affected soil fertility status at p= 0,05. The phosphorus and potassium are in the low levels of deficiency 2.32 ppm and 47.72 ppm in irrigated area while crop requirement nutrients are 20 ppm and 200 ppm respectively. And Al is in toxic level conditions, 27.5% in drained area while rice tolerance is 20%. Fe was 641.51 ppm in irrigated area while requirement narrowed to 300 ppm. As conclusion, the soil fertility is low and toxic which constitutes a limitation. The wetland soil in Rwanda should offer opportunities for paddy growing ( rice, etc, if soil fertility factors would be amended by lime for its

  16. Biological factors underlying regularity and chaos in aquatic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 1. Biological factors underlying regularity and chaos in aquatic ecosystems: Simple models of complex dynamics. A B Medvinsky S V Petrovskii D A Tikhonov I A Tikhonova G R Ivanitsky E Venturino H Malchow. Articles Volume 26 Issue 1 March 2001 pp 77-108 ...

  17. Biological phosphorus uptake under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens

    1993-01-01

    Biological phosphorus removal was investigated under anoxic and aerobic conditions. Tests were made to establish whether phosphorus accumulating bacteria can take up phosphate under anoxic conditions and thus utilise nitrate as oxidant. Furthermore, it was tested how the amount of organic matter...... taken up by the phosphorus accumulating bacteria during the anaerobic phase affects the total denitrification rate, as well as the rate at which the phosphorus accumulating bacteria take up phosphate under anoxic conditions. The tests were conducted as batch experiments in 21. reactors with activated...... conditions. There was a linear relationship between the amount of acetate taken up in the anaerobic phase, the denitrification rate and the phosphorus uptake rate....

  18. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  19. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  20. Transport Phenomena.

    Science.gov (United States)

    Shah, D. B.

    1984-01-01

    Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)

  1. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  2. Biology of Dermacentor marginatus (Acari: Ixodidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Darvishi

    2014-02-01

    Full Text Available Objective: To investigate and survey the biology of Dermacentor marginatus (D. marginatus under laboratory conditions. Methods: In this investigation, D. marginatus adult ticks were collected from sheep in Semnan province. Then various developmental stages of D. marginatus including larvae, nymphs and adult males and females under laboratory condition were bred and their biology was scrutinized. Results: The requisite time to complete the life cycle of D. marginatus under controlled laboratory conditions for larvae (26 °C, 75% relative humidity and nymph (26 °C, 95% relative humidity moulting, was on average 92 d (range 75-104 d, including preoviposition and egg incubation (22.5 d, larvae incubation (20.5 d, nymphal stage (28 d along with male maturation (21 d. The index of conversion efficiency and the index of reproduction efficiency in females were 0.397 and 8.300, respectively. Conclusions: Although in this investigation, there was no meaningful correlation between preoviposition period and the weight of female ticks which were laid successfully. The significant linear relationship was fully observed between the weight of engorged female of D. marginatus and the number of eggs laid. The mean of preoviposition period from 5.4 d in autumn to 34.2 d in spring increased. The minimum weight of ticks with laying capacity was 69 mg and lighter ticks (21 mg either did not lay or if they did their eggs did not hatch.

  3. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  4. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    Science.gov (United States)

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  5. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  6. Biology of Triatoma sherlocki (Hemiptera: Reduviidae) Under Laboratory Conditions: Biological Cycle and Resistance to Starvation.

    Science.gov (United States)

    Lima-Neiva, Vanessa; Gonçalves, Teresa C M; Bastos, Leonardo S; Gumiel, Marcia; Correia, Nathália C; Silva, Catia C; Almeida, Carlos E; Costa, Jane

    2017-07-01

    Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira & Barata was described in 2002, based on specimens caught in the wild in the municipality of Gentio do Ouro, Bahia, Brazil. In 2009, nymphs and adults were detected inside homes and sylvatic specimens were positive for Trypanosoma cruzi (Chagas). No information on the bionomics of T. sherlocki exists, although such data are considered essential to estimate its vector and colonization potential in domestic environments. Herein, the biological cycle of T. sherlocki was studied based on 123 eggs, with nymphs and adults fed on Mus musculus (Linnaeus). Nymphal development time phases, number of meals consumed, and stage-specific mortality rates were analyzed. Survival time under starvation conditions was measured between ecdysis and death among 50 nymphs (first to fifth instar) and 50 male and female adults. The median development time from egg to adult was 621.0 (CI: 489-656) d. The number of meals consumed ranged from 1 to 20 for nymphs of the first to fifth instar. The fifth instar showed the greatest resistance to starvation, with a mean of 156.5 d. The high number of meals consumed by T. sherlocki favored infection with and transmission of T. cruzi. The full development of this species under laboratory conditions with a low mortality rate indicates that this vector presents biological characteristics that may contribute to its adaptation to artificial human ecotopes. Its high resistance to starvation emphasizes the importance of entomological surveillance for this species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  8. Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients

    International Nuclear Information System (INIS)

    Rodenbuecher, Christian

    2014-01-01

    Redox-based memristive materials have attracted much attention in the last decade owing to their ability to change the resistance upon application of an electric field making them promising candidates for future non-volatile memories. However, a fundamental understanding of the nature of the resistive switching effect, which is indispensable for designing future technological applications,is still lacking. As a prototype material of a memristive oxide, strontium titanate (SrTiO 3 ) has been investigated intensively and it was revealed that the valence change of a Ti ''d'' electron plays an important role during resistive switching related to insulator-to-metal transition. Such a transition can be induced by electrical gradients, by chemical gradients, by a combination of these gradients or by donor doping. Hence, SrTiO 3 doped with the donor Nb should have metallic properties and is used commonly as a conducting substrate for the growth of functional oxide thin films. Nevertheless,the resistive switching effect has also be observed in Nb-doped SrTiO 3 . This paradoxical situation offers a unique opportunity to gain an insight into the processes during the insulator-to metal transition. In this thesis, a comprehensive study of the influence of external gradients on SrTiO 3 :Nb single crystals is presented. The focus is especially set on the investigation of the crystallographic structure, the chemical composition, the electronic structure, the lattice dynamics and the electronic transport phenomena using surface-sensitive methods on the macro- and nanoscale. On the as-received epi-polished single crystals, the evolution of a surface layer having a slight excess of strontium and - in contrast to the bulk of the material - semiconducting properties are observed. Hence, the key for understanding of the resistive switching effect is the knowledge of the nature of the surface layer. On the basis of systematic studies of the influence of external

  9. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  10. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  11. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    Science.gov (United States)

    Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub

    2017-01-01

    A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Strategic considerations under the Biologics Price Competition and Innovation Act.

    Science.gov (United States)

    Marquardt, John L; Auten, Stephen R

    2013-08-01

    The Biologics Price Competition and Innovation Act provides a pathway for regulatory approval of generic drugs and the associated patent challenge. This article reviews strategic considerations during the patent litigation and injunction phases. Considerations during the initial patent litigation phase include when and whether to exchange a paragraph k application and the listing and exchange of patent information during the volley phase.

  13. Viral immune evasion strategies and the underlying cell biology.

    Science.gov (United States)

    Lorenzo, M E; Ploegh, H L; Tirabassi, R S

    2001-02-01

    Evasion of the immune system by viruses is a well-studied field. It remains a challenge to understand how these viral tactics affect pathogenesis and the viral lifecycle. At the same time, the study of viral proteins involved in immune evasion has helped us to better understand a number of cellular processes at the molecular level. Here we review recent data on different viral tactics for immune evasion and highlight what these viral interventions might teach us about cell biology. Copyright 2001 Academic Press.

  14. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  15. Heat transfer and thermographic analysis of catalyst surface during multiphase phenomena under spray-pulsed conditions for dehydrogenation of cyclohexane over Pt catalysts.

    Science.gov (United States)

    Biniwale, Rajesh B; Kariya, N; Yamashiro, H; Ichikawa, Masaru

    2006-02-23

    Dehydrogenation of cyclohexane over Pt/alumite and Pt/activated carbon catalysts has been carried out for hydrogen storage and supply to fuel cell applications. An unsteady state has been created using spray pulsed injection of cyclohexane over the catalyst surface to facilitate the endothermic reaction to occur efficiently. Higher temperature of the catalyst surface is more favorable for the reaction, thus the heat transfer phenomena and temperature profile under alternate wet and dry conditions created using spray pulsed injection becomes important. IR thermography has been used for monitoring of temperature profile of the catalyst surface simultaneously with product analysis. The heat flux from the plate-type heater to the catalyst has been estimated using a rapid temperature recording and thermocouple arrangement. The estimated heat flux under transient conditions was in the range of 10-15 kW/m(2), which equates the requirement for endothermic reactions to the injection frequency of 0.5 Hz, as used in this study. The analysis of temperature profiles, reaction products over two different supports namely activated carbon cloth and alumite, reveals that the more conductive support such as alumite is more suitable for dehydrogenation of cyclohexane.

  16. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    Maclot, Sylvain

    2014-01-01

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr

  17. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA

    2010-12-01

    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  18. Biologically Driven Differences in Decomposition Dynamics Under Changing Ecosystems (Invited)

    Science.gov (United States)

    Grandy, S.

    2010-12-01

    Predicting the effects of environmental changes on soil organic matter dynamics remains difficult. Here I explore the possibility that differences in decomposition and soil organic matter dynamics are due in part to links between litter decomposition processes, changes in litter chemistry, and variation in decomposer communities. I explored these relationships under three types of ecosystem changes: 1) N enrichment of forest ecosystems; 2) elevated atmospheric carbon dioxide concentrations in forest ecosystems; and 3) agricultural land-use intensification. My overarching hypothesis was that litter mass loss and litter chemistry would vary under different environmental conditions, and those differences would correlate with ecosystem-specific variations in decomposer community structure and function. In three separate field experiments, I found strong evidence that decomposer communities influenced the chemistry of decomposing litter. In a related laboratory study I found that the presence of the oribatid mite Scheloribates moestus Banks (Acari: Oribatida) can substantially change litter decomposition dynamics and the molecular chemistry of decomposing litter. Most current conceptual models estimate changes in litter chemistry over the course of decomposition from initial litter chemistry and the extent of mass loss. These models suggest consistent and predictable changes in the chemical structure of organic matter during decomposition and do not explicitly consider the potential effects of variations in decomposer community structure on decomposition. In contrast, my results show that differences in decomposer communities lead to changes in litter chemistry during decomposition. Accurately predicting management effects on litter chemistry. and thus also soil organic matter dynamics, through time may require accounting for the degree to which variations in decomposer community composition influence organic matter chemistry.

  19. Spectroscopic analysis of biologically synthesized silver nanoparticles under clinorotation

    Science.gov (United States)

    Jagtap, Sagar; Vidyasagar, Pandit; Ghemud, Vipul; Dixit, Jyotsana

    Nanoparticles are one of the hot topics of research due to their size dependent optical, electrical and magnetic properties & their anti-bacterial and anti-fungal nature. Synthesis of nano particles can be done by various physical and chemical methods. However, Biosynthesis of nanoparticles is environment friendly, can take place around room temperature, and require little intervention or input of energy. In the present study, the synthesis of silver nanoparticles (AgNPs) using bacteria and the effect of clinorotation on rate of synthesis is discussed. The freshly grown bacterial isolate was inoculated in to 250-ml Erlenmeyer flask containing 50 ml sterile nutrient broth (LB). The cultured flasks were incubated in a shaker at 120 rpm for 24 h at 370C. Culture was centrifuged at 10,000 rpm for 10 min. The supernatant was used for carrying extracellular production of silver nanoparticles by mixing it with 5mM AgNO3 solution. The above solution was clinorotated at 2 rpm for 24 h. The synthesis was carried out at 60oC. Visual observation was conducted periodically to check for the nanoparticles formation in normal gravity as well as under clinorotation. UV-visible spectroscopic analysis showed that rate of synthesis was faster in case of clinorotated sample than control. Further, the results of FTIR and XRD characterization will be discussed.

  20. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    National Research Council Canada - National Science Library

    Richardson, Aaron W; Eshbaugh, Jonathan P; Hofacre, Kent C; Gardner, Paul D

    2006-01-01

    ...) and biological test aerosols under breather flow rates associated with high work rates. The inert test challenges consisted of solid and oil aerosols having nominal diameters ranging from 0.02...

  1. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    Graaff, de M.; Bijmans, M.F.M.; Abbas, B.; Euverink, G.J.W.; Muyzer, G.; Janssen, A.J.H.

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at

  2. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  3. Mitral valve replacement in patients under 65 years of age: mechanical or biological valves?

    Science.gov (United States)

    Reineke, David C; Heinisch, Paul Philipp; Winkler, Bernhard; Englberger, Lars; Carrel, Thierry P

    2015-03-01

    There is controversy regarding the optimal choice of prosthetic valves in patients less than 65 years of age requiring mitral valve replacement (MVR). Recently, trends for valve replacement are moving towards biological prosthesis also in younger patients, which is justified by the fact that a later valve-in-valve procedure is feasible in the case of degeneration of the tissue valve. This strategy is increasingly recommended in aortic valve surgery but is questionable for MVR. The purpose of this review is to evaluate current guidelines and analyse evidence for biological MVR in patients under 65 years. There are differences between guidelines of the American Heart Association and those of the European Society of Cardiology concerning the choice of prostheses in patients undergoing MVR. Although the European Society of Cardiology recommends a mechanical mitral valve in patients under 65 years of age, the American Heart Association does not provide detailed advice for these patients. Mitral valve replacement with biological valves in patients under 65 years is associated with higher rates of reoperation due to structural valve deterioration. In addition, several studies showed a decreased survival after biological MVR. Evidence for biological MVR in patients less than 65 years without comorbidities or contraindication for oral anticoagulation does not exist. Recommendations for patients less than 65 years of age should not be blurred by current 'en-vogue' methods for promising but not yet proven valve-in-valve strategies.

  4. Access and benefit sharing (ABS) under the convention on biological diversity (CBD): implications for microbial biological control

    Science.gov (United States)

    Researchers and implementers of biological control are confronted with a variety of scientific, regulatory and administrative challenges to their biological control programs. One developing challenge will arise from the implementation of provisions of the Convention on Biological Diversity (CBD) co...

  5. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  6. Immune phenomena in echinoderms.

    Science.gov (United States)

    Gliński, Z; Jarosz, J

    2000-01-01

    Advances in biochemistry and molecular biology have made it possible to identify a number of mechanisms active in the immune phenomena of echinoderms. It is obvious that echinoderms have the ability to distinguish between different foreign objects (pathologically changed tissues, microorganisms, parasites, grafts) and to express variable effector mechanisms which are elicited specifically and repeatably after a variety of non-self challenges. The molecular and biochemical basis for the expression of these variable defense mechanisms and the specific signals which elicit one type of effector mechanism are not, however, yet well known. The high capacity of coelomocytes to phagocytose, entrap and encapsulate invading microorganisms is a valid immune cell-mediated mechanism of echinoderms. The entrapped bacteria, discharged cellular materials and disintegrating granular cells are compacted and provoke the cellular encapsulation reaction. Moreover, humoral-based reactions form an integral part of the echinoderm defense system against microbial invaders. Factors such as lysozyme, perforins (hemolysins) vitellogenin and lectins are normal constituents of hemolymph, while cytokines are synthesized by echinoderms in response to infection.

  7. Crystallization phenomena in slags

    Science.gov (United States)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  8. Global stability analysis and robust design of multi-time-scale biological networks under parametric uncertainties.

    Science.gov (United States)

    Meyer-Baese, Anke; Koshkouei, Ali J; Emmett, Mark R; Goodall, David P

    2009-01-01

    Biological networks are prone to internal parametric fluctuations and external noises. Robustness represents a crucial property of these networks, which militates the effects of internal fluctuations and external noises. In this paper biological networks are formulated as coupled nonlinear differential systems operating at different time-scales under vanishing perturbations. In contrast to previous work viewing biological parametric uncertain systems as perturbations to a known nominal linear system, the perturbed biological system is modeled as nonlinear perturbations to a known nonlinear idealized system and is represented by two time-scales (subsystems). In addition, conditions for the existence of a global uniform attractor of the perturbed biological system are presented. By using an appropriate Lyapunov function for the coupled system, a maximal upper bound for the fast time-scale associated with the fast state is derived. The proposed robust system design principles are potentially applicable to robust biosynthetic network design. Finally, two examples of two important biological networks, a neural network and a gene regulatory network, are presented to illustrate the applicability of the developed theoretical framework.

  9. Numerical identification of secondary buckling phenomena of elastic rectangular plate under pure bending; Tomage wo ukeru dansei kukeiban ni shojiru niji zakutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, M.; Ikeda, K. [Tohoku University, Sendai (Japan). Faculty of Engineering; Wachi, S. [NKK Corp., Tokyo (Japan); Kuranishi, S. [Kanto Gakuin University, Yokohama (Japan)

    1995-07-21

    In this paper, the secondary buckling phenomena of the elastic rectangular plate subject to the pure bending moment are investigated. The bifurcation points are classified numerically based on the determinant of tangential stiffness matrix and of its diagonal blocks obtained by means of the group-theoretic bifurcation theory. By using the sub-matrices within the whole block-diagonalized one, the informations of the instability points and equilibrium paths after bifurcation are easily obtained. The quantitative influence of the initial imperfections are investigated based on the asymptotic laws and the Monte Carlo simulations. 30 refs., 12 figs., 1 tab.

  10. Proceedings of the 1st workshop of 'quantum complex phenomena' under the NIMS-RIKEN-JAEA cooperative research program on quantum beam science and technology

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Fujii, Yasuhiko

    2007-10-01

    The 1st workshop of the NIMS-RIKEN-JAEA Cooperative Research Program on Quantum Beam Science and Technology entitled 'Quantum Complex Phenomena' was held on June 14, 2007 at Center for Computational Science and e-Systems, Japan Atomic Energy Agency. This workshop is aimed to reveal the mechanism of quantum complex phenomena for the developments of next generation functional materials on the basis of the NIMS-RIKEN-JAEA Cooperative Research Program about Quantum Beam Science and Technology. This Cooperative Research Program was concluded on December 20, 2006, in order to lead the research and development of Quantum Beam Technology by the cooperation among RIKEN, NIMS, and JAEA. World top level researchers in addition to the instruments at quantum beam facilities of RIKEN, NIMS, and JAEA are combined to contribute to new innovations with international competence. Along this meaning, this workshop is aimed to introduce own research characteristics for mutual understandings and to discuss starting cooperative research activity for intimate research collaborations. This report includes abstracts and materials of the presentations in the workshop. (author)

  11. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    Science.gov (United States)

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  12. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Casper Nyamukondiwa

    2012-11-01

    Full Text Available The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  13. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    Science.gov (United States)

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  14. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  15. Foundational concepts and underlying theories for majors in "biochemistry and molecular biology".

    Science.gov (United States)

    Tansey, John T; Baird, Teaster; Cox, Michael M; Fox, Kristin M; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3) foundational skills that undergraduate majors in biochemistry and molecular biology must understand to complete their major coursework. Using information gained from these workshops, as well as from the ASBMB accreditation working group and the NSF Vision and Change report, the Core Concepts working group has developed a consensus list of learning outcomes and objectives based on five foundational concepts (evolution, matter and energy transformation, homeostasis, information flow, and macromolecular structure and function) that represent the expected conceptual knowledge base for undergraduate degrees in biochemistry and molecular biology. This consensus will aid biochemistry and molecular biology educators in the development of assessment tools for the new ASBMB recommended curriculum. © 2013 by The International Union of Biochemistry and Molecular Biology.

  16. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  17. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  18. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  19. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  20. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  2. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  3. Integration phenomena Paralympic cyclists

    OpenAIRE

    Diepoldová, Tereza

    2017-01-01

    Title: Integration phenomena Paralympic cyclists. Objectives of work: Try to find integration phenomena in relation to sport training and its impact on selected cyclists with disabilities. Methods: Case report structured interview, data collection method - the method of interrogation. Results: Based on case studies developed a structured interview, we found differences in the integration, which we have divided into phases - before obtaining disability, acclimatization, sports integration. Fur...

  4. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  5. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...... as a visiting professor at BYG.DTU financed by the Larsen and Nielsen Foundation, and is entered to the research database by Kristian Hertz responsible for the visiting professorship....

  6. Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S; Singh, Surender

    2013-01-01

    Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO(4)-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO(4)-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO(4)-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO(4)-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities.

  7. Number size distribution measurements of biological aerosols under contrasting environments and seasons from southern tropical India

    Science.gov (United States)

    Valsan, Aswathy; Cv, Biju; Krishna, Ravi; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2016-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. Though omnipresent, their concentration and composition exhibit large spatial and temporal variations depending up on their sources, land-use, and local meteorology. The Indian tropical region, which constitutes approximately 18% of the world's total population exhibits vast geographical extend and experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the sources, properties and characteristics of biological aerosols are also expected to have significant variations over the Indian subcontinent depending upon the location and seasons. Here we present the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) from two contrasting locations in Southern tropical India measured during contrasting seasons using Ultra Violet Aerodynamic Particle Sizer (UV-APS). Measurements were carried out at a pristine high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) during two contrasting seasons, South-West Monsoon (June-August, 2014) and winter (Jan - Feb, 2015) and in Chennai, a coastal urban area, during July - November 2015. FBAP concentrations at both the locations showed large variability with higher concentrations occurring at Chennai. Apart from regional variations, the FBAP concentrations also exhibited variations over two different seasons under the same environmental condition. In Munnar the FBAP concentration increased by a factor of four from South-West Monsoon to winter season. The average size distribution of FBAP at both

  8. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2017-10-01

    Full Text Available Background/Aims: Mechanical load can regulate disc nucleus pulposus (NP biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Methods: Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively. Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. Results: The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II and NP cell markers (glypican-3, CAXII and keratin-19 compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. Conclusion: N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression.

  11. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  12. MORPHOMETRIC CHARACTERISTIC OF RATS LIVER UNDER PRE-SLAUGHTER STRESS AND USAGE OF BIOLOGICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    Grabovskyi S. S.

    2015-04-01

    Full Text Available We have studied morphometric parameters of rats’ liver under stress conditions using the biologically active substances of plant and animal origin: spleen, Echinacea and Chinese lemon extracts, sprouted grain. Aerosol introduction of spleen extract to the rats feed for five days before slaughter was caused to liver morphological state moderate deviation, indicating the antistressors properties of polyamines contained in this extract. The results of model experiment on rats can be used in research of farm animals for correction of pre-slaughter stress influence and getting the receiving of quality industrial production.

  13. Evaluation of biological attributes of soil type latossol under agroecological production

    Directory of Open Access Journals (Sweden)

    Marisol Rivero Herrada

    2016-10-01

    Full Text Available Biological soil attributes have shown to be good indicators of soil changes as a result of the management function. The aim of this study was to evaluate the effect of using cover crops, as well as planting and tillage systems on the biological attributes of a yellowish red latosol soil. Soil samples were taken at 0 to 0.10 m depth, seven days before the bean harvest. Microbial biomass carbon and nitrogen, basal soil respiration, metabolic ratio and total enzyme activity were evaluated in this study. The best agroecological management was achieved under the association of the ground cover with millet and in direct seeding because they showed higher soil microbial biomass carbon and nitrogen content and lower metabolic quotient, being pork bean the best plant coverage. All biological soil attributes were sensitive to the tillage system, which showed the best results of the total enzyme activity and of the soil metabolic quotient which resulted to be the most efficient.

  14. Biological Control Outcomes Using the Generalist Aphid Predator Aphidoletes aphidimyza under Multi-Prey Conditions

    Directory of Open Access Journals (Sweden)

    Sarah E. Jandricic

    2016-12-01

    Full Text Available The aphidophagous midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae is used in biological control programs against aphids in many crops. Short-term trials with this natural enemy demonstrated that that females prefer to oviposit among aphids colonizing the new growth of plants, leading to differential attack rates for aphid species that differ in their within-plant distributions. Thus, we hypothesized that biological control efficacy could be compromised when more than one aphid species is present. We further hypothesized that control outcomes may be different at different crop stages if aphid species shift their preferred feeding locations. Here, we used greenhouse trials to determine biological control outcomes using A. aphidimyza under multi-prey conditions and at different crop stages. At all plant stages, aphid species had a significant effect on the number of predator eggs laid. More eggs were found on M. persicae versus A. solani-infested plants, since M. persicae consistently colonized plant meristems across plant growth stages. This translated to higher numbers of predatory larvae on M. periscae-infested plants in two out of our three experiments, and more consistent control of this pest (78%–95% control across all stages of plant growth. In contrast, control of A. solani was inconsistent in the presence of M. persicae, with 36%–80% control achieved. An additional experiment demonstrated control of A. solani by A. aphidimyza was significantly greater in the absence of M. persicae than in its presence. Our study illustrates that suitability of a natural enemy for pest control may change over a crop cycle as the position of prey on the plant changes, and that prey preference based on within-plant prey location can negatively influence biological control programs in systems with pest complexes. Careful monitoring of the less-preferred pest and its relative position on the plant is suggested.

  15. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    International Nuclear Information System (INIS)

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions

  16. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  17. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  18. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  19. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  20. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  1. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  2. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    Science.gov (United States)

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  3. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  4. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  5. Cooperative photo-induced effects: from photo-magnetism under continuous irradiation to ultra-fast phenomena - study through optical spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Glijer, D.

    2006-12-01

    The control with ultra-short laser pulses of the collective and concerted transformation of molecules driving a macroscopic state switching on an ultra-fast time scale in solid state opens new prospects in materials science. The goal is to realize at the material level what happens at the molecular level in femto-chemistry. These processes are highly cooperative and highly non-linear, leading to self-amplification and self-organization within the material, a so-called photo-induced phase transition with a new long range order (structural, magnetic, ferroelectric,...). Two families of molecular compounds have been studied here: first of all, spin transition materials changing from a diamagnetic state over to a paramagnetic state under the effect of temperature or under continuous laser excitation. It concerns photo-active molecular bi-stability prototype materials in solid state, whose switching has been studied during X-ray diffraction, optical reflectivity and magnetism experiments. Then we have studied charge-transfer molecular systems, prototype compounds for ultrafast photo-induced phase transitions: insulator-metal, neutral-ionic....As well as ultrafast optical experiments, time-resolved X ray crystallography is a key technique in order to follow at the atomic level the different steps of the photo-induced transformation and thus to observe the involved mechanisms. We have underlined a process of photo-formation of one-dimensional nano-domains of lattice-relaxed charge-transfer excitations, governing the photo-induced phase transition of the molecular charge-transfer complex TTF-CA by the first time-resolved diffuse scattering measurements. Moreover, a new femtosecond laser-plasma source and a optical pump-probe spectroscopy set-up with a highly sensitive detecting system have been developed in this work. The results presented here will be an illustration of the present scientific challenges existing on the one hand with the development of projects of major

  6. Network Reconstruction of Dynamic Biological Systems

    OpenAIRE

    Asadi, Behrang

    2013-01-01

    Inference of network topology from experimental data is a central endeavor in biology, since knowledge of the underlying signaling mechanisms a requirement for understanding biological phenomena. As one of the most important tools in bioinformatics area, development of methods to reconstruct biological networks has attracted remarkable attention in the current decade. Integration of different data types can lead to remarkable improvements in our ability to identify the connectivity of differe...

  7. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  8. N deposition as a threat to the World's protected areas under the Convention on Biological Diversity

    International Nuclear Information System (INIS)

    Bleeker, A.; Hicks, W.K.; Dentener, F.; Galloway, J.; Erisman, J.W.

    2011-01-01

    This paper combines the world's protected areas (PAs) under the Convention on Biological Diversity (CBD), common classification systems of ecosystem conservation status, and current knowledge on ecosystem responses to nitrogen (N) deposition to determine areas most at risk. The results show that 40% (approx. 11% of total area) of PAs currently receive >10 kg N/ha/yr with projections for 2030 indicating that this situation is not expected to change. Furthermore, 950 PAs are projected to receive >30 kg N/ha/yr by 2030 (approx. twice the 2000 number), of which 62 (approx. 11,300 km 2 ) are also Biodiversity Hotspots and G200 ecoregions; with forest and grassland ecosystems in Asia particularly at risk. Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide. Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Highlights: → Significant areas of the Protected Areas Programme under the CBD will likely be under threat of high N deposition levels by the year 2030.→ Approx. 950 PAs are projected to receive N deposition levels of more than 30 kg N/ha/yr by 2030.→ 62 of these sites are also Biodiversity Hotspots and G200 ecoregions, where forest and grassland ecosystems in Asia will be particularly at risk.→ Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide → Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Significant areas of the UNEP Protected Areas Programme under the CBD receive high N deposition rates that are likely to increase in the future, especially in Asia, and may pose a significant threat to biodiversity.

  9. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  10. Transport phenomena in nanofluidics

    OpenAIRE

    Schoch, Reto Bruno; Han, J.; Renaud, Philippe

    2008-01-01

    Transport of fluid in and around nanometer-sized objects with at least one characteristic dimension below 100 nm renders possible phenomena that are not accessible at bigger length scales. This research field is termed nanofluidics and received its name only recently, but the roots in science and technology are broad. Nanofluidics has experienced a big growth during the last few years, confirmed by significant scientific and practical achievements. This review focuses on physical proper...

  11. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  12. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  14. 19th International Conference on Ultrafast Phenomena

    CERN Document Server

    Cundiff, Steven; Vivie-Riedle, Regina; Kuwata-Gonokami, Makoto; DiMauro, Louis

    2015-01-01

    This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  15. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    Science.gov (United States)

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  16. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  17. Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments

    Science.gov (United States)

    Wong, Les

    2015-01-01

    Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and

  18. Evolutionary phenomena in galaxies

    International Nuclear Information System (INIS)

    Beckman, J.E.; Pagel, B.E.J.

    1989-01-01

    This book reviews the subject of evolutionary phenomena in galaxies, bringing together contributions by experts on all the relevant physics and astrophysics necessary to understand galaxies and how they work. The book is based on the proceedings of a conference held in July 1988 in Puerto de la Cruz, Tenerife which was timed to coincide with the first year of operation of the 4.2 m William Herschel Telescope. The broad topics covered include formation of galaxies and their ages, stellar dynamics, galactic scale gas and its role in star formation and the production and distribution of the chemical elements within galaxies. (author)

  19. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  20. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  1. Crystallography and Magnetic Phenomena

    Directory of Open Access Journals (Sweden)

    Vojtěch Kopský

    2015-02-01

    Full Text Available This essay describes the development of groups used for the specification of symmetries from ordinary and magnetic point groups to Fedorov and magnetic space groups, as well as other varieties of groups useful in the study of symmetric objects. In particular, we consider the problem of some incorrectness in Vol. A of the International Tables for Crystallography. Some results of tensor calculus are presented in connection with magnetoelectric phenomena, where we demonstrate the use of Ascher’s trinities and Opechowski’s magic relations and their connection. Specific tensor decomposition calculations on the grounds of Clebsch Gordan products are illustrated.

  2. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  3. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    International Nuclear Information System (INIS)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G

    2011-01-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  4. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Science.gov (United States)

    Morales-Bonilla, S.; Torres-Torres, C.; Urriolagoitia-Sosa, G.; Hernández-Gómez, L. H.; Urriolagoitia-Calderón, G.

    2011-07-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  5. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    Science.gov (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  6. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  7. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  8. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  9. Transport phenomena in nanoporous materials.

    Science.gov (United States)

    Kärger, Jörg

    2015-01-12

    Diffusion, that is, the irregular movement of atoms and molecules, is a universal phenomenon of mass transfer occurring in all states of matter. It is of equal importance for fundamental research and technological applications. The present review deals with the challenges of the reliable observation of these phenomena in nanoporous materials. Starting with a survey of the different variants of diffusion measurement, it highlights the potentials of "microscopic" techniques, notably the pulsed field gradient (PFG) technique of NMR and the techniques of microimaging by interference microscopy (IFM) and IR microscopy (IRM). Considering ensembles of guest molecules, these techniques are able to directly record mass transfer phenomena over distances of typically micrometers. Their concerted application has given rise to the clarification of long-standing discrepancies, notably between microscopic equilibrium and macroscopic non-equilibrium measurements, and to a wealth of new information about molecular transport under confinement, hitherto often inaccessible and sometimes even unimaginable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    Directory of Open Access Journals (Sweden)

    Nisar A. Bhat

    2017-09-01

    Full Text Available Mobilization of unavailable phosphorus (P to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max -wheat (Triticum aestivum crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings

  11. The Biology and some Population Parameters of the Grasshopper, Ronderosia bergi, Under Laboratory Conditions

    Science.gov (United States)

    Mariottini, Yanina; de Wysiecki, Maria Laura; Lange, Carlos

    2010-01-01

    Some biological and population parameters of Ronderosia bergi (Stål) (Orthoptera: Acrididae: Melanoplinae) were estimated by monitoring five cohorts of the first generation (F1) of individuals born in captivity from grasshoppers collected in the South of Misiones province, northeastern Argentina, and held under controlled conditions (30° C, 14:10 L:D, 40% RH). The mean embryonic development time was 40.6 ± 1.7 days. Five nymphal instars were recorded. Total duration of nymphal development was 30.8 ± 0.54 days. The mean lifespan of cohorts was 22.6 ± 0.7 weeks. The number of egg-pods per female was 7.6 ± 1.44, and the amount of eggs per egg-pod was 16.45 ± 0.85. Mean fecundity was 125 ± 5.83 eggs per female with an oviposition rate of 1.55 ± 0.57 eggs/female/day. Survivorship curves showed that mortality was concentrated in the final weeks of adulthood, and the life expectancy curve decreased accordingly. The population parameters estimated gave the following values: the net rate of reproduction (R0) was 46.75 ± 11.2, generation time (T) was 18.87 ± 1.67 weeks, duplication time (D) was 3.31 ± 0.34, the intrinsic rate of population growth (rm) was 0.21 ± 0.021 and the finite rate of population increase (λ) was 1.24 ± 0.026. The reproductive values (Vx) indicated that the largest contribution of females to the subsequent generation was between weeks 15 and 25. PMID:20673116

  12. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  13. THE STUDY OF THE BIOLOGICAL PROPERTIES OF PROBIOTIC LACTOBACILLUS SPP. STRAINS UNDER AEROBIC AND MICROAEROPHILIC CULTIVATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Babych E.M.

    2014-01-01

    Full Text Available The biological properties (growth characteristics, adhesive activity and sensitivity to antimicrobial of probiotic Lactobacillus strains were studied under different gas composition of incubation atmosphere. It was found that the number of viable lactobacilli cells in the one dose of investigated probiotic preparations was lower than it was claimed by the manufacturer. Gas composition of incubation atmosphere affects cell viability of probiotic strains. The number of colony forming units of lactobacilli under microaerophilic conditions increased in 1,19-1,33 times as compared with aerobic conditions. It was proved that adhesive activity of probiotic Lactobacillus strains and sensitivity to 2th, 3th, 4th generations of cephalosporins (cefuroxime, cefotaxime, cefepime and tetracyclines (doxycycline also increased under microaerophilic conditions. The changes of the biological properties of lactobacilli under different cultivation conditions require further study for optimization of correction of dysbiotic disorders.

  14. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    Science.gov (United States)

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  15. 78 FR 74218 - Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and...

    Science.gov (United States)

    2013-12-10

    ... DEPARTMENT OF STATE [Public Notice 8545] Imposition of Additional Sanctions on Syria Under the... determination was made that the Government of Syria used chemical weapons in violation of international law or... sanctions against the Government of Syria. Section 307(b) of the Chemical and Biological Weapons Control and...

  16. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  17. 3Wave propagation in rock samples under medium and low temperature conditions. Characteristics of methane hydrate-BSR phenomena; Chu teion ryoiki ni okeru ganseki shiryo no hado denpa tokusei. 1. Methane hydrate BSR gensho no kosatsu suitei

    Energy Technology Data Exchange (ETDEWEB)

    Rokugawa, S.; Kato, Y.; Matsushima, J.; Sano, A. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-10-22

    In relation to sea-bottom pseudo reflection face and methane hydrate in seismic exploration records, fundamental experimental studies have been made. In order to get a handhold to elucidate phenomena accompanying methane hydrate, the studies have investigated wave propagation behavior of rock samples and sandy sediments under medium and low temperature conditions. The experiments have used a constant-temperature cooling water circulating equipment to control temperatures of each sample. The samples were placed in a cooler box with the vibration transmitter and receiver fixedly installed, and changes of the waves against temperature change were measured. Sand-stones and two kinds of tuffs were used as rock samples for the measurement. Artificial sand sample soaked in water was used as a substitute for a methane hydrate layer. As a result of the experiments, the relation between the hydrate layer and the gas layer was comprehended. In addition, the blanking phenomenon was thought occurring as a result of the nearly whole substance presenting the speed of ice due to freezing of the sediments, rather than by what is described in the ground homogeneousness theory. 5 refs., 9 figs.

  18. Regio-controlled hydrogen-deuterium exchange of biologically important indoles under uv irradiation

    International Nuclear Information System (INIS)

    Saito, Isao; Muramatsu, Shigeru; Sugiyama, Hiroshi; Yamamoto, Akihiro; Matsuura, Teruo

    1985-01-01

    Photochemical hydrogen-deuterium exchange reaction of biologically important indoles is reported. The regioselectivity of the photodeuteration was found to be controlled by the ammonium group of the side chain. (author)

  19. Biological nitrogen fixation in mung bean under stress environment (acid soils)

    International Nuclear Information System (INIS)

    Rosales, C.M.; Grafia, A.O.; Rivera, F.G.

    1996-01-01

    Our previous studies in biological nitrogen fixation by different mung bean varieties showed the 15 N isotope dilution technique proved to be useful and reliable im measuring the amount of N 2 fixed. These studies were done in nearly neutral soil pH. But since acid soils in the Philippines are widely distributed which comprises about 56 percent of the total land area of the country, this prompted us to conduct studies in this kind of soil to help the farmers in the hilly lands and marginal lands. A preliminary pot experiment was first conducted to determine what are limiting factors/elements in mung bean production in an acid soil. Field experiment followed to verify and implement our results. It was conducted at the National Research Center, Bureau of Soils and Water Management (BSWM), Cuyambay, Tanay, Rizal, 73 kms. northeast of Manila to determine the N 2 fixation and yield performance of 3 mung bean varieties grown under stress environment (acid soils) using isotope dilution technique. PAEC (Philippine Atomic Energy Agency) 3 mung bean variety responded better to phosphorous (P) application compared with neither NIAB 92 or M79-25-106. From a mean seed yield of only 50 kg/ha without lime and P, PAEC 3 further increased its yield to 523 kg/ha with the application of both P and lime. The dry matter yields of three mung bean varieties responded well with P application than lime. Without lime or P, the dry matter yield was only 287 kg/ha. The addition increased the dry matter yield to 533 kg/ha. Both P and lime added dry matter yield further increased to 1359 kg/ha. N 2 fixation increased slightly with the application of lime. With both lime and phosphorous, N 2 fixation increased further. M79-25-106 fixed the highest amount of nitrogen (23.56 kg/ha) while PAEC 3 and NIAB 92 fixed only about 18.8 and 18.67 kg/ha respectively. (author)

  20. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  1. High rate of serious infection in juvenile idiopathic arthritis patients under biologic therapy in a real-life setting.

    Science.gov (United States)

    Brunelli, Juliana Barbosa; Schmidt, Ana Renata; Sallum, Adriana Maluf Elias; Goldenstein-Schainberg, Claudia; Bonfá, Eloisa; Silva, Clovis A; Aikawa, Nádia Emi

    2018-03-01

    To assess the rate of serious and/or opportunistic infections in juvenile idiopathic arthritis (JIA) patients from a single tertiary center under biologic therapy and to identify possible risk factors associated to these complications. A total of 107 JIA patients followed at the biologic therapy center of our tertiary university hospital using a standardized electronic database protocol including demographic data, clinical and laboratorial findings and treatment at baseline and at the moment of infection. Opportunistic infections included tuberculosis, herpes zoster and systemic mycosis. A total of 398 patient-yrs(py) were included. The median time of biologic exposure was 3.0 years (0.15-11.5). We observed 35 serious/opportunistic infectious events in 27 (25%) patients: 31(88.6%) were serious infections and four (11.4%) opportunistic infections. Serious/opportunistic infections rates were 10.6/100py for ETN, 10.9/100py for ADA, 2.6/100py for ABA and 14.8/100py for TCZ. Comparison of 27 patients with and 80 without infection showed a higher frequency of systemic-onset JIA, lower age at biologic therapy initiation and a history of previous serious infection (p biologic therapy in a real-life setting. Systemic-onset JIA, lower age at biologic therapy start and history of previous serious infections were important risk factors for these complications. Also, higher rates of severe infections comparing to the former studies was possibly due to elevated MTX doses in our patients.

  2. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  3. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  4. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  5. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  6. Terminology of allergic phenomena.

    Science.gov (United States)

    Ring, Johannes

    2014-01-01

    Over the last 2,000 years a variety of terms have been used for the description of phenomena possibly related to allergy. Many have been forgotten, while some of them have remained. In Greco-Roman literature the term 'idiosyncrasy' was used to describe an individual characterization of a health condition, possibly comparable to 'constitution'. The same term was also used to describe individual reaction patterns, and the term 'antipathy' was used in a similar sense. 'Hypersensitivity' originated from the German word 'Überempfindlichkeit' and was first used in a medical sense by Emil von Behring when he described untoward reactions to his antitoxin containing serum therapy. 'Anaphylaxis' was coined by Richet and Portier to describe the new phenomenon of a life-threatening general pathogenic reaction after repeated injection of antigen. In 1906, Clemens von Pirquet introduced the term 'allergy' in order to bring more clarity to the confusing debate regarding protective and harmful immunity. In order to characterize the familial occurrence of hypersensitivity reactions such as asthma, hay fever and others, the American allergists A.F. Coca and R.A. Cooke introduced the term 'atopy'. Contrary to anaphylaxis, which was experimentally induced, this type of 'hypersensitiveness' occurred spontaneously. The nature of the pathogenic factor was called the 'atopic reagin' and was found to be transferable with serum by Prausnitz and Küstner. After the detection of immunoglobulin (Ig) E as the carrier of this type of hypersensitivity, the term 'atopy' gained a new sense, since IgE is a characteristic - yet not exclusive - parameter of the so-called atopic diseases. Clinically similar diseases such as asthma, rhinoconjunctivitis or eczema can be found in the absence of IgE, and are then called 'intrinsic' variants of the same disease. © 2014 S. Karger AG, Basel.

  7. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  8. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    A few billion years of evolutionary time and the complex process of 'selection' has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, ...

  9. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature. Keywords. Condensed matter physics; magnetic crystals in biology; excitons and photosynthesis. PACS Nos 87.10. ..... Figure 1. Schematic diagram of the light harvesting complex containing LH1 and.

  10. Transport Phenomena in Gel

    OpenAIRE

    Masayuki Tokita

    2016-01-01

    Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilu...

  11. Using biological effects tools to define Good Environmental Status under the Marine Strategy Framework Directive

    NARCIS (Netherlands)

    Lyons, B.P.; Thain, J.E.; Hylland, K.; Davis, I.; Vethaak, A.D.

    2010-01-01

    The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status

  12. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.

    2016-01-01

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S,

  13. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  14. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    OpenAIRE

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such oppor...

  15. Nutrient cycling and soil biology in row crop systems under intensive tillage

    Science.gov (United States)

    Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface so...

  16. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  17. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  18. Surface Phenomena at Silver Nanoparticles in the Context of Toxicology

    DEFF Research Database (Denmark)

    Miclaus, Teodora

    2015-01-01

    is also observed in the third study, where transformation form metallic to sulphur-bound monovalent silver is shown inside cells. Ag nanoparticles are shown to dissolve much more rapidly inside cells than in cell culture medium and the ions are thought to bind to sulphur-containing proteins, disrupting...... associated with engineered nanomaterials. Among these materials, silver nanoparticles are some of the most widely employed and thus represent a major point of focus in nanotoxicology and the topic of this PhD thesis. While nanoparticles have, upon synthesis, well-defined characteristics, specific...... of nanotoxicology. The main aim of this PhD research is to investigate these phenomena at the surface of silver nanoparticles under conditions that are relevant for in vitro studies in order to understand their implications for nano-silver toxicity. Upon contact with biological fluids, particles get coated...

  19. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  20. Teaching Optical Phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  1. Interfacial Transport Phenomena (Second edition)

    NARCIS (Netherlands)

    Slattery, J.C.; Sagis, L.M.C.; Oh, E.S.

    2007-01-01

    Gives a presentation of transport phenomena or continuum mechanics focused on momentum, energy, and mass transfer at interfaces. This work includes a discussion of transport phenomena at common lines or three-phase lines of contact, and a theory for the extension of continuum mechanics to the

  2. [Biological properties of lateritic red soil and their relationships with soil fertility in Southern China under different land use types].

    Science.gov (United States)

    Zhang, Jing; Gao, Yun-Hua; Zhang, Chi; Zhou, Bo; Li, Jing-Juan; Yang, Xiao-Xue; Xu, Huan; Dai, Jun

    2013-12-01

    Taking the lateritic red soil on a typical slopeland in Southern China as test object, this paper studied the soil microbial properties, enzyme activities, and their relationships with soil fertility under four land use types (newly cultivated dryland, shrub land, Eucalyptus land, and orchard). There existed significant differences in the soil biological properties under different land use types, among which, orchard soil had the highest microbial quantity and enzyme activities, newly cultivated dryland soil had the fastest soil respiration rate, the fewest soil microorganism quantity, and the lowest enzyme activities, whereas shrub land and woodland soils had the biological properties ranged between newly cultivated dryland and orchard soils, and there was a high similarity in the biological properties between shrub land and woodland soils. Under different land use types, the soil microbial quantity and enzyme activities were positively correlated with soil organic carbon and most of the soil nutrients. It was suggested the soils with high soil organic matter content and high fertility level were beneficial to the soil microbial growth and enzyme activities.

  3. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  4. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    Science.gov (United States)

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  5. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  6. Identification of key processes underlying cancer phenotypes using biologic pathway analysis.

    Directory of Open Access Journals (Sweden)

    Sol Efroni

    2007-05-01

    Full Text Available Cancer is recognized to be a family of gene-based diseases whose causes are to be found in disruptions of basic biologic processes. An increasingly deep catalogue of canonical networks details the specific molecular interaction of genes and their products. However, mapping of disease phenotypes to alterations of these networks of interactions is accomplished indirectly and non-systematically. Here we objectively identify pathways associated with malignancy, staging, and outcome in cancer through application of an analytic approach that systematically evaluates differences in the activity and consistency of interactions within canonical biologic processes. Using large collections of publicly accessible genome-wide gene expression, we identify small, common sets of pathways - Trka Receptor, Apoptosis response to DNA Damage, Ceramide, Telomerase, CD40L and Calcineurin - whose differences robustly distinguish diverse tumor types from corresponding normal samples, predict tumor grade, and distinguish phenotypes such as estrogen receptor status and p53 mutation state. Pathways identified through this analysis perform as well or better than phenotypes used in the original studies in predicting cancer outcome. This approach provides a means to use genome-wide characterizations to map key biological processes to important clinical features in disease.

  7. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Directory of Open Access Journals (Sweden)

    Daniel Z Grunspan

    Full Text Available Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  8. Quality of life of patients with rheumatoid arthritis under biological therapy

    Directory of Open Access Journals (Sweden)

    Amanda Figueiredo Barbosa Azevedo

    2015-04-01

    Full Text Available Summary Objective: assessing health-related quality of life (HRQL in patients with rheumatoid arthritis (RA, before and after treatment with biological therapy. Methods: a longitudinal study, conducted from November 2010 to September 2011, with implementation of the instruments HAQ II (health assessment questionnaire and SF-36 (medical outcomes short-from health survey. Barlett test, Anova, Friedman and paired t-test were performed for multiple extracts. Results: 30 patients were evaluated, mean age of 47.6 (SD: 12.25 years and prevalence of females (90%. The mean score of HAQ II before treatment was 1.97, with significant reduction of up to 1.23 after six months of biological therapy (p<0.01. Most of the SF-36 domains showed significant improvement after six months of treatment (p<0.01, highlighting the social aspects, pain, physical functioning, emotional issues, vitality and physical aspects. Conclusion: the use of biologic therapy in patients with RA refractory to standard therapies proved to be an important pharmacological strategy for improving HRQL.

  9. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Science.gov (United States)

    Grunspan, Daniel Z; Eddy, Sarah L; Brownell, Sara E; Wiggins, Benjamin L; Crowe, Alison J; Goodreau, Steven M

    2016-01-01

    Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  10. Measuring enzyme activities under standardized in vivo-like conditions for Systems Biology

    NARCIS (Netherlands)

    van Eunen, K.; Bouwman, J.; Daran-Lapujade, P.A.L.; Postmus, J.; Canelas, A.; Mensonides, F.I.C.; Orij, R.; Tuzun, I.; van der Brink, J.; Smits, G.J.; van Gulik, W.M.; Brul, S.; Heijnen, J.J.; de Winde, J.H.; Teixeira de Mattos, M.J.; Kettner, C.; Nielsen, J.; Westerhoff, H.V.; Bakker, B.M.

    2010-01-01

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  11. Measuring enzyme activities under standardized in vivo-like conditions for systems biology

    NARCIS (Netherlands)

    van Eunen, Karen; Bouwman, Jildau; Daran-Lapujade, Pascale; Postmus, Jarne; Canelas, Andre B.; Mensonides, Femke I. C.; Orij, Rick; Tuzun, Isil; van den Brink, Joost; Smits, Gertien J.; van Gulik, Walter M.; Brul, Stanley; de Winde, Johannes H.; de Mattos, M. J. Teixeira; Kettner, Carsten; Nielsen, Jens; Westerhoff, Hans V.; Bakker, Barbara M.; Heijnen, J.J.

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  12. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  13. Micro transport phenomena during boiling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaofeng [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering and Science

    2010-07-01

    ''Micro Transport Phenomena During Boiling'' reviews the new achievements and contributions in recent investigations at microscale. The content mainly includes (i) fundamentals for conducting investigations of micro boiling, (ii) microscale boiling and transport phenomena, (iii) boiling characteristics at microscale, (iv) some important applications of micro boiling transport phenomena. This book is intended for researchers and engineers in the field of micro energy systems, electronic cooling, and thermal management in various compact devices/systems at high heat removal and/or heat dissipation. (orig.)

  14. Opto-mechanical coupling in interfaces under static and propagative conditions and its biological implications.

    Science.gov (United States)

    Shrivastava, Shamit; Schneider, Matthias F

    2013-01-01

    Fluorescent dyes are vital for studying static and dynamic patterns and pattern formation in cell biology. Emission properties of the dyes incorporated in a biological interface are known to be sensitive to their local environment. We report that the fluorescence intensity of dye molecules embedded in lipid interfaces is indeed a thermodynamic observable of the system. Opto-mechanical coupling of lipid-dye system was measured as a function of the thermodynamic state of the interface. The corresponding state diagrams quantify the thermodynamic coupling between intensity I and lateral pressure π. We further demonstrate that the coupling is conserved upon varying the temperature T. Notably, the observed opto-mechanical coupling is not limited to equilibrium conditions, but also holds for propagating pressure pulses. The non-equilibrium data show, that fluorescence is especially sensitive to dynamic changes in state such as the LE-LC phase transition. We conclude that variations in the thermodynamic state (here π and T, in general pH, membrane potential V, etc also) of lipid membranes are capable of controlling fluorescence intensity. Therefore, interfacial thermodynamic state diagrams of I should be obtained for a proper interpretation of intensity data.

  15. Opto-mechanical coupling in interfaces under static and propagative conditions and its biological implications.

    Directory of Open Access Journals (Sweden)

    Shamit Shrivastava

    Full Text Available Fluorescent dyes are vital for studying static and dynamic patterns and pattern formation in cell biology. Emission properties of the dyes incorporated in a biological interface are known to be sensitive to their local environment. We report that the fluorescence intensity of dye molecules embedded in lipid interfaces is indeed a thermodynamic observable of the system. Opto-mechanical coupling of lipid-dye system was measured as a function of the thermodynamic state of the interface. The corresponding state diagrams quantify the thermodynamic coupling between intensity I and lateral pressure π. We further demonstrate that the coupling is conserved upon varying the temperature T. Notably, the observed opto-mechanical coupling is not limited to equilibrium conditions, but also holds for propagating pressure pulses. The non-equilibrium data show, that fluorescence is especially sensitive to dynamic changes in state such as the LE-LC phase transition. We conclude that variations in the thermodynamic state (here π and T, in general pH, membrane potential V, etc also of lipid membranes are capable of controlling fluorescence intensity. Therefore, interfacial thermodynamic state diagrams of I should be obtained for a proper interpretation of intensity data.

  16. Fibromyalgia and chronic fatigue: the underlying biology and related theoretical issues.

    Science.gov (United States)

    Romano, Graziella F; Tomassi, Simona; Russell, Alice; Mondelli, Valeria; Pariante, Carmine M

    2015-01-01

    There is an increasing interest in understanding the biological mechanism underpinning fibromyalgia (FM) and chronic fatigue syndrome (CFS). Despite the presence of mixed findings in this area, a few biological systems have been consistently involved, and the increasing number of studies in the field is encouraging. This chapter will focus on inflammatory and oxidative stress pathways and on the neuroendocrine system, which have been more commonly examined. Chronic inflammation, together with raised levels of oxidative stress and mitochondrial dysfunction, has been increasingly associated with the manifestation of symptoms such as pain, fatigue, impaired memory, and depression, which largely characterise at least some patients suffering from CFS and FM. Furthermore, the presence of blunted hypothalamic-pituitary-adrenal axis activity, with reduced cortisol secretion both at baseline and in response to stimulation tests, suggests a role for the hypothalamic-pituitary-adrenal axis and cortisol in the pathogenesis of these syndromes. However, to what extent these systems' abnormalities could be considered as primary or secondary factors causing FM and CFS has yet to be clarified. © 2015 S. Karger AG, Basel.

  17. [Rome: capital of an empire under the banner of political biology (1936-1942)].

    Science.gov (United States)

    Vallejo, Gustavo

    2012-01-01

    This paper analyzes the symbolic conformation of Rome and Romanism as important factors in the affirmation of the power of fascism, especially after the proclamation of the Empire in 1936. Within this framework, it explores the role of science in legitimizing the direct correlation of this symbolic universe with a praxis that exalted racial superiority inherited from Ancient Rome. It investigates the links between the eugenic discourse and the exercise of power behind the "biology policy", including fascist organicism and racism. In fact, Rome was the essence of an empire that was reborn after fifteen centuries and, between its historical legacy and the new scenarios created by fascism for disciplining the population, Romanism had to condense all of the merits of the race, encouraging military conquests and promoting responsibility for maintaining racial purity and avoiding "unwanted miscegenation" with conquered peoples. The idea of Romanism also encouraged a continuation of the persecution of Jews started in Germany. Hence, science ratified a widespread idea of the Romanization as a crusade to impose a force, exaggerated on racial grounds, which integrated confidence in environmental factors with a crude biological determinism.

  18. Physiological and Molecular Changes in Various Biological Organisms Cultured under Simulated Microgravity Conditions

    Science.gov (United States)

    Udave, Ceasar

    2017-01-01

    Microgravity is one of the most import factors in space flight where its impact on living biological organisms is concerned. Many different ailments have been reported in astronauts such as spaceflight related osteopenia, cardiovascular concerns, and loss of eye sight. In order to understand why µg causes these issues we must understand what is happening at the most basic of biological structures, the cell. The work done in this report is a culmination of contributions made to a much larger project. The project seeks to understand how cellular physiology is changing in SMG conditions and use this knowledge to feed into a follow-up study on the genetic changes that are seen in SMG environments. Cells were imaged using confocal microscopy after 20hrs and 48hrs in a 3D clinostat called the Gravite. Lengths, widths, heights, and total cell areas were measured using an image analysis software package ImageJ. There were significant differences in lengths and widths of cell nuclei, and total area of cell coverage. The report then discusses some of the problems with the testing apparatus and how 3D printing technology may be used to create better sample holders for the 3D clinostat.

  19. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  20. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  1. Mesoscopic phenomena in solids

    CERN Document Server

    Altshuler, BL; Webb, RA

    1991-01-01

    The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.

  2. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  3. Biological parameters of Amblyomma coelebs Neumann, 1906 (Acari: Ixodidae under experimental conditions

    Directory of Open Access Journals (Sweden)

    André de Abreu Rangel Aguirre

    2018-02-01

    Full Text Available Abstract One generation of Amblyomma coelebs life cycle under experimental conditions was evaluated. Ten tick pairs were allowed to feed on rabbits under laboratory conditions (LC, resulting six engorged females with a mean weight of 1,403.9 mg. Two females were maintained in a forest reserve under natural conditions (NC, and four were maintained in incubators (LC. The engorgement period lasted 10.33 days. Pre-oviposition periods were 10.75 (NC and 22 days (LC. The mean egg-mass weight was 514.76 mg, and the blood meal conversion index was 36.67% (LC. Incubation period under NC and LC were 91 and 56.33 days and hatching rates were 50% and 28.33%, respectively. Larval engorgement period ranged from 4 to 10 days, with average weight of 1.1 mg. Engorged larvae were incubated under NC and LC, with a premolt period of 27 to 36 days and molting rate of 7.1% and 28.7%, respectively. Nymphal engorgement period ranged from 5 to 7 days, with a mean weight of 18.8 mg and a recovery rate of 54.54%. In LC, the ecdysis mean period was 24.5 days, and molting rate was 44.44%, resulting in 24 adult A. coelebs. Our results show a life cycle of 187.45 (NC and 149 (LC days.

  4. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  5. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  6. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration.

    Science.gov (United States)

    van der Stijl, Rogier; Withoff, Sebo; Verbeek, Dineke S

    2017-12-01

    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nonlinear chiral transport phenomena

    Science.gov (United States)

    Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki

    2016-06-01

    We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.

  8. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  9. Unified Treatise of Phenomena of Seismic Fusion-Fission Under Seismonomy in the Light of Monistic Weltanschauung: the Doctrine of Dynamics Monism With Implication to the Earthquake Source Physics}

    Science.gov (United States)

    Zaurov, D.

    2006-12-01

    Established profoundly new conceptual framework by the five postulates of seismonomy, enables unified treatise of processes such as dynamic structural devastation, seismic blowing up of mount ridges, collision physics, meteorite impact cratering, and seismic global faulting with insight into the earthquake source physics. Hence, by establishing the parametric method of identification of natural modes and then Parametric Scan- Window Observation of Dynamic Responses (PSW-method), it becomes possible to obtain crucial field data. Thus, earth-dam dynamics data revealed an essential non-stationarity of dam's dynamic characteristics throughout earthquakes, the effect of stochastic alternation of the locally-stationary modal states with the discrete characteristics of their spectral distribution. At this point, in the course of other, separate line of far beyond lasting quest concerning metaphysical constituents of matter, and then constitutive relation between excited modal oscillation of structures and causal pattern of their fracture, the results of such analysis, resuming obscurity of the well known jaggedness of observing earthquake spectra, were illuminated and perceived. It was succeeded, on the one hand, to establish unitary conceptualized framework of seismic records analysis consisting both the PSW- and spectral- analysis, which reformulated to be a statistical representation complementary to PSW-method, and, on the other hand, to realize genesis of the doctrine of dynamics monism consisting concepts of both: fission-fusion dynamics and dynamics coherentism as an inspiration of the paradigm of seismic fusion-fission phenomena. Global faulting originating straight plane faults, which often stretch through large scale substantially inhomogeneous volumes, are, uncontestably, the result of dynamics fission, the first step of dynamics binary division of an emerged geoseismoid onto two secondary seismoids with a potential, occasionally stretched rupture plane. That

  10. Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.

    Science.gov (United States)

    Riveline, Daniel; Kruse, Karsten

    2017-08-01

    Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. ACTIVITY OF LICHENS UNDER THE INFLUENCE OF SNOW AND ICE (18th Symposium on Polar Biology)

    OpenAIRE

    Ludger, KAPPEN; Burkhard, SCHROETER

    1997-01-01

    A major aim of our investigations is to explain the adaptation of vegetation to the peculiar environmental conditions in polar regions. Our concept describes the main limiting and favorable factors influencing photosynthetic production of cryptogams, mainly lichens. Snow and ice-usually stress factors to the activity of plants-can be effectively used by lichens because of their poikilohydrous nature. Light, the basic driving force for photosynthetic activity, may be deleterious under certain ...

  12. Biological properties of Majnnthemum bifolium (L. F. W. Schm. polycormones under various ecological conditions

    Directory of Open Access Journals (Sweden)

    Bożena Czarnecka

    2014-01-01

    Full Text Available Majanthemum bifolium (L. F. W. Schm. populations exhibit a two-level organisation. Individuals in the biological sense (polycormones consists of a number of basic units-above-ground shoots joined by durable rhizomes. The role of the individual in the population and plant community depends on its age, size and individual area which is the exponent of the number and biomass of the produced organs. It is considered that there exist both intra- and interpopulation differences in the number of above-ground shoots and length of rhizomes as well as in the structure of the developmental phases and age states of the above- and underground parts of the polycormones. In all populations the greater part of the biomass falls to underground organs. A more favourable ratio of shoot biomass to that of rhizomes is, however, found in the polycormones of Dentario glandulosae-Fagetum and Carici elongatae-Alnetum where the presence of nitrogen in nitrate form was disclosed. With increase of participation of young age classes of shoots more of the total biomass falls to the above-ground parts.

  13. Biology of Anicla infecta (Ochsenheimer, 1816 (Lepidoptera, Noctuidae, Noctuinae, under laboratory conditions

    Directory of Open Access Journals (Sweden)

    J. A. TESTON

    Full Text Available Larvae of Anicla infecta (Ochsenheimer, 1816 (Noctuidae feed upon many grasses and may be harmful to cereals and fodder of economic importance. This study was developed aiming to contribute to knowledge of the biology of this species. The rearing was done in an environmental chamber with the following settings: temperature of 25 ± 1ºC; relative humidity of 70% ± 10%, and photoperiod of L14: D10. The larvae fed on ryegrass, Lolium multiflorum Lam. The results express the mean and standard error for the length of every stage in days. For each stage we observed the following time of development: egg 3.2 ± 0.09; larvae 18.7 ± 0.07; pre-pupae 3.3 ± 0.04; pupae 12.6 ± 0.14; and adult longevity was 12.1 ± 1.03. Also the pre-egg-laying period was 4.4 ± 0.59; the egg-laying period was 8.1 ± 0.84; and the post-egg-laying period was 0.3 ± 0.14. The mean number of egg-laying cycles per female was 6.7 ± 0.73; that of eggs per cycle was 77.5 ± 4.37; and total eggs per female was 521.4 ± 47.36.

  14. Biology and predatory potential of coccinella septempunctata linn. on schizaphis graminum aphid under controlled conditions

    International Nuclear Information System (INIS)

    Rauf, M.; Gillani, W.A.; Haq, E.U.; Khan, J.; Ali, A.

    2013-01-01

    The biology and predatory potential of Coccinella septempunctata (Linn.) were studied on aphid, Schizaphis graminum (Rondani) at three constant temperatures 20+-1 degree C, 25+-1 degree C and 30+-1 degree C in Insectary-Bio Control Laboratories, National Agricultural Research Centre (NARC), Islamabad. The results revealed that incubation period of C. septempunctata was 5.12, 3.62 and 3.20 days with 75.6%, 82.0% and 71.2% hatchability, respectively. The larval durations were 29.5, 15.9 and 8.1 days with predatory potential of 573.7, 575.0 and 667.8 aphids per larvae. The results indicated that with increasing temperature, develop-mental duration decreases significantly. The pupal developmental duration was 14.0, 9.2 and 5.2 days, respectively which are significantly different from each other. The adult male and female longevity were 44.7, 37.7, 30.0 and 60.3, 58.9 and 43.7 days. Fecundity rate of females were 123.5, 251.5 and 293.2 eggs per female, respectively. This indicates that adult male and female developmental duration, female fecundity rate were significantly different from each other at three constant temperatures. Maximum female and male predatory potential was 3262.8 and 2571.7 aphids at 25 +-1 degree C while minimum was 2276.8 and 1890.6 aphids, respectively. (author)

  15. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  16. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    Malenchenko, A.F.

    1985-01-01

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N 2 O 4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60 Co. Methemoglobin was determined in the interval of 15-180 min after NaNO 2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  17. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  18. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  19. Biology of Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 under laboratory conditions.

    Science.gov (United States)

    Cardozo-de-Almeida, Margareth; Neves, Simone Caldas Teves; Almeida, Carlos Eduardo de; Lima, Nathanielly Rocha Casado de; Oliveira, Maria Luiza Ribeiro de; Santos-Mallet, Jacenir Reis dos; Gonçalves, Teresa Cristina Monte

    2014-01-01

    Triatoma carcavalloi is a wild species that is found in sympatry with Triatoma rubrovaria and Triatoma circummaculata, which are vectors of Trypanosoma cruzi currently found in rural areas of Rio Grande do Sul, Brazil. Fertility was assessed and to determine the incubation period, the eggs were observed until hatching. The first meal was offered to 1st stage nymphs. The intermolt period was also determined. The number of blood meals was quantified at each nymphal stage and the resistance to fasting as the period between ecdysis and death. Mortality was assessed and longevity was determined by recording the time that elapsed from molting to the adult stage and until death. The developmental cycle was assessed by recording the length in days of each stage from molting to adult hood. The average incubation period was 22.7 days. The average first meal occurred 3.1 days after hatching. The 5th stage nymph to adult intermolting period was the longest at 193.4 days. The average number of feedings during nymphal development was 13.4. The resistance to fasting assay indicated that the 3rd, 4th and 5th stage nymphs presented higher resistance than did adults. The highest mortality rate was observed in the 3rd stage nymphs (22.2%). The average length of adult survival was 25.6 weeks, and the average total life cycle lasted 503.4 days. This study is the first report on the biology of T. carcavalloi that fed on mice. The presented findings expand the bionomic knowledge of these species.

  20. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  1. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    Science.gov (United States)

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    -associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme.

  2. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism

    Science.gov (United States)

    Zielinski, Daniel C.; Jamshidi, Neema; Corbett, Austin J.; Bordbar, Aarash; Thomas, Alex; Palsson, Bernhard O.

    2017-01-01

    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.

  3. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  4. Treatment of the azo dye direct blue 2 in a biological aerated filter under anaerobic/aerobic conditions.

    Science.gov (United States)

    González-Martínez, S; Piña-Mondragón, S; González-Barceló, O

    2010-01-01

    The main objective of this research was to determine the feasibility to treat the azo dye direct blue 2 together with municipal wastewater in a biological aerated filter (BAF) using lava stones as support of the microorganisms and under combined anaerobic/aerobic conditions. A 3 m high pilot biological aerated filter was fed with municipal wastewater and, after several weeks, the azo dye direct blue 2 was added to the wastewater to reach a final concentration of 50 mg/L (34 mgCOD/L). Under continuous operation, two strategies were tested: Alternating aeration (12 h anaerobic and 12 h aerobic) and combined aeration (the lower part of the filter anaerobic and the upper part aerobic). The results indicate that municipal wastewater acted as a good electron donor resulting in satisfactory COD and dye removal rates. Better dye removal (61%) was obtained with combined aeration than with alternating aeration (45%). After beginning the azo dye addition, the COD removal rates decreased from 87 to 81% for both alternating and combined aeration procedures. The average ammonia nitrogen removal, without the addition of the dye, was 73% and increased to 90% shortly after beginning the dye addition, then it decreased to 81% during the combined aeration period. Excellent nitrification was observed in the upper aerobic part of the filter. For the combined aeration phase, the conditions change from anaerobic to aerobic does not seem to affect the behavior of the COD and TSS curves.

  5. Biological control of broad-leaved dock infestation in wheat using plant antagonistic bacteria under field conditions.

    Science.gov (United States)

    Abbas, Tasawar; Zahir, Zahir Ahmad; Naveed, Muhammad; Aslam, Zubair

    2017-06-01

    Conventional weed management systems have produced many harmful effects on weed ecology, human health and environment. Biological control of invasive weeds may be helpful to minimize these harmful effects and economic losses incurred to crops by weeds. In our earlier studies, plant antagonistic bacteria were obtained after screening a large number of rhizobacteria for production of phytotoxic substances and effects on wheat and its associated weeds under laboratory conditions. In this study, five efficient strains inhibitory to broad-leaved dock and non-inhibitory to wheat were selected and applied to broad-leaved dock co-seeded with wheat both in pot trial and chronically infested field trial. Effects of plant antagonistic bacteria on the weed and infested wheat were studied at tillering, booting and harvesting stage of wheat. The applied strains significantly inhibited the germination and growth of the weed to variable extent. Similarly, variable recovery in losses of grain and straw yield of infested wheat from 11.6 to 68 and 13 to 72.6% was obtained in pot trial while from 17.3 to 62.9 and 22.4 to 71.3% was obtained in field trial, respectively. Effects of plant antagonistic bacteria were also evident from the improvement in physiology and nutrient contents of infested wheat. This study suggests the use of these plant antagonistic bacteria to biologically control infestation of broad-leaved dock in wheat under field conditions.

  6. Biological and physical factors controlling aggregate stability under different climatic conditions in Southern Spain.

    Science.gov (United States)

    Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch

    2013-04-01

    Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in

  7. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  8. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-09-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  9. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  10. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Directory of Open Access Journals (Sweden)

    Klára Kosová

    2015-09-01

    Full Text Available Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum, durum wheat (Triticum durum, barley (Hordeum vulgare, maize (Zea mays; leguminous plants: alfalfa (Medicago sativa, soybean (Glycine max, common bean (Phaseolus vulgaris, pea (Pisum sativum; oilseed rape (Brassica napus; potato (Solanum tuberosum; tobacco (Nicotiana tabaccum; tomato (Lycopersicon esculentum; and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  11. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  12. Transport Phenomena and Materials Processing

    Science.gov (United States)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  13. Are biological effects of space radiation really altered under the microgravity environment?

    Science.gov (United States)

    Yatagai, Fumio; Ishioka, Noriaki

    2014-10-01

    Two major factors of space environment are space radiation and microgravity. It is generally considered that a high level of ionizing radiation (IR) in space has an influence on living organisms including humans; therefore, the possible alteration of space-radiation influences by the microgravity environment is of great concern. In fact, examination of such a possibility has been extensively conducted since the early days of space experiments, suggesting a possible synergistic effect of radiation and microgravity in some experiments but a negative observation in others. Because these complicated results remain not well understood, we propose a solution to this problem. Gene expression analysis is one of the solutions to the problem. In fact, gene expression may be changed by microgravity, and further modification may be possible through IR. This result could reveal an interactive effect of both factors on the cellular responses, which could in turn reveal whether the human-health abnormalities expected under the microgravity environment can be altered by space radiation. We believe that this is a new aspect in the study of the interactive effect of radiation and microgravity. However, further improvements in space experimental technologies are required for future studies.

  14. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations

    Directory of Open Access Journals (Sweden)

    Kleessen Sabrina

    2012-03-01

    Full Text Available Abstract Background Flux balance analysis (FBA together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. Results Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. Conclusions Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.

  15. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions.

    Science.gov (United States)

    Urubschurov, Vladimir; Janczyk, Pawel; Pieper, Robert; Souffrant, Wolfgang B

    2008-12-01

    The study was conducted to determine yeasts present in the gastrointestinal tract (GIT) of piglets kept under experimental farm (EF) and commercial farm (CF) conditions. Ninety five German Landrace full- and half-sibling piglets were sacrificed at 39 days of age. Sixty eight piglets were weaned at 28th day of life, when they were offered one diet ad libitum. Twenty seven piglets remained unweaned by their dams. None of the piglets received any creep feed before weaning. Digesta samples were collected from 1/3 distal small intestine (SI), caecum and proximal colon. One hundred seventy three colonies of isolated yeasts were characterized by sequence analysis of the PCR-amplified D1/D2 domain of the 26S rRNA gene with following alignment of the recovered sequences to GenBank entries. From the 17 phylotypes found, isolates most closely related to Galactomyces geotrichum, Kazachstania slooffiae and Candida catenulata dominated in the GIT of CF piglets. Kazachstania slooffiae and Candida glabrata dominated in GIT of EF piglets. Sørenson and Morisita-Horn similarity indices between farms were low (0.44 and 0.54 respectively) and the Simpson diversity index was higher for EF (7.58) than for CF (4.34). The study brings new data on yeasts composition in the pig GIT and shows differences in yeasts biodiversity between farms operated at different hygiene conditions.

  16. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  17. Collective Phenomena in Kidney Autoregulation

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2004-01-01

    By controling the excretion of water and salts, the kidneys play all important role ill regulating the blood pressure and maintaining a proper environment for the cells of the body. This control depends to a large extent oil mechanisms that are associated with the individual functional unit...... for the observed synchronization phenomena, and discuss the possible physiological significance of these phenomena. We are particularly interested ill synchronization effects that call occur among neighboring nephrons that individually display irregular (or chaotic) dynamics in their pressure and flow regulation....

  18. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  19. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate

    Directory of Open Access Journals (Sweden)

    D. Martín-Lammerding

    2013-02-01

    Full Text Available In semiarid areas, traditional, intensive tillage has led to the depletion of soil organic matter, which has resulted in reduced soil fertility. The aim of the present work was to evaluate the effects of different soil management systems, practised over 12 years, on soil organic carbon (SOC, nitrogen (SN and biologically active organic matter (particulate organic matter [POM]; potentially mineralisable nitrogen [PMN]; microbial biomass [MB]. A Mediterranean Alfisol, located in central Spain, was managed using combinations of conventional tillage (CT, minimum tillage (MT or no-tillage (NT, plus a cropping background of either continuous wheat (WW or a fallow/wheat/pea/barley rotation (FW. Soil was sampled at two depths on four occasions during 2006-2007. The results showed the sampling date and the cropping background to significantly affect the SOC (p<0.0057 and p<0.0001 respectively. Tillage practice, however, had no effect on SOC or SN. The C-and N-POM contents were significantly influenced by the date, tillage and rotation. These variables were significantly higher under NT than CT and under WW than FW. The PMN was influenced by date, tillage and rotation, while C-MB was significantly affected by tillage (p< 0.0063, but not by rotation. The NT plots accumulated 66% C-POM, 60% N-POM, 39% PMN and 84% C-MB more than the CT plots. After more than 12 years, the benefits of conservation practices were found in the considered soil properties, mainly under no tillage. In order to obtain a consistent data set to predict soil biological status, it is necessary further study over time.

  20. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  1. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  2. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  3. The constitutional protection of trade secrets and patents under the Biologics Price Competition and Innovation Act of 2009.

    Science.gov (United States)

    Epstein, Richard A

    2011-01-01

    The Biologics Price Competition and Innovation Act of 2009 ("Biosimilars Act") is for the field of pharmaceutical products the single most important legislative development since passage of the Drug Price Competition and Patent Term Restoration Act of 1984 ("Hatch-Waxman Act"), on which portions of the Biosimilars Act are clearly patterned. Congress revised section 351 of the Public Health Service Act (PHSA) to create a pathway for FDA approval of "biosimilar" biological products. Each biosimilar applicant is required to cite in its application a "reference product" that was approved on the basis of a full application containing testing data and manufacturing information, which is owned and was submitted by another company and much of which constitutes trade secret information subject to constitutional protection. Because the Biosimilars Act authorizes biosimilar applicants to cite these previously approved applications, the implementation of the new legislative scheme raises critical issues under the Fifth Amendment of the Constitution, pursuant to which private property--trade secrets included--may not be taken for public use, without "just compensation." FDA must confront those issues as it implements the scheme set out in the Biosimilars Act. This article will discuss these issues, after providing a brief overview of the Biosimilars Act and a more detailed examination of the law of trade secrets.

  4. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Picou, Laura; McMann, Casey; Boldor, Dorin [Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, 149 E B Doran Building, Baton Rouge, LA 70803-4505 (United States); Elzer, Philip H; Enright, Frederick M [Department of Veterinary Sciences, Louisiana State University Agricultural Center, 111 Dalrymple Building, Baton Rouge, LA 70803 (United States); Biris, Alexandru S, E-mail: DBoldor@agcenter.lsu.edu [Nanotechnology Center, University of Arkansas-Little Rock, 2801 South University Avenue, ETAS 151, Little Rock, AR 72204-1099 (United States)

    2010-10-29

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  5. Chemical Composition and Biological Activity of Essential Oils of Origanum vulgare L. subsp. vulgare L. under Different Growth Conditions

    Directory of Open Access Journals (Sweden)

    Enrica De Falco

    2013-12-01

    Full Text Available This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L. under different spatial distribution of the plants (single and binate rows. This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  6. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    International Nuclear Information System (INIS)

    Yahya, Liyana; Chik, Muhammad Nazry; Pang, Mohd Asyraf Mohd Azmir

    2013-01-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive – observed by increases in optical densities, number of cells and weights – in the presence of actual coal-fired flue gas containing on average 4.08 % O 2 , 200.21 mg/m 3 SO 2 , 212.29 mg/m 3 NO x , 4.73 % CO 2 and 50.72 mg/m 3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  7. Electrodiffusion phenomena in neuroscience: a neglected companion.

    Science.gov (United States)

    Savtchenko, Leonid P; Poo, Mu Ming; Rusakov, Dmitri A

    2017-09-19

    The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.

  8. Ricci flows, wormholes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Viqar; Seahra, Sanjeev S [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2008-11-21

    We study the evolution of wormhole geometries under the Ricci flow using numerical methods. Depending on values of initial data parameters, wormhole throats either pinch off or evolve to a monotonically growing state. The transition between these two behaviors exhibits a form of critical phenomena reminiscent of that observed in gravitational collapse. Similar results are obtained for initial data that describe space bubbles attached to asymptotically flat regions. Our numerical methods are applicable to 'matter-coupled' Ricci flows derived from conformal invariance in string theory. (fast track communication)

  9. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  10. Unresolved clinical aspects and safety hazards of blood derived- EV/MV in stored blood components: From personal memory lanes to newer perspectives on the roles of EV/MV in various biological phenomena.

    Science.gov (United States)

    Seghatchian, Jerard; Amiral, Jean

    2016-08-01

    Blood cells generate heterogeneous populations of vesicles that are delivered, as small-specialized packages of highly active cell fragments in blood circulation, having almost similar functional activities, as the mother cells. These so called extracellular vesicles are the essential part of an energy-dependent natural apoptotic process; hence their beneficial and harmful biological functions cannot be ignored. Evidence is accumulating, that cellular derived vesicles, originate from all viable cells including: megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells, the highest in proportions from platelets. Shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement pathways, or even by shear stress in the circulation. Structurally, so called MV/EV appear to be, sometimes inside-out and sometimes outside-in cell fragments having a bilayered phospholipid structure exposing coagulant-active phosphatidylserine, expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. Ex vivo processing of blood into its components, embodying centrifugation, processing by various apheresis procedures, leukoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, also have major impacts on the generation and retention of MV content. These artificially generated small, but highly liable packages, together with the original pool of MVs collected from the donor, do exhibit differing biological activities, and are not inert elements and should be considered as a parameter of blood safety in haemovigilance programmes. Harmonization and consensus in sampling protocols, sample handling, processing, and assessment methods, in particular converting to full automation, are needed to achieve consensual interpretations. This review focuses on some of

  11. Teaching wave phenomena via biophysical applications

    Science.gov (United States)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  12. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  13. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms.

    Science.gov (United States)

    Ronacher, Katharina; van Crevel, Reinout; Critchley, Julia A; Bremer, Andrew A; Schlesinger, Larry S; Kapur, Anil; Basaraba, Randall; Kornfeld, Hardy; Restrepo, Blanca I

    2017-07-01

    There is growing interest in the re-emerging interaction between type 2 diabetes (DM) and TB, but the underlying biologic mechanisms are poorly understood despite their possible implications in clinical management. Experts in epidemiologic, public health, basic science, and clinical studies recently convened and identified research priorities for elucidating the underlying mechanisms for the co-occurrence of TB and DM. We identified gaps in current knowledge of altered immunity in patients with DM during TB, where most studies suggest an underperforming innate immunity, but exaggerated adaptive immunity to Mycobacterium tuberculosis. Various molecular mechanisms and pathways may underlie these observations in the DM host. These include signaling induced by excess advanced glycation end products and their receptor, higher levels of reactive oxidative species and oxidative stress, epigenetic changes due to chronic hyperglycemia, altered nuclear receptors, and/or differences in cell metabolism (immunometabolism). Studies in humans at different stages of DM (no DM, pre-DM, and DM) or TB (latent or active TB) should be complemented with findings in animal models, which provide the unique opportunity to study early events in the host-pathogen interaction. Such studies could also help identify biomarkers that will complement clinical studies in order to tailor the prevention of TB-DM, or to avoid the adverse TB treatment outcomes that are more likely in these patients. Such studies will also inform new approaches to host-directed therapies. Copyright © 2017 American College of Chest Physicians. All rights reserved.

  14. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  15. Solar Neutrons and Related Phenomena

    CERN Document Server

    Dorman, Lev

    2010-01-01

    This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of ene...

  16. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-03-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  17. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  18. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  19. Gravitational anomaly and transport phenomena

    OpenAIRE

    Landsteiner, Karl

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...

  20. Fast Particle Methods for Multiscale Phenomena Simulations

    Science.gov (United States)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  1. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  2. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    Science.gov (United States)

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary

  3. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  4. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  5. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  6. Social phenomena from data analysis to models

    CERN Document Server

    Perra, Nicola

    2015-01-01

    This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...

  7. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  8. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

  9. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  10. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  11. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  13. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  14. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  15. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  16. Gravitational anomaly and transport phenomena.

    Science.gov (United States)

    Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco

    2011-07-08

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  17. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  18. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  19. Microdosimetric study on influence of low energy photons on relative biological effectiveness under therapeutic conditions using 6 MV linac

    International Nuclear Information System (INIS)

    Okamoto, Hiroyuki; Kohno, Toshiyuki; Kanai, Tatsuaki; Kase, Yuki; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Fujita, Yukio; Saitoh, Hidetoshi; Itami, Jun

    2011-01-01

    Purpose: Microdosimetry has been developed for the evaluation of radiation quality, and single-event dose-mean lineal energy y D is well-used to represent the radiation quality. In this study, the changes of the relative biological effectiveness (RBE) values under the therapeutic conditions using a 6 MV linac were investigated with a microdosimetric method. Methods: The y D values under the various irradiation conditions for x-rays from a 6 MV linac were measured with a tissue-equivalent proportional counter (TEPC) at an extremely low dose rate of a few tens of μGy/min by decreasing the gun grid voltage of the linac. According to the microdosimetric kinetic model (MK model), the RBE MK values for cell killing of the human salivary gland (HSG) tumor cells can be derived if the y D values are obtained from TEPC measurements. The Monte Carlo code GEANT4 was also used to calculate the photon energy distributions and to investigate the changes of the y D values under the various conditions. Results: The changes of the y D values were less than approximately 10% when the field size and the depth in a phantom varied. However, in the measurements perpendicular to a central beam axis, large changes were observed between the y D values inside the field and those outside the field. The maximum increase of approximately 50% in the y D value outside the field was obtained compared with those inside the field. The GEANT4 calculations showed that there existed a large relative number of low energy photons outside of the field as compared with inside of the field. The percentages of the photon fluences below 200 keV outside the field were approximately 40% against approximately 8% inside the field. By using the MK model, the field size and the depth dependence of the RBE MK values were less than approximately 2% inside the field. However, the RBE MK values outside the field were 6.6% higher than those inside the field. Conclusions: The increase of the RBE MK values by 6

  20. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  1. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  2. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  3. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  4. The biological significance of evolution in autoimmune phenomena.

    Science.gov (United States)

    Cañas, Carlos A; Cañas, Felipe

    2012-01-01

    It is an inherent part of living to be in constant modification, which are due to answers resulting from environmental changes. The different systems make adaptations based on natural selection. With respect to the immune system of mammals, these changes have a lot to do with the interactions that occur continuously with other living species, especially microorganisms. The immune system is primarily designed to defend from germs and this response triggers inflammatory reactions which must be regulated in order not to generate damage to healthy tissue. The regulatory processes were added over time to prevent such damage. Through evolution the species have stored "an immunological experience," which provides information that is important for developing effective responses in the future. The human species, which is at a high level of evolutionary immunological accumulation, have multiple immune defense strategies which, in turn, are highly regulated. Imbalances in these can result in autoimmunity."There is nothing permanent except change."(Heraclitus).

  5. Modeling and simulation of transport phenomena in ionic gels

    Science.gov (United States)

    Leichsenring, Peter; Wallmersperger, Thomas

    2015-04-01

    Ionic hydrogels belong to the class of polyelectrolyte gels or ionic gels. Their ability to swell or shrink under different environmental conditions such as change of pH, ion concentration or temperature make them promising materials, e.g. for microsensoric or microactuatoric devices. The hydrogel swelling exhibits nonlinear effects due to the occurrence of different interacting transport phenomena. Numerical simulations are an essential part in the ongoing development of microsensors and microactuators. In order to determine transport effects due to diffusion, migration and convection a multiphase mesoscale model based on the Theory of Porous Media is applied. The governing field equations are solved in the transient regime by applying the Finite Element Method. By means of the derived numerical framework a detailed investigation of the different transport phenomena is carried out. Numerical experiments are performed to characterize the dominating transfer phenomena for ionic gels under chemical stimulation.

  6. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena

    Science.gov (United States)

    De Domenico, Manlio

    2017-04-01

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  7. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    Science.gov (United States)

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  8. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng; Hong Yan; Yang Dayun; Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China); Xi Tingfei [Shenzhen Research Institute, Peking University, Shenzhen, 518055 (China); Deyuan, Zhang [R and D Center of Lifetech Scientific (Shenzhen) Co., Ltd, Shenzhen, 518057 (China); Hong Ying [Department of Gynecology and Obstetrics, Nanjing Drum-Tower Hospital, Nanjing, 210096 (China); Yuan Jinfeng, E-mail: luxy@seu.edu.cn [Department of Gynecology and Obstetrics, Xuanwu Hospital, Nanjing, 210096 (China)

    2011-04-15

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  9. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  10. Emergence of dynamical order synchronization phenomena in complex systems

    CERN Document Server

    Manrubia, Susanna C; Zanette, Damián H

    2004-01-01

    Synchronization processes bring about dynamical order and lead tospontaneous development of structural organization in complex systemsof various origins, from chemical oscillators and biological cells tohuman societies and the brain. This book provides a review and adetailed theoretical analysis of synchronization phenomena in complexsystems with different architectures, composed of elements withperiodic or chaotic individual dynamics. Special attention is paid tostatistical concepts, such as nonequilibrium phase transitions, orderparameters and dynamical glasses.

  11. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  12. MHD phenomena at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, M.

    2001-01-01

    The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25 %. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)

  13. MHD phenomena at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, H.

    1999-01-01

    The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25%. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)

  14. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Martín-García José M.

    2007-12-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term “critical phenomena”. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. Critical phenomena give a natural route from smooth initial data to arbitrarily large curvatures visible from infinity, and are therefore likely to be relevant for cosmic censorship, quantum gravity, astrophysics, and our general understanding of the dynamics of general relativity.

  15. Emergent Phenomena at Oxide Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the

  16. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  17. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  18. [Impact of biologically important anions on reactive oxygen species formation in water under the effect of non-ionizing physical agents].

    Science.gov (United States)

    Gudkov, S V; Ivanov, V E; Karp, O É; Chernikov, A V; Belosludtsev, K N; Bobylev, A G; Astashev, M E; Gapeev, A B; Bruskov, V I

    2014-01-01

    The influence of biologically relevant anions (succinate, acetate, citrate, chloride, bicarbonate, hydroorthophosphate, dihydroorthophosphate, nitrite, nitrate) on the formation of hydrogen peroxide and hydroxyl radicals in water was studied under the effect of non-ionizing radiation: heat, laser light with a wavelength of 632.8 nm, corresponding to the maximum absorption of molecular oxygen, and electromagnetic radiation of extremely high frequencies. It has been established that various anions may both inhibit the formation of reactive oxygen species and increase it. Bicarbonate and sulfate anions included in the biological fluids' and medicinal mineral waters have significant, but opposite effects on reactive oxygen species production. Different molecular mechanisms of reactive oxygen species formation are considered under the action of the investigated physical factors involving these anions, which may influence the biological processes by signal-regulatory manner and provide a healing effect in physical therapy.

  19. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  20. Density turbulence and disruption phenomena in TEXTOR

    International Nuclear Information System (INIS)

    Waidmann, G.; Kuang, G.; Jadoul, M.

    1992-01-01

    Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs

  1. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  2. Light-induced phenomena in one-component gas: The transport phenomena

    Science.gov (United States)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  3. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  4. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    journal of. October 2001 physics pp. 775–793. Dielectric relaxation phenomena of rigid polar liquid molecules under giga hertz electric field. K DUTTA, S K SIT and S ... BDH, England, n-hexane and n-heptane from M/s. E Merck ... used in medicine as drug to induce sleep and relieve pain and in the manufacture of D.D.T..

  5. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyltrichloroacetate () in benzene, -hexane and -heptane () under 4.2, 9.8 and 24.6 GHz electric fields at 30°C are studied to show the possible existence of double relaxation times 2 and 1 for rotations of the whole and the flexible ...

  6. Nuclear chromodynamics: Novel nuclear phenomena predicted by QCD

    NARCIS (Netherlands)

    Bakker, B.L.G.; Ji, C.R.

    2014-01-01

    With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding

  7. Mesoscopic Modeling of Multiphysicochemical Transport Phenomena in Porous Media

    Directory of Open Access Journals (Sweden)

    Qinjun Kang

    2010-01-01

    Full Text Available We present our recent progress on mesoscopic modeling of multiphysicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO2-saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occurring at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multiphysicochemical processes in various energy, earth, and environmental systems.

  8. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  9. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  10. Understanding empathy and related phenomena.

    Science.gov (United States)

    Shamasundar, C

    1999-01-01

    Over a period of time, the author arrived at a few tentative postulates concerning empathy and related processes based on some of his experiences and observations. The central theme of these postulates is, firstly, that interpersonal interaction is an interaction of the personal-space fields. Secondly, empathy, therapeutic benefit, and the professional stress are all related to the same process of interpersonal interaction. This interaction takes place as an enmeshment of personal spaces of the interacting individuals, and involves transfer of a wide range of information in the affective, cognitive, and other areas. This is because the personal spaces have fieldlike qualities analogous to what Kurt Lewin described. Thus, such phenomena as empathy, therapeutic benefit, professional stress are all consequences of the same process. It is possible to substantiate these postulates by diverse evidences in the published literature. The natural consequences of such an interpersonal interaction are empathic understanding, transfer of mood states (like hope, distress or expectancy), affective states (like anxiety, sadness, anger or hostility), ideas, images and even attitudes and values, etc. This phenomenon of transfer can explain such processes as therapeutic benefit in individual and group settings, professional stress, shared delusions, and even experimenter bias. Whether one becomes aware of such transferred information or not depends upon the intent and sensitivity of the participants.

  11. Conductance phenomena in microcrystalline cellulose

    Science.gov (United States)

    Nilsson, M.

    2006-02-01

    We have investigated the conduction phenomena in compacted tablets of cellulose with varying relative humidity (RH) with techniques such as Low Frequency Dielectric Spectroscopy (LFDS) and Transient Current (TC) at room temperature. Two exponential decaying regions in the transient current measurements indicate two ionic species contributing to the conduction mechanism. A high power-law exponent of 9 for the conductance with moisture content has been found. The mobility initially decreases with RH up to monolayer coverage, and further water vapor increases the mobility, indicating a blocking of available positions for the charge carrier ions. When the amount of water molecules present in the tablet increases one order of magnitude, the number of charge carriers increases 5-6 orders of magnitude, suggesting a transition from a power-law increase to a linear effective medium theory for the conduction. The charge carrier dependence on RH suggests that a percolating network of water molecules adsorbed to 6-OH units on the cellulose chain span through the sample. The conductivity mechanisms in cellulose are still not clear.

  12. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  13. Random phenomena fundamentals of probability and statistics for engineers

    CERN Document Server

    Ogunnaike, Babatunde A

    2009-01-01

    PreludeApproach PhilosophyFour Basic PrinciplesI FoundationsTwo Motivating ExamplesYield Improvement in a Chemical ProcessQuality Assurance in a Glass Sheet Manufacturing ProcessOutline of a Systematic ApproachRandom Phenomena, Variability, and UncertaintyTwo Extreme Idealizations of Natural PhenomenaRandom Mass PhenomenaIntroducing ProbabilityThe Probabilistic FrameworkII ProbabilityFundamentals of Probability TheoryBuilding BlocksOperationsProbabilityConditional ProbabilityIndependenceRandom Variables and DistributionsDistributionsMathematical ExpectationCharacterizing DistributionsSpecial Derived Probability FunctionsMultidimensional Random VariablesDistributions of Several Random VariablesDistributional Characteristics of Jointly Distributed Random VariablesRandom Variable TransformationsSingle Variable TransformationsBivariate TransformationsGeneral Multivariate TransformationsApplication Case Studies I: ProbabilityMendel and HeredityWorld War II Warship Tactical Response Under AttackIII DistributionsIde...

  14. Data mining and biological sample exportation from South Africa: A new wave of bioexploitation under the guise of clinical care?

    Science.gov (United States)

    Staunton, Ciara; Moodley, Keymanthri

    2016-01-07

    Discovery Health, one of the leading healthcare funders in South Africa (SA), will offer genetic testing to its members for USD250 (approximately ZAR3 400) per test from 2016. On the surface, this appears to be innovative and futuristic. However, a deeper look at this announcement reveals considerable problems in the exportation of biological samples and data out of SA, and brings into sharp focus the lack of protection in place for potential donors. In return for a reduced-cost genetic test, which will nevertheless be billed to a member's savings plan, data from the patient's results, and probably the sample itself, will be sent to the USA for storage, research purposes and possible commercial use, with no further benefit for the patient. This development has demonstrated the need for more stringent protection of the movement of biological samples and data out of SA, particularly with reference to consenting procedures, material transfer agreements, and the export of biological data themselves.

  15. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  16. [Paraneoplastic phenomena in patients with a thymoma].

    Science.gov (United States)

    Strijbos, Ellen; Pomp, Jacqueline; Gilhuis, H Jacobus

    2013-01-01

    A thymoma arises from the epithelial cells of the thymus. Local tumour growth may cause symptoms like coughing, dyspnoea or chest pain. Paraneoplastic phenomena can also occur in patients with a thymoma; myasthenia gravis is a well-known example. Other neurological, dermatological, cardiological and haematological disorders are not always recognised as being paraneoplastic phenomena. There is no clear relationship between tumour activity and the clinical course of paraneoplastic phenomena. The three cases in this article illustrate how the clinical presentation of these phenomena can vary.

  17. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday.

    Science.gov (United States)

    Hall, Damien; Takagi, Junichi; Nakamura, Haruki

    2018-03-02

    This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.

  18. <=ryptochromes and Biological Clocks -36 ...

    Indian Academy of Sciences (India)

    production. Such repetition of biological phenomena in a peri- odic manner constitutes a 'biological rhythm'. Many biological rhythms are synchronized with solar day .... Photoactive pigment. Photosynthetic pigments of phytochrome bacteria associated with GFP. LHC = Light harvesting complex of green plants. NPH = Non ...

  19. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  20. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  1. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...

  2. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  3. Biological Phosphorus Release and Uptake Under Alternating Anaerobic and Anoxic Conditions In a Fixed-Film Reactor

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens; Strube, Rune

    1994-01-01

    Biological phosphorus removal was investigated in a fixed-film reactor with alternating anaerobic and anoxic conditions. The tests showed that biological phosphorus removal can be obtained in a fixed-film reactor with nitrate as oxidising agent. In the anaerobic period, 0.52 mg of PO4-P...... was released per mg of acetate taken up on an average. In the anoxic period, 2.0 mg of PO4-P was taken up per mg of NO3-N reduced on an average. The relationship between potassium released and phosphate released in the anaerobic phase was determined to be 0.37 mg K/mg P, while the relationship between...

  4. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  5. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    OpenAIRE

    Ramu SENTHIL; Kuppusamy PRABAKAR; Lingan RAJENDRAN; Gandhi KARTHIKEYAN

    2011-01-01

    Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoder...

  6. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  7. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  8. A core eating network and its modulations underlie diverse eating phenomena

    NARCIS (Netherlands)

    Chen, Jing; Papies, Esther K.; Barsalou, Lawrence W.

    2016-01-01

    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye,

  9. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    Science.gov (United States)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  10. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    Harmonic resonance leads to period-1 bistability and hysteresis. Inside the period-2 sub-harmonic resonance region, the laser exhibits Feigenbaum sequence and generalized bistability. Keywords. Fibre lasers; chaos; modulation; nonlinear oscillators; optical bistability. PACS Nos 05.45.Ac; 42.55.Wd; 05.45.Tp; 42.55.Rz.

  11. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    - verse mode and multiaxial mode) with an intracavity LiNbO3 electro-optic modulator. (EOM) display the characteristic features of a nonlinear oscillator (e.g., harmonic and period-2 sub-harmonic resonances) when the EOM driver voltage is ...

  12. Electrokinetic phenomena in nanopore transport

    OpenAIRE

    Laohakunakorn, Nadanai

    2015-01-01

    Nanopores are apertures of nanometric dimensions in an insulating matrix. They are routinely used to sense and measure properties of single molecules such as DNA. This sensing technique relies on the process of translocation, whereby a molecule in aqueous solution moves through the pore under an applied electric field. The presence of the molecule modulates the ionic current through the pore, from which information can be obtained regarding the molecule's properties. Whereas the electrical pr...

  13. Highly energetic phenomena in water electrolysis

    Science.gov (United States)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-01-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine. PMID:27982103

  14. Highly energetic phenomena in water electrolysis

    Science.gov (United States)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-12-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.

  15. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    Directory of Open Access Journals (Sweden)

    Ramu SENTHIL

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoderma viride strain (Tv Tvm was the most effective, inhibiting mycelial growth by 88.8 per cent. The biological control agents were tested in pre, post and combined inoculation studies against postharvest pathogens of grapes.  In the pre inoculation, B. subtilis (EPC-8 reduced the disease incidence of A. carbonarius causing rot, T. harzianum (Th Co was effective against P. expansum, and T. viride (Tv Tvm was effective against F. moniliforme. The same trend of effectiveness was also found in the post-inoculation and combined inoculation tests.

  16. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  17. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  18. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  19. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  20. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  1. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    Abstract. The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyl- trichloroacetate (j) in benzene, n-hexane and n-heptane (i) under 4.2, 9.8 and 24.6 GHz electric fields at 30ÆC are studied to show the possible existence of double relaxation times τ2 and τ1 for rotations of the whole and the ...

  2. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  3. Biological transformation of anthracene in soil by Pleurotus ostreatus under solid-state fermentation conditions using wheat bran and compost

    International Nuclear Information System (INIS)

    Vargas, M C; Rodriguez, R; Sanchez, F; Ramirez, N

    2001-01-01

    Pleurotus ostreatus was grown in a soil mixture contaminated with anthracene, wheat bran and compost, in varying combinations. Assays with added bacteria and reinoculation of the fungus were also included. The results indicated that in many of the combinations, most of the anthracene was removed at the earliest sample time, 15 days. The most effective combination was spiked (anthracene-added) soil, fungus and compost and the addition of acclimated bacteria to this mixture inhibited anthracene removal. Analyses of extract by high-pressure liquid chromatography HPLC indicated that - anthraquinone, was the major metabolite formed. The results of this study indicate that solid-state fermentation of anthracene-contaminated soils using P. ostreatus in combination with wheat bran and compost additives can produce an accelerated rate of biological removal of anthracene from the soil

  4. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  5. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    Science.gov (United States)

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.

  6. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  7. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  8. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  9. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  10. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  11. Noise induced phenomena in combustion

    Science.gov (United States)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  12. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to prese...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  13. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  14. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  15. Novel approach for heterocyclization: a clean and efficient synthesis and biological evaluation of 4-oxothiazolidines under microwave technique

    International Nuclear Information System (INIS)

    Desai, Krunal G.; Desai, K.R.

    2006-01-01

    A new selective method has been developed for rapid synthesis of 2-(aryl)-3-[2-benzoimidazolythio)-acetamidyl]-4-oxothiazolidines 4a-j by the heterocyclization of 2-{(1H-benzemidazol)-ylthio}-N-benzylidene aceto hydrazide 3a-j with HSCH2COOH under microwave irradiation (MWI) is described. The reaction rate and yield is enhanced tremendously under MWI as compared to conventional methods. All the compounds have been screened for their antifungal activity against Candida albicans and Aspergillus niger, antibacterial activity against Escherchia coli and Staphylococcus aureus. In the primary screening, some of the compounds exhibited appreciable activity. The structures of the synthesized compounds 4a-j have been characterized on the basis of their elemental analysis, IR, HNMR and Mass spectral data. (author)

  16. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  17. Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  18. Homarus gammarus (Crustacea: Decapoda) larvae under an ocean acidification scenario: responses across different levels of biological organization.

    Science.gov (United States)

    Rato, Lénia D; Novais, Sara C; Lemos, Marco F L; Alves, Luís M F; Leandro, Sérgio M

    2017-12-01

    The present study evaluated the effects of exposure to different target pCO 2 levels: control (C: 370μatm, pH=8.15) and ocean acidification (OA: 710μatm, pH=7.85) on development and biochemical responses related with oxidative stress and energy metabolism during the crustacean Homarus gammarus (L.) larval development, integrating different levels of biological organization. After hatching in the laboratory, larvae from the same female brood were exposed to the described conditions from hatching until reaching Stage III (last larval stage - 11days). H. gammarus larvae demonstrated some susceptibility when addressing the predicted pCO 2 levels for 2100. Further analysis at the biochemical and physiological level highlighted the occurrence of oxidative stress in the OA scenario (Superoxide Dismutase reduction and higher DNA damage) that was followed by developmental effects, increased inter-moult period from SII to SIII and reduced growth. The extended exposure to these conditions may affect organisms' key life-cycle functions such as physiological resistance, growth, sexual maturation, or reproduction with implications in their future fitness and population dynamics. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature.

    Science.gov (United States)

    Shen, Nan; Chen, Yun; Zhou, Yan

    2017-05-01

    Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Description of chemical and biological soil characteristics of two fields subjected to different agricultural management under mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Salvatore M. Meli

    Full Text Available Several factors such as soil pollution and intensive agricultural management continuously damage the sustainability of agricultural production, with potentially adverse effects on soil quality. It is important to create applicable and valid soil quality indicators in order to both identify areas with potential productivity problems and monitor soil quality changes due to a range of perturbations. In this work we compared several chemical and biological variables between a Mediterranean soil characterized by intensive horticulture that has been irrigated for 20 years with moderately saline waters (IM and an adjacent soil, subjected to a sustainable agricultural production management and irrigated with plain water (SM. Soil sampling was repeated three times during a year in both sites. IM soil had lower pH, organic carbon and total nitrogen compared to SM soil at all sampling times, while its electrical conductivity was significantly higher at two sampling times only. Potentially mineralizable nitrogen pointed out significant differences only at the first sampling time, with lower levels in the SM soil. β-sitosterol, cholesterol and ergosterol varied significantly with sampling time and were influenced also by management. Statistical approach by Principal Component Analysis highlighted a contrast between two groups of soil variables: potentially mineralizable nitrogen and sterols mainly weighted on the first axis, while chemical properties, weighted on the second one. Moreover, the second axis separated the soil subjected to a sustainable agricultural production system from that subjected to intensive practice management, while the first axis separated the third sampling data from the first two.

  1. Study on toxigenic fungi in ruminant feeds under desert conditions with special references to its biological control

    Directory of Open Access Journals (Sweden)

    Shimaa M.S. Hegazy

    2015-06-01

    Full Text Available A total of 435 samples from feedstuff (130 samples of commercial ration feed storage from 1–30 days, 77 samples of commercial ration stored higher than 30 days, 57 samples from each of, derris, grind mixture, Tibn and wheat bran were collected from the feed store houses of private farms located at the desert regions of Ras Sudr at South Sinai and Elameria area at Alexandria Governorate, from December 2012 to May 2014. The collected samples were analyzed for fungal growth. The results revealed that, the main moulds observed in the ruminant feeds were Penicillium spp., Aspergillus (A flavus, Cladosporium spp., Mucor spp., Trichoderma spp., A. niger, Alternaria spp., Rhizopus spp., Fusarium spp., A. fumigates and A. terreus. In addition, the winter season was of higher incidence for moulds isolation than summer season. The most toxigenic aflatoxins secreted by Aspergillus flavus include Aflatoxin B1, Aflatoxin B2, Aflatoxin G1 and Aflatoxin G2. The results of biological treatment of Aflatoxins using Saccharomyces (S cerevisiae, showed that, the addition of Saccharomyces cerevisiae at a level of (1 × 106 cfu.ml−1 and (1 × 109 cfu.ml−1 decreased the level of concentration of aflatoxin B1, B2, G1 and G2 and the level of (1 × 109 cfu.ml−1 was more efficient in reducing aflatoxins than the lower concentration.

  2. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  3. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  4. Impact of organic and mineral inputs onto soil biological and metabolic activities under a long-term rice-wheat cropping system in sub-tropical Indian Inceptisols.

    Science.gov (United States)

    Basak, Nirmalendu; Datta, Ashim; Mitran, Tarik; Mandal, Biswapati; Mani, P K

    2016-01-01

    Long-term use of organic and mineral inputs has an overriding impact on soil biological and metabolic activities and crop management. Farm yard manure (FYM), paddy straw (PS) and green manure (GM, Sesbania sesban L.) were used for 24- years old rice (Oyza sativa L.) -wheat (Triticum aestivum L.) cropping system in sub-tropical India to predict whether the screened soil biological and metabolic activities are correlated with system yield. The integrated approaches viz., NPK + FYM, NPK + PS and NPK + GM significantly increased both rice and wheat yield together by 67.5, 44.4 and 55.4%, respectively over control. However, for a few exceptions both soil microbial activity and metabolic activity were remarkably enhanced under integrated treatment NPK + FYM followed by NPK + PS, and NPK + GM, respectively. Among the studied attributes fluorescein diacetate hydrolyzing, dehydrogenase, β-glucosidase activity (β-glu) and microbial biomass C (C(mic)) were screened through principal component (PCA) and discriminate analysis (DA) that explained nearly 89% of total variations of the entire data set. Among the four identified attributes, only β-glu assay value could predict system yield (R2 = 0.65). Further, estimation of β-glu activity in soil can predict other soil biological properties (R2 = 0.96).

  5. Transients and cooperative action of β-carotine, vitamine E and vitamine C in biological systems in vitro under irradiation

    International Nuclear Information System (INIS)

    Getof, N.; Platzer, I.; Winkelbauer, C.

    1998-01-01

    Complete text of publication follows. In the scope of clinical studies in the USA it has been established that β-carotine (β car) and vitamine A (vit A; retinol) give rise to lung cancer and cardiovascular diseases on humans. The consumption of vitamine E (vit E) and β-carotine provokes lung cancer and other types of tumors on male smokers. This effect increases even significantly by a simultaneous consumption of alcohol. In contrary to these results there are other scientists, who did not observe any increase of the rate of lung cancer or other tumors by the consumption of β-car or vit E. Based on these contradictory statements experiments following two pathways were performed: Pulse radiolysis studies on radical cations and radical anions of β-car and vit E Investigations on baeteria (E. coli AB 1157) and cell cultures (SCC VII): their survival was studied as a function of the absorbed dose in the abscence and in the presence of the above mentioned vitamines and vitamine C (vit C). From our extensive studies we obtain following conclusions: - Metabolic changes in normal cells could probably be initiated by the radical cation of β-carotine (β-car '+) resulting from the action of β-car as an antioxidant. - Vitamine E can repair β-car '+ by electron transfer, forming the radical cation of vit E (vit E '+), whose biological action is yet unknown. - Vitamine C (ascorbate) is able to repair both, the β-caz'+ and the vit E'+ by electron transfer (cascade electron transfer), resulting in ascorbate radical, which can disproportionate to vit C and dehydroascorbic acid (DHA). The last one can be converted again enzymatically into ascorbic acid

  6. Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: Integrating chemical and biological multivariate data

    Science.gov (United States)

    Venturini, Natalia; Muniz, Pablo; Bícego, Márcia C.; Martins, César C.; Tommasi, Luiz Roberto

    2008-07-01

    ratios and specific compound concentrations with biological data to improve the assessment of anthropogenic impact on marine ecosystems.

  7. Novel Phenomena in Modern Studies of Magnetism

    Science.gov (United States)

    Makhfudz, Imam

    In this PhD Dissertation, we present investigation of contemporary problems in magnetism. We focus on two important themes that have been active research topics in condensed matter community: 1. Topological defects in magnet and their dynamics 2. Exotic states and critical phenomena in frustrated spin systems. In the first topic, we consider the dynamics of topological defect known as Skyrmion in thin film ferromagnet. We first discuss the nontrivial dynamics exhibited by a Skyrmion bubble confined in thin film disk as observed by numerical simulation. We propose a phenomenological theory that can reproduce the peculiar dynamics of the Skyrmion bubble. We show that, unlike previously studied topological defects, a Skyrmion bubble possesses inertia. We derive a theoretical description of the dynamics using standard theory of ferromagnet. We discover the presence of two counter propagating chiral edge modes. Most importantly, we derive the mass (inertia) from the theory and express it in terms of microscopic parameters. In the second topic, a quantum phase transition in U(1) quantum spin liquid phase of 3-d pyrochlore quantum spin ice is investigated. Starting from microscopic spin model, we map the spin to slave-boson, derive continuum theory, and finally arrive at a U(1) gauge theory which takes the form of scalar quantum electrodynamics (QED). The effective free energy for quantum spin liquid (QSL) to antiferromagnetic (AFM) phase transition mimics the one for Bardeen-Cooper-Schrieffer (BCS) superconductors classical transition under magnetic field. We show that, provided Ginzburg criterion is satisfied, the gauge field fluctuations drive the originally continuous QSL to AFM phase transition at mean field level into discontinuous one. We predict the location of quantum critical point which agrees well with gauge mean field theory result. We calculate the size of phase transition and find that it is a weakly first order.

  8. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Meltem [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Istanbul University, Department of Pharmaceutical Technology, Pharmacy Faculty, Istanbul (Turkey); Helbok, Anna; Rangger, Christine; Decristoforo, Clemens [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department for Nuclear Medicine, Ljubljana (Slovenia); Nock, Berthold A. [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Morelli, Giancarlo [University of Naples ' ' Federico II' ' and IBB-CN, Department of Biological Sciences, CIRPeB, Naples (Italy); Eek, Annemarie [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P. [Erasmus MC Rotterdam, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites. Twelve different 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-minigastrin/CCK conjugates were provided within an European COST Action (BM0607) by different laboratories and radiolabelled with {sup 177}Lu. Their in vitro stabilities were tested in fresh human serum. Radiochemical yields (RCY) and intact radioligands for half-life calculations were determined by radio-HPLC. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis of metabolites was performed to identify cleavage products using conjugates labelled with excess stable {sup nat}Lu, incubated in serum at 37 C. Urine metabolite analysis after injection in normal mice was performed by radio-HPLC analysis. Variable stability in human serum was found for the different peptides with calculated half-lives between 4.5 {+-} 0.1 h and 198 {+-} 0.1 h (n = 2). In urine of normal mice only metabolised peptide fragments were detected even at short times after injection for all peptides. MALDI-TOF MS revealed a major cleavage site of all minigastrin derivatives between Asp and Phe-NH{sub 2} at the C-terminal end. Development of CCK2 receptor ligands especially for therapeutic purposes in patients with MTC or small cell lung cancer (SCLC) is still ongoing in different laboratories. This comparative study provided valuable insight into the importance of biological stability especially in the context of other results of this comparative

  9. Influence of the blood meal source on the biology of Meccus picturatus Usinger 1939 (Hemiptera: Reduviidae: Triatominae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Martínez-Ibarra José Alejandro

    2003-01-01

    Full Text Available Aspects related to hatching, time-lapse between presenting the blood meal and beginning of feeding, feeding time, postfeed defecation delay,life time, mortality and fecundity for each stage of Meccus picturatus, life-cycle were evaluated and compared in two cohorts of M. picturatus fed on hens or rabbits. The hatching rate observed for each of the two studied groups of eggs was 78.1% (n = 2298 on the group fed on hens and 82.1% (n = 2704 on that fed on rabbits, and the average time of hatching was 20 days. Mean time-lapse for beginning feeding was under 3 min in nymphal stages and postfeed defecation delay was under 10 min in all stages, in both cohorts. Mean feeding time was significantly (P 0.05 differences were recorded among the average times from NI to adult in the cohort fed on hens (196.8 ± 15.8 days and the average time in the cohort fed on rabbits (189.5 ± 22.9. The average span in days for each stage fed on hens was not significantly different to the average span for each stage fed on rabbits. The number of blood meals at each nymphal stage varied from 1 to 6 in both cohorts. The mortality rates were higher on fifth nymphal stage, in both cohorts. No significant (P > 0.05 differences were recorded on mortality rates on most nymphal stages of both cohorts. The average number of eggs laid per female from the cohort fed on hens in a 9-month period was 791.1, whereas the average number of eggs in the cohort fed on rabbits was 928.3.

  10. [Spiritual phenomena occurring in everybody and health].

    Science.gov (United States)

    Krsiak, M

    2008-01-01

    The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.

  11. Inertial confinement fusion reactor cavity phenomena

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.; Devaney, J.J.; Pendergrass, J.H.

    1978-01-01

    Cavity phenomena in Inertial Confinement Fusion (ICF) are created by the interaction of energy released by the fuel pellet microexplosion with the medium inside the reactor cavity. The ambient state of the medium in ICF reactor cavities is restricted primarily by its effects on laser beam propagation and on the fuel pellet trajectory. Therefore, a relatively wide choice of ambient conditions can be exploited to gain first-wall protection and advantages in energy extraction. Depending on the choice of ambient cavity conditions and on fuel pellet design, a variety of physical phenomena may develop and dominate the ICF reactor cavity design. Because of the cavity phenomena, the forms of energy released by the fuel-pellet microexplosion are modified before reaching the first wall, thus giving rise to different cavity design problems. The types of cavity phenomena encountered in the conceptual design of ICF reactors are examined, the approaches available for their modeling and analysis are discussed, and some results are presented. Most phenomena are sufficiently well understood to permit valid engineering assessments of the proposed ICF reactor concepts

  12. Biological nitrogen fixation in common beans(kidney); under fungicidal effects(vitavox), using N-15 isotopic methodology

    International Nuclear Information System (INIS)

    Gomez, Marco; Arahana, Venancio; Bernal, Gustavo

    1991-01-01

    This research was conducted in the EXPERIMENTAL EDUCATIONAL FIELD L a Tola , located in Tumbaco, Pichincha. The purpose was to evaluate the fixative efficiency of five strains of Rhizobium leguminosarum Bv. phaseoli under the effect of fungicidy, using the N-15 isotopic methodology. The experimental utilized desing was that of split plot with four replications. The area of the experimental plot in the assay was 2.4 Sq. m. (1.2 m x 2 m) and had three 0.60 m. appart furrows. The analized variables were: combined dry weight of stem and leaves and pods; total nitrogen of steam and leaves and pod; percentage and amount of fixed nitrogen (NFx per cent, QNFx); and the yield. The strains of greater nitrogen fixation were 1073 and 1020, with 40 NFx per cent and 31.0 kg NFx per ha. vitavax fungicidy had influence on all analized variables and did not affect the fixation of nitrogen of the strains for the yield of the Cargabello variety of bean

  13. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    Science.gov (United States)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (pagricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  14. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  15. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Kim, Hee Cheol; Song, Jin Ho; Sim, Suk Ku [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The work reported in this paper identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in SMART (System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental tests needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART. 8 refs., 4 tabs (Author)

  16. From quantum measurement to biology via retrocausality.

    Science.gov (United States)

    Matsuno, Koichiro

    2017-12-01

    A reaction cycle in general or a metabolic cycle in particular owes its evolutionary emergence to the covering reaction environment acting as a measurement apparatus of a natural origin. The quantum measurement of the environmental origin underlying the molecular processes observed in the biological realm is operative cohesively between the measuring and the measured. The measuring part comes to pull in a quantum as an indivisible lump available from an arbitrary material body to be measured. The inevitable difference between the impinging quantum upon the receiving end on the part of the environment and the actual quantum pulled into the receiving end comes to effectively be nullified through the retrocausative propagation of the corresponding wave function proceeding backwards in time. The retrocausal regulation applied to the interface between the measuring and the measured is to function as the organizational agency supporting biology, and is sought in the act for the present in the immediate future within the realm of quantum phenomena. Molecular dynamics in biology owes both the evolutionary buildup and maintenance of its organization to the retrocausal operation of the unitary transformation applied to quantum phenomena proceeding backwards in time. Quantum measurement provides the cohesive agency that is pivotal for implementing the retrocausal regulation. In particular, the physical origin of Darwinian natural selection can be seen in the retrocausal regulation applied to the unitary transformation of a quantum origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  18. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization.

    Science.gov (United States)

    Tambong, James T; Xu, Renlin; Bromfield, Eden S P

    2017-04-01

    The bacterial strain 2-92T, isolated from a field plot under long-term (>40 years) mineral fertilization, exhibited in vitro antagonistic properties against fungal pathogens. A polyphasic approach was undertaken to verify its taxonomic status. Strain 2-92T was Gram-reaction-negative, aerobic, non-spore-forming, motile by one or more flagella, and oxidase-, catalase- and urease-positive. The optimal growth temperature of strain 2-92T was 30 °C. 16S rRNA gene sequence analysis demonstrated that the strain is related to species of the genus Pseudomonas. Phylogenetic analysis of six housekeeping genes (dnaA, gyrB, recA, recF, rpoB and rpoD) revealed that strain 2-92T clustered as a distinct and well separated lineage with Pseudomonassimiae as the most closely related species. Polar lipid and fatty acid compositions corroborated the taxonomic position of strain 2-92T in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests could be used to differentiate strain 2-92T from closely related species of the genus Pseudomonas. DNA-DNA hybridization values (wet laboratory and genome-based) and average nucleotide identity data confirmed that this strain represents a novel species. On the basis of phenotypic and genotypic characteristics, it is concluded that this strain represents a separate novel species for which the name Pseudomonas canadensis sp. nov. is proposed, with type strain 2-92T (=LMG 28499T=DOAB 798T). The DNA G+C content is 60.30 mol%.

  19. Current-driven phenomena in nanoelectronics

    CERN Document Server

    Seideman, Tamar

    2010-01-01

    Consisting of ten chapters written by some of the world's leaders in the field, this book combines experimental, theoretical and numerical studies of current-driven phenomena in the nanoscale. The topics covered range from single-molecule, site-specific nanochemistry induced by a scanning tunneling microscope, through inelastic tunneling spectroscopy and current-induced heating, to current-triggered molecular machines. The various chapters focus on experimental and numerical method development, the description of specific systems, and new ideas and novel phenomena.

  20. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  1. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  2. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  3. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  4. Synchronization Phenomena in Coupled Colpitts Circuits

    Directory of Open Access Journals (Sweden)

    Ch. K. Volos

    2014-11-01

    Full Text Available In this work, the case of coupling (bidirectional and unidirectional between two identical nonlinear chaotic circuits via a linear resistor, is studied. The produced dynamical systems have different structure, in regard to other similar works, due to the choice of coupling nodes. As a circuit, a modification of the most well-known nonlinear circuit that can operate in a wide range of radiofrequencies, the Colpitts oscillator, is chosen. The simulation and the experimental results show a variety of dynamical phenomena, such as periodic, quasi-periodic and chaotic behaviors, as well as anti-phase and complete synchronization phenomena, depending on the value of the coupling coefficient.

  5. Going Multi-viral: Synthedemic Modelling of Internet-based Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    Marily Nika

    2015-02-01

    Full Text Available Epidemics of a biological and technological nature pervade modern life. For centuries, scientific research focused on biological epidemics, with simple compartmental epidemiological models emerging as the dominant explanatory paradigm. Yet there has been limited translation of this effort to explain internet-based spreading phenomena. Indeed, single-epidemic models are inadequate to explain the multimodal nature of complex phenomena. In this paper we propose a novel paradigm for modelling internet-based spreading phenomena based on the composition of multiple compartmental epidemiological models. Our approach is inspired by Fourier analysis, but rather than trigonometric wave forms, our components are compartmental epidemiological models. We show results on simulated multiple epidemic data, swine flu data and BitTorrent downloads of a popular music artist. Our technique can characterise these multimodal data sets utilising a parsimonous number of subepidemic models.

  6. Biology curriculum in twentieth-century Spain

    Science.gov (United States)

    Barberá, Óscar; Zanón, Beatriz; Pérez-Pl, José Francisco

    1999-01-01

    One hundred years of history of Spanish biology curricula are reviewed in this article. The aim of this analysis is focused on the relationship between socially controversial biological issues and the decisionmaking procedures in the construction of the national curricula published under the different regimes that have governed Spain over the last 100 years. The study covers the secondary level of schooling (age 10 up to university), and is based mainly on the data afforded by the official publications of the nine national curricula in twentieth-century Spain, and some of the main textbooks used for this schooling level. Special attention is given to the teaching of evolution, the most sensitive issue in biology education, and some parallelisms are traced and compared with similar phenomena occurring in other countries. The new trends in biology education from the last reform of the Spanish education system are briefly discussed. This study provides a perspective of the pressures affecting socially controversial issues included in education. These pressures have been identified mainly as political, social, and religious beliefs held by powerful and influential social groups, the same kinds of forces that have existed in other countries worldwide. Studies such as this one, about the real forces that have shaped curriculum development in the past, are vital for understanding the present circumstances in biology education and, therefore, unavoidable in order to enhance future standards in biology education.

  7. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  8. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  9. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  10. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    Directory of Open Access Journals (Sweden)

    Thomas J Webb

    Full Text Available BACKGROUND: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. CONCLUSIONS/SIGNIFICANCE: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  11. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  12. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  13. Novel experimentally observed phenomena in soft matter

    Indian Academy of Sciences (India)

    The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...

  14. Fourier Series The Mathematics of Periodic Phenomena

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Fourier Series The Mathematics of Periodic Phenomena. S Thangavelu ... Author Affiliations. S Thangavelu1. Department of Mathematics and Statistics, University of New Mexico, Humanities Building 419, Albuquerque, NM 87131-1141, USA ...

  15. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  16. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  17. Geophysical phenomena classification by artificial neural networks

    Science.gov (United States)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  18. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  19. Quantum phenomena in magnetic nano clusters

    Indian Academy of Sciences (India)

    While semiconductor structures have provided paradigms of nanosystems from the stand point of electronic phenomena, the synthesis of high nuclearity transition metal complexes have provided examples of nano magnets. The range and diversity of the properties exhibited by these systems rivals its electronic counterparts ...

  20. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  1. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  2. Transport phenomena in strongly correlated Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kontani, Hiroshi [Nagoya Univ., Aichi (Japan). Dept. of Physics

    2013-03-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  3. Quantum phenomena in magnetic nano clusters

    Indian Academy of Sciences (India)

    Unknown

    Abstract. One of the fascinating fields of study in magnetism in recent years has been the study of quantum phenomena in nanosystems. While semiconductor structures .... or discrete steps provided the sweep rate of the magnetic field is not too low 10. ... to the Landau–Zener two-level treatment within the spin-10 manifold.

  4. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...

  5. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of Corm Density on Yield and Qualitative Traits of Saffron (Crocus sativus L. under Different Urea and Biological Fertilizers in Shahr-e-Rey Region

    Directory of Open Access Journals (Sweden)

    Alireza pazoki

    2017-07-01

    Full Text Available To study the effect of corm density on yield and qualitative traits of saffron (Crocus sativus L. under different biological and chemical nitrogen fertilizers, a factorial experiment based on completely randomized block design with 3 replications was done in 2014 at Shahr-e-Rey region (Ghomi Abad. The experimental factors were: corm density in 3 levels (60, 120 and 180 corm per square meter and biological and chemical nitrogen fertilizers in 4 levels (without fertilizer application, 150 kg.ha-1 of Urea, 5 L.ha-1 of Nitroxin and 75 kg.ha-1 of Urea +5 L.ha-1 of Nitroxin. The results indicated that the corm density affects number of daughter corm, fresh daughter corm weight, corm diameter, dry stigma and style weight, dry and fresh flower weight significantly. Mean comparisons also indicated that by increasing corm density from 6o to 180, saffron dry yield of saffron improved by 2.7 fold. However, increasing corm density reduced corm diameter, fresh corm daughter weight and their numbers per square meter. It can be concluded that nitroxin as an organic fertilizer, increases vegetative traits and saffron dry yield (stigma + style weight to 2.08 kg.ha-1 and highly improves in qualitative traits like Safranal, Picrocrocin, and Crocin. It can be also said that combined use of nitroxin and urea would be an alternative method to reduce application of urea.

  7. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions

    Science.gov (United States)

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS ( P vitamin E and Se ( P > 0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E ( P vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers ( P Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions ( P < 0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers ( P < 0.05).

  8. ARISK PHENOMENA IN THE SILVANIA MOUNTAINS, INTUITIVE AND GENETIC REFLEXES

    Directory of Open Access Journals (Sweden)

    CAMELIA BOGDAN

    2014-05-01

    Full Text Available Risk phenomena in the Silvania Mountains, intuitive and genetic reflexes. In the contemporary period, the scientific research under the auspices of the global development has experienced a real quantitative and qualitative revolution. Theoretically and methodologically, the widespread promotion of the “concept of discontinuity” in terms of content, significances, manifestation, implications is observed, which has become a new imperative of the nowadays geography. The phenomena of discontinuity happen as real “paroxysmal, rhythm and intensity ruptures“ in relation to the normal occurrence defined either through the average value, determined on statistical basis as hydrological, meteorological, climatic phenomena or in discrete forms, when the phenomena occur in a veiled manner and they are perceptible only through their effects, respectively the environmental reflexes. Among the notions used with reference to extreme evolutionary discontinuities, we quote: the hazard, the disaster, the calamity and the risk to which was added a series of related notions: stability, sensitivity, resilience, fragility and vulnerability. The Silvania Mountains, a representative territorial unit within Silvania Land, with a fascinating and controversial geological origin, a real petrographic synthesis with uncovered crystalline stone, brought to the surface due to erosion under the layers of Neogene sediments, as a last remaining of a grandiose Hercynian chain with a varied orientation SW-NE of which were part the Massif Central –France, the east side, the Vosges Mountains, the Black Forest Mountains, the Harz Mountains and Bohemia. In this range of mountains, we also mention the Silvania Hercynian Mountains, respectively Plopiș and Meseș Mountains.This mountainous elevation level has an important role within the landscape as "geographical discontinuity factor” on one hand, between the Someșan Plateau and the Silvania piedmontan hills (Meseș Mountains

  9. Fundamentals of Cryobiology Physical Phenomena and Mathematical Models

    CERN Document Server

    Zhmakin, Alexander I

    2009-01-01

    The book gives a summary of the state-of-the-art of cryobiology and its applications. The accent is on the underlying physical phenomena, which are common in such opposite applications as cryosurgery and cryoconservation, and the corresponding mathematical models, including numerical ones. The treatment of some more special issues is moved to the appendices. The glossary contains definitions and explanations of the major entities. All the topics considered are well referenced. The book is useful to both biologists and physicits of different level including practioners and graduate students.

  10. Nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.A.; Sethna, J.P.

    1992-01-01

    This ongoing program, from the beginning of the first three year grant 1988--1991 and now in the first year of the second phase 1991--1994, has been directed at developing both an understanding of the physics underlying structural transformations in real (alloy) materials as well as new theoretical methods which adequately describe the large (nonlinear) distortions which characterize such processes. We have had a particular interest in martensitic systems, first (1988--1991) in the equilibrium limits, and now (below) in phenomena associated with the transformation process.

  11. Critical length scales for flow phenomena in liquid metal batteries

    Science.gov (United States)

    Kelley, Douglas; Weier, Tom

    2017-11-01

    Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.

  12. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  13. Biología de Eretmocerus mundus (Hymenoptera: Aphelinidae, parasitoide del complejo Bemisia tabaci (Homoptera: Aleyrodidae, en condiciones de laboratorio Biology of Eretmocerus mundus (Hymenoptera: Aphelinidae, parasitoid of Bemisia tabaci complex (Homoptera: Aleyrodidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Yerlin Chacón Castro

    2010-06-01

    Full Text Available La estimación de los atributos biológicos de un enemigo natural, previa a su empleo en el campo, constituye un aspecto de importancia en todo proyecto de control biológico. El objetivo de este trabajo fue evaluar los principales parámetros biológicos de Eretmocerus mundus Mercet, parasitoide de Bemisia tabaci (Gennadius, bajo condiciones de laboratorio.La emergencia del adulto, longevidad y fecundidad de la hembra, proporción sexual de la descendencia, tasa intrínseca de crecimiento poblacional (r m, tasa neta de reproducción (Ro y tiempo generacional (T; se estimaron mediante la técnica de tabla de vida y fecundidad, utilizando el pimiento (Capsicum annuum L. y el tomate (Solanum lycopersicum L. como plantas hospederas. Los resultados obtenidos en pimiento y tomate fueron respectivamente: supervivencia pupal: 86.86 ± 1.94 y 83,45 ± 2,13%; longevidad de la hembra: 18,19 ± 1,61 y 17,00 ± 0,92 días; proporción sexual: 0,34 ± 0,06 y 0,47 ± 0,05 hembras/(machos + hembras; l x50: 21 y 18 días; r m: 0,226 ± 0,061 y 0,228 ± 0,057 ninfas parasitadas/hembra/día; Ro: 189,71 ± 24,25 y 154,65 ± 17,58 ninfas parasitadas/hembra; T: 25,88 ± 0,42 y 24,03 ± 0,34 días. Los resultados obtenidos son una contribución al conocimiento de la población local del parasitoide y su posible papel como agente de control biológico de B. tabaci.The estimation of biological attributes of natural enemies prior to its use in the field is an important tool in a biological control program. The objective of the present paper was to evaluate the main biological parameters of Eretmocerus mundus Mercet, a parasitoid of Bemisia tabaci (Gennadius, under controlled laboratory conditions. Parasitoid survival, female longevity, fecundity, sex rate, intrinsic rate of natural increase (r m, net reproductive rate (Ro and generational time (T were studied using life tables, with pepper (Capsicum annuum L. and tomato (Solanum lycopersicum L. as host plants. Results

  14. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  15. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  16. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  17. An introduction to the neutron transport phenomena

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The main goal of the present lecture is to is to give a short description of neutron transport phenomena limited to those definitions that are necessary to understand the approach to practical solution of the problem given in the second lecture on reactor lattice transport calculations. The discussion of the neutron cross sections has been skipped as other lecturers have treated this subject in detail. (author)

  18. A LCIA Model Considering Pollution Transfer Phenomena

    OpenAIRE

    Yu, Xi; Sekhari, Aicha; Nongaillard, Antoine; Bouras, Abdelaziz; Yu, Suiran; Yang, Qingyan

    2013-01-01

    Part 7: PLM and Influence of/from Social Networks; International audience; Due to market pressure and government regulations, environmental consciousness in manufacturing is becoming increasingly important. Currently, the global environmental impact (EI) of a product is a crucial criterion to judge its environmental performance. Many models were proposed in the last three decades to evaluate the global EI of products, but none of them considers the pollution transfer phenomena (PTP) of produc...

  19. Natural phenomena hazards site characterization criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  20. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  1. Occult Phenomena in Sherlock Holmes the Movie

    OpenAIRE

    NAMAZCARRA, CHRIESHER

    2014-01-01

    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  2. Attophysics of Thermal Phenomena in Carbon Nanotubes

    OpenAIRE

    Kozlowski, Miroslaw; Marciak-Kozlowska, Janina

    2005-01-01

    In this paper heat transport in carbon nanotubes is investigated. When the dimension of the structure is of the order of the de Broglie wave length transport phenomena must be analysed by quantum mechanics. In this paper we derived the Dirac type thermal equation .The solution of the equation for the temperature fields for electrons can either be damped or can oscillate depending on the dynamics of the scattering. Key words: Carbon nanotubes, ultrashort laser pulses, Dirac thermal equation, t...

  3. Guilt phenomena in medicine, psychology, and psychiatry

    OpenAIRE

    Germanavičius, Arūnas

    2014-01-01

    This article gives an overview of various aspects of guilt arising in psychiatry as an interdisciplinary field, where different conceptions of medical ethics and of psychology lead to different practices. The analysis of modern psychiatric phenomena of guilt using a historical approach is based on the concept of guilt expounded by one of the world’s greatest philosophers, Karl Theodor Jaspers, who has made a huge impact on the formation of psychiatric research. The author presents an original...

  4. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  5. Bion and Tustin: the autistic phenomena.

    Science.gov (United States)

    Korbivcher, Celia Fix

    2013-08-01

    This article examines the implications of the proposal of autistic transformations within the general context of Bion's theory of Transformations. The aim is to confirm the coherence of this proposal of autistic transformations within the overall structure of Bion's theory of Transformations. She examines the relation between emotional links and their negatives, particularly -K. She questions in which of the dimensions of the mind the autistic phenomena are located, the relation between autistic phenomena and beta elements, and where to place them in the Grid. The author tries to form metapsychological support for the incorporation of the autistic area in Bion's theory of Transformations. She argues that, despite the incongruence and imprecision of this incorporation, such autistic phenomena cannot be excluded from the complexus of the human mind and should therefore be accounted for in Bion's transformations. She discusses the idea that the theory of transformations includes the field of the neurosis and psychosis and deals with emotions, whereas the autistic area is dominated by sensations. The author asks how to add the autistic area to Bion's theory. Clinical material of a child for whom the non-psychotic part of the personality predominates and who presents autistic nuclei provides material for the discussion. Copyright © 2013 Institute of Psychoanalysis.

  6. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  7. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  8. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  9. Thermal transport phenomena in nanoparticle suspensions

    Science.gov (United States)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  10. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  11. Research trends in radiobiology since 40 years. a new approach: the enzymatic repair function of DNA, internal factor in evolution of biological systems under irradiation

    International Nuclear Information System (INIS)

    Mouton, R.

    1968-01-01

    In the first part of the report, the author attempts to draw an historical scheme of successive research working hypotheses in radiobiology since 1924. Less than a generation ago the effect of radiation exposure were viewed as being direct, immediate, irreparable and unmodifiable. Now it is generally accepted that radiation lesion can also be indirect, delayed, reparable and often modified with appropriate chemical or biochemical treatment. It was however in 1962-1964 that came the decisive breakthrough in radiobiology with the discovery that the cell possesses a natural active self-defense mechanism against whatever stress would affect the integrity of the genetic message contained in the DNA structure itself. The existence of what could be considered as a fourth DNA function i.e. self-repair by enzymatic action under genetic control-brings at least to radiobiology the missing molecular biology basis it needed to get out of its 'phenomenological night' after abandon of the generalization of Lea's theory through lack of experimental evidence. In the second part, which is a prospective one, the author tries to set an enlarged synthesis considering the possible role of DNA repair system not only in cell survival - in presence or absence of dose modifiers or mutagens - but also in the artificial and natural evolution of biological system exposed to sub-lethal doses of radiation. Most recent data from the literature fit well with what must be still considered as a general working hypothesis. Studies dealing with phenotypic and genotypic characters linked with the acquisition of gamma and UV radiation resistance in 'Escherichia coli K12' has been started by the author, in collaboration with O. Tremeau, in order to bring a new experimental contribution in this respect. (author) [fr

  12. Inferring Broad Regulatory Biology from Time Course Data: Have We Reached an Upper Bound under Constraints Typical of In Vivo Studies?

    Directory of Open Access Journals (Sweden)

    Saurabh Vashishtha

    Full Text Available There is a growing appreciation for the network biology that regulates the coordinated expression of molecular and cellular markers however questions persist regarding the identifiability of these networks. Here we explore some of the issues relevant to recovering directed regulatory networks from time course data collected under experimental constraints typical of in vivo studies. NetSim simulations of sparsely connected biological networks were used to evaluate two simple feature selection techniques used in the construction of linear Ordinary Differential Equation (ODE models, namely truncation of terms versus latent vector projection. Performance was compared with ODE-based Time Series Network Identification (TSNI integral, and the information-theoretic Time-Delay ARACNE (TD-ARACNE. Projection-based techniques and TSNI integral outperformed truncation-based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%, i.e. transcription factor, protein-protein cliques and immune signaling networks. All were more robust to noise than truncation-based feature selection. Performance was comparable on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for In vivo Reverse-engineering and Modeling Assessment (IRMA and a 9-node human HeLa cell cycle network of similar size and edge density. Performance was more sensitive to the number of time courses than to sample frequency and extrapolated better to larger networks by grouping experiments. In all cases performance declined rapidly in larger networks with lower edge density. Limited recovery and high false positive rates obtained overall bring into question our ability to generate informative time course data rather than the design of any particular reverse engineering algorithm.

  13. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue

    DEFF Research Database (Denmark)

    Lewin, Peter A.; Jensen, Leif Bjørnø

    1981-01-01

    One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size at which resonance or collap...... of calculations for typical (transient) exposure conditions from pulse-echo equipment are presented, indicating that rectified diffusion and stable cavitation are improbable phenomena in these circumstances....

  14. Transport phenomena of nanoparticles in plants and animals/humans.

    Science.gov (United States)

    Anjum, Naser A; Rodrigo, Miguel Angel Merlos; Moulick, Amitava; Heger, Zbynek; Kopel, Pavel; Zítka, Ondřej; Adam, Vojtech; Lukatkin, Alexander S; Duarte, Armando C; Pereira, Eduarda; Kizek, Rene

    2016-11-01

    The interaction of a plethora nanoparticles with major biota such as plants and animals/humans has been the subject of various multidisciplinary studies with special emphasis on toxicity aspects. However, reports are meager on the transport phenomena of nanoparticles in the plant-animal/human system. Since plants and animals/humans are closely linked via food chain, discussion is imperative on the main processes and mechanisms underlying the transport phenomena of nanoparticles in the plant-animal/human system, which is the main objective of this paper. Based on the literature appraised herein, it is recommended to perform an exhaustive exploration of so far least explored aspects such as reproducibility, predictability, and compliance risks of nanoparticles, and insights into underlying mechanisms in context with their transport phenomenon in the plant-animal/human system. The outcomes of the suggested studies can provide important clues for fetching significant benefits of rapidly expanding nanotechnology to the plant-animal/human health-improvements and protection as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)

    2015-02-15

    Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.

  16. A treatise on interpolar transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Einarsrud, Kristian Etienne

    2012-07-01

    This thesis contributes to the understanding of mechanisms for mass transport in aluminium electrolysis cells. Fundamental studies are undertaken of flow patterns and mass transport in the interpolar region under various operating conditions. A coupled model predicting the turbulent electrolyte flow, under the influence of both electromagnetism and forces from buoyant gas bubbles, crucial for better prediction of mass transfer mechanisms and voltage oscillations, has been developed from first principles. The model is validated against experiments performed on a lab scale electrolysis cell. Both modelling and experiments are performed within the scope of this thesis. Experiments on lab- and industrial scale cells have been conducted in order to study the behaviour of anodic gas bubbles under various operating conditions. On industrial scale, bubble related signals show typical frequencies in the range 0.5 to 2 Hz, with amplitudes up to 5% around the mean voltage. Results indicate that the bubble related voltage oscillations increase in both frequency and magnitude with increasing anode age, the latter of which due to the diminishing in influence of slots. No significant correlation between anode pairs is identified, suggesting that models treating individual anodes are meaningful also on an industrial scale. Due to challenges related to multiple simultaneous phenomena occurring on industrial scales, a series of lab scale measurements have been performed, in order to obtain quantitative data for model validation. The lab scale experimental cell allowed for different current densities, interpolar distances and inclination angles, thus spanning ranges typically encountered on the industrial scale. Lab scale frequencies are found to be in the range 0.25 to 0.65 Hz, with magnitude of up to 4% around the mean voltage. The magnitude of the oscillations decreases with increasing anode age, due to increased rounding of the initially sharp anode edges. The traditional voltage

  17. Safety and immunogenicity of Onderstepoort Biological Products’ Rift Valley fever Clone 13 vaccine in sheep and goats under field conditions in Senegal

    Directory of Open Access Journals (Sweden)

    Modou M. Lo

    2015-05-01

    Full Text Available This blinded field safety study was conducted in Senegal to assess safety and immunogenicity of administration of the registered dose of Rift Valley fever virus (RVFV Clone 13 vaccine (Onderstepoort Biological Products to sheep and goats of West African breeds under natural conditions. A total of 267 small ruminants (220 sheep, 47 goats were included; half received RVFV Clone 13 vaccine at the recommended dose and half received the diluent (as placebo only. The study was performed on three commercial farms in the northern and eastern region of Senegal in accordance with veterinary good clinical practices. The animals were observed daily for 3 days after vaccination, and then weekly for 1 year. In both sheep and goats vaccinated against RVFV seroconversion rates above 70% were recorded. No seroconversion related to RVFV was observed in placebo-treated animals. No statistically significant differences were determined between placebo and vaccinated groups for mean rectal temperatures for the first 3 days after administration (p > 0.05. No abnormal clinical signs related to treatment were noted, and only one slight injection site reaction was observed in one vaccinated animal for 2 days after vaccination. Out of 176 births assessed over 1 year (93 from the vaccinated group, 83 from the placebo group, 9 were abnormal in the placebo group and 3 in the vaccinated group (p > 0.05. The frequency of adverse events was similar in the placebo and vaccinated groups. RVFV Clone 13 vaccine administered according to the manufacturer’s instructions was safe and well tolerated in West African breeds of sheep and goats, including animals of approximately 6 months of age and pregnant females, under field conditions in Senegal. Antibody levels persisted up to 1 year after vaccination.

  18. Access and Benefit Sharing under the Convention on Biological Diversity and Its Protocol: What Can Some Numbers Tell Us about the Effectiveness of the Regulatory Regime?

    Directory of Open Access Journals (Sweden)

    Nicolas Pauchard

    2017-02-01

    Full Text Available The Convention on Biological Diversity (CBD, adopted in 1992 and entered into force at the end of 1993, established a global regime on access to genetic resources (GR and sharing of benefits arising from their utilization (Access and Benefit Sharing (ABS regime. Its protocol—the Nagoya Protocol (NP—which entered into force 21 years later in 2014, clears up some terminological ambiguities of the Convention, clarifies and develops several procedural and instrumental elements of the regime, and obliges States Parties to implement some of its provisions, including the core instrument of the regime: the bilateral ABS agreement between users and providers of GR, that became a condition for obtaining access to the resource. However, scholars who analyzed the ABS regime as well as its official bodies find, and sometimes deplore, the small number of ABS agreements concluded so far, under the CBD as under the NP. This paper has two objectives: First, to assess the effectiveness of the ABS regime implemented by the CBD and the NP on the basis of its central instrument: the ABS agreements concluded between users and providers of GR. The aim is to accurately document the number of ABS agreements concluded since the entry into force of the regime. To our knowledge, such a counting that is neither piecemeal nor has an estimate yet been produced. To do so, I combine several sources, including first hand data collected from the official information agencies—the National Focal Points (NFP—of each of the States Parties to the NP. Second, I provide a critical summary of the existing explanations of the low number of ABS agreements concluded and I evaluate the corresponding causal mechanisms, relying on the results I obtained regarding the number of permits and agreements.

  19. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition.

    Science.gov (United States)

    Deng, Shihai; Li, Desheng; Yang, Xue; Xing, Wei; Li, Jinlong; Zhang, Qi

    2016-11-01

    A combined process between micro-electrolysis and biological denitrification (MEBD) using iron scraps and an activated carbon-based micro-electrolysis carrier was developed for nitrogen removal under a microaerobic condition. The process provided NH4(+)-N and total nitrogen (TN) removal efficiencies of 92.6% and 95.3%, respectively, and TN removal rate of 0.373±0.11kgN/(m(3)d) at corresponding DO of 1.0±0.1mg/L and HRT of 3h, and the optimal pH of 7.6-8.4. High-throughput sequencing analysis verified that dominant classes belonged to β-, α-, and γ-Proteobacteria, and Nitrospira. The dominant genera Hydrogenophaga and Sphaerotilus significantly increased during the operation, covering 13.2% and 6.1% in biofilms attached to the carrier in the middle of the reactor, respectively. Autotrophic denitrification contributed to >80% of the TN removal. The developed MEBD achieved efficient simultaneous nitrification and autotrophic denitrification, presenting significant potential for application in practical low organic carbon water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Effect of Chemical, Biological and Organic Nutritional Treatments on Sunflowers Yield and Yield Components under the Influence of Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    fatemeh soleymani

    2016-07-01

    Full Text Available Introduction To achieve the higher economic yield of crop plants, supplying enough nutrients to plants is very important. Moreover, nutrient uptakes by plants is influenced by the soil water contents. However, nowadays chemical fertilizer application is important agronomic factor that has significant effects on growth and quantity and quality of final yield, but traditional nutrient management and excessive use of chemical fertilizers may cause the environmental problems such as contamination of soil and water resources, low quality of agricultural products and reduction of soil fertility. These factors have drawn attention to health and ecological sustainable farming systems (Sharma, 2002. In this context, usage of organic and biological products for plant nutrition is considered as one of the solutions to achieve the goals of sustainable agriculture. Materials and methods To evaluate the effect of various feeding systems on yield and yield components of sunflower (Helianthus annuus L. under the influence of water deficit stress, a split-plot experiment based on randomized complete block design with three replications, was carried out in the Agricultural Faculty of Bu-Ali Sina University during the growing season of 2013-2014. Main plots consisted of two irrigation levels: optimum irrigation and deficit irrigation stress (irrigation after 60 and 120 mm evaporation from evaporation pan, class A, respectively and sub-plots included of nine nutrition systems: 1- no bio or chemical fertilizer application, 2- 100% of the recommended chemical fertilizer , 3- vermicompost, 4- phospho nitro kara, 5- vermicompost+ phospho nitro kara, 6- vermicompost+ ½ chemical fertilizer, 7- phospho nitro kara+ ½ chemical fertilizer, 8- vermicompost+ phospho nitro kara+ ½ chemical fertilizer, 9- ½ proposed chemical fertilizer. Phospho-nitro-kara which contains phosphate solubilizing and nitrogen fixing bacteria (Bacillus coagulans, azotobactr chroocuccum and

  1. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  2. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  3. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  4. Oscillating heat pipe simulation considering dryout phenomena

    Science.gov (United States)

    Senjaya, Raffles; Inoue, Takayoshi

    2014-10-01

    In heat transport devices such as oscillating heat pipe (OHP), dryout phenomena is very important and avoided in order to give the optimum performance. However, from the previous studies (including our studies), the dryout phenomena in OHP and its mechanism are still unclear. In our studies of OHP (Senjaya and Inoue in Appl Thermal Eng 60:251-255, 2013; Int J Heat Mass Transfer 60:816-824, 2013; Int J Heat Mass Transfer 60:825-835, 2013), we introduced the importance and roles of liquid film in the operating principle of OHP. In our previous simulation, the thickness of liquid film was assumed to be uniform along a vapor plug. Then, dryout never occurred because there was the liquid transfer from the liquid film in the cooling section to that in the heating section. In this research, the liquid film is not treated uniformly but it is meshed similarly with the vapor plugs and liquid slugs. All governing equations are also solved in each control volume of liquid film. The simulation results show that dryout occurs in the simulation without bubble generation and growth. Dryout is started in the middle of vapor plug, because the liquid supply from the left and right liquid slugs cannot reach until the liquid film in the middle of vapor plug, and propagates to the left and right sides of a vapor plug. By inserting the bubble generation and growth phenomena, dryout does not occur because the wall of heating section is always wetted during the bubble growth and the thickness of liquid film is almost constant. The effects of meshing size of liquid film and wall temperature of heating section are also investigated. The results show that the smaller meshing size, the smaller liquid transfer rate and the faster of dryout propagation. In the OHP with higher wall temperature of heating section, dryout and its propagation also occur faster.

  5. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  6. Psychic phenomena and early emotional states.

    Science.gov (United States)

    Reiner, Annie

    2004-06-01

    This paper examines the relationship between severe early trauma and the development of psychic intuition. A case presentation with extensive dream work helps to illustrate this connection by exploring the psychological meaning of one patient's acute receptivity to unconscious communications. The paper includes a historical overview of Freud's attitudes toward occultism, as distinct from later psychoanalytic views, including those of Wilfred Bion. Many of Bion's views have more in common with Jung's perspective than with Freud's, with particular reference made to spiritual and religious differences. Bion clearly states that Freud and psychoanalysts have focused on phenomena, not on noumena, which Bion considers to be the essence of the psychoanalytic point of view.

  7. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  8. Earthquake Prediction: Seismo-Electromagnetic Phenomena

    Science.gov (United States)

    Park, Stephen

    Earthquake Prediction: Seismo-Electromagnetic Phenomena is a review of research on electromagnetic emissions (EME) as precursors to earthquakes. The authors state in the introduction that the book is primarily based on their own work, so there is heavy emphasis on the Russian literature. Fewer than 15% of the references are taken from European, Asian, and North American sources. Though the title implies a diverse range of signals, the authors focus mostly on EME in the kHz-MHz range. There is little discussion of signals in the ULFand lower-frequency bands.

  9. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  10. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  11. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  12. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  13. Results on large transverse momentum phenomena

    CERN Document Server

    Büsser, F W; Blumenfeld, B; Camilleri, L L; Cool, R L; Di Lella, L; Gladding, G; Lederman, Leon Max; Litt, L; Placci, A; Pope, B G; Segler, S L; Smith, A M; Yoh, J K; Zavattini, E

    1973-01-01

    Preliminary results of an experiment on large transverse momentum phenomena performed at the CERN-ISR at centre-of-mass energies of 52.7 and 44.8 GeV are presented. The topics studied were the inclusive reaction p+p to pi /sup 0/+'anything', where the pi /sup 0/ was emitted around 90 degrees in the centre- of-mass system, ( pi /sup 0/ pi /sup 0/) correlations, and the charged multiplicity associated with large transverse momentum pi /sup 0/'s. In addition, results of a search for electrons and electron pairs are included. (4 refs).

  14. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  15. Heavenly Bodies and Phenomena in Petroglyphs

    Science.gov (United States)

    Tokhatyan, Karen

    2016-12-01

    In Armenian culture are amply reflected realities connected with Universe. Their figurative expressions are also petroglyphs in which there are representations of solar signs, swastika, Moon crescend, planets, stars, star groups, constellations, Milky Way, Earth. Among heavenly and atmospheric phenomena are: eclipce, meteor, comet, ligthning, cloud, rain and rainbow. There are many products of scientific thinking: stellar maps, calendars, compasses, astronomical records, Zodiac signs and ideograms. Thousands of the Armenian petroglyphs that were created millennia ago by an indigenous ethnos - Armenians, point to the significant place of celestial bodies and luminaries, especially the Sun, stars, and stellar constellations in our ancestors' cosmological perceptions.

  16. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....

  17. Ion transport phenomena in polymeric electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ciosek, M.; Sannier, L.; Siekierski, M.; Wieczorek, W. [Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland); Golodnitsky, D.; Peled, E. [School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel); Scrosati, B. [Dipartimento di Chimica, Universita di Roma ' ' La Sapienza' ' , P. le A. Moro 4, 00185 Rome (Italy); Glowinkowski, S. [Faculty of Physics, Adam Mickiewicz University, Ulmultowska 86, 61-614 Poznan (Poland)

    2007-12-31

    The aim of the present work is to generalize an ion transport phenomena observed in composite polymeric electrolytes using the previously developed models as well as design a new approach which would be helpful in describing changes in conductivity and lithium ion transference numbers occurring upon addition of fillers to polymeric electrolytes. The concept is based on the observation of changes in ionic associations in the polymeric electrolytes studied in a wide salt concentration range. The idea is illustrated by the results coming from a variety of electrochemical and structural data obtained for composite electrolytes containing specially designed inorganic and organic fillers. (author)

  18. Generalized Bloch theorem and chiral transport phenomena

    Science.gov (United States)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  19. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  20. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    Henry, Robert E.

    2004-01-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  1. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  2. Cross sections needed for investigations into track phenomena and Monte-Carlo calculations

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1983-01-01

    Investigations into basic radiation action mechanisms as well as into applied radiation transport problems (e.g. electron microscopy) greatly benefit from detailed computer simulations of charged particle track structures in matter. The first and in fact most important and most difficult step in any such calculation is the derivation of reliable cross sections for the most relevant interaction processes in the material(s) under consideration. The second step in radiation transport calculations is the testing of results or intermediate results for quantitative or qualitative consistency with other experimental or theoretical information (e.g. yields, backscatter factors). This paper discusses the types of the most important collision cross sections for studies on track phenomena by detailed Monte-Carlo calculations, the necessary accuracy of such data and various means of consistency checks of calculated results. This will be done mainly with examples taken from radiation physics as applied to dosimetric and biological problems (i.e. to gaseous and condensed targets). 12 references, 8 figures

  3. WHC natural phenomena hazards mitigation implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  4. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  5. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  6. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  7. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  8. MASCA, In-vessel phenomena during severe accidents

    International Nuclear Information System (INIS)

    2007-01-01

    Description: The MASCA Project was a follow-up of the RASPLAV Project and investigated in-vessel phenomena during a severe accident. In particular, it addressed the influence of the chemical composition of the molten corium on the heat transfer to the pressure vessel environment. The project addressed this by investigating stratification phenomena of the molten pool and the partitioning of fission products (FP) within the different layers of the melt. The project was scheduled to be completed in July 2003, but it was continued until 2006 under the MACS-2 Project, given the experimental needs that still exist and the quality of the experimental work done so far. The tests aimed to resolve remaining uncertainties about the heat load on the reactor vessel and thus the possibility of retaining the melt in the vessel. These uncertainties are mainly associated with scaling effects and coupling between the thermal-hydraulic and chemical behaviour of the melt. Supporting experiments and analyses - in addition to helping understand key in-vessel phenomena - facilitated a consistent interpretation of the results. The experiments were carried out with corium compositions prototypical of power reactors which use iron and steel materials. The MASCA experimental goal was achieved through corium tests of different scale, and was complemented by pre- and post-test analyses and development of computational models. Additional measurements of thermo-physical properties of the melts such as density, thermal conductivity and liquidus-solidus temperatures considerably expanded the material properties data obtained during the RASPLAV Project. The major goals of the MASCA Project were to: - Investigate the influence of chemical behaviour on heat transfer in stratified molten pools of prototypical compositions; - Investigate FP behaviour in a molten pool and in particular: Partitioning of FP between layers in case of stratification; Partitioning of FP between phases during melting and

  9. Modelling of particular phenomena observed in PANDA with Gothic

    International Nuclear Information System (INIS)

    Bandurski, Th.; Putz, F.; Andreani, M.; Analytis, M.

    2000-01-01

    PANDA is a large scale facility for investigating the long-term decay heat removal from the containment of a next generation 'passive' Advanced Light Water Reactor (ALWR). The first test series was aimed at the investigation of the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). Recently, the facility is used in the framework of two European projects for investigating the performance of four passive cooling systems, i.e. the Building Condenser (BC) designed by Siemens for the SWR-1000 long-term containment cooling, the Passive Containment Cooling System for the European Simplified Boiling Water Reactor (ESBWR), the Containment Plate Condenser (CPC) and the Isolation Condenser (IC) for cooling of a BWR core. The PANDA tests have the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the tested safety systems and extending the data base available for containment analysis code qualification. Among others, the containment analysis code Gothic was chosen for the analysis of particular phenomena observed during the PANDA tests. Ibis paper presents selected safety relevant phenomena observed in the PANDA tests and identified for the analyses and possible approaches for their modeling with Gothic. (author)

  10. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  11. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  12. Towards an understanding of flows in avalanche transport phenomena

    Science.gov (United States)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.

    2017-10-01

    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  13. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  14. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  15. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  16. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P.; Dr Soubbaramayer [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  17. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  18. Comparative study of the five biological parameters of cotton whitefly Bemisia tabaci and silverleaf whitefly B. argentifolii bellows and perring reared on cotton under laboratory condition.

    Science.gov (United States)

    Samih, M A; Izadi, H; Mahdian, K

    2006-01-01

    The five biological parameters of sweetpotato whitefly, Bemisia tabaci (Genn.) and silverleaf whitefly Bemisia argentifolii Bellows and Perring (Hom: Aleyrodidae) as an important pest of cotton were compared on cotton in laboratory condition. The infested leaves containing nymphs and pupae were collected from cotton fields in Iran. Experiments were conducted in a growth chamber under 24+/-2 degrees C, 55+/-3% RH and 16:8 (L:D) photoperiod on cotton, Gossypium hirsutum L. The newly emerged populations of each species were released in to a large cage set on cotton plants, separately. In this investigation, total fecundity, oviposition period, adult's longevity, sex ratios and daily fertility rates of 50 mated females were calculated for each whitefly used 50 mated females for each treatment. The treatments included two whitefly species and one host plant i.e. Gossypium hirsutum L. (Varamin 76 variety). Emergence of adults and crawlers and percentages of females emerged from 100-200 eggs at four replications were also calculated. The results revealed that total fecundity, oviposition period, and developmental time for B. tabaci reared on gossipium were 65.25, 4.56, and 23.18, respectively and for B. argentifolii reared on gossipium were 97.06, 5.42, and 23.75, respectively. The results revealed that there are significant differences between parameter of total fecundity at 1%. Probability level and sex ratios at 5% probability level. No significant difference was found between oviposition period, developmental time and maximum adult's longevity at 5% probability level.

  19. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  20. Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids

    Science.gov (United States)

    Hou, Guangjin; Yan, Si; Trébosc, Julien; Amoureux, Jean-Paul; Polenova, Tatyana

    2013-07-01

    We recently described a family of experiments for R2nv Driven Spin Diffusion (RDSD) spectroscopy suitable for homonuclear correlation experiments under fast MAS conditions [G. Hou, S. Yan, S.J. Sun, Y. Han, I.J. Byeon, J. Ahn, J. Concel, A. Samoson, A.M. Gronenborn, T. Polenova, Spin diffusion drive by R-symmetry sequencs: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids, J. Am. Chem. Soc. 133 (2011) 3943-3953]. In these RDSD experiments, since the broadened second-order rotational resonance conditions are dominated by the radio frequency field strength and the phase shifts, as well as the size of reintroduced dipolar couplings, the different R2nv sequences display unique polarization transfer behaviors and different recoupling frequency bandwidths. Herein, we present a series of modified R2nv sequences, dubbed COmbined R2nv-Driven (CORD), that yield broadband homonuclear dipolar recoupling and give rise to uniform distribution of cross peak intensities across the entire correlation spectrum. We report NMR experiments and numerical simulations demonstrating that these CORD spin diffusion sequences are suitable for broadband recoupling at a wide range of magnetic fields and MAS frequencies, including fast-MAS conditions (νr = 40 kHz and above). Since these CORD sequences are largely insensitive to dipolar truncation, they are well suited for the determination of long-range distance constraints, which are indispensable for the structural characterization of a broad range of systems. Using U-13C,15N-alanine and U-13C,15N-histidine, we show that under fast-MAS conditions, the CORD sequences display polarization transfer efficiencies within broadband frequency regions that are generally higher than those offered by other existing spin diffusion pulse schemes. A 89-residue U-13C,15N-dynein light chain (LC8) protein has also been used to demonstrate that the CORD sequences exhibit uniformly high cross peak intensities

  1. Astrophysical phenomena related to supermassive black holes

    Science.gov (United States)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  2. Autistic phenomena in The Adventures of Pinocchio.

    Science.gov (United States)

    Smith, Adrian

    2017-04-01

    This paper seeks to demonstrate that the protagonist of Carlo Collodi's The Adventures of Pinocchio illustrates numerous autistic phenomena such as communication difficulties, sensory and perceptual distortions and mindblindness. While Pinocchio is viewed as a literary construct with contraindications of autism, it will be argued that his autistic traits are sufficient to suggest the possibility that Collodi had a partial intuition of the syndrome 60 years before it was identified by Leo Kanner. Approaching Collodi's text in this manner is taken as an opportunity to survey and reflect upon the psychoanalytic literature on autism and to position it in relation to contemporary theories from cognitive neuroscience. © 2017, The Society of Analytical Psychology.

  3. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  4. Using Spatial Gradients to Model Localization Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  5. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  6. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  7. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  8. Heat Transfer Phenomena of Supercritical Fluids

    International Nuclear Information System (INIS)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas

    2008-01-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  9. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  10. Novel nuclear phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs

  11. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  12. Characterizing critical phenomena via the Purcell effect

    Science.gov (United States)

    Silva Neto, M. B.; Szilard, D.; Rosa, F. S. S.; Farina, C.; Pinheiro, F. A.

    2017-12-01

    We investigate the role of phase transitions into the spontaneous-emission rate of a single quantum emitter embedded in a critical medium. Using a Landau-Ginzburg approach, we find that in the broken symmetry phase, the emission rate is reduced, or even suppressed, due to the photon mass generated by the Higgs mechanism. Remarkably, its sensitivity to the critical exponents of the phase transition allows for an optical determination of universality classes. When applied to the cases of superconductivity and superfluidity, we show that the Purcell effect also provides valuable information on spectroscopic and thermodynamic quantities, such as the size of the superconducting gap and the discontinuity in the specific heat at the transition. By unveiling that a deeper connection between the Purcell effect and phase transitions exists, we demonstrate that the former is an efficient optical probe of distinct critical phenomena and their associated observables.

  13. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  14. Fast imaging of visible phenomena in TFTR

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Wurden, G.A.

    1999-01-01

    A commercial fast framing visible imaging system was used at TFTR to study edge plasma phenomena. This system was typically operated at 1000 frames/s, with exposures as short as 10 μs. These short exposures ar made possible by the image intensification of the camera, which also allows narrow band interference filters to be used. Sequences of over 1600 digital images (239 pixel x 192 pixel x 8 bit) can be captured into temporary memory banks for later slow play-back and/or storage into computer archives. Examples are shown illustrating plasma disruption, flying debris, lithium pellet injection, shallow deposition of lithium by laser outside the plasma (DOLLOP) and edge plasma turbulence. The characteristics of this system make it also very useful to the machine operator, since they provide slow motion video coverage of the interior of the device. (author)

  15. Atom optics simulator of lattice transport phenomena

    Science.gov (United States)

    An, Fangzhao; Meier, Eric; Gadway, Bryce

    2016-05-01

    We report on a novel scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.

  16. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  17. Reversion phenomena of Cu-Cr alloys

    Science.gov (United States)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  18. Surfactant-based critical phenomena in microgravity

    Science.gov (United States)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  19. Cheshire cat phenomena and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1986-11-01

    The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum

  20. Experimental study of the natural circulation phenomena

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo

    2006-01-01

    The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)

  1. APRI-6. Accident Phenomena of Risk Importance

    International Nuclear Information System (INIS)

    Garis, Ninos; Ljung, J

    2009-06-01

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident

  2. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  3. APRI-6. Accident Phenomena of Risk Importance

    Energy Technology Data Exchange (ETDEWEB)

    Garis, Ninos; Ljung, J (eds.) (Swedish Radiation Safety Authority, Stockholm (Sweden)); Agrenius, Lennart (ed.) (Agrenius Ingenjoersbyraa AB, Stockholm (Sweden))

    2009-06-15

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.

  4. SIMILARITIES IN THE MECHANISMS DETERMINING THE ARTHUS AND SHWARTZMAN PHENOMENA

    Science.gov (United States)

    Stetson, Chandler A.

    1951-01-01

    The intradermal injection of ovalbumin in rabbits sensitized to this antigen, under circumstances resulting in the elicitation of the Arthus phenomenon, causes a systemic reaction involving alterations in leucocytes and platelets, and results in cellular thrombosis of capillaries and veins in the injected skin areas. An abnormal metabolic process develops in the injected skin areas and may be the cause of the vulnerability of these vessels to leucocyte-platelet thrombosis. The form of vascular damage determining the Arthus phenomenon is similar to that already observed in the case of the Shwartzman phenomenon, and the results of various metabolic, hematologic, and histologic studies indicate that the mechanisms resulting in both phenomena are closely related. PMID:14888816

  5. Hall effects and related phenomena in disordered Rashba 2DEG

    International Nuclear Information System (INIS)

    Inoue, Jun-ichiro; Kato, Takashi; Bauer, Gerrit E W; Molenkamp, Laurens W

    2009-01-01

    We review our recent work on the spin and anomalous Hall effects and other related phenomena caused by the intrinsic spin–orbit interaction. We focus our attention on disorder effects on these transport properties by adopting a model of a two-dimensional electron gas with a Rashba-type spin–orbit interaction. A spin-polarized model is adopted to calculate the anomalous Hall effect and anisotropic magnetoresistance. It is shown that the spin Hall conductivity in the ballistic transport regime is cancelled by the so-called vertex corrections for the disorder scattering, and that the anomalous Hall conductivity and anisotropic magnetoresistance vanish unless the lifetime is spin dependent. We further present results on spin accumulation under an electric field

  6. Atomistic simulation of transport phenomena in nanoelectronic devices.

    Science.gov (United States)

    Luisier, Mathieu

    2014-07-07

    Computational chemistry deals with the first-principles calculation of electronic and crystal structures, phase diagrams, charge distributions, vibrational frequencies, or ion diffusivity in complex molecules and solids. Typically, none of these numerical experiments allows for the calculation of electrical currents under the influence of externally applied voltages. To address this issue, there is an imperative need for an advanced simulation approach capable of treating all kind of transport phenomena (electron, energy, momentum) at a quantum mechanical level. The goal of this tutorial review is to give an overview of the "quantum transport" (QT) research activity, introduce specific techniques such as the Non-equilibrium Green's Function (NEGF) formalism, describe their basic features, and underline their strengths and weaknesses. Three examples from the nanoelectronics field have been selected to illustrate the insight provided by quantum transport simulations. Details are also given about the numerical algorithms to solve the NEGF equations and about strategies to parallelize the workload on supercomputers.

  7. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  8. Power-law phenomena in adhesive de-bonding

    Science.gov (United States)

    Kendall, Gay

    Acoustic emission (AE) was recorded during the peeling of pressure-sensitive adhesive (PSA) tapes from their surfaces. The viscous and non-linear behavior of PSA tapes produces significant energy dissipation in the form of adhesive fibril formation, elongation and final failure within the peel zone. AE generated during the peeling process corresponds to the final de-bonding event, in which elastic energy is rapidly released to the substrate. The recording and analyzing of AE generated during peeling is used here in a novel application for characterizing microscopic de-bonding events. Present results indicate that the distribution of AE event magnitudes have the form of power-laws and the power spectral densities have the form of flicker noise. Both power-law dependencies and flicker noise are recognized as consequences of SOC in homogeneous systems. A significant feature of power-law dependencies is the absence of any characteristic length or time scales. The present results, however, indicate that the interface is not homogeneous and that pre-existing surface conditions cause non-uniform adhesive bonding. This is heavily supported by the literature regarding the nature of engineering surfaces. Consequentially, Mandelbrot's fractal concepts were applied to characterize the heterogeneous adhesive interface, and to investigate the relation of interfacial structure with the power-law features of the PSA de-bonding process. It is concluded that fractally distributed variations in adhesive bond strengths at the PSA-glass interface produce the observed hyperbolic distributions in AE events. All the formalism of SOC: applies under this alternative explanation of PSA de-bonding phenomena because of the observed hyperbolic distributions of the AE data. It may be that the explanation based on an underlying fractal structure may be a more general explanation to power law and flicker noise phenomena than the SOC model for heterogeneous systems.

  9. Organisation of biological research carried out in the United States by the A.E.C. or under her contract (1960)

    International Nuclear Information System (INIS)

    Pellerin, J.

    1960-01-01

    This report is based on information gathered in the course of a trip to the United States, in November and December 1958 which consisted chiefly of visits to the main biological and medical research laboratories and discussions with the heads of these establishments. A description is given of the general organisation of the Atomic Energy Commission's Division of Biology and Medicine, and of the distribution of responsibility for radiation protection work and for biological, medical and agricultural research amongst the various Services attached to it; this is followed by a more detailed account of the activities carried on in this field at the great national laboratories. Finally, the systems of collaboration set up with external research organisations in the form of research contracts are examined, together with the substantial help provided by the A.E.C. for biological, medical and agricultural research in general, owing to a systematic policy of subsidising the distribution of radioisotopes for this purpose. (author) [fr

  10. The Role of Thermal Properties in Periodic Time-Varying Phenomena

    Science.gov (United States)

    Marin, E.

    2007-01-01

    The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…

  11. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  12. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band

  13. FOREWORD: Electromagnetic Phenomena and Health - A Continuing Controversy?

    Science.gov (United States)

    Jamieson, Isaac A.; Holdstock, Paul

    2010-05-01

    A variety of natural electromagnetic phenomena - from electrostatic and magnetostatic fields to radiowaves, microwaves, infrared, visible light, ultraviolet, X-rays and gamma radiation - may influence human health and wellbeing (by their presence, intensity or absence) in a number of diverse ways. Some artificially created electromagnetic phenomena may also directly and/or indirectly influence biological functioning, though the levels and extent to which they may do so is still to a large extent open to debate and further investigation. Since the deployment, use and types of technology and materials that can alter the electromagnetic nature of environments to which individuals are exposed are growing at an ever increasing rate; it is necessary to consider and rigorously access the possible biological effects (both beneficial and detrimental) that they may cause, or be instrumental in causing, so that appropriate safety and best practice measures can be introduced/adhered to if and where appropriate. As demonstrated by the papers in these conference proceedings, there is presently a very widespread range of opinions from experts on the best ways to proceed over such matters, indicating that further dialogue is necessary in a way that can satisfactorily address these issues whilst enhancing technological innovation in a sustainable manner and suitably addressing possible health related concerns. It appears that by constructively encouraging dialogue between experts and other stakeholders and the development of 'Win-Win' scenarios and mindsets, where solutions and constructive progress are sought (instead of highlighting problems and differences in opinion - as has often occurred in the past in electromagnetic field (EMF) discourse) - much can be achieved to the benefit of all. It also appears much may be achieved if the possible beneficial health effects of particular types of electromagnetic phenomena, exposure regimes and related factors are investigated more

  14. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    KAUST Repository

    Tsai, Yu-Lin

    2016-09-06

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via nanoscaled phenomena have also been demonstrated as a promising way for further modifying/improving the device performance. The accomplishments achieved by photon management via nanoscaled phenomena include strain-induced polarization field management, crystal quality improvement, light extraction/harvesting enhancement, radiation pattern control, and spectrum management. In this review, we summarize recent development, challenges and underlying physics of photon management in GaN-based light emitting diodes and solar cells. (C) 2016 Elsevier Ltd. All rights reserved.

  15. Model based on diffuse logic for the construction of indicators of urban vulnerability in natural phenomena

    International Nuclear Information System (INIS)

    Garcia L, Carlos Eduardo; Hurtado G, Jorge Eduardo

    2003-01-01

    Upon considering the vulnerability of a urban system in a holistic way and taking into account some natural, technological and social factors, a model based upon a system of fuzzy logic, allowing to estimate the vulnerability of any system under natural phenomena potentially catastrophic is proposed. The model incorporates quantitative and qualitative variables in a dynamic system, in which variations in one of them have a positive or negative impact over the rest. An urban system model and an indicator model to determine the vulnerability due to natural phenomena were designed

  16. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qinjin [Los Alamos National Laboratory; Wang, Moran [Los Alamos National Laboratory; Mukherjee, Partha P [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  17. Comparison the Efficiency of Aquasorb and Accepta Superabsorbent Polymers in Improving Physical, Chemical, and Biological Properties of Soil and Tomato Turnover under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    mehdi nourzadeh haddad

    2017-06-01

    Full Text Available Introduction: Water shortage in arid and semiarid regions is the most serious factor in limiting agricultural activities as it leads to the rapid reduction of yields from both a quantitative and qualitative perspective. Under conditions of water scarcity, leaf temperature rises, which causes plant wilting and premature senescence of leaves and, eventually, severes reduction of dry matter production. Use of high-efficient irrigation practices, improvement of soil's physical properties, and use of soil amendments such as superabsorbent polymers are some ways of compensating for water shortage, especially during the growing season. Some materials such as plant residues, manure, various types of compost, and superabsorbent polymeric hydrogels can store various amounts of water and thus increase water retention and storage capacity of soils. Superabsorbent hydrogels, which are also called superabsorbent polymers (SAPs or hydrophilic polymeric gels, are hydrogels that can absorb substantial quantities of water. Hydrogels are a class of polymeric materials having network structures (with physical or chemical crosslinks that are very capable of swelling and absorbing large amounts of water. These materials are formed from water-solublepolymers by crosslinking them either using radiation or a crosslinker. Superabsorbents are widely used in many products such as disposable diapers, feminine napkins, soils for agricultural and horticultural purposes, gel actuators, water blocking tapes, medicine for the drug delivery systems and absorbent pads where water absorbency or water retention is important. Water is a major constraint for crop growth in arid and semi-arid regions, as the precipitation is low and uncertain in these areas. Efficient utilization of meager soil and water resources necessitates the adaptation of appropriate water management techniques. Suitable soil moisture increases the biological activities as result of physical and chemical

  18. Quantum Effects in Biological Systems

    CERN Document Server

    2016-01-01

    Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...

  19. The Natural Emergence of (Bio)Semiosic Phenomena.

    Science.gov (United States)

    van Hateren, J H

    Biological organisms appear to have agency, goals, and meaningful behaviour. One possibility is that this is mere appearance, where such properties are not real, but only 'as if' consequences of the physiological structure of organisms. Another possibility is that these properties are real, as emerging from the organism's structure and from how the organism interacts with its environment. Here I will discuss a recent theory showing that the latter position is most likely correct, and argue that the theory is largely consistent with the basics of the field of biosemiotics. The theory can be represented as a triad that resembles the semiotic triad proposed by Peirce, which connects a sign with its object through a process of interpretation. In the theory presented, the sign is an internalized version of fitness (i.e., expected reproductive rate) which refers to the true fitness through a feedback loop that in effect produces interpretation. The feedback loop entangles deterministic and stochastic forms of causation in such a way that genuine agency, goal-directedness, and their associated meaning emerge. It produces a strong form of emergence not reducible to its constituents. The result is that novel phenomena arise that are real and necessary components for a complete understanding of living organisms.

  20. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index