WorldWideScience

Sample records for biological pathways underlying

  1. Biological Pathways

    Science.gov (United States)

    Skip to main content Biological Pathways Fact Sheet Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features ...

  2. Identification of key processes underlying cancer phenotypes using biologic pathway analysis.

    Directory of Open Access Journals (Sweden)

    Sol Efroni

    2007-05-01

    Full Text Available Cancer is recognized to be a family of gene-based diseases whose causes are to be found in disruptions of basic biologic processes. An increasingly deep catalogue of canonical networks details the specific molecular interaction of genes and their products. However, mapping of disease phenotypes to alterations of these networks of interactions is accomplished indirectly and non-systematically. Here we objectively identify pathways associated with malignancy, staging, and outcome in cancer through application of an analytic approach that systematically evaluates differences in the activity and consistency of interactions within canonical biologic processes. Using large collections of publicly accessible genome-wide gene expression, we identify small, common sets of pathways - Trka Receptor, Apoptosis response to DNA Damage, Ceramide, Telomerase, CD40L and Calcineurin - whose differences robustly distinguish diverse tumor types from corresponding normal samples, predict tumor grade, and distinguish phenotypes such as estrogen receptor status and p53 mutation state. Pathways identified through this analysis perform as well or better than phenotypes used in the original studies in predicting cancer outcome. This approach provides a means to use genome-wide characterizations to map key biological processes to important clinical features in disease.

  3. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration.

    Science.gov (United States)

    van der Stijl, Rogier; Withoff, Sebo; Verbeek, Dineke S

    2017-12-01

    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Survival pathways under stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Survival pathways under stress. Bacteria survive by changing gene expression. pattern. Three important pathways will be discussed: Stringent response. Quorum sensing. Proteins performing function to control oxidative damage.

  5. Mining biological pathways using WikiPathways web services.

    Science.gov (United States)

    Kelder, Thomas; Pico, Alexander R; Hanspers, Kristina; van Iersel, Martijn P; Evelo, Chris; Conklin, Bruce R

    2009-07-30

    WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process.

  6. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  7. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    and that these variants are enriched for genes that are connected in biological pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes on the basis of SNP...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  8. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  9. The Kynurenine Pathway in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Simon P. Jones

    2013-01-01

    Full Text Available The kynurenine pathway (KP is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.

  10. The kynurenine pathway in stem cell biology.

    Science.gov (United States)

    Jones, Simon P; Guillemin, Gilles J; Brew, Bruce J

    2013-09-15

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.

  11. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  12. Biological pathways and toxicity of plutonium

    International Nuclear Information System (INIS)

    Metivier, H.

    1982-01-01

    After a brief description of the sources of plutonium in the environment and its physical and chemical characteristics, the following topics were studied: 1) biological pathway of plutonium leading to man by ingestion of contaminated food, by inhalation, by skin absorption and wounds in case of occupational exposure, and finally transport in organism and tissue distribution; 2) toxicity of plutonium; 3) treatment of internal contamination; 4) human exposure and its consequences including population exposure and personnel exposure, health risk. Limits on plutonium intake are discussed in the light of ICRP recommendations. (117 references) [fr

  13. Pathway Commons, a web resource for biological pathway data.

    Science.gov (United States)

    Cerami, Ethan G; Gross, Benjamin E; Demir, Emek; Rodchenkov, Igor; Babur, Ozgün; Anwar, Nadia; Schultz, Nikolaus; Bader, Gary D; Sander, Chris

    2011-01-01

    Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687,000 interactions and will be continually expanded and updated.

  14. Presenting and exploring biological pathways with PathVisio

    Directory of Open Access Journals (Sweden)

    Hanspers Kristina

    2008-09-01

    Full Text Available Abstract Background Biological pathways are a useful abstraction of biological concepts, and software tools to deal with pathway diagrams can help biological research. PathVisio is a new visualization tool for biological pathways that mimics the popular GenMAPP tool with a completely new Java implementation that allows better integration with other open source projects. The GenMAPP MAPP file format is replaced by GPML, a new XML file format that provides seamless exchange of graphical pathway information among multiple programs. Results PathVisio can be combined with other bioinformatics tools to open up three possible uses: visual compilation of biological knowledge, interpretation of high-throughput expression datasets, and computational augmentation of pathways with interaction information. PathVisio is open source software and available at http://www.pathvisio.org. Conclusion PathVisio is a graphical editor for biological pathways, with flexibility and ease of use as primary goals.

  15. Biological pathways and genetic mechanisms involved in social functioning

    NARCIS (Netherlands)

    Ordonana, J.R.; Bartels, M.; Boomsma, D.I.; Cella, D.; Mosing, M.; Oliveira, J.R.; Patrick, D.L.; Veenhoven, R.; Wagner, G.G.; Sprangers, M.A.G.

    2013-01-01

    Purpose: To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants

  16. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses.

    Science.gov (United States)

    Nguyen, Nguyen T; Lindsey, Merry L; Jin, Yu-Fang

    2015-01-01

    Pathway analysis has been widely used to gain insight into essential mechanisms of the response to myocardial infarction (MI). Currently, there exist multiple pathway databases that organize molecular datasets and manually curate pathway maps for biological interpretation at varying forms of organization. However, inconsistencies among different databases in pathway descriptions, frequently due to conflicting results in the literature, can generate incorrect interpretations. Furthermore, although pathway analysis software provides detailed images of interactions among molecules, it does not exhibit how pathways interact with one another or with other biological processes under specific conditions. We propose a novel method to standardize descriptions of enriched pathways for a set of genes/proteins using Gene Ontology terms. We used this method to examine the relationships among pathways and biological processes for a set of condition-specific genes/proteins, represented as a functional biological pathway-process network. We applied this algorithm to a set of 613 MI-specific proteins we previously identified. A total of 96 pathways from Biocarta, KEGG, and Reactome, and 448 Gene Ontology Biological Processes were enriched with these 613 proteins. The pathways were represented as Boolean functions of biological processes, delivering an interactive scheme to organize enriched information with an emphasis on involvement of biological processes in pathways. We extracted a network focusing on MI to demonstrate that tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) protein, positive regulation of collagen metabolic process, coagulation, and positive/negative regulation of blood coagulation have immediate impacts on the MI response. Our method organized biological processes and pathways in an unbiased approach to provide an intuitive way to identify biological properties of pathways under specific conditions. Pathways from different

  17. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  18. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  19. Systems biology approaches and pathway tools for investigating cardiovascular disease

    NARCIS (Netherlands)

    Wheelock, C.E.; Wheelock, A.M.; Kawashima, S.; Diez, D.; Kanehisa, M.; Erk, M. van; Kleemann, R.; Haeggström, J.Z.; Goto, S.

    2009-01-01

    Systems biology aims to understand the nonlinear interactions of multiple biomolecular components that characterize a living organism. One important aspect of systems biology approaches is to identify the biological pathways or networks that connect the differing elements of a system, and examine

  20. Interleukins and their signaling pathways in the Reactome biological pathway database.

    Science.gov (United States)

    Jupe, Steve; Ray, Keith; Roca, Corina Duenas; Varusai, Thawfeek; Shamovsky, Veronica; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    There is a wealth of biological pathway information available in the scientific literature, but it is spread across many thousands of publications. Alongside publications that contain definitive experimental discoveries are many others that have been dismissed as spurious, found to be irreproducible, or are contradicted by later results and consequently now considered controversial. Many descriptions and images of pathways are incomplete stylized representations that assume the reader is an expert and familiar with the established details of the process, which are consequently not fully explained. Pathway representations in publications frequently do not represent a complete, detailed, and unambiguous description of the molecules involved; their precise posttranslational state; or a full account of the molecular events they undergo while participating in a process. Although this might be sufficient to be interpreted by an expert reader, the lack of detail makes such pathways less useful and difficult to understand for anyone unfamiliar with the area and of limited use as the basis for computational models. Reactome was established as a freely accessible knowledge base of human biological pathways. It is manually populated with interconnected molecular events that fully detail the molecular participants linked to published experimental data and background material by using a formal and open data structure that facilitates computational reuse. These data are accessible on a Web site in the form of pathway diagrams that have descriptive summaries and annotations and as downloadable data sets in several formats that can be reused with other computational tools. The entire database and all supporting software can be downloaded and reused under a Creative Commons license. Pathways are authored by expert biologists who work with Reactome curators and editorial staff to represent the consensus in the field. Pathways are represented as interactive diagrams that include as

  1. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  2. Modelling biological pathway dynamics with Timed Automata

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Urquidi Camacho, R.A.; Wanders, B.; van der Vet, P.E.; Karperien, Hermanus Bernardus Johannes; Langerak, Romanus; van de Pol, Jan Cornelis; Post, Janine Nicole

    2012-01-01

    When analysing complex interaction networks occurring in biological cells, a biologist needs computational support in order to understand the effects of signalling molecules (e.g. growth factors, drugs). ANIMO (Analysis of Networks with Interactive MOdelling) is a tool that allows the user to create

  3. cPath: open source software for collecting, storing, and querying biological pathways

    Directory of Open Access Journals (Sweden)

    Gross Benjamin E

    2006-11-01

    Full Text Available Abstract Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  4. A systems biology approach reveals common metastatic pathways in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Flores Ricardo J

    2012-05-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. Results mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/TGF/WNT” was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT” pathway in the Sa

  5. The Biological Connection Markup Language: a SBGN-compliant format for visualization, filtering and analysis of biological pathways.

    Science.gov (United States)

    Beltrame, Luca; Calura, Enrica; Popovici, Razvan R; Rizzetto, Lisa; Guedez, Damariz Rivero; Donato, Michele; Romualdi, Chiara; Draghici, Sorin; Cavalieri, Duccio

    2011-08-01

    Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions. The Biological Connection Markup Language (BCML) is a format to describe, annotate and visualize pathways. BCML is able to store multiple information, permitting a selective view of the pathway as it exists and/or behave in specific organisms, tissues and cells. Furthermore, BCML can be automatically converted into data formats suitable for analysis and into a fully SBGN-compliant graphical representation, making it an important tool that can be used by both computational biologists and 'wet lab' scientists. The XML schema and the BCML software suite are freely available under the LGPL for download at http://bcml.dc-atlas.net. They are implemented in Java and supported on MS Windows, Linux and OS X.

  6. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  7. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  8. Constructing biological pathways by a two-step counting approach.

    Directory of Open Access Journals (Sweden)

    Hsiuying Wang

    Full Text Available Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article, we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error. For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and efficient alternative approach for reconstructing the biological network.

  9. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  10. Crossing frontiers in tackling pathways of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Bacher, S.; Blackburn, T. M.; Booy, O.; Brundu, G.; Brunel, S.; Cardoso, A.-C.; Eschen, R.; Gallardo, B.; Galil, B.; García-Berthou, E.; Genovesi, P.; Groom, Q.; Harrower, C.; Hulme, P. E.; Katsanevakis, S.; Kenis, M.; Kühn, I.; Kumschick, S.; Martinou, A. F.; Nentwig, W.; O´Flynn, C.; Pagad, S.; Pergl, Jan; Pyšek, Petr; Rabitsch, W.; Richardson, D. M.; Roques, A.; Roy, H. E.; Sclarea, R.; Schindler, S.; Seebens, H.; Vanderhoeven, S.; Vila, M.; Wilson, J. R. U.; Zenetos, A.; Jeschke, J.M.

    2015-01-01

    Roč. 65, č. 8 (2015), s. 769-782 ISSN 0006-3568 R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * pathways * management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.294, year: 2015

  11. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  12. Efficient algorithms for extracting biological key pathways with global constraints

    DEFF Research Database (Denmark)

    Baumbach, Jan; Friedrich, T.; Kötzing, T.

    2012-01-01

    from a set of cases (patients, cell lines, tissues, etc.). We aimed for finding all maximal connected sub-graphs where all nodes but K are expressed in all cases but at most L, i.e. key pathways. Thereby, we combined biological networks with OMICS data, instead of analyzing these data sets in isolation....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...

  13. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard

    2014-01-01

    The milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may...... provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  14. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    Science.gov (United States)

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  15. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  16. Expansion of biological pathways based on evolutionary inference.

    Science.gov (United States)

    Li, Yang; Calvo, Sarah E; Gutman, Roee; Liu, Jun S; Mootha, Vamsi K

    2014-07-03

    The availability of diverse genomes makes it possible to predict gene function based on shared evolutionary history. This approach can be challenging, however, for pathways whose components do not exhibit a shared history but rather consist of distinct "evolutionary modules." We introduce a computational algorithm, clustering by inferred models of evolution (CLIME), which inputs a eukaryotic species tree, homology matrix, and pathway (gene set) of interest. CLIME partitions the gene set into disjoint evolutionary modules, simultaneously learning the number of modules and a tree-based evolutionary history that defines each module. CLIME then expands each module by scanning the genome for new components that likely arose under the inferred evolutionary model. Application of CLIME to ∼1,000 annotated human pathways and to the proteomes of yeast, red algae, and malaria reveals unanticipated evolutionary modularity and coevolving components. CLIME is freely available and should become increasingly powerful with the growing wealth of eukaryotic genomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Identifying biological pathway interrupting toxins using multi-tree ensembles

    Directory of Open Access Journals (Sweden)

    Gergo Barta

    2016-08-01

    Full Text Available The pharmaceutical industry constantly seeks new ways to improve current methods that scientists use to evaluate environmental chemicals and develop new medicines. Various automated steps are involved in the process as testing hundreds of thousands of chemicals manually would be infeasible. Our research effort and the Toxicology in the 21st Century Data Challenge focused on cost-effective automation of toxicological testing, a chemical substance screening process looking for possible toxic effects caused by interrupting biological pathways. The computational models we propose in this paper successfully combine various publicly available substance fingerprinting tools with advanced machine learning techniques. In our paper, we explore the significance and utility of assorted feature selection methods as the structural analyzers generate a plethora of features for each substance. Machine learning models were carefully selected and evaluated based on their capability to cope with the high-dimensional high-variety data with multi-tree ensemble methods coming out on top. Techniques like Random forests and Extra trees combine numerous simple tree models and proved to produce reliable predictions on toxic activity while being nearly non-parametric and insensitive to dimensionality extremes. The Tox21 Data Challenge contest offered a great platform to compare a wide range of solutions in a controlled and orderly manner. The results clearly demonstrate that the generic approach presented in this paper is comparable to advanced deep learning and domain-specific solutions. Even surpassing the competition in some nuclear receptor signaling and stress pathway assays and achieving an accuracy of up to 94 percent.

  18. A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides.

    Science.gov (United States)

    Roberts, Mark A J; August, Elias; Hamadeh, Abdullah; Maini, Philip K; McSharry, Patrick E; Armitage, Judith P; Papachristodoulou, Antonis

    2009-10-31

    Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. In this paper, we developed a novel mathematical model/experiment design cycle to help determine the probable network connectivity by iteratively invalidating models corresponding to competing signalling pathways. To do this, we systematically design experiments in silico that discriminate best between models of the competing signalling pathways. The method determines the inputs and parameter perturbations that will differentiate best between model outputs, corresponding to what can be measured/observed experimentally. We applied our method to the unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We first developed several models of R. sphaeroides chemotaxis corresponding to different signalling networks, all of which are biologically plausible. Parameters in these models were fitted so that they all represented wild type data equally well. The models were then compared to current mutant data and some were invalidated. To discriminate between the remaining models we used ideas from control systems theory to determine efficiently in silico an input profile that would result in the biggest difference in model outputs. However, when we applied this input to the models, we found it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we determined the best change in initial conditions (total protein concentrations) as well as the best change in the input profile. The designed experiments were then performed on live cells and the resulting data used to invalidate all but one of the

  19. A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides

    Directory of Open Access Journals (Sweden)

    Hamadeh Abdullah

    2009-10-01

    Full Text Available Abstract Background Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. Results In this paper, we developed a novel mathematical model/experiment design cycle to help determine the probable network connectivity by iteratively invalidating models corresponding to competing signalling pathways. To do this, we systematically design experiments in silico that discriminate best between models of the competing signalling pathways. The method determines the inputs and parameter perturbations that will differentiate best between model outputs, corresponding to what can be measured/observed experimentally. We applied our method to the unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We first developed several models of R. sphaeroides chemotaxis corresponding to different signalling networks, all of which are biologically plausible. Parameters in these models were fitted so that they all represented wild type data equally well. The models were then compared to current mutant data and some were invalidated. To discriminate between the remaining models we used ideas from control systems theory to determine efficiently in silico an input profile that would result in the biggest difference in model outputs. However, when we applied this input to the models, we found it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we determined the best change in initial conditions (total protein concentrations as well as the best change in the input profile. The designed experiments were then performed on live cells and the resulting

  20. Informatics approaches in the Biological Characterization of Adverse Outcome Pathways

    Science.gov (United States)

    Adverse Outcome Pathways (AOPs) are a conceptual framework to characterize toxicity pathways by a series of mechanistic steps from a molecular initiating event to population outcomes. This framework helps to direct risk assessment research, for example by aiding in computational ...

  1. Strategic considerations under the Biologics Price Competition and Innovation Act.

    Science.gov (United States)

    Marquardt, John L; Auten, Stephen R

    2013-08-01

    The Biologics Price Competition and Innovation Act provides a pathway for regulatory approval of generic drugs and the associated patent challenge. This article reviews strategic considerations during the patent litigation and injunction phases. Considerations during the initial patent litigation phase include when and whether to exchange a paragraph k application and the listing and exchange of patent information during the volley phase.

  2. Biological clockwork underlying adaptive rhythmic movements

    Science.gov (United States)

    Iwasaki, Tetsuya; Chen, Jun; Friesen, W. Otto

    2014-01-01

    Owing to the complexity of neuronal circuits, precise mathematical descriptions of brain functions remain an elusive ambition. A more modest focus of many neuroscientists, central pattern generators, are more tractable neuronal circuits specialized to generate rhythmic movements, including locomotion. The relative simplicity and well-defined motor functions of these circuits provide an opportunity for uncovering fundamental principles of neuronal information processing. Here we present the culmination of mathematical analysis that captures the adaptive behaviors emerging from interactions between a central pattern generator, the body, and the physical environment during locomotion. The biologically realistic model describes the undulatory motions of swimming leeches with quantitative accuracy and, without further parameter tuning, predicts the sweeping changes in oscillation patterns of leeches undulating in air or swimming in high-viscosity fluid. The study demonstrates that central pattern generators are capable of adapting oscillations to the environment through sensory feedback, but without guidance from the brain. PMID:24395788

  3. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  4. AN INTEGRATED NETWORK APPROACH TO IDENTIFYING BIOLOGICAL PATHWAYS AND ENVIRONMENTAL EXPOSURE INTERACTIONS IN COMPLEX DISEASES.

    Science.gov (United States)

    Darabos, Christian; Qiu, Jingya; Moore, Jason H

    2016-01-01

    Complex diseases are the result of intricate interactions between genetic, epigenetic and environmental factors. In previous studies, we used epidemiological and genetic data linking environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and separately analyze the effects of both environment and genetic factors on disease interactions. To better capture the intricacies of the interactions between environmental exposure and the biological pathways in complex disorders, we integrate both aspects into a single "tripartite" network. Despite extensive research, the mechanisms by which chemical agents disrupt biological pathways are still poorly understood. In this study, we use our integrated network model to identify specific biological pathway candidates possibly disrupted by environmental agents. We conjecture that a higher number of co-occurrences between an environmental substance and biological pathway pair can be associated with a higher likelihood that the substance is involved in disrupting that pathway. We validate our model by demonstrating its ability to detect known arsenic and signal transduction pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted by cadmium. The validation was supported by distinct publications of cell biology and genetic studies that associated environmental exposure to pathway disruption. The integrated network approach is a novel method for detecting the biological effects of environmental exposures. A better understanding of the molecular processes associated with specific environmental exposures will help in developing targeted molecular therapies for patients who have been exposed to the toxicity of environmental chemicals.

  5. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    International Nuclear Information System (INIS)

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-01-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C 12 E 9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C 12 E 9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C 12 E 9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C 12 E 9 , C 12 E 8 , C 12 E 7 and C 12 E 6 . Apart from the substrate, the homologues C 12 E 8 , C 12 E 7 and C 12 E 6 , being metabolites of C 12 E 9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C 12 E 8 COOH, C 12 E 7 COOH, C 12 E 6 COOH and C 12 E 5 COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C 12 E 9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. - Highlights: • Two parallel biodegradation pathways of alcohol ethoxylates have been discovered. • Apart from central

  6. Pathways of the Maillard reaction under physiological conditions.

    Science.gov (United States)

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  7. Genetic association analyses highlight biological pathways underlying mitral valve prolapse

    OpenAIRE

    Dina, Christian; Bouatia-Naji, Nabila; Tucker, Nathan; Delling, Francesca N.; Toomer, Katelynn; Durst, Ronen; Perrocheau, Maelle; Fernandez-Friera, Leticia; Solis, Jorge; Le Tourneau, Thierry; Chen, Ming-Huei; Probst, Vincent; Bosse, Yohan; Pibarot, Philippe; Zelenika, Diana

    2015-01-01

    Non-syndromic mitral valve prolapse (MVP) is a common degenerative cardiac valvulopathy of unknown aetiology that predisposes to mitral regurgitation, heart failure and sudden death 1 . Previous family and pathophysiological studies suggest a complex pattern of inheritance 2?5 . We performed a meta-analysis of two genome-wide association studies in 1,442 cases and 2,439 controls. We identified and replicated in 1,422 cases and 6,779 controls six loci and provide functional evidence for candid...

  8. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    Science.gov (United States)

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  9. Potential biological pathways linking Type-D personality and poor health: A cross-sectional investigation.

    Directory of Open Access Journals (Sweden)

    Vera K Jandackova

    Full Text Available Type-D personality, defined as a combination of high negative affect and high social isolation, has been associated with poor health outcomes. However, pathways underlying this association are largely unknown. We investigated the relationship between Type-D personality and several biological and behavioral pathways including the autonomic nervous system, the immune system, glucose regulation and sleep in a large, apparently healthy sample.Data from a total of 646 respondents (age 41.6±11.5, 12,2% women were available for analysis. Persons with Type-D (negative affect and social isolation score ≥10 were contrasted with those without Type-D. Measures of plasma fibrinogen levels, white blood cell count, high sensitivity C-reactive protein, fasting plasma glucose (FPG, cholesterol, high-density and low-density lipoprotein, glycated hemoglobin (HbA1c, creatinine, triglycerides, and albumin were derived from fasting blood samples. Urine norepinephrine and free cortisol were determined by high-performance liquid chromatography. Time-domain heart rate variability (HRV measures were calculated for the 24hr recording period and for nighttime separately.Persons with Type-D had higher HbA1c, FPG, and fibrinogen, and lower nighttime HRV than those without Type-D, suggesting worse glycemic control, systemic inflammation and poorer autonomic nervous system modulation in Type-D persons. In addition, those with Type-D reported less social support and greater sleep difficulties while no group differences were observed for alcohol and cigarette consumption, physical activity and body mass index.Findings provide some of the first evidence for multiple possible biological and behavioral pathways between Type-D personality and increased morbidity and mortality.

  10. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology

    Science.gov (United States)

    Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron

    2016-01-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094

  11. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  12. Future changes in global warming potentials under representative concentration pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, Andy [New Zealand Agricultural Greenhouse Gas Research Centre, PO Box 10002, Wellington 6143 (New Zealand); Meinshausen, Malte [Earth System Analysis, Potsdam Institute for Climate Impact Research (Germany); Manning, Martin, E-mail: andy.reisinger@nzagrc.org.nz [Climate Change Research Institute, Victoria University of Wellington (New Zealand)

    2011-04-15

    Global warming potentials (GWPs) are the metrics currently used to compare emissions of different greenhouse gases under the United Nations Framework Convention on Climate Change. Future changes in greenhouse gas concentrations will alter GWPs because the radiative efficiencies of marginal changes in CO{sub 2}, CH{sub 4} and N{sub 2}O depend on their background concentrations, the removal of CO{sub 2} is influenced by climate-carbon cycle feedbacks, and atmospheric residence times of CH{sub 4} and N{sub 2}O also depend on ambient temperature and other environmental changes. We calculated the currently foreseeable future changes in the absolute GWP of CO{sub 2}, which acts as the denominator for the calculation of all GWPs, and specifically the GWPs of CH{sub 4} and N{sub 2}O, along four representative concentration pathways (RCPs) up to the year 2100. We find that the absolute GWP of CO{sub 2} decreases under all RCPs, although for longer time horizons this decrease is smaller than for short time horizons due to increased climate-carbon cycle feedbacks. The 100-year GWP of CH{sub 4} would increase up to 20% under the lowest RCP by 2100 but would decrease by up to 10% by mid-century under the highest RCP. The 100-year GWP of N{sub 2}O would increase by more than 30% by 2100 under the highest RCP but would vary by less than 10% under other scenarios. These changes are not negligible but are mostly smaller than the changes that would result from choosing a different time horizon for GWPs, or from choosing altogether different metrics for comparing greenhouse gas emissions, such as global temperature change potentials.

  13. ANIMO: a tool for modeling biological pathway dynamics

    NARCIS (Netherlands)

    Schivo, Stefano; Scholma, Jetse; Karperien, Hermanus Bernardus Johannes; Langerak, Romanus; van de Pol, Jan Cornelis; Post, Janine Nicole

    2014-01-01

    Introduction Computational methods are applied with increasing success to the analysis of complex biological systems. However, their adoption is sometimes made difficult by requiring prior knowledge about the foundations of such methods, which often come from a different branch of science. The

  14. Improving the Timed Automata Approach to Biological Pathway Dynamics

    NARCIS (Netherlands)

    Langerak, R.; Pol, Jaco van de; Post, Janine N.; Schivo, Stefano; Aceto, Luca; Bacci, Giorgio; Bacci, Giovanni; Ingólfsdóttir, Anna; Legay, Axel; Mardare, Radu

    2017-01-01

    Biological systems such as regulatory or gene networks can be seen as a particular type of distributed systems, and for this reason they can be modeled within the Timed Automata paradigm, which was developed in the computer science context. However, tools designed to model distributed systems often

  15. Radiotracers For Lipid Signaling Pathways In Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S. J. [Northeastern Univ., Boston, MA (United States)

    2016-09-26

    enzymes such as fatty acid amide hydrolase, which may regulate endocannabinoid tone in animals. Early results were presented at the 2011 ICRS meeting, and at the 2012 Society for Neurosciences. Narachidonoylethanolamine is an endocannabinoid signaling messenger in animals and is known as “anandamide”. It is one of several families of signaling molecules derived from arachidonic acid, the principal omega-6 polyunsaturated fatty acids (PUFA’s) in animal species. Other derivatives of arachidonic acid include thromboxanes and prostaglandins. Full details of the studies with the ethanolamide isotopomers were a part of the PhD dissertation of Kun Hu (nee Qian), and were submitted for publication to Nuclear Medicine and Biology in August 2016. Syntheses of [14C]docosahexanoylethanolamine isotopomers and preliminary biological investigations Docosahexaenoic acid (DHA) is the omega-3 PUFA that can be regarded in some respects as the counterpart of arachidonic acid in the omega-6 series. While arachidonic acid is proinflammatory, DHA is anti-inflammatory, and foods high in DHA (or artificially enriched in DHA) are commonly regarded as promoting health. In contrast to the large literature on the Nethanolamide of arachidonic acid (i.e. the endocannabinoid anandamide) as of now (9/25/2016) there are only six papers on the corresponding ethanolamide of DHA, and when our studies under this grant began there were none. Beneficial actions of endogenously produced DHAethanolamine (“synaptamide”) have been indicated, and to help elucidate the possible roles of synaptamide, we have synthesized this molecule for the first time labeled with C-14 in either the ethanolamine moiety or the fatty acid moiety. Studies of the disposition of endogenously administered isotopomers of DHA-ethanolamine are in progress, to complement tissue culture experiments evaluation hypothesized protective effects of this DHA derivative.

  16. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zembrzuska, Joanna, E-mail: Joanna.Zembrzuska@put.poznan.pl; Budnik, Irena, E-mail: Irena.Budnik@gmail.com; Lukaszewski, Zenon, E-mail: zenon.lukaszewski@put.poznan.pl

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C{sub 12}E{sub 9} having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C{sub 12}E{sub 9} as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C{sub 12}E{sub 9} and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C{sub 12}E{sub 9}, C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}. Apart from the substrate, the homologues C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}, being metabolites of C{sub 12}E{sub 9} biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C{sub 12}E{sub 8}COOH, C{sub 12}E{sub 7}COOH, C{sub 12}E{sub 6}COOH and C{sub 12}E{sub 5}COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C{sub 12}E{sub 9} and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a

  17. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways

    Directory of Open Access Journals (Sweden)

    Guillaume Rohat

    2018-03-01

    Full Text Available The Shared Socioeconomic Pathways (SSPs are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure—i.e., mainly future population patterns—, neglecting future human vulnerability. This paper first explores the research gaps—mainly linked to the paucity of available projections—that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs—namely the scenario matching approach and an approach based on experts’ elicitation and correlation analyses—and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods—such as the spatial disaggregation of existing projections and the use of sectoral models—show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate

  18. Climate Change and Health under the Shared Socioeconomic Pathway Framework

    Directory of Open Access Journals (Sweden)

    Samuel Sellers

    2017-12-01

    Full Text Available A growing body of literature addresses how climate change is likely to have substantial and generally adverse effects on population health and health systems around the world. These effects are likely to vary within and between countries and, importantly, will vary depending on different socioeconomic development patterns. Transitioning to a more resilient and sustainable world to prepare for and manage the effects of climate change is likely to result in better health outcomes. Sustained fossil fuel development will likely result in continued high burdens of preventable conditions, such as undernutrition, malaria, and diarrheal diseases. Using a new set of socioeconomic development trajectories, the Shared Socioeconomic Pathways (SSPs, along with the World Health Organization’s Operational Framework for Building Climate Resilient Health Systems, we extend existing storylines to illustrate how various aspects of health systems are likely to be affected under each SSP. We also discuss the implications of our findings on how the burden of mortality and the achievement of health-related Sustainable Development Goal targets are likely to vary under different SSPs.

  19. Managing coastal environments under climate change: Pathways to adaptation.

    Science.gov (United States)

    Sánchez-Arcilla, Agustín; García-León, Manuel; Gracia, Vicente; Devoy, Robert; Stanica, Adrian; Gault, Jeremy

    2016-12-01

    This paper deals with the question of how to manage vulnerable coastal systems so as to make them sustainable under present and future climates. This is interpreted in terms of the coastal functionality, mainly natural services and support for socio-economic activities. From here we discuss how to adapt for long term trends and for short terms episodic events using the DPSIR framework. The analysis is presented for coastal archetypes from Spain, Ireland and Romania, sweeping a range of meteo-oceanographic and socio-economic pressures, resulting in a wide range of fluxes among them those related to sediment. The analysis emphasizes the variables that provide a higher level of robustness. That means mean sea level for physical factors and population density for human factors. For each of the studied cases high and low sustainability practices, based on stakeholders preferences, are considered and discussed. This allows proposing alternatives and carrying out an integrated assessment in the last section of the paper. This assessment permits building a sequence of interventions called adaptation pathway that enhances the natural resilience of the studied coastal systems and therefore increases their sustainability under present and future conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Biological factors underlying regularity and chaos in aquatic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 1. Biological factors underlying regularity and chaos in aquatic ecosystems: Simple models of complex dynamics. A B Medvinsky S V Petrovskii D A Tikhonov I A Tikhonova G R Ivanitsky E Venturino H Malchow. Articles Volume 26 Issue 1 March 2001 pp 77-108 ...

  1. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    Science.gov (United States)

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  2. [Exploration of common biological pathways for attention deficit hyperactivity disorder and low birth weight].

    Science.gov (United States)

    Xiang, Bo; Yu, Minglan; Liang, Xuemei; Lei, Wei; Huang, Chaohua; Chen, Jing; He, Wenying; Zhang, Tao; Li, Tao; Liu, Kezhi

    2017-12-10

    To explore common biological pathways for attention deficit hyperactivity disorder (ADHD) and low birth weight (LBW). Thei-Gsea4GwasV2 software was used to analyze the result of genome-wide association analysis (GWAS) for LBW (pathways were derived from Reactome), and nominally significant (Ppathways were tested for replication in ADHD.Significant pathways were analyzed with DAPPLE and Reatome FI software to identify genes involved in such pathways, with each cluster enriched with the gene ontology (GO). The Centiscape2.0 software was used to calculate the degree of genetic networks and the betweenness value to explore the core node (gene). Weighed gene co-expression network analysis (WGCNA) was then used to explore the co-expression of genes in these pathways.With gene expression data derived from BrainSpan, GO enrichment was carried out for each gene module. Eleven significant biological pathways was identified in association with LBW, among which two (Selenoamino acid metabolism and Diseases associated with glycosaminoglycan metabolism) were replicated during subsequent ADHD analysis. Network analysis of 130 genes in these pathways revealed that some of the sub-networksare related with morphology of cerebellum, development of hippocampus, and plasticity of synaptic structure. Upon co-expression network analysis, 120 genes passed the quality control and were found to express in 3 gene modules. These modules are mainly related to the regulation of synaptic structure and activity regulation. ADHD and LBW share some biological regulation processes. Anomalies of such proces sesmay predispose to ADHD.

  3. Rett syndrome - biological pathways leading from MECP2 to disorder phenotypes.

    Science.gov (United States)

    Ehrhart, Friederike; Coort, Susan L M; Cirillo, Elisa; Smeets, Eric; Evelo, Chris T; Curfs, Leopold M G

    2016-11-25

    Rett syndrome (RTT) is a rare disease but still one of the most abundant causes for intellectual disability in females. Typical symptoms are onset at month 6-18 after normal pre- and postnatal development, loss of acquired skills and severe intellectual disability. The type and severity of symptoms are individually highly different. A single mutation in one gene, coding for methyl-CpG-binding protein 2 (MECP2), is responsible for the disease. The most important action of MECP2 is regulating epigenetic imprinting and chromatin condensation, but MECP2 influences many different biological pathways on multiple levels although the molecular pathways from gene to phenotype are currently not fully understood. In this review the known changes in metabolite levels, gene expression and biological pathways in RTT are summarized, discussed how they are leading to some characteristic RTT phenotypes and therefore the gaps of knowledge are identified. Namely, which phenotypes have currently no mechanistic explanation leading back to MECP2 related pathways? As a result of this review the visualization of the biologic pathways showing MECP2 up- and downstream regulation was developed and published on WikiPathways which will serve as template for future omics data driven research. This pathway driven approach may serve as a use case for other rare diseases, too.

  4. Biological phosphorus uptake under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens

    1993-01-01

    Biological phosphorus removal was investigated under anoxic and aerobic conditions. Tests were made to establish whether phosphorus accumulating bacteria can take up phosphate under anoxic conditions and thus utilise nitrate as oxidant. Furthermore, it was tested how the amount of organic matter...... taken up by the phosphorus accumulating bacteria during the anaerobic phase affects the total denitrification rate, as well as the rate at which the phosphorus accumulating bacteria take up phosphate under anoxic conditions. The tests were conducted as batch experiments in 21. reactors with activated...... conditions. There was a linear relationship between the amount of acetate taken up in the anaerobic phase, the denitrification rate and the phosphorus uptake rate....

  5. New tools for the visualization of biological pathways.

    Science.gov (United States)

    Ghosh, Tomojit; Ma, Xiaofeng; Kirby, Michael

    2018-01-01

    This paper presents several geometrically motivated techniques for the visualization of high-dimensional biological data sets. The Grassmann manifold provides a robust framework for measuring data similarity in a subspace context. Sparse radial basis function classification as a visualization technique leverages recent advances in radial basis function learning via convex optimization. In the spirit of deep belief networks, supervised centroid-encoding is proposed as a way to exploit class label information. These methods are compared to linear and nonlinear principal component analysis (autoencoders) in the context of data visualization; these approaches may perform poorly for visualization when the variance of the data is spread across more than three dimensions. In contrast, the proposed methods are shown to capture significant data structure in two or three dimensions, even when the information in the data lives in higher dimensional subspaces. To illustrate these ideas, the visualization techniques are applied to gene expression data sets that capture the host immune system's response to infection by the Ebola virus in non-human primate and collaborative cross mouse. Copyright © 2017. Published by Elsevier Inc.

  6. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    Science.gov (United States)

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  7. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.

    Science.gov (United States)

    Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy

    2013-08-01

    Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association

  8. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    Science.gov (United States)

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  9. Extraintestinal manifestations and complications in inflammatory bowel disease: from shared genetics to shared biological pathways.

    Science.gov (United States)

    van Sommeren, Suzanne; Janse, Marcel; Karjalainen, Juha; Fehrmann, Rudolf; Franke, Lude; Fu, Jingyuan; Weersma, Rinse K

    2014-06-01

    The clinical presentation of the inflammatory bowel diseases (IBD) is extremely heterogenous and is characterized by various extraintestinal manifestations and complications (EIM). Increasing genetic insight for IBD and EIM shows multiple shared susceptibility loci. We hypothesize that, next to these overlapping genetic risk loci, distinct disease pathways are shared between IBD and EIM. The overlapping genetic risk loci for IBD and its EIM were searched in literature. We assessed shared disease pathways by performing an extensive pathway analysis by protein-protein interaction and cotranscriptional analysis, using both publicly available and newly developed databases. Reliable genetic data were available for primary sclerosing cholangitis, ankylosing spondylitis, decreased bone mineral density, colorectal carcinoma, gallstones, kidney stones, and deep venous thrombosis. We found an extensive overlap in genetic risk loci, especially for IBD and primary sclerosing cholangitis and ankylosing spondylitis. We identified 370 protein-protein interactions, of which 108 are statistically specific. We identified 446 statistically specific cotranscribed gene pairs. The interactions are shown to cluster in specific biological pathways. We show that the pathogenetic overlap between IBD and its EIM extends beyond shared risk genes to distinctive shared biological pathways. We define genetic background as a risk factor for IBD-EIM alongside known mechanisms such as malabsorption and medication. Clustering patients based on distinctive pathways may enable stratification of patients to predict development of EIM.

  10. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Science.gov (United States)

    2013-07-11

    ... Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program; Final Rule Approving Renewable Fuel Pathways for Giant Reed (Arundo Donax) and.... SUMMARY: This final rule approves pathways for production of renewable fuel from giant reed (Arundo donax...

  11. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  12. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DEFF Research Database (Denmark)

    King, Zachary A.; Draeger, Andreas; Ebrahim, Ali

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can......IP)-in conjunction with metabolite-and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each...... of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools....

  13. Biology of Dermacentor marginatus (Acari: Ixodidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Darvishi

    2014-02-01

    Full Text Available Objective: To investigate and survey the biology of Dermacentor marginatus (D. marginatus under laboratory conditions. Methods: In this investigation, D. marginatus adult ticks were collected from sheep in Semnan province. Then various developmental stages of D. marginatus including larvae, nymphs and adult males and females under laboratory condition were bred and their biology was scrutinized. Results: The requisite time to complete the life cycle of D. marginatus under controlled laboratory conditions for larvae (26 °C, 75% relative humidity and nymph (26 °C, 95% relative humidity moulting, was on average 92 d (range 75-104 d, including preoviposition and egg incubation (22.5 d, larvae incubation (20.5 d, nymphal stage (28 d along with male maturation (21 d. The index of conversion efficiency and the index of reproduction efficiency in females were 0.397 and 8.300, respectively. Conclusions: Although in this investigation, there was no meaningful correlation between preoviposition period and the weight of female ticks which were laid successfully. The significant linear relationship was fully observed between the weight of engorged female of D. marginatus and the number of eggs laid. The mean of preoviposition period from 5.4 d in autumn to 34.2 d in spring increased. The minimum weight of ticks with laying capacity was 69 mg and lighter ticks (21 mg either did not lay or if they did their eggs did not hatch.

  14. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    Science.gov (United States)

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the

  15. PathText: a text mining integrator for biological pathway visualizations

    Science.gov (United States)

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  16. Integration of prior biological knowledge and epigenetic information enhances the prediction accuracy of the Bayesian Wnt pathway.

    Science.gov (United States)

    Sinha, Shriprakash

    2014-11-01

    Computational modeling of the Wnt signaling pathway has gained prominence for its use as a diagnostic tool to develop therapeutic cancer target drugs and predict test samples as tumorous/normal. Diagnostic tools entail modeling of the biological phenomena behind the pathway while prediction requires inclusion of factors for discriminative classification. This manuscript develops simple static Bayesian network predictive models of varying complexity by encompassing prior partially available biological knowledge about intra/extracellular factors and incorporating information regarding epigenetic modification into a few genes that are known to have an inhibitory effect on the pathway. Incorporation of epigenetic information enhances the prediction accuracy of test samples in human colorectal cancer. In comparison to the Naive Bayes model where β-catenin transcription complex activation predictions are assumed to correspond to sample predictions, the new biologically inspired models shed light on differences in behavior of the transcription complex and the state of samples. Receiver operator curves and their respective area under the curve measurements obtained from predictions of the state of the test sample and the corresponding predictions of the state of activation of the β-catenin transcription complex of the pathway for the test sample indicate a significant difference between the transcription complex being on (off) and its association with the sample being tumorous (normal). The two-sample Kolmogorov-Smirnov test confirms the statistical deviation between the distributions of these predictions. Hitherto unknown relationship between factors like DKK2, DKK3-1 and SFRP-2/3/5 w.r.t. the β-catenin transcription complex has been inferred using these causal models.

  17. A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments

    Science.gov (United States)

    Zhao, Min; Kong, Lei; Qu, Hong

    2014-01-01

    Although the intelligence quotient (IQ) is the most popular intelligence test in the world, little is known about the underlying biological mechanisms that lead to the differences in human. To improve our understanding of cognitive processes and identify potential biomarkers, we conducted a comprehensive investigation of 158 IQ-related genes selected from the literature. A genomic distribution analysis demonstrated that IQ-related genes were enriched in seven regions of chromosome 7 and the X chromosome. In addition, these genes were enriched in target lists of seven transcription factors and sixteen microRNAs. Using a network-based approach, we further reconstructed an IQ-related pathway from known human pathway interaction data. Based on this reconstructed pathway, we incorporated enriched drugs and described the importance of dopamine and norepinephrine systems in IQ-related biological process. These findings not only reveal several testable genes and processes related to IQ scores, but also have potential therapeutic implications for IQ-related mental disorders. PMID:24566931

  18. The molecular pathways underlying host resistance and tolerance to pathogens.

    Science.gov (United States)

    Glass, Elizabeth J

    2012-01-01

    Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  19. The molecular pathways underlying host resistance and tolerance to pathogens

    Directory of Open Access Journals (Sweden)

    Elizabeth Janet Glass

    2012-12-01

    Full Text Available Breeding livestock that are better able to withstand the onslaught of endemic and exotic pathogens is high on the wish list of breeders and farmers world-wide. However the defence systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host’s ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  20. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets

    Science.gov (United States)

    Li, Yang; Liu, Jun S.; Mootha, Vamsi K.

    2017-01-01

    In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601

  1. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-07-01

    Full Text Available In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs, while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays or 1887 human microarray datasets (45158 microarrays. CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1 and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active.

  2. Identifying biological pathways in the MRI findings of people with low back pain

    DEFF Research Database (Denmark)

    Jensen, Rikke Krüger; Jensen, Tue Secher; Kjaer, Per

    on intervertebral disc height and signal intensity, disc protrusions, high intensity zones, size and type of vertebral endplate signal changes, vertebral endplate irregularities and defects, osteophytes, and spondylolisthesis. Latent class analysis (probabilistic data mining) was used to distinguish the best...... into a model of five different biological pathways of degeneration. Future research will test the association between these clusters and clinically important characteristics such as pain and activity limitation....

  3. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes.

    Science.gov (United States)

    Lannon, Sophia M R; Vanderhoeven, Jeroen P; Eschenbach, David A; Gravett, Michael G; Adams Waldorf, Kristina M

    2014-10-01

    Preterm premature rupture of membranes (PPROM) occurs in 1% to 2% of births. Impact of PPROM is greatest in low- and middle-income countries where prematurity-related deaths are most common. Recent investigations identify cytokine and matrix metalloproteinase activation, oxidative stress, and apoptosis as primary pathways to PPROM. These biological processes are initiated by heterogeneous etiologies including infection/inflammation, placental bleeding, uterine overdistention, and genetic polymorphisms. We hypothesize that pathways to PPROM overlap and act synergistically to weaken membranes. We focus our discussion on membrane composition and strength, pathways linking risk factors to membrane weakening, and future research directions to reduce the global burden of PPROM. © The Author(s) 2014.

  4. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  5. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sea level rise under the Shared Socioeconomic Pathways (SSPs)

    Science.gov (United States)

    Schleussner, C. F.; Nauels, A.; Rogelj, J.; Mengel, M.; Meinshausen, M.

    2017-12-01

    In order to assess future sea level rise and its impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present Sea Level Rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative Forcing Targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for latest research on additional Antarctic rapid discharge dynamics from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986-2005 of 102 cm (likely range: 77 to 135 cm) for SSP1, 118 cm (90 to 151 cm) for SSP2, 118 cm (91 to 149 cm) for SSP3, 107 cm (81 to 137 cm) for SSP4, and 144 cm (112 to 184 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios is dominated by the mitigation targets and yield median estimates of 68 cm (56 to 87 cm) for FT 2.6 Wm-2, 76 cm (61 to 107 cm) for FT 3.4 Wm-2, 90 cm (68 to 120 cm) for FT 4.5 Wm-2, and 105 cm (79 to 136 cm) for FT 6.0 Wm-2. Average 2081-2100 annual rates of SLR are 6 mm/yr and 19 mm/yr for the FT 2.6 Wm-2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. For limiting median 2100 SSP SLR projections to below 80 cm, we find that 2050 cumulative CO2 emissions since pre-industrial should not exceed around 860 GtC, with the global coal phase-out nearly completed. For SSP mitigation scenarios, the median 2050 carbon price of 90 US$2005 tCO2-1 would correspond to a median 2100 SLR of around 80 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.

  8. Prisoners' rights under the Nigerian law: legal pathways to ...

    African Journals Online (AJOL)

    Some rights are denied the prisoners by the prison administrators and, by extension, the State by lack of will to promote enabling environment and treatment to the prisoners. It is against this backdrop that this article appraises prisoners' rights that are to be respected, protected and fulfilled under the law, at national, regional ...

  9. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    Science.gov (United States)

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic

  10. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment.

    Science.gov (United States)

    Lopresti, Adrian L; Drummond, Peter D

    2013-08-01

    Rates of obesity are higher than normal across a range of psychiatric disorders, including major depressive disorder, bipolar disorder, schizophrenia and anxiety disorders. While the problem of obesity is generally acknowledged in mental health research and treatment, an understanding of their bi-directional relationship is still developing. In this review the association between obesity and psychiatric disorders is summarised, with a specific emphasis on similarities in their disturbed biological pathways; namely neurotransmitter imbalances, hypothalamus-pituitary-adrenal axis disturbances, dysregulated inflammatory pathways, increased oxidative and nitrosative stress, mitochondrial disturbances, and neuroprogression. The applicability and effectiveness of weight-loss interventions in psychiatric populations are reviewed along with their potential efficacy in ameliorating disturbed biological pathways, particularly those mediating inflammation and oxidative stress. It is proposed that weight loss may not only be an effective intervention to enhance physical health but may also improve mental health outcomes and slow the rate of neuroprogressive disturbances in psychiatric disorders. Areas of future research to help expand our understanding of the relationship between obesity and psychiatric disorders are also outlined. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways.

    Science.gov (United States)

    Kang, Mingon; Zhang, Chunling; Chun, Hyung-Wook; Ding, Chris; Liu, Chunyu; Gao, Jean

    2015-03-01

    Epistasis is the interactions among multiple genetic variants. It has emerged to explain the 'missing heritability' that a marginal genetic effect does not account for by genome-wide association studies, and also to understand the hierarchical relationships between genes in the genetic pathways. The Fisher's geometric model is common in detecting the epistatic effects. However, despite the substantial successes of many studies with the model, it often fails to discover the functional dependence between genes in an epistasis study, which is an important role in inferring hierarchical relationships of genes in the biological pathway. We justify the imperfectness of Fisher's model in the simulation study and its application to the biological data. Then, we propose a novel generic epistasis model that provides a flexible solution for various biological putative epistatic models in practice. The proposed method enables one to efficiently characterize the functional dependence between genes. Moreover, we suggest a statistical strategy for determining a recessive or dominant link among epistatic expression quantitative trait locus to enable the ability to infer the hierarchical relationships. The proposed method is assessed by simulation experiments of various settings and is applied to human brain data regarding schizophrenia. The MATLAB source codes are publicly available at: http://biomecis.uta.edu/epistasis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. CSML2SBML: a novel tool for converting quantitative biological pathway models from CSML into SBML.

    Science.gov (United States)

    Li, Chen; Nagasaki, Masao; Ikeda, Emi; Sekiya, Yayoi; Miyano, Satoru

    2014-07-01

    CSML and SBML are XML-based model definition standards which are developed with the aim of creating exchange formats for modeling, visualizing and simulating biological pathways. In this article we report a release of a format convertor for quantitative pathway models, namely CSML2SBML. It translates models encoded by CSML into SBML without loss of structural and kinetic information. The simulation and parameter estimation of the resulting SBML model can be carried out with compliant tool CellDesigner for further analysis. The convertor is based on the standards CSML version 3.0 and SBML Level 2 Version 4. In our experiments, 11 out of 15 pathway models in CSML model repository and 228 models in Macrophage Pathway Knowledgebase (MACPAK) are successfully converted to SBML models. The consistency of the resulting model is validated by libSBML Consistency Check of CellDesigner. Furthermore, the converted SBML model assigned with the kinetic parameters translated from CSML model can reproduce the same dynamics with CellDesigner as CSML one running on Cell Illustrator. CSML2SBML, along with its instructions and examples for use are available at http://csml2sbml.csml.org. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Biology of Triatoma sherlocki (Hemiptera: Reduviidae) Under Laboratory Conditions: Biological Cycle and Resistance to Starvation.

    Science.gov (United States)

    Lima-Neiva, Vanessa; Gonçalves, Teresa C M; Bastos, Leonardo S; Gumiel, Marcia; Correia, Nathália C; Silva, Catia C; Almeida, Carlos E; Costa, Jane

    2017-07-01

    Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira & Barata was described in 2002, based on specimens caught in the wild in the municipality of Gentio do Ouro, Bahia, Brazil. In 2009, nymphs and adults were detected inside homes and sylvatic specimens were positive for Trypanosoma cruzi (Chagas). No information on the bionomics of T. sherlocki exists, although such data are considered essential to estimate its vector and colonization potential in domestic environments. Herein, the biological cycle of T. sherlocki was studied based on 123 eggs, with nymphs and adults fed on Mus musculus (Linnaeus). Nymphal development time phases, number of meals consumed, and stage-specific mortality rates were analyzed. Survival time under starvation conditions was measured between ecdysis and death among 50 nymphs (first to fifth instar) and 50 male and female adults. The median development time from egg to adult was 621.0 (CI: 489-656) d. The number of meals consumed ranged from 1 to 20 for nymphs of the first to fifth instar. The fifth instar showed the greatest resistance to starvation, with a mean of 156.5 d. The high number of meals consumed by T. sherlocki favored infection with and transmission of T. cruzi. The full development of this species under laboratory conditions with a low mortality rate indicates that this vector presents biological characteristics that may contribute to its adaptation to artificial human ecotopes. Its high resistance to starvation emphasizes the importance of entomological surveillance for this species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Stepfather or biological father? Education-specific pathways of postdivorce fatherhood

    Directory of Open Access Journals (Sweden)

    Christine Schnor

    2017-11-01

    Full Text Available Background: Men are commonly assigned the role of economic providers in the family, and education informs about their capacity to fulfil this role. Yet having biological ties to coresident children can determine the man's willingness to step into the provider role. This study investigates how education is linked to fatherhood after divorce, distinguishing between biological father and stepfather positions. Methods: We analysed life course data from 1,111 divorced Belgian men collected in the 'Divorce in Flanders' project. We used descriptive methods of sequence analysis to illustrate the pathways of postdivorce fatherhood. In multinomial logistic regressions, we estimated the likelihood of, firstly, being a father with coresident biological children or/and stepchildren and, secondly, repartnering with a mother and fathering children in this union. Results: Divorced men's family situation depend on their educational levels. More educated men are more often in the role of a resident biological father, whereas the less educated men are more often stepfathers. Men's resident arrangement for first-marriage children, their selection into a new union and the parental status of their new partner help explaining educational differences in post-divorce father positions. Highly educated men live more often with their children from first marriage and repartner more often and especially women without own coresident children, which is beneficial for their transition to a post-divorce birth. Contribution: The findings suggest that both capacity and willingness to support the postdivorce family are lower among the less educated. These education-specific pathways of postdivorce fatherhood are likely to enhance social inequalities.

  15. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity

    Directory of Open Access Journals (Sweden)

    Gorman Shelby A

    2010-12-01

    Full Text Available Abstract Background Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer. Methods To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out. Results Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers. Conclusion This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.

  16. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease

    Directory of Open Access Journals (Sweden)

    Andreas Plaitakis

    2017-02-01

    Full Text Available Glutamate dehydrogenase (GDH is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P+ to NAD(PH. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate, lipid biosynthesis (via oxidative generation of citrate, and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1 is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth

  17. Preparing nano-calcium phosphate particles via a biologically friendly pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qinghong; Xu Xurong; Tang Ruikang [Department of Chemistry and Centre of Biopathways and Biomaterials, Zhejiang University, Hangzhou, Zhejang 310027 (China); Ji Huijiao; Liu Yukan; Zhang Ming, E-mail: rtang@zju.edu.c [Department of Biology, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2010-08-01

    It is widely agreed that nano-calcium phosphates (CaP) play an important role in tissue engineering and medical application due to their unique biological characteristics. However, the properties of nano-CaP, including bioactivity, biocompatibility and mechanical properties, are tailored over wide ranges by controlling the size and morphology of particles. Therefore, it is important to develop synthesis methods which can control the particle size distribution and shape uniformly. In this study, we report that polyacrylic acid (PAA) can act as an efficient agent to modulate nano-CaP formation. The dimension of the resultant sphere-like nanoparticles (5-60 nm) can readily be regulated by changing PAA concentrations (75-200 {mu}g ml{sup -1}). In contrast to other additives, PAA is a water-soluble polymer that has already been used as an excellent biocompatible implant material in vivo. Our in vitro proliferation experiments of bone marrow mesenchymal stem cells (BMSCs) demonstrate that the involvement of PAA does not change the bioactivity of the resultant nano-CaP. In contrast, the nano-CaP fabricated by using another typical control agent, hexadecyl (cetyl) trimethyl ammonium bromide, suppressed the cell proliferation of BMSCs. Thus, we suggest that the biopolymer, PAA, can provide a more biologically friendly pathway to prepare biological nano-CaP for biomedical application. (communication)

  18. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    Science.gov (United States)

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  19. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  20. Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity.

    Science.gov (United States)

    van den Berge, Maarten; Steiling, Katrina; Timens, Wim; Hiemstra, Pieter S; Sterk, Peter J; Heijink, Irene H; Liu, Gang; Alekseyev, Yuriy O; Lenburg, Marc E; Spira, Avrum; Postma, Dirkje S

    2014-01-01

    A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown. Whole-genome gene expression profiling using the Affymetrix Gene ST array (V.1.0) was performed on 221 bronchial biopsies available from 89 COPD patients at baseline and after 6 and 30 months of fluticasone±salmeterol and placebo treatment in GLUCOLD. Linear mixed effects modelling revealed that the expression of 138 genes decreased, whereas the expression of 140 genes significantly upregulated after both 6 and 30 months of treatment with fluticasone±salmeterol versus placebo. A more pronounced treatment-induced change in the expression of 50 and 55 of these 278 genes was associated with a lower rate of decline in FEV1 and Saint George Respiratory Questionnaire, respectively. Genes decreasing with treatment were involved in pathways related to cell cycle, oxidative phosphorylation, epithelial cell signalling, p53 signalling and T cell signalling. Genes increasing with treatment were involved in pathways related to focal adhesion, gap junction and extracellular matrix deposition. Finally, the fluticasone-induced gene expression changes were enriched among genes that change in the airway epithelium in smokers with versus without COPD in an independent data set. The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and molecular phenotype-driven therapy of COPD.

  1. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  2. A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway

    Directory of Open Access Journals (Sweden)

    Timmer Jens

    2008-04-01

    Full Text Available Abstract Background The amplification of signals, defined as an increase in the intensity of a signal through networks of intracellular reactions, is considered one of the essential properties in many cell signalling pathways. Despite of the apparent importance of signal amplification, there have been few attempts to formalise this concept. Results In this work we investigate the amplification and responsiveness of the JAK2-STAT5 pathway using a kinetic model. The recruitment of EpoR to the plasma membrane, activation by Epo, and deactivation of the EpoR/JAK2 complex are considered as well as the activation and nucleocytoplasmic shuttling of STAT5. Using qualitative biological knowledge, we first establish the structure of a general power-law model. We then generate a family of models from which we select suitable candidates. The parameter values of the model are estimated from experimental quantitative time-course data. The final model, whether it is conventional model with fixed predefined integer kinetic orders or a model with variable non-integer kinetic orders, is selected on the basis of a good agreement between simulations and the experimental data. The model is used to analyse the responsiveness and amplification properties of the pathway with sustained, transient, and oscillatory stimulation. Conclusion The selected kinetic model predicts that the system acts as an amplifier with maximum amplification and sensitivity for input signals whose intensity match physiological values for Epo concentration and with duration in the range of one to 100 minutes. The response of the system reaches saturation for more intense and longer stimulation with Epo. We hypothesise that these properties of the system directly relate to the saturation of Epo receptor activation, its low recruitment to the plasma membrane and intense deactivation as predicted by the model.

  3. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  4. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  5. RANTES/CCL5 mediated-biological effects depend on the syndecan-4/PKCα signaling pathway

    Directory of Open Access Journals (Sweden)

    Loïc Maillard

    2014-09-01

    Full Text Available The perpetuation of angiogenesis is involved in certain chronic inflammatory diseases. The accelerated neovascularisation may result from an inflammatory status with a response of both endothelial cells and monocytes to inflammatory mediators such as chemokines. We have previously described in vitro and in vivo the pro-angiogenic effects of the chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES/CCL5. The effects of RANTES/CCL5 may be related to its binding to G protein-coupled receptors and to proteoglycans such as syndecan-1 and -4. The aim of this study was to evaluate the functionality of syndecan-4 as a co-receptor of RANTES/CCL5 by the use of mutated syndecan-4 constructs. Our data demonstrate that site-directed mutations in syndecan-4 modify RANTES/CCL5 biological activities in endothelial cells. The SDC4S179A mutant, associated with an induced protein kinase C (PKCα activation, leads to higher RANTES/CCL5 pro-angiogenic effects, whereas the SDC4L188QQ and the SDC4A198del mutants, leading to lower phosphatidylinositol 4,5-bisphosphate (PIP2 binding or to lower PDZ protein binding respectively, are associated with reduced RANTES/CCL5 cellular effects. Moreover, our data highlight that the intracellular domain of SDC-4 is involved in RANTES/CCL5-induced activation of the PKCα signaling pathway and biological effect. As RANTES/CCL5 is involved in various physiopathological processes, the development of a new therapeutic strategy may be reliant on the mechanism by which RANTES/CCL5 exerts its biological activities, for example by targeting the binding of the chemokine to its proteoglycan receptor.

  6. Bioavailability pathways underlying zinc-induced avoidance behavior and reproduction toxicity in Lumbricus rubellus earthworms.

    NARCIS (Netherlands)

    Ma, W.C.; Bonten, L.T.C.

    2011-01-01

    We investigated possible bioavailability pathways underlying zinc-induced avoidance behavior and sublethal reproduction impairment in Lumbricus rubellus. Clay-loam (pH 7.3) and sandy soil (three pH values of 4.3–6.0) were amended with zinc sulfate at six soil concentrations of total Zn ranging from

  7. Viral immune evasion strategies and the underlying cell biology.

    Science.gov (United States)

    Lorenzo, M E; Ploegh, H L; Tirabassi, R S

    2001-02-01

    Evasion of the immune system by viruses is a well-studied field. It remains a challenge to understand how these viral tactics affect pathogenesis and the viral lifecycle. At the same time, the study of viral proteins involved in immune evasion has helped us to better understand a number of cellular processes at the molecular level. Here we review recent data on different viral tactics for immune evasion and highlight what these viral interventions might teach us about cell biology. Copyright 2001 Academic Press.

  8. In-silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics.

    Science.gov (United States)

    Yin, Lianhong; Zheng, Lingli; Xu, Lina; Dong, Deshi; Han, Xu; Qi, Yan; Zhao, Yanyan; Xu, Youwei; Peng, Jinyong

    2015-03-05

    Inverse docking technology has been a trend of drug discovery, and bioinformatics approaches have been used to predict target proteins, biological activities, signal pathways and molecular regulating networks affected by drugs for further pharmacodynamic and mechanism studies. In the present paper, inverse docking technology was applied to screen potential targets from potential drug target database (PDTD). Then, the corresponding gene information of the obtained drug-targets was applied to predict the related biological activities, signal pathways and processes networks of the compound by using MetaCore platform. After that, some most relevant regulating networks were considered, which included the nodes and relevant pathways of dioscin. 71 potential targets of dioscin from humans, 7 from rats and 8 from mice were screened, and the prediction results showed that the most likely targets of dioscin were cyclin A2, calmodulin, hemoglobin subunit beta, DNA topoisomerase I, DNA polymerase lambda, nitric oxide synthase and UDP-N-acetylhexosamine pyrophosphorylase, etc. Many diseases including experimental autoimmune encephalomyelitis of human, temporal lobe epilepsy of rat and ankylosing spondylitis of mouse, may be inhibited by dioscin through regulating immune response alternative complement pathway, G-protein signaling RhoB regulation pathway and immune response antiviral actions of interferons, etc. The most relevant networks (5 from human, 3 from rat and 5 from mouse) indicated that dioscin may be a TOP1 inhibitor, which can treat cancer though the cell cycle- transition and termination of DNA replication pathway. Dioscin can down regulate EGFR and EGF to inhibit cancer, and also has anti-inflammation activity by regulating JNK signaling pathway. The predictions of the possible targets, biological activities, signal pathways and relevant regulating networks of dioscin provide valuable information to guide further investigation of dioscin on pharmacodynamics and

  9. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    Science.gov (United States)

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. MO-DE-207B-03: Improved Cancer Classification Using Patient-Specific Biological Pathway Information Via Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, M; Craft, D [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchical clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve

  11. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    Directory of Open Access Journals (Sweden)

    Sara eDomingos

    2015-06-01

    Full Text Available Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc sprays was monitored in grapevine (Vitis vinifera L. growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid (TCA metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.

  12. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Steven B Smith

    Full Text Available Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug repositioning.In this study, we performed a large-scale analysis of microarray datasets involving host response to infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus, coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through database and literature searches. A total of 67 common biological pathways were identified among the seven different respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS pathway, which is known to be involved in the progression of neurodegenerative Parkinson's disease.Our study suggests that

  13. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    Maclot, Sylvain

    2014-01-01

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr

  14. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA

    2010-12-01

    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  15. Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses

    Directory of Open Access Journals (Sweden)

    Lu eWang

    2015-08-01

    Full Text Available Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environment conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion tender models were obtained by culturing V. alginolyticus under stresses such as Cu2+, Pb2+, Hg2+, and low pH. With high-throughput sequencing and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environment conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that 1 the flagellar assembly pathway was sensitive to environmental stresses, 2 the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and 3 motility is not the only way in which the flagellar assembly pathway affects adhesion.

  16. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment.

    Science.gov (United States)

    Wan, Wen; Lu, Min; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2017-07-21

    Engineering and evaluation of synthetic routes for generating valuable compounds require accurate and cost-effective de novo synthesis of genetic pathways. Here, we present an economical and streamlined de novo DNA synthesis approach for engineering a synthetic pathway with microchip-synthesized oligonucleotides (oligo). The process integrates entire oligo pool amplification, error-removal, and assembly of long DNA molecules. We utilized this method to construct a functional lycopene biosynthetic pathway (11.9 kb encoding 10 genes) in Escherichia coli using a highly error-prone microchip-synthesized oligo pool (479 oligos) without pre-purification, and the error-frequency was reduced from 14.25/kb to 0.53/kb. This low-equipment-dependent and cost-effective method can be widely applied for rapid synthesis of biosynthetic pathways in general molecular biology laboratories.

  17. Biologically Driven Differences in Decomposition Dynamics Under Changing Ecosystems (Invited)

    Science.gov (United States)

    Grandy, S.

    2010-12-01

    Predicting the effects of environmental changes on soil organic matter dynamics remains difficult. Here I explore the possibility that differences in decomposition and soil organic matter dynamics are due in part to links between litter decomposition processes, changes in litter chemistry, and variation in decomposer communities. I explored these relationships under three types of ecosystem changes: 1) N enrichment of forest ecosystems; 2) elevated atmospheric carbon dioxide concentrations in forest ecosystems; and 3) agricultural land-use intensification. My overarching hypothesis was that litter mass loss and litter chemistry would vary under different environmental conditions, and those differences would correlate with ecosystem-specific variations in decomposer community structure and function. In three separate field experiments, I found strong evidence that decomposer communities influenced the chemistry of decomposing litter. In a related laboratory study I found that the presence of the oribatid mite Scheloribates moestus Banks (Acari: Oribatida) can substantially change litter decomposition dynamics and the molecular chemistry of decomposing litter. Most current conceptual models estimate changes in litter chemistry over the course of decomposition from initial litter chemistry and the extent of mass loss. These models suggest consistent and predictable changes in the chemical structure of organic matter during decomposition and do not explicitly consider the potential effects of variations in decomposer community structure on decomposition. In contrast, my results show that differences in decomposer communities lead to changes in litter chemistry during decomposition. Accurately predicting management effects on litter chemistry. and thus also soil organic matter dynamics, through time may require accounting for the degree to which variations in decomposer community composition influence organic matter chemistry.

  18. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  19. Spectroscopic analysis of biologically synthesized silver nanoparticles under clinorotation

    Science.gov (United States)

    Jagtap, Sagar; Vidyasagar, Pandit; Ghemud, Vipul; Dixit, Jyotsana

    Nanoparticles are one of the hot topics of research due to their size dependent optical, electrical and magnetic properties & their anti-bacterial and anti-fungal nature. Synthesis of nano particles can be done by various physical and chemical methods. However, Biosynthesis of nanoparticles is environment friendly, can take place around room temperature, and require little intervention or input of energy. In the present study, the synthesis of silver nanoparticles (AgNPs) using bacteria and the effect of clinorotation on rate of synthesis is discussed. The freshly grown bacterial isolate was inoculated in to 250-ml Erlenmeyer flask containing 50 ml sterile nutrient broth (LB). The cultured flasks were incubated in a shaker at 120 rpm for 24 h at 370C. Culture was centrifuged at 10,000 rpm for 10 min. The supernatant was used for carrying extracellular production of silver nanoparticles by mixing it with 5mM AgNO3 solution. The above solution was clinorotated at 2 rpm for 24 h. The synthesis was carried out at 60oC. Visual observation was conducted periodically to check for the nanoparticles formation in normal gravity as well as under clinorotation. UV-visible spectroscopic analysis showed that rate of synthesis was faster in case of clinorotated sample than control. Further, the results of FTIR and XRD characterization will be discussed.

  20. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway

    Directory of Open Access Journals (Sweden)

    Sabine Fletcher

    2016-11-01

    Full Text Available Abstract Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT or dephospho CoA kinase (DPCK. The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS or phosphopantothenoylcysteine decarboxylase (PPCDC. Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions

  1. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    National Research Council Canada - National Science Library

    Richardson, Aaron W; Eshbaugh, Jonathan P; Hofacre, Kent C; Gardner, Paul D

    2006-01-01

    ...) and biological test aerosols under breather flow rates associated with high work rates. The inert test challenges consisted of solid and oil aerosols having nominal diameters ranging from 0.02...

  2. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by

  3. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Science.gov (United States)

    Marballi, Ketan K.; Gallitano, Amelia L.

    2018-01-01

    While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the “Index single nucleotide polymorphism (SNP)” (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in

  4. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ketan K. Marballi

    2018-02-01

    Full Text Available While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD. Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3, early growth response 1 (EGR1 and NGFI-A Binding Protein 2 (NAB2; each of which contains the “Index single nucleotide polymorphism (SNP” (most SNP at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may

  5. Mechanisms Underlying the Antidepressant Response of Acupuncture via PKA/CREB Signaling Pathway.

    Science.gov (United States)

    Jiang, Huili; Zhang, Xuhui; Wang, Yu; Zhang, Huimin; Li, Jing; Yang, Xinjing; Zhao, Bingcong; Zhang, Chuntao; Yu, Miao; Xu, Mingmin; Yu, Qiuyun; Liang, Xingchen; Li, Xiang; Shi, Peng; Bao, Tuya

    2017-01-01

    Protein kinase A (PKA)/cAMP response element-binding (CREB) protein signaling pathway, contributing to impaired neurogenesis parallel to depressive-like behaviors, has been identified as the crucial factor involved in the antidepressant response of acupuncture. However, the molecular mechanisms associated with antidepressant response of acupuncture, neurogenesis, and depressive-like behaviors ameliorating remain unexplored. The objective was to identify the mechanisms underlying the antidepressant response of acupuncture through PKA signaling pathway in depression rats by employing the PKA signaling pathway inhibitor H89 in in vivo experiments. Our results indicated that the expression of hippocampal PKA- α and p-CREB was significantly downregulated by chronic unpredicted mild stress (CUMS) procedures. Importantly, acupuncture reversed the downregulation of PKA- α and p-CREB. The expression of PKA- α was upregulated by fluoxetine, but not p-CREB. No significant difference was found between Acu and FLX groups on the expression of PKA- α and p-CREB. Interestingly, H89 inhibited the effects of acupuncture or fluoxetine on upregulating the expression of p-CREB, but not PKA- α . There was no significant difference in expression of CREB among the groups. Conclusively, our findings further support the hypothesis that acupuncture could ameliorate depressive-like behaviors by regulating PKA/CREB signaling pathway, which might be mainly mediated by regulating the phosphorylation level of CREB.

  6. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Li [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhanqi, Gao [State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210036 (China); Yuefei, Ji [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Xiaobin, Hu [School of Life Science, Huzhou University, Huzhou 313000 (China); Cheng, Sun, E-mail: envidean@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-03-21

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe{sup 2+}, Ca{sup 2+}, HCO{sub 3}{sup −}, and NO{sub 3}{sup −}, of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h{sup −1}. Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.

  7. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    Science.gov (United States)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  8. Metabolic responses and pathway changes of mammalian cells under different culture conditions with media supplementations.

    Science.gov (United States)

    Park, Seo-Young; Reimonn, Thomas M; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2018-02-21

    Amino acids and glucose consumption, cell growth and monoclonal antibody (mAb) production in mammalian cell culture are key considerations during upstream process and particularly media optimization. Understanding the interrelations and the relevant cellular physiology will provide insight for setting strategy of robust and effective mAb production. The aim of this study was to further our understanding of nutrient consumption metabolism, since this could have significant impact on enhancing mAb titer, cell proliferation, designing feeding strategies, and development of feed media. The nutrient consumption pattern, mAb concentration, and cell growth were analyzed in three sets of cell cultures with media supplementation of glucose, methionine, threonine, tryptophan, and tyrosine. The amino acids metabolism and its impact on cell growth and mAb production during the batch and fed-batch culture were closely analyzed. It was shown that the phenylalanine, tyrosine and tryptophan biosynthesis pathways were significantly altered under different culture conditions with different media. These changes were more apparent in the fed-batch process in which higher mAb titer was observed due to the metabolic changes than mAb titer in the batch process. The pathway analysis approach was well utilized for evaluating the impact on the relevant pathways involved under different cell culture conditions to improve cell growth and mAb titer. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  9. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  10. Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways.

    Science.gov (United States)

    Al Dahouk, Sascha; Loisel-Meyer, Séverine; Scholz, Holger C; Tomaso, Herbert; Kersten, Michael; Harder, Alois; Neubauer, Heinrich; Köhler, Stephan; Jubier-Maurin, Véronique

    2009-06-01

    Low oxygen tension was proposed to be one of the environmental parameters characteristic of the patho-physiological conditions of natural infections by Brucella suis. We previously showed that various respiratory pathways may be used by B. suis in response to microaerobiosis and anaerobiosis. Here, we compare the whole proteome of B. suis exposed to such low-oxygenated conditions to that obtained from bacteria grown under ambient air using 2-D DIGE. Data showed that the reduction of basal metabolism was in line with low or absence of growth of B. suis. Under both microaerobiosis and anaerobiosis, glycolysis and denitrification were favored. In addition, fatty acid oxidation and possibly citrate fermentation could also contribute to energy production sufficient for survival under anaerobiosis. When oxygen availability changed and became limiting, basic metabolic processes were still functional and variability of respiratory pathways was observed to a degree unexpected for a strictly aerobic microorganism. This highly flexible respiration probably constitutes an advantage for the survival of Brucella under the restricted oxygenation conditions encountered within host tissue.

  11. Optimal processing pathway selection for microalgae-based biorefinery under uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Zaman, Muhammad; Lee, Jay H.

    2015-01-01

    to the sMINLP problem determines the processing technologies, material flows, and product portfolio that are optimal with respect to all the sampled scenarios. The developed framework is implemented and tested on a specific case study. The optimal processing pathways selected with and without......We propose a systematic framework for the selection of optimal processing pathways for a microalgaebased biorefinery under techno-economic uncertainty. The proposed framework promotes robust decision making by taking into account the uncertainties that arise due to inconsistencies among...... and shortage in the available technical information. A stochastic mixed integer nonlinear programming (sMINLP) problem is formulated for determining the optimal biorefinery configurations based on a superstructure model where parameter uncertainties are modeled and included as sampled scenarios. The solution...

  12. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis.

    Science.gov (United States)

    Banerjee, Avik; Maiti, Subodh K; Guria, Chandan; Banerjee, Chiranjib

    2017-01-01

    Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

  13. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  14. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.

    Science.gov (United States)

    Patterson, Bradley M; Davis, Greg B

    2009-02-01

    Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway.

  15. Signaling pathway underlying the octopaminergic modulation of myogenic contraction in the cricket lateral oviduct.

    Science.gov (United States)

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    Octopamine (OA), a biogenic monoamine, is a neurotransmitter and neuromodulator in invertebrates. Here, we report the effect of OA on the spontaneous rhythmic contractions (SRCs) of the lateral oviduct of the cricket Gryllus bimaculatus and the possible signaling pathway involved. Application of OA increased both the frequency and amplitude of SRCs in a dose-dependent manner. The effect of OA was inhibited by subsequent application of the OA receptor antagonist epinastine, indicating that the action of OA is mediated by OA receptor. To investigate the predominant signaling pathway underlying the action of OA, we first examined a possible involvement of the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway. Application of the membrane-permeable cAMP analog 8-Br-cAMP had little effect on SRCs and the effect of OA was not influenced by subsequent application of the PKA inhibitor H89, indicating that the cAMP/PKA signaling pathway is not the predominant pathway in the action of OA. Next, we examined a possible involvement of the second messenger inositol 1,4,5-trisphosphate in the action of OA. The effect of OA on SRCs was inhibited by subsequent application of the phosphoinositide-specific phospholipase C (PLC) inhibitor U73122, indicating that the PLC pathway is involved in the action of OA. The OA-induced increase in the frequency of SRCs was inhibited by pretreatment of the cell with the ryanodine receptor antagonist tetracaine but was not significantly affected by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB). On the other hand, the OA-induced increase in the amplitude of SRCs was inhibited by pretreatment of the cells with 2-APB but was not significantly affected by tetracaine. Taken together, these results suggest that the OA-induced excitatory effect on SRCs is mediated by the PLC signaling pathway: Ca2+ release from IP3 receptors may contribute to the modulation of the amplitude of SRCs, whereas Ca2+ release from ryanodine

  16. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Bondietti, E.A.; Eyman, L.D.

    1976-01-01

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241 Am, 242 Cm, and 244 Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242 Cm, 244 Cm, 241 Am, 243 Am, and 237 Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  17. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway.

    Science.gov (United States)

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-04-13

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nutrient abundance milieu, but the role of AKT under metabolic stress is in dispute. Recent studies show that AMPK and AKT display antagonistic roles under metabolic stress. Metabolic stress-induced ROS signaling lies in the hub between metabolic reprogramming and redox homeostasis. Here, we highlight the cross-talk between AMPK and AKT and their regulation on ROS production and elimination, which summarizes the mechanism of cancer cell adaptability under ROS stress and suggests potential options for cancer therapeutics.

  19. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  20. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors: signaling and biology.... PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  1. Biological treatment of refinery spent caustics under halo-alkaline conditions

    NARCIS (Netherlands)

    Graaff, de M.; Bijmans, M.F.M.; Abbas, B.; Euverink, G.J.W.; Muyzer, G.; Janssen, A.J.H.

    2011-01-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at

  2. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Guangli Yan

    2013-01-01

    Full Text Available Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36 as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  3. Characterizing and optimizing human anticancer drug targets based on topological properties in the context of biological pathways.

    Science.gov (United States)

    Zhang, Jian; Wang, Yan; Shang, Desi; Yu, Fulong; Liu, Wei; Zhang, Yan; Feng, Chenchen; Wang, Qiuyu; Xu, Yanjun; Liu, Yuejuan; Bai, Xuefeng; Li, Xuecang; Li, Chunquan

    2015-04-01

    One of the challenging problems in drug discovery is to identify the novel targets for drugs. Most of the traditional methods for drug targets optimization focused on identifying the particular families of "druggable targets", but ignored their topological properties based on the biological pathways. In this study, we characterized the topological properties of human anticancer drug targets (ADTs) in the context of biological pathways. We found that the ADTs tended to present the following seven topological properties: influence the number of the pathways related to cancer, be localized at the start or end of the pathways, interact with cancer related genes, exhibit higher connectivity, vulnerability, betweenness, and closeness than other genes. We first ranked ADTs based on their topological property values respectively, then fused them into one global-rank using the joint cumulative distribution of an N-dimensional order statistic to optimize human ADTs. We applied the optimization method to 13 anticancer drugs, respectively. Results demonstrated that over 70% of known ADTs were ranked in the top 20%. Furthermore, the performance for mercaptopurine was significant: 6 known targets (ADSL, GMPR2, GMPR, HPRT1, AMPD3, AMPD2) were ranked in the top 15 and other four out of the top 15 (MAT2A, CDKN1A, AREG, JUN) have the potentialities to become new targets for cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  5. Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers.

    Science.gov (United States)

    Xie, Keping; Abbruzzese, James L

    2003-10-01

    The hedgehog (Hh) signaling pathway plays many roles in invertebrate and vertebrate development. For example, specific inhibition of sonic Hh expression is critical during early stages of pancreas organogenesis, but an active Hh pathway appears to be required for maintenance of adult endocrine functions. Mutational inactivation of the Hh pathway has been demonstrated in human malignancies of the skin, cerebellum, and skeletal muscle. Now, two papers implicate aberrant Hh signaling in human upper gastrointestinal cancers including those developing from the esophagus, stomach, biliary tract, and pancreas.

  6. Transcriptome analysis and discovery of genes involved in immune pathways in large yellow croaker (Larimichthys crocea) under high stocking density stress.

    Science.gov (United States)

    Sun, Peng; Bao, Peibo; Tang, Baojun

    2017-09-01

    The large yellow croaker, Larimichthys crocea, is an economically important maricultured species in southeast China. Owing to the importance of stocking densities in commercial fish production, it is crucial to establish the physiological responses and molecular mechanisms that govern adaptation to crowding in order to optimize welfare and health. In the present study, an extensive immunity-related analysis was performed at the transcriptome level in L. crocea in response to crowding stress. Over 145 million high-quality reads were generated and de novo assembled into a final set of 40,123 unigenes. Gene Ontology and genome analyses revealed that molecular function, biological process, intracellular, ion binding, and cell process were the most highly enriched pathways among genes that were differentially expressed under stress. Among all of the pathways involved, 16 pathways were related to the immune system, among which the complement and coagulation cascades pathway was the most enriched for differentially expressed immunity-related genes, followed by the chemokine signaling pathway, toll-like receptor signaling pathway, and leukocyte transendothelial migration pathway. The consistently high expression of immune-related genes in the complement and coagulation cascades pathway (from 24 to 96 h after being subjected to stress) suggested its importance in both response to stress and resistance against bacterial invasion at an early stage. These results also demonstrated that crowding can significantly induce immunological responses in fish. However, long-term exposure to stress eventually impairs the defense capability in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. TC-1 (c8orf4) enhances aggressive biologic behavior in lung cancer through the Wnt/β-catenin pathway.

    Science.gov (United States)

    Su, Kai; Huang, Lijun; Li, Wenhai; Yan, Xiaolong; Li, Xiaofei; Zhang, Zhipei; Jin, Faguang; Lei, Jie; Ba, Guangzhen; Liu, Boya; Wang, Xiaoping; Wang, Yunjie

    2013-11-01

    The thyroid cancer-1 (TC-1) or c8orf4 gene encodes a 106-residue naturally disordered protein that has been found to be associated with thyroid, gastric, and breast cancer. A recent study has indicated that the protein functions as a positive regulator in the Wnt/β-catenin signaling pathway in human breast cancer. However, no research has been done in the area of lung cancer. Therefore, the goal of the present study was to confirm the relationship among TC-1, lung cancer, and the Wnt/β-catenin signaling pathway. The expression of TC-1 was immunohistochemically examined in 147 patients with non-small-cell lung cancer. TC-1-overexpressed and silenced A549 cells were infected using lentivirus and MTT cell proliferation analysis, and Matrigel invasion assays and scratch-wound assays were performed to confirm the biologic behavioral changes in different A549 cell subsets. The Wnt/β-catenin signaling pathway, key gene β-catenin, target genes of vascular endothelial growth factor, cyclin D1, matrix metalloproteinase-7, c-myc, and survivin were tested at the mRNA and protein level. TC-1 was detected in 97 of the 147 non-small-cell lung cancer primary tumor specimens, and its expression correlated with the TNM stage and regional lymph node metastasis (P cell line. Furthermore, expression of TC-1 protein affected the Wnt/β-catenin signaling pathway's downstream genes, such as vascular endothelial growth factor and matrix metalloproteinase-7, at the mRNA and protein level. TC-1 expression is associated with aggressive biologic behavior in lung cancer and might coordinate with the Wnt/β-catenin pathway as a positive upstream regulator that induces these behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    Science.gov (United States)

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  9. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  10. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  11. Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in pPROM.

    Science.gov (United States)

    Tambor, V; Kacerovsky, M; Lenco, J; Bhat, G; Menon, R

    2013-02-01

    The presence of microbial invasion of the amniotic cavity (MIAC) and histological chorioamnionitis (HCA) is associated with adverse neonatal outcomes in pregnancies complicated by preterm prelabor rupture of membranes (pPROM). Therefore, there is an urgent need to identify new biomarkers revealing these conditions. The objective of this study is to identify possible biomarkers and their underlying biofunctions in pPROM pregnancies with and without MIAC and HCA. A total of 72 women with pPROM were recruited. Only women with both MIAC and HCA (n = 19) and all women without these complications (n = 19) having the same range of gestational ages at sampling were included in the study. Samples of amniotic fluid were obtained by transabdominal amniocentesis, processed and analyzed using quantitative shotgun proteomics. Ingenuity pathway analysis was used to identify molecular networks that involve altered proteins. Network interaction identified by ingenuity pathway analysis revealed immunological disease and the inflammatory response as the top functions and disease associated with pPROM in the presence of MIAC and HCA. The proteins involved in these pathways were significantly altered between the groups with and without the presence of both MIAC and HCA. Proteins involved included histones H3, H4, H2B, cathelicidin antimicrobial peptide, myeloperoxidase, neutrophil gelatinase-associated lipocalin, matrix metalloproteinase-9, peptidoglycan recognition protein-1 and neutrophil defensin 1, all of which were found to be up-regulated in the presence of MIAC and HCA. Bioinformatic analysis of proteomics data allowed us to project likely biomolecular pathology resulting in pPROM complicated by MIAC and HCA. As inflammation is not a homogeneous phenomenon, we provide evidence for oxidative-stress-associated DNA damage and biomarkers of reactive oxygen species generation as factors associated with inflammation and proteolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mitral valve replacement in patients under 65 years of age: mechanical or biological valves?

    Science.gov (United States)

    Reineke, David C; Heinisch, Paul Philipp; Winkler, Bernhard; Englberger, Lars; Carrel, Thierry P

    2015-03-01

    There is controversy regarding the optimal choice of prosthetic valves in patients less than 65 years of age requiring mitral valve replacement (MVR). Recently, trends for valve replacement are moving towards biological prosthesis also in younger patients, which is justified by the fact that a later valve-in-valve procedure is feasible in the case of degeneration of the tissue valve. This strategy is increasingly recommended in aortic valve surgery but is questionable for MVR. The purpose of this review is to evaluate current guidelines and analyse evidence for biological MVR in patients under 65 years. There are differences between guidelines of the American Heart Association and those of the European Society of Cardiology concerning the choice of prostheses in patients undergoing MVR. Although the European Society of Cardiology recommends a mechanical mitral valve in patients under 65 years of age, the American Heart Association does not provide detailed advice for these patients. Mitral valve replacement with biological valves in patients under 65 years is associated with higher rates of reoperation due to structural valve deterioration. In addition, several studies showed a decreased survival after biological MVR. Evidence for biological MVR in patients less than 65 years without comorbidities or contraindication for oral anticoagulation does not exist. Recommendations for patients less than 65 years of age should not be blurred by current 'en-vogue' methods for promising but not yet proven valve-in-valve strategies.

  13. Access and benefit sharing (ABS) under the convention on biological diversity (CBD): implications for microbial biological control

    Science.gov (United States)

    Researchers and implementers of biological control are confronted with a variety of scientific, regulatory and administrative challenges to their biological control programs. One developing challenge will arise from the implementation of provisions of the Convention on Biological Diversity (CBD) co...

  14. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  15. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress.

    Science.gov (United States)

    Wang, Huahua; Huang, Junjun; Bi, Yurong

    2010-12-01

    Alternative respiratory pathway (AP) plays an important role in plant thermogenesis, fruit ripening and responses to environmental stresses. AP may participate in the adaptation to salt stress since salt stress increased the activity of the AP. Recently, new evidence revealed that ethylene and hydrogen peroxide (H(2)O(2)) are involved in the salt-induced increase of the AP, which plays an important role in salt tolerance in Arabidopsis callus, and ethylene may be acting downstream of H(2)O(2). Recent observations also indicated both ethylene and nitric oxide (NO) act as signaling molecules in responses to salt stress, and ethylene may be a part of the downstream signal molecular in NO action. In this addendum, a hypothetical model for NO function in regulation of H(2)O(2)- and ethylene-mediated induction of AP under salt stress is presented.

  16. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    Science.gov (United States)

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  17. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Lim Da-jeong

    2010-11-01

    , which is involved in connective tissue degradation, could play a role in an important biological pathway for building up marbling in cattle. Moreover, ADAMTS4 and TGFβ1could potentially be used as an early biological marker for marbling fat content in the early stages of growth.

  18. Global stability analysis and robust design of multi-time-scale biological networks under parametric uncertainties.

    Science.gov (United States)

    Meyer-Baese, Anke; Koshkouei, Ali J; Emmett, Mark R; Goodall, David P

    2009-01-01

    Biological networks are prone to internal parametric fluctuations and external noises. Robustness represents a crucial property of these networks, which militates the effects of internal fluctuations and external noises. In this paper biological networks are formulated as coupled nonlinear differential systems operating at different time-scales under vanishing perturbations. In contrast to previous work viewing biological parametric uncertain systems as perturbations to a known nominal linear system, the perturbed biological system is modeled as nonlinear perturbations to a known nonlinear idealized system and is represented by two time-scales (subsystems). In addition, conditions for the existence of a global uniform attractor of the perturbed biological system are presented. By using an appropriate Lyapunov function for the coupled system, a maximal upper bound for the fast time-scale associated with the fast state is derived. The proposed robust system design principles are potentially applicable to robust biosynthetic network design. Finally, two examples of two important biological networks, a neural network and a gene regulatory network, are presented to illustrate the applicability of the developed theoretical framework.

  19. Global wheat production potentials and management flexibility under the representative concentration pathways

    Science.gov (United States)

    Balkovic, Juraj; van der Velde, Marijn; Skalsky, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey

    2014-05-01

    Global wheat production is strongly linked with food security as wheat is one of the main sources of human nutrition. Increasing or stabilizing wheat yields in response to climate change is therefore imperative. To do so will require agricultural management interventions that have different levels of flexibility at regional level. Climate change is expected to worsen wheat growing conditions in many places and thus negatively impact on future management opportunities for sustainable intensification. We quantified, in a spatially explicit manner, global wheat yield developments under the envelope of Representative Concentration Pathways (RCP 2.6, 4.5, 6.0 and 8.5) under current and alternative fertilization and irrigation management to estimate future flexibility to cope with climate change impacts. A large-scale implementation of the EPIC model was integrated with the most recent information on global wheat cultivation currently available, and it was used to simulate regional and global wheat yields and production under historical climate and the RCP-driven and bias-corrected HadGEM2-ES climate projections. Fertilization and irrigation management scenarios were designed to project actual and exploitable (under current irrigation infrastructure) yields as well as the climate- and water-limited yield potentials. With current nutrient and water management, and across all RCPs, the global wheat production at the end of the century decreased from 50 to 100 Mt - with RCP2.6 having the lowest and RCP8.5 the highest impact. Despite the decrease in global wheat production potential on current cropland, the exploitable and climatic production gap of respectively 350 and 580 Mt indicates a considerable flexibility to counteract negative climate change impacts across all RCPs. Agricultural management could increase global wheat production by approximately 30% through intensified fertilization and 50% through improved fertilization and extended irrigation if nutrients or water

  20. Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Directory of Open Access Journals (Sweden)

    A. Lenton

    2018-04-01

    Full Text Available Atmospheric carbon dioxide (CO2 levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK addition (0.25 PmolALK yr−1 over the period 2020–2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5 and low (RCP2.6 emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ∼ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 % and aragonite saturation state (170 %. The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020–2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.

  1. Exploration of potential biomarkers and related biological pathways for PCB exposure in maternal and cord serum: A pilot birth cohort study in Chiba, Japan.

    Science.gov (United States)

    Eguchi, Akifumi; Sakurai, Kenichi; Watanabe, Masahiro; Mori, Chisato

    2017-05-01

    Polychlorinated biphenyls (PCBs) have been associated with adverse human reproductive and fetal developmental measures or outcomes because of their endocrine-disrupting effects; however, the biological mechanisms of adverse effects of PCB exposure in humans are not currently well established. In this study, we aimed to identify the biological pathways and potential biomarkers of PCB exposure in maternal and umbilical cord serum using a hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) metabolomics platform. The median concentration of total PCBs in maternal (n=93) and cord serum (n=93) were 350 and 70pgg -1 wet wt, respectively. PCB levels in maternal and fetal serum from the Chiba Study of Mother and Children's Health (C-MACH) cohort are comparable to those of earlier cohort studies conducted in Japan, the USA, and European countries. We used the random forest model with the metabolome profile to predict exposure levels of PCB (first quartile [Q1] and fourth quartile [Q4]) for pregnant women and fetuses. In the prediction model for classification of Q1 versus Q4 (area-under-curve [AUC]: pregnant women=0.812 and fetuses=0.919), citraconic acid level in maternal serum and ethanolamine, p-hydroxybenzoate, and purine levels in cord serum had >0.70 AUC values. These candidate biomarkers and metabolite included in composited models were related to glutathione and amino acid metabolism in maternal serum and the amino acid metabolism and ubiquinone and other terpenoid-quinone biosynthesis in cord serum (FDR PCB exposure in pregnant women and fetuses. These results showed that metabolome analysis might be useful to explore potential biomarkers and related biological pathways for PCB exposure. Thus, more detailed studies are needed to verify sensitivity of the biomarkers and clarify the biochemical changes resulting from PCB exposure. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Adaptation Pathway of Low Impact Development Planning under Climate Change for a Sustainable Rural Community

    Science.gov (United States)

    Chen, P. Y.; Tung, C. P.

    2016-12-01

    The study focuses on developing the methodology of adaptation pathway for storm water management in a community scale. Following previous results on adaptation procedures including problem and goal setup, current risk assessment and analysis, future risk assessment and analysis, and adaptation options identification and evaluation, the study aims at analyzing adaptation pathway planning and implementation, namely the fifth step, for applying low impact development (LID). Based on the efficacy analyses of the feasible adaptation options, an adaptation pathway map can be build. Each pathway is a combination of the adaptation measures arranged in certain order. The developed adaptation pathway map visualizes the relative effectiveness and the connection of the adaptation measures. In addition, the tipping points of the system can be clearly identified and the triggers can be defined accordingly. There are multiple choices of pathways in an adaptation pathway map, which can be referred as pathway candidates. To ensure the applicability and operability, the methodology of adaptation pathway analysis is applied to a case study. Required information for developing an adaptation pathway map includes the scores of the adaptation options on the criteria, namely the effects, costs, immediacy, and side effect. Feasible adaptation options for the design case are dredging, pipeline expansion, pumping station, LID and detention pond. By ranking the options according to the criteria, LID is found dominating dredging and pumping station in this case. The information of the pathway candidates can be further used by the stakeholders to select the most suitable and promising pathway.

  3. Understanding specificity in metabolic pathways--structural biology of human nucleotide metabolism.

    Science.gov (United States)

    Welin, Martin; Nordlund, Pär

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging. 2010. Published by Elsevier Inc.

  4. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  5. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  6. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  7. The constitutional protection of trade secrets and patents under the Biologics Price Competition and Innovation Act of 2009.

    Science.gov (United States)

    Epstein, Richard A

    2011-01-01

    The Biologics Price Competition and Innovation Act of 2009 ("Biosimilars Act") is for the field of pharmaceutical products the single most important legislative development since passage of the Drug Price Competition and Patent Term Restoration Act of 1984 ("Hatch-Waxman Act"), on which portions of the Biosimilars Act are clearly patterned. Congress revised section 351 of the Public Health Service Act (PHSA) to create a pathway for FDA approval of "biosimilar" biological products. Each biosimilar applicant is required to cite in its application a "reference product" that was approved on the basis of a full application containing testing data and manufacturing information, which is owned and was submitted by another company and much of which constitutes trade secret information subject to constitutional protection. Because the Biosimilars Act authorizes biosimilar applicants to cite these previously approved applications, the implementation of the new legislative scheme raises critical issues under the Fifth Amendment of the Constitution, pursuant to which private property--trade secrets included--may not be taken for public use, without "just compensation." FDA must confront those issues as it implements the scheme set out in the Biosimilars Act. This article will discuss these issues, after providing a brief overview of the Biosimilars Act and a more detailed examination of the law of trade secrets.

  8. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    Science.gov (United States)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  9. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lorazo, Patrick; Lewis, Laurent J.; Meunier, Michel

    2006-01-01

    The thermodynamic pathways involved in laser irradiation of absorbing solids are investigated in silicon for pulse durations of 500 fs and 100 ps. This is achieved by accounting for carrier and atom dynamics within a combined Monte Carlo and molecular-dynamics scheme and simultaneously tracking the time evolution of the irradiated material in ρ-T-P space. Our simulations reveal thermal changes in long-range order and state of aggregation driven, in most cases, by nonequilibrium states of rapidly heated or promptly cooled matter. Under femtosecond irradiation near the ablation threshold, the system is originally pulled to a near-critical state following rapid ( -12 s) disordering of the mechanically unstable crystal and isochoric heating of the resulting metallic liquid. The latter is then adiabatically cooled to the liquid-vapor regime where phase explosion of the subcritical, superheated melt is initiated by a direct conversion of translational, mechanical energy into surface energy on a ∼10 -12 -10 -11 s time scale. At higher fluences, matter removal involves, instead, the fragmentation of an initially homogeneous fluid subjected to large strain rates upon rapid, supercritical expansion in vacuum. Under picosecond irradiation, homogeneous and, at later times, heterogeneous melting of the superheated solid are followed by nonisochoric heating of the molten metal. In this case, the subcritical liquid material is subsequently cooled onto the binodal by thermal conduction and explosive boiling does not take place; as a result, ablation is associated with a ''trivial'' fragmentation process, i.e., the relatively slow expansion and dissociation into liquid droplets of supercritical matter near thermodynamic equilibrium. This implies a liquid-vapor equilibration time of ∼10 -11 -10 -10 s and heating along the binodal under nanosecond irradiation. Solidification of the nonablated, supercooled molten material is eventually observed on a ∼10 -11 -10 -9 s time scale

  10. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Casper Nyamukondiwa

    2012-11-01

    Full Text Available The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  11. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    Science.gov (United States)

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  12. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  13. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Alemany, Silvia; Ribasés, Marta; Vilor-Tejedor, Natàlia; Bustamante, Mariona; Sánchez-Mora, Cristina; Bosch, Rosa; Richarte, Vanesa; Cormand, Bru; Casas, Miguel; Ramos-Quiroga, Josep A; Sunyer, Jordi

    2015-09-01

    Attention deficit is one of the core symptoms of the attention-deficit/hyperactivity disorder (ADHD). However, the specific genetic variants that may be associated with attention function in adult ADHD remain largely unknown. The present study aimed to identifying SNPs associated with attention function in adult ADHD and tested whether these associations were enriched for specific biological pathways. Commissions, hit-reaction time (HRT), the standard error of HRT (HRTSE), and intraindividual coefficient variability (ICV) of the Conners Continuous Performance Test (CPT-II) were assessed in 479 unmedicated adult ADHD individuals. A Genome-Wide Association Study (GWAS) was conducted for each outcome and, subsequently, gene set enrichment analyses were performed. Although no SNPs reached genome-wide significance (P association with the CPT outcomes (P associated SNP was located in the SORCS2 gene (P = 3.65E-07), previously associated with bipolar disorder (BP), Alzheimer disease (AD), and brain structure in elderly individuals. We detected other genes suggested to be involved in synaptic plasticity, cognitive function, neurological and neuropsychiatric disorders, and smoking behavior such as NUAK1, FGF20, NETO1, BTBD9, DLG2, TOP3B, and CHRNB4. Also, several of the pathways nominally associated with the CPT outcomes are relevant for ADHD such as the ubiquitin proteasome, neurodegenerative disorders, axon guidance, and AD amyloid secretase pathways. To our knowledge, this is the first GWAS and pathway analysis of attention function in patients with persistent ADHD. Overall, our findings reinforce the conceptualization of attention function as a potential endophenotype for studying the molecular basis of adult ADHD. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Foundational concepts and underlying theories for majors in "biochemistry and molecular biology".

    Science.gov (United States)

    Tansey, John T; Baird, Teaster; Cox, Michael M; Fox, Kristin M; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3) foundational skills that undergraduate majors in biochemistry and molecular biology must understand to complete their major coursework. Using information gained from these workshops, as well as from the ASBMB accreditation working group and the NSF Vision and Change report, the Core Concepts working group has developed a consensus list of learning outcomes and objectives based on five foundational concepts (evolution, matter and energy transformation, homeostasis, information flow, and macromolecular structure and function) that represent the expected conceptual knowledge base for undergraduate degrees in biochemistry and molecular biology. This consensus will aid biochemistry and molecular biology educators in the development of assessment tools for the new ASBMB recommended curriculum. © 2013 by The International Union of Biochemistry and Molecular Biology.

  15. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions.

    Science.gov (United States)

    Kuzminov, Fedor I; Gorbunov, Maxim Y

    2016-02-01

    To prevent photooxidative damage under supraoptimal light, photosynthetic organisms evolved mechanisms to thermally dissipate excess absorbed energy, known as non-photochemical quenching (NPQ). Here we quantify NPQ-induced alterations in light-harvesting processes and photochemical reactions in Photosystem 2 (PS2) in the pennate diatom Phaeodactylum tricornutum. Using a combination of picosecond lifetime analysis and variable fluorescence technique, we examined the dynamics of NPQ activation upon transition from dark to high light. Our analysis revealed that NPQ activation starts with a 2-3-fold increase in the rate constant of non-radiative charge recombination in the reaction center (RC); however, this increase is compensated with a proportional increase in the rate constant of back reactions. The resulting alterations in photochemical processes in PS2 RC do not contribute directly to quenching of antenna excitons by the RC, but favor non-radiative dissipation pathways within the RC, reducing the yields of spin conversion of the RC chlorophyll to the triplet state. The NPQ-induced changes in the RC are followed by a gradual ~ 2.5-fold increase in the yields of thermal dissipation in light-harvesting complexes. Our data suggest that thermal dissipation in light-harvesting complexes is the major sink for NPQ; RCs are not directly involved in the NPQ process, but could contribute to photoprotection via reduction in the probability of (3)Chl formation.

  16. Shedding Light on the Mechanisms Underlying Health Disparities Through Community Participatory Methods: The Stress Pathway

    Science.gov (United States)

    Schetter, Christine Dunkel; Schafer, Peter; Lanzi, Robin Gaines; Clark-Kauffman, Elizabeth; Raju, Tonse N. K.; Hillemeier, Marianne M.

    2015-01-01

    Health disparities are large and persistent gaps in the rates of disease and death between racial/ethnic and socioeconomic status subgroups in the population. Stress is a major pathway hypothesized to explain such disparities. The Eunice Kennedy Shriver National Institute of Child Health and Human Development formed a community/research collaborative—the Community Child Health Network—to investigate disparities in maternal and child health in five high-risk communities. Using community participation methods, we enrolled a large cohort of African American/Black, Latino/Hispanic, and non-Hispanic/White mothers and fathers of newborns at the time of birth and followed them over 2 years. A majority had household incomes near or below the federal poverty level. Home interviews yielded detailed information regarding multiple types of stress such as major life events and many forms of chronic stress including racism. Several forms of stress varied markedly by racial/ethnic group and income, with decreasing stress as income increased among Caucasians but not among African Americans; other forms of stress varied by race/ethnicity or poverty alone. We conclude that greater sophistication in studying the many forms of stress and community partnership is necessary to uncover the mechanisms underlying health disparities in poor and ethnic-minority families and to implement community health interventions. PMID:26173227

  17. B1-B2 phase transition mechanism and pathway of PbS under pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  18. The TCA Pathway is an Important Player in the Regulatory Network Governing Vibrio alginolyticus Adhesion Under Adversity.

    Science.gov (United States)

    Huang, Lixing; Huang, Li; Yan, Qingpi; Qin, Yingxue; Ma, Ying; Lin, Mao; Xu, Xiaojin; Zheng, Jiang

    2016-01-01

    Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway) might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, quantitative Real-Time PCR (qPCR), RNAi, and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity, and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that (1) the TCA pathway plays a key role in V. alginolyticus adhesion: (2) the TCA pathway is sensitive to environmental stresses.

  19. The TCA pathway is an important player in the regulatory network governing Vibrio alginolyticus adhesion under adversity

    Directory of Open Access Journals (Sweden)

    Lixing eHuang

    2016-02-01

    Full Text Available Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, qPCR, RNAi and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that 1 the TCA pathway plays a key role in V. alginolyticus adhesion: 2 the TCA pathway is sensitive to environmental stresses.

  20. An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2010-06-18

    Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to

  1. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  2. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  3. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  4. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  5. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms.

    Science.gov (United States)

    Ronacher, Katharina; van Crevel, Reinout; Critchley, Julia A; Bremer, Andrew A; Schlesinger, Larry S; Kapur, Anil; Basaraba, Randall; Kornfeld, Hardy; Restrepo, Blanca I

    2017-07-01

    There is growing interest in the re-emerging interaction between type 2 diabetes (DM) and TB, but the underlying biologic mechanisms are poorly understood despite their possible implications in clinical management. Experts in epidemiologic, public health, basic science, and clinical studies recently convened and identified research priorities for elucidating the underlying mechanisms for the co-occurrence of TB and DM. We identified gaps in current knowledge of altered immunity in patients with DM during TB, where most studies suggest an underperforming innate immunity, but exaggerated adaptive immunity to Mycobacterium tuberculosis. Various molecular mechanisms and pathways may underlie these observations in the DM host. These include signaling induced by excess advanced glycation end products and their receptor, higher levels of reactive oxidative species and oxidative stress, epigenetic changes due to chronic hyperglycemia, altered nuclear receptors, and/or differences in cell metabolism (immunometabolism). Studies in humans at different stages of DM (no DM, pre-DM, and DM) or TB (latent or active TB) should be complemented with findings in animal models, which provide the unique opportunity to study early events in the host-pathogen interaction. Such studies could also help identify biomarkers that will complement clinical studies in order to tailor the prevention of TB-DM, or to avoid the adverse TB treatment outcomes that are more likely in these patients. Such studies will also inform new approaches to host-directed therapies. Copyright © 2017 American College of Chest Physicians. All rights reserved.

  6. Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.

    2017-09-01

    Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (climates, since the coastal wave climate is more responsive to

  7. Fibromyalgia and chronic fatigue: the underlying biology and related theoretical issues.

    Science.gov (United States)

    Romano, Graziella F; Tomassi, Simona; Russell, Alice; Mondelli, Valeria; Pariante, Carmine M

    2015-01-01

    There is an increasing interest in understanding the biological mechanism underpinning fibromyalgia (FM) and chronic fatigue syndrome (CFS). Despite the presence of mixed findings in this area, a few biological systems have been consistently involved, and the increasing number of studies in the field is encouraging. This chapter will focus on inflammatory and oxidative stress pathways and on the neuroendocrine system, which have been more commonly examined. Chronic inflammation, together with raised levels of oxidative stress and mitochondrial dysfunction, has been increasingly associated with the manifestation of symptoms such as pain, fatigue, impaired memory, and depression, which largely characterise at least some patients suffering from CFS and FM. Furthermore, the presence of blunted hypothalamic-pituitary-adrenal axis activity, with reduced cortisol secretion both at baseline and in response to stimulation tests, suggests a role for the hypothalamic-pituitary-adrenal axis and cortisol in the pathogenesis of these syndromes. However, to what extent these systems' abnormalities could be considered as primary or secondary factors causing FM and CFS has yet to be clarified. © 2015 S. Karger AG, Basel.

  8. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  9. Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Science.gov (United States)

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; El-Gawad, Ahmed M. Abd; Sarker, Tushar Chandra; Cesarano, Gaspare; Saulino, Luigi; Saracino, Antonio; Castro Rego, Francisco

    2017-04-01

    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 °C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 °C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels.

  10. [Preneoplasias of ovarian carcinoma: biological and clinical aspects of different pathways of tumorigenesis].

    Science.gov (United States)

    Staebler, A

    2011-11-01

    Ovarian carcinomas consist of a heterogeneous group of malignant epithelial neoplasms with specific pathogenic mechanisms. This review provides a brief introduction to the different pathways of tumor progression and the associated molecular changes. However, the main focus will be on two areas with major paradigm shifting developments in recent years. Mutational analysis of ovarian clear cell carcinomas, endometrioid carcinomas and endometriotic lesions identified mutations in the ARID1A gene as common and early genetic changes in carcinomas with associated endometriosis and in atypical endometriosis itself. Extensive pathological work-up of the fallopian tubes of BRCA1/2 mutation carriers have demonstrated the existence of serous tubal intraepithelial carcinomas (STIC). Further studies showed that this lesion can also be found in 50-60% of patients with serous ovarian carcinomas without BRCA1/2 germline mutations. Pre-precursors which share the p53 mutations with STICs but proliferate very little are called p53-signatures and provide conclusive evidence that STICs develop in the fallopian tubes.

  11. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  12. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science.

    Science.gov (United States)

    Ramanathan, Anand; Srijaya, Thekkeparambil Chandrabose; Sukumaran, Prema; Zain, Rosnah Binti; Abu Kasim, Noor Hayaty

    2018-01-01

    Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S; Singh, Surender

    2013-01-01

    Although there is large-scale adoption of Bt cotton by the farmers because of immediate financial gain, there is concern that Bt crops release Bt toxins into the soil environment which reduces soil chemical and biological activities. However, the majorities of such studies were mainly performed under pot experiments, relatively little research has examined the direct and indirect effects of associated cover crop of peanut with fertilization by combined application of organic and inorganic sources of nitrogen under field conditions. We compared soil chemical and biological parameters of Bt cotton with pure crop of peanut to arrive on a valid conclusion. Significantly higher dehydrogenase enzyme activity and KMnO(4)-N content of soil were observed in Bt cotton with cover crop of peanut over pure Bt cotton followed by pure peanut at all the crop growth stages. However, higher microbial population was maintained by pure peanut over intercropped Bt cotton, but these differences were related to the presence of high amount of KMnO(4)-N content of soil. By growing cover crop of peanut between Bt cotton rows, bacteria, fungi, and actinomycetes population increased by 60%, 14%, and 10%, respectively, over Bt cotton alone. Bt cotton fertilized by combined application of urea and farm yard manure (FYM) maintained higher dehydrogenase enzyme activity, KMnO(4)-N content of soil and microbial population over urea alone. Significant positive correlations were observed for dry matter accumulation, dehydrogenase enzyme activity, KMnO(4)-N content, and microbial population of soil of Bt cotton, which indicates no harmful effects of Bt cotton on soil biological parameters and associated cover crop. Our results suggest that inclusion of cover crop of peanut and FYM in Bt cotton enhanced soil chemical and biological parameters which can mask any negative effect of the Bt toxin on microbial activity and thus on enzymatic activities.

  14. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-01-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources. PMID:18524799

  15. Brain drains: new insights into brain clearance pathways from lymphatic biology.

    Science.gov (United States)

    Bower, Neil I; Hogan, Benjamin M

    2018-04-02

    The lymphatic vasculature act as the drainage system for most of our tissues and organs, clearing interstitial fluid and waste and returning them to the blood circulation. This is not the case for the central nervous system (CNS), which is devoid of parenchymal lymphatic vessels. Nevertheless, the brain is responsible for 25% of the body's metabolism and only compromises 2% of the body's mass. This high metabolic load requires an efficient system to remove waste products and maintain homeostasis. Well-described mechanisms of waste clearance include phagocytic immune cell functions as well as perivascular fluid flow; however, the need for active drainage of waste from the brain is becoming increasingly appreciated. Recent developments in lymphatic vascular biology challenge the proposition that the brain lacks lymphatic drainage or an equivalent. In this review, we describe the roles of the glymphatic system (a key drainage mechanism in the absence of lymphatics), the recently characterized meningeal lymphatic vessels, and explore an enigmatic cell population found in zebrafish called mural lymphatic endothelial cells. These systems may play important individual and collective roles in draining and clearing wastes from the brain.

  16. Why are well-educated Muscovites more likely to survive? Understanding the biological pathways

    Science.gov (United States)

    Todd, Megan A.; Shkolnikov, Vladimir M.; Goldman, Noreen

    2016-01-01

    There are large socioeconomic disparities in adult mortality in Russia, although the biological mechanisms are not well understood. With data from the study of Stress, Aging, and Health in Russia (SAHR), we use Gompertz hazard models to assess the relationship between educational attainment and mortality among older adults in Moscow and to evaluate biomarkers associated with inflammation, neuroendocrine function, heart rate variability, and clinical cardiovascular and metabolic risk as potential mediators of that relationship. We do this by assessing the extent to which the addition of biomarker variables into hazard models of mortality attenuates the association between educational attainment and mortality. We find that an additional year of education is associated with about 5% lower risk of age-specific all-cause and cardiovascular mortality. Inflammation biomarkers are best able to account for this relationship, explaining 25% of the education-all-cause mortality association, and 35% of the education-cardiovascular mortality association. Clinical markers perform next best, accounting for 13% and 23% of the relationship between education and all-cause and cardiovascular mortality, respectively. Although heart rate biomarkers are strongly associated with subsequent mortality, they explain very little of the education-mortality link. Neuroendocrine biomarkers fail to account for any portion of the link. These findings suggest that inflammation may be important for understanding mortality disparities by socioeconomic status. PMID:27085072

  17. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways.

    Science.gov (United States)

    Baltz, Richard H

    2014-10-17

    Nonribosomal peptide synthetases (NRPSs) are giant multi-enzymes that carry out sequencial assembly line couplings of amino acids to generate linear or cyclic peptides. NRPSs are composed of repeating enzyme domains with modular organization to activate and couple specific amino acids in a particular order. From a synthetic biology perspective, they can be considered as peptide assembly machines composed of devices to couple fatty acids to l-amino acids, l-amino acids to l-amino acids, and d-amino acids to l-amino acids. The coupling devices are composed of specific parts that contain two or more enzyme domains that can be exchanged combinatorially to generate novel peptide assembly machines to produce novel peptides. The potent lipopeptide antibiotics daptomycin and A54145E have identical cyclic depsipeptide ring structures and stereochemistry but have divergent amino acid sequences. As their biosynthetic gene clusters are derived from an ancient ancestral lipopetide pathway, these lipopeptides provided an attractive model to develop combinatorial biosynthesis to generate antibiotics superior to daptomycin. These studies on combinatorial biosynthesis have helped generate guidelines for the successful assembly of NRPS parts and devices that can be used to generate novel lipopeptide structures and have established a basis for future synthetic biology studies to further develop combinatorial biosynthesis as a robust approach to natural product drug discovery.

  18. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy

    Directory of Open Access Journals (Sweden)

    Anastasia eYendiki

    2011-10-01

    Full Text Available We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls.

  19. Number size distribution measurements of biological aerosols under contrasting environments and seasons from southern tropical India

    Science.gov (United States)

    Valsan, Aswathy; Cv, Biju; Krishna, Ravi; Huffman, Alex; Poschl, Ulrich; Gunthe, Sachin

    2016-04-01

    Biological aerosols constitute a wide range of dead and alive biological materials and structures that are suspended in the atmosphere. They play an important role in the atmospheric physical, chemical and biological processes and health of living being by spread of diseases among humans, plants, and, animals. The atmospheric abundance, sources, physical properties of PBAPs as compared to non-biological aerosols, however, is poorly characterized. Though omnipresent, their concentration and composition exhibit large spatial and temporal variations depending up on their sources, land-use, and local meteorology. The Indian tropical region, which constitutes approximately 18% of the world's total population exhibits vast geographical extend and experiences a distinctive meteorological phenomenon by means of Indian Summer Monsoon (IMS). Thus, the sources, properties and characteristics of biological aerosols are also expected to have significant variations over the Indian subcontinent depending upon the location and seasons. Here we present the number concentration and size distribution of Fluorescent Biological Aerosol Particles (FBAP) from two contrasting locations in Southern tropical India measured during contrasting seasons using Ultra Violet Aerodynamic Particle Sizer (UV-APS). Measurements were carried out at a pristine high altitude continental site, Munnar (10.09 N, 77.06 E; 1605 m asl) during two contrasting seasons, South-West Monsoon (June-August, 2014) and winter (Jan - Feb, 2015) and in Chennai, a coastal urban area, during July - November 2015. FBAP concentrations at both the locations showed large variability with higher concentrations occurring at Chennai. Apart from regional variations, the FBAP concentrations also exhibited variations over two different seasons under the same environmental condition. In Munnar the FBAP concentration increased by a factor of four from South-West Monsoon to winter season. The average size distribution of FBAP at both

  20. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2017-10-01

    Full Text Available Background/Aims: Mechanical load can regulate disc nucleus pulposus (NP biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Methods: Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively. Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. Results: The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II and NP cell markers (glypican-3, CAXII and keratin-19 compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. Conclusion: N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression.

  3. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  4. MORPHOMETRIC CHARACTERISTIC OF RATS LIVER UNDER PRE-SLAUGHTER STRESS AND USAGE OF BIOLOGICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    Grabovskyi S. S.

    2015-04-01

    Full Text Available We have studied morphometric parameters of rats’ liver under stress conditions using the biologically active substances of plant and animal origin: spleen, Echinacea and Chinese lemon extracts, sprouted grain. Aerosol introduction of spleen extract to the rats feed for five days before slaughter was caused to liver morphological state moderate deviation, indicating the antistressors properties of polyamines contained in this extract. The results of model experiment on rats can be used in research of farm animals for correction of pre-slaughter stress influence and getting the receiving of quality industrial production.

  5. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  6. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  7. Evaluation of biological attributes of soil type latossol under agroecological production

    Directory of Open Access Journals (Sweden)

    Marisol Rivero Herrada

    2016-10-01

    Full Text Available Biological soil attributes have shown to be good indicators of soil changes as a result of the management function. The aim of this study was to evaluate the effect of using cover crops, as well as planting and tillage systems on the biological attributes of a yellowish red latosol soil. Soil samples were taken at 0 to 0.10 m depth, seven days before the bean harvest. Microbial biomass carbon and nitrogen, basal soil respiration, metabolic ratio and total enzyme activity were evaluated in this study. The best agroecological management was achieved under the association of the ground cover with millet and in direct seeding because they showed higher soil microbial biomass carbon and nitrogen content and lower metabolic quotient, being pork bean the best plant coverage. All biological soil attributes were sensitive to the tillage system, which showed the best results of the total enzyme activity and of the soil metabolic quotient which resulted to be the most efficient.

  8. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Biological Control Outcomes Using the Generalist Aphid Predator Aphidoletes aphidimyza under Multi-Prey Conditions

    Directory of Open Access Journals (Sweden)

    Sarah E. Jandricic

    2016-12-01

    Full Text Available The aphidophagous midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae is used in biological control programs against aphids in many crops. Short-term trials with this natural enemy demonstrated that that females prefer to oviposit among aphids colonizing the new growth of plants, leading to differential attack rates for aphid species that differ in their within-plant distributions. Thus, we hypothesized that biological control efficacy could be compromised when more than one aphid species is present. We further hypothesized that control outcomes may be different at different crop stages if aphid species shift their preferred feeding locations. Here, we used greenhouse trials to determine biological control outcomes using A. aphidimyza under multi-prey conditions and at different crop stages. At all plant stages, aphid species had a significant effect on the number of predator eggs laid. More eggs were found on M. persicae versus A. solani-infested plants, since M. persicae consistently colonized plant meristems across plant growth stages. This translated to higher numbers of predatory larvae on M. periscae-infested plants in two out of our three experiments, and more consistent control of this pest (78%–95% control across all stages of plant growth. In contrast, control of A. solani was inconsistent in the presence of M. persicae, with 36%–80% control achieved. An additional experiment demonstrated control of A. solani by A. aphidimyza was significantly greater in the absence of M. persicae than in its presence. Our study illustrates that suitability of a natural enemy for pest control may change over a crop cycle as the position of prey on the plant changes, and that prey preference based on within-plant prey location can negatively influence biological control programs in systems with pest complexes. Careful monitoring of the less-preferred pest and its relative position on the plant is suggested.

  10. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    International Nuclear Information System (INIS)

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions

  11. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  12. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Testa, Mauro; Tang, Shikui [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gheorghiu, Liliana [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Biggs, Peter; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  13. Bioinformatic dissecting of TP53 regulation pathway underlying butyrate-induced histone modification in epigenetic regulation

    Science.gov (United States)

    Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...

  14. Pathways and Mechanisms Underlying the Photophysics and Photochemistry of Riboflavin induced cornea crosslinking

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen

    In this talk, we will describe general pathways involved in the photophysics of a photosensitized process, which can lead to crosslinking due to light excitation of Riboflavin in the cornea. Furthermore, we will elucidate different aspects of reactions that can produce crosslinks, with respect...

  15. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions.

    Science.gov (United States)

    Le Roux, Johannes J; Hui, Cang; Keet, Jan-Hendrik; Ellis, Allan G

    2017-09-01

    Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  17. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism

    Science.gov (United States)

    Zielinski, Daniel C.; Jamshidi, Neema; Corbett, Austin J.; Bordbar, Aarash; Thomas, Alex; Palsson, Bernhard O.

    2017-01-01

    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.

  18. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  19. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  20. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  1. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left–right patterning

    OpenAIRE

    McDowell, Gary; Rajadurai, Suvithan; Levin, Michael

    2016-01-01

    Consistent left–right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the a...

  2. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway

    OpenAIRE

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-01-01

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nut...

  3. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    Science.gov (United States)

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  4. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  5. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  6. N deposition as a threat to the World's protected areas under the Convention on Biological Diversity

    International Nuclear Information System (INIS)

    Bleeker, A.; Hicks, W.K.; Dentener, F.; Galloway, J.; Erisman, J.W.

    2011-01-01

    This paper combines the world's protected areas (PAs) under the Convention on Biological Diversity (CBD), common classification systems of ecosystem conservation status, and current knowledge on ecosystem responses to nitrogen (N) deposition to determine areas most at risk. The results show that 40% (approx. 11% of total area) of PAs currently receive >10 kg N/ha/yr with projections for 2030 indicating that this situation is not expected to change. Furthermore, 950 PAs are projected to receive >30 kg N/ha/yr by 2030 (approx. twice the 2000 number), of which 62 (approx. 11,300 km 2 ) are also Biodiversity Hotspots and G200 ecoregions; with forest and grassland ecosystems in Asia particularly at risk. Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide. Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Highlights: → Significant areas of the Protected Areas Programme under the CBD will likely be under threat of high N deposition levels by the year 2030.→ Approx. 950 PAs are projected to receive N deposition levels of more than 30 kg N/ha/yr by 2030.→ 62 of these sites are also Biodiversity Hotspots and G200 ecoregions, where forest and grassland ecosystems in Asia will be particularly at risk.→ Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide → Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Significant areas of the UNEP Protected Areas Programme under the CBD receive high N deposition rates that are likely to increase in the future, especially in Asia, and may pose a significant threat to biodiversity.

  7. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  9. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea.

    Science.gov (United States)

    Empadinhas, Nuno; da Costa, Milton S

    2011-08-01

    A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their

  10. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Ueda, Kentaro; Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2018-02-27

    The role of the oxidative pentose phosphate pathway (oxPPP) in Synechocystis sp. PCC 6803 under mixotrophic conditions was investigated by 13 C metabolic flux analysis. Cells were cultured under low (10 μmol m -2  s -1 ) and high light intensities (100 μmol m -2  s -1 ) in the presence of glucose. The flux of CO 2 fixation by ribulose bisphosphate carboxylase/oxygenase under the high light condition was approximately 3-fold higher than that under the low light condition. Although no flux of the oxPPP was observed under the high light condition, flux of 0.08-0.19 mmol gDCW -1  h -1 in the oxPPP was observed under the low light condition. The balance between the consumption and production of NADPH suggested that approximately 10% of the total NADPH production was generated by the oxPPP under the low light condition. The growth phenotype of a mutant with deleted zwf, which encodes glucose-6-phosphate dehydrogenase in the oxPPP, was compared to that of the parental strain under low and high light conditions. Growth of the Δzwf mutant nearly stopped during the late growth phase under the low light condition, whereas the growth rates of the two strains were identical under the high light condition. These results indicate that NADPH production in the oxPPP is essential for anabolism under low light conditions. The oxPPP appears to play an important role in producing NADPH from glucose and ATP to compensate for NADPH shortage under low light conditions. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Directory of Open Access Journals (Sweden)

    Sofia Caretto

    2015-11-01

    Full Text Available Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i the proline redox cycle; (ii the stimulated oxidative pentose phosphate pathway; and, in turn, (iii the reduced growth of plant tissues.

  12. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Science.gov (United States)

    Caretto, Sofia; Linsalata, Vito; Colella, Giovanni; Mita, Giovanni; Lattanzio, Vincenzo

    2015-01-01

    Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate) with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i) the proline redox cycle; (ii) the stimulated oxidative pentose phosphate pathway; and, in turn, (iii) the reduced growth of plant tissues. PMID:26556338

  13. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease.

    Science.gov (United States)

    Unudurthi, Sathya D; Greer-Short, Amara; Patel, Nehal; Nassal, Drew; Hund, Thomas J

    2018-01-01

    In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.

  14. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    Science.gov (United States)

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  15. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng; Hong Yan; Yang Dayun; Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China); Xi Tingfei [Shenzhen Research Institute, Peking University, Shenzhen, 518055 (China); Deyuan, Zhang [R and D Center of Lifetech Scientific (Shenzhen) Co., Ltd, Shenzhen, 518057 (China); Hong Ying [Department of Gynecology and Obstetrics, Nanjing Drum-Tower Hospital, Nanjing, 210096 (China); Yuan Jinfeng, E-mail: luxy@seu.edu.cn [Department of Gynecology and Obstetrics, Xuanwu Hospital, Nanjing, 210096 (China)

    2011-04-15

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  16. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  17. Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments

    Science.gov (United States)

    Wong, Les

    2015-01-01

    Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and

  18. Quantitative analysis of neurotransmitter pathways under steady state conditions - a perspective.

    Science.gov (United States)

    Cooper, Arthur J L

    2013-11-18

    In a contribution to this Research Topic Erkki Somersalo and Daniela Calvetti carried out a mathematical analysis of neurotransmitter pathways in brain, modeling compartmental nitrogen flux among several major participants - ammonia, glutamine, glutamate, GABA, and selected amino acids. This analysis is important because cerebral nitrogen metabolism is perturbed in many diseases, including liver disease and inborn errors of the urea cycle. These diseases result in an elevation of blood ammonia, which is neurotoxic. Here, a brief description is provided of the discovery of cerebral metabolic compartmentation of nitrogen metabolism - a key feature of cerebral glutamate-glutamine and GABA-glutamine cycles. The work of Somersalo and Calvetti is discussed as a model for future studies of normal and pathological cerebral ammonia metabolism.

  19. Quantitative Analysis of Neurotransmitter Pathways under Steady State Conditions – A Perspective

    Directory of Open Access Journals (Sweden)

    Arthur Joseph Cooper

    2013-11-01

    Full Text Available In a contribution to this Research Topic Erkki Somersalo and Daniela Calvetti carried out a mathematical analysis of neurotransmitter pathways in brain, modeling compartmental nitrogen flux among several major participants – ammonia, glutamine, glutamate, GABA and selected amino acids. This analysis is important because cerebral nitrogen metabolism is perturbed in many diseases, including liver disease and inborn errors of the urea cycle. These diseases result in an elevation of blood ammonia, which is neurotoxic. Here, a brief description is provided of the discovery of cerebral metabolic compartmentation of nitrogen metabolism – a key feature of cerebral glutamate-glutamine and GABA-glutamine cycles. The work of Somersalo and Calvetti is discussed as a model for future studies of normal and pathological cerebral ammonia metabolism.

  20. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...... decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s...

  2. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin

    Science.gov (United States)

    Yin, Yuanyuan; Tang, Qiuhong; Liu, Xingcai; Zhang, Xuejun

    2017-02-01

    Increasing population and socio-economic development have put great pressure on water resources of the Yellow River (YR) basin. The anticipated climate and socio-economic changes may further increase water stress. Many studies have investigated the changes in renewable water resources under various climate change scenarios, but few have considered the joint pressure from both climate change and socio-economic development. In this study, we assess water scarcity under various socio-economic pathways with emphasis on the impact of water scarcity on food production. The water demands in the 21st century are estimated based on the newly developed shared socio-economic pathways (SSPs) and renewable water supply is estimated using the climate projections under the Representative Concentration Pathway (RCP) 8.5 scenario. The assessment predicts that the renewable water resources would decrease slightly then increase. The domestic and industrial water withdrawals are projected to increase in the next a few decades and then remain at the high level or decrease slightly during the 21st century. The increase in water withdrawals will put the middle and lower reaches in a condition of severe water scarcity beginning in the next a few decades. If 40 % of the renewable water resources were used to sustain ecosystems, a portion of irrigated land would have to be converted to rain-fed agriculture, which would lead to a 2-11 % reduction in food production. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

  3. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  4. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  5. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  6. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    International Nuclear Information System (INIS)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G

    2011-01-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  7. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Science.gov (United States)

    Morales-Bonilla, S.; Torres-Torres, C.; Urriolagoitia-Sosa, G.; Hernández-Gómez, L. H.; Urriolagoitia-Calderón, G.

    2011-07-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  8. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    Science.gov (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  9. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways

    Science.gov (United States)

    Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich; Meinshausen, Malte; Mengel, Matthias

    2017-11-01

    In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative forcing targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for Antarctic rapid discharge from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986-2005 of 89 cm (likely range: 57-130 cm) for SSP1, 105 cm (73-150 cm) for SSP2, 105 cm (75-147 cm) for SSP3, 93 cm (63-133 cm) for SSP4, and 132 cm (95-189 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios are dominated by the mitigation targets and yield median estimates of 52 cm (34-75 cm) for FT 2.6 Wm-2, 62 cm (40-96 cm) for FT 3.4 Wm-2, 75 cm (47-113 cm) for FT 4.5 Wm-2, and 91 cm (61-132 cm) for FT 6.0 Wm-2. Average 2081-2100 annual SLR rates are 5 mm yr-1 and 19 mm yr-1 for FT 2.6 Wm-2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. We find that 2100 median SSP SLR projections could be limited to around 50 cm if 2050 cumulative CO2 emissions since pre-industrial stay below 850 GtC, with a global coal phase-out nearly completed by that time. For SSP mitigation scenarios, a 2050 carbon price of 100 US2005 tCO2 -1 would correspond to a median 2100 SLR of around 65 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.

  10. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  11. High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening.

    Science.gov (United States)

    Kiefer, Jeff; Yin, Hongwei H; Que, Qiang Q; Mousses, Spyro

    2009-01-01

    High-throughput RNA interference (HT-RNAi) is a powerful research tool for parallel, 'genome-wide', targeted knockdown of specific gene products. Such perturbation of gene product expression allows for the systematic query of gene function. The phenotypic results can be monitored by assaying for specific alterations in molecular and cellular endpoints, such as promoter activation, cell proliferation and survival. RNAi profiling may also be coupled with drug screening to identify molecular correlates of drug response. As with other genomic-scale data, methods of data analysis are required to handle the unique aspects of data normalization and statistical processing. In addition, novel techniques or knowledge-mining strategies are required to extract useful biological information from HT-RNAi data. Knowledge-mining strategies involve the novel application of bioinformatic tools and expert curation to provide biological context to genomic-scale data such as that generated from HT-RNAi data. Pathway-based tools, whether text-mining based or manually curated, serve an essential role in knowledge mining. These tools can be applied during all steps of HT-RNAi screen experiments including pre-screen knowledge gathering, assay development and hit confirmation and validation. Most importantly, pathway tools allow the interrogation of HT-RNAi data to identify and prioritize pathway-based biological information as a result of specific loss of gene function.

  12. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  13. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    Directory of Open Access Journals (Sweden)

    Nisar A. Bhat

    2017-09-01

    Full Text Available Mobilization of unavailable phosphorus (P to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max -wheat (Triticum aestivum crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings

  14. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  15. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways

    Science.gov (United States)

    Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.

    2016-10-01

    Existing quantifications of the Shared Socioeconomic Pathways (SSP) used for climate impact assessment do not account for subnational population dynamics such as coastward-migration that can be critical for coastal impact assessment. This paper extends the SSPs by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers we develop coastal narratives for each SSP. These narratives account for differences in coastal and inland population developments in urban and rural areas. To spatially distribute population, we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates, which differ for coastal and inland as well as for urban and rural regions, to project coastal population for each SSP. These rates are derived from spatial analysis of historical population data and adjusted for each SSP based on the coastal narratives. Our results show that, compared to the year 2000 (638 million), the population living in the Low Elevated Coastal Zone (LECZ) increases by 58% to 71% until 2050 and exceeds one billion in all SSPs. By the end of the 21st century, global coastal population declines to 830-907 million in all SSPs except for SSP3, where coastal population growth continues and reaches 1.184 billion. Overall, the population living in the LECZ is higher by 85 to 239 million compared to the original IIASA projections. Asia expects the highest absolute growth (238-303 million), Africa the highest relative growth (153% to 218%). Our results highlight regions where high coastal population growth is expected and will therefore face an increased exposure to coastal flooding.

  16. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties.

    Science.gov (United States)

    Urich, Christian; Rauch, Wolfgang

    2014-12-01

    Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Achieving pathogenesis understanding of ocular diseases by deciphering the underlying molecular pathways].

    Science.gov (United States)

    Huang, Qian

    2005-10-01

    The field of ophthalmology research has experienced a revolution since the 1970's, when molecular biology techniques were gradually and widely adopted. Many of the developments generated impact that went far beyond the field of ophthalmology. A classic case was the identification and characterization of the Retinoblastoma susceptibility gene (Rb), whose impact went far beyond the rare and obscure disease, as it provides key evidence for the concept of tumor suppressor gene and the "two hit" theory of tumor formation. The identification of scores of genes involved in retinitis pigmentosum (pigmentosa), on the other hand, show cases the complexity of multi-factorial diseases. Ophthalmology researchers in China have been quick in integrating these novel tools into their research. However, the field still lags behind in the effective use of these technologies to carry out in-depth inquiries into key disease mechanisms. The advent of "omics" technologies heralded a new era in biomedical research that allows for the global and rapid survey of genetic and biochemical profiles. Effective integration of these novel technologies into ophthalmology research will have far-reaching impact for the whole field.

  18. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin

    Science.gov (United States)

    Whiteman, David C.; Pavan, William J; Bastian, Boris C.

    2012-01-01

    Summary Converging lines of evidence from varied scientific disciplines suggest that cutaneous melanomas comprise biologically distinct subtypes that arise through multiple causal pathways. Understanding the respective relationships of each subtype with etiologic factors such as UV radiation and constitutional factors is the first necessary step toward developing refined prevention strategies for the specific forms of melanoma. Furthermore, classifying this disease precisely into biologically distinct subtypes is the key to developing mechanism- based treatments, as highlighted by recent discoveries. In this review, we outline the historical developments that underpin our understanding of melanoma heterogeneity, and we do this from the perspectives of clinical presentation, histopathology, epidemiology, molecular genetics, and developmental biology. We integrate the evidence from these separate trajectories to catalog the emerging major categories of melanomas and conclude with important unanswered questions relating to the development of melanoma and its cells of origin. PMID:21707960

  19. The Biology and some Population Parameters of the Grasshopper, Ronderosia bergi, Under Laboratory Conditions

    Science.gov (United States)

    Mariottini, Yanina; de Wysiecki, Maria Laura; Lange, Carlos

    2010-01-01

    Some biological and population parameters of Ronderosia bergi (Stål) (Orthoptera: Acrididae: Melanoplinae) were estimated by monitoring five cohorts of the first generation (F1) of individuals born in captivity from grasshoppers collected in the South of Misiones province, northeastern Argentina, and held under controlled conditions (30° C, 14:10 L:D, 40% RH). The mean embryonic development time was 40.6 ± 1.7 days. Five nymphal instars were recorded. Total duration of nymphal development was 30.8 ± 0.54 days. The mean lifespan of cohorts was 22.6 ± 0.7 weeks. The number of egg-pods per female was 7.6 ± 1.44, and the amount of eggs per egg-pod was 16.45 ± 0.85. Mean fecundity was 125 ± 5.83 eggs per female with an oviposition rate of 1.55 ± 0.57 eggs/female/day. Survivorship curves showed that mortality was concentrated in the final weeks of adulthood, and the life expectancy curve decreased accordingly. The population parameters estimated gave the following values: the net rate of reproduction (R0) was 46.75 ± 11.2, generation time (T) was 18.87 ± 1.67 weeks, duplication time (D) was 3.31 ± 0.34, the intrinsic rate of population growth (rm) was 0.21 ± 0.021 and the finite rate of population increase (λ) was 1.24 ± 0.026. The reproductive values (Vx) indicated that the largest contribution of females to the subsequent generation was between weeks 15 and 25. PMID:20673116

  20. THE STUDY OF THE BIOLOGICAL PROPERTIES OF PROBIOTIC LACTOBACILLUS SPP. STRAINS UNDER AEROBIC AND MICROAEROPHILIC CULTIVATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Babych E.M.

    2014-01-01

    Full Text Available The biological properties (growth characteristics, adhesive activity and sensitivity to antimicrobial of probiotic Lactobacillus strains were studied under different gas composition of incubation atmosphere. It was found that the number of viable lactobacilli cells in the one dose of investigated probiotic preparations was lower than it was claimed by the manufacturer. Gas composition of incubation atmosphere affects cell viability of probiotic strains. The number of colony forming units of lactobacilli under microaerophilic conditions increased in 1,19-1,33 times as compared with aerobic conditions. It was proved that adhesive activity of probiotic Lactobacillus strains and sensitivity to 2th, 3th, 4th generations of cephalosporins (cefuroxime, cefotaxime, cefepime and tetracyclines (doxycycline also increased under microaerophilic conditions. The changes of the biological properties of lactobacilli under different cultivation conditions require further study for optimization of correction of dysbiotic disorders.

  1. Extra- and intracellular signaling pathways under red blood cell aggregation and deformability changes.

    Science.gov (United States)

    Muravyov, Alexei V; Tikhomirova, Irina A; Maimistova, Alla A; Bulaeva, Svetlana V

    2009-01-01

    Exposure of red blood cells (RBCs) to catecholamines (epinephrine, phenylephrine, an agonist of alpha1-adrenergic receptors, clonidine, an agonist of alpha2-adrenergic receptors and isoproterenol, an agonist of beta-adrenergic receptors) led to change in the RBC microrheological properties. When forskolin (10 microM), an AC stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 17% (pRBCA) was significantly decreased under these conditions (pRBCA reduction effect was found under cell incubation with pentoxifylline and inhibitor PDE1-vinpocetine. On the whole RBCA reduction averaged 36% (pRBCA, whereas red cell deformability was changed insignificantly. At the same time Ca2+ entry blocking into the red cells by verapamil or its chelating in medium by EGTA led to significant RBCA decrease and deformability rise (pRBCA decrease was mainly associated with an activation of the adenylyl-cyclase-cAMP system, while the red cell deformability was closely associated with Ca2+ control mechanisms.

  2. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    Science.gov (United States)

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  3. Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy

    DEFF Research Database (Denmark)

    Strom, C.C.; Kruhoffer, M.; Knudsen, S.

    2004-01-01

    Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic...... gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy, would uncover networks of conserved hypertrophy-specific genes and identify novel genes involved...... in hypertrophic signalling. From gene expression analyses (8740 probe sets, n = 46) of rat ventricular RNA, we identified a core set of 139 genes with consistent differential expression in all hypertrophy models as compared to their controls, including 78 genes not previously associated with hypertrophy and 61...

  4. 78 FR 74218 - Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and...

    Science.gov (United States)

    2013-12-10

    ... DEPARTMENT OF STATE [Public Notice 8545] Imposition of Additional Sanctions on Syria Under the... determination was made that the Government of Syria used chemical weapons in violation of international law or... sanctions against the Government of Syria. Section 307(b) of the Chemical and Biological Weapons Control and...

  5. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  6. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  7. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage.

    Science.gov (United States)

    Maes, Christa

    2017-02-01

    Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification. Copyright © 2016. Published by Elsevier Ltd.

  8. Regio-controlled hydrogen-deuterium exchange of biologically important indoles under uv irradiation

    International Nuclear Information System (INIS)

    Saito, Isao; Muramatsu, Shigeru; Sugiyama, Hiroshi; Yamamoto, Akihiro; Matsuura, Teruo

    1985-01-01

    Photochemical hydrogen-deuterium exchange reaction of biologically important indoles is reported. The regioselectivity of the photodeuteration was found to be controlled by the ammonium group of the side chain. (author)

  9. Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat

    Science.gov (United States)

    Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline

    2017-09-01

    The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.

  10. Los itinerarios profesionales en Biología: un ejemplo de formación académica orientada a la inserción profesional Professional pathways in Biology: an example of professionally-oriented teaching

    Directory of Open Access Journals (Sweden)

    José Aramburu

    2006-12-01

    Full Text Available Uno de los retos de la Universidad es formar los profesionales necesarios para la sociedad en que está inserta. Este ajuste no es fácil de obtener debido a la rigidez de los planes de estudios oficiales y a las cambiantes necesidades sociales. Sin embargo, el próximo Espacio Europeo de Educación Superior tiene este empeño como uno de sus principales objetivos. En el presente artículo se presenta la experiencia de los itinerarios profesionales de la licenciatura en Biología de la Universitat Pompeu Fabra durante dos cursos académicos. Situados en el quinto curso del plan de estudios, permiten a los estudiantes una formación específica en uno de los ámbitos profesionales en los que pueden insertarse laboralmente. La experiencia muestra que, tras un período de uno o dos años de su graduación, el 83% de los egresados se encuentran realizando un trabajo remunerado, en la mayoría de los casos relacionado con la biología, mientras que un 9% realizan otros estudios (no doctorado. Sólo el 3% de los graduados están buscando trabajo de forma activa. En conclusión, los itinerarios profesionales pueden constituir una estrategia educativa adecuada para permitir que los licenciados en Biología se inserten con éxito en ocupaciones laborales acordes con su formación.One of the main challenges facing universities is to train professionals who possess the skills that society requires. This is difficult to achieve due to the rigidity of official curricula and the constantly changing needs of society. However, it remains one of the main goals of the Bologna process. This paper describes the experience of the professional pathways which form part of the biology degree offered by the Universitat Pompeu Fabra, over a period of two academic years. Professional pathways are an essential part of the fifth year syllabus and provide students with specific training in one of the professional settings in which they may eventually work. Our experience

  11. Experiences of pathways, outcomes and choice after severe traumatic brain injury under no-fault versus fault-based motor accident insurance.

    Science.gov (United States)

    Harrington, Rosamund; Foster, Michele; Fleming, Jennifer

    2015-01-01

    To explore experiences of pathways, outcomes and choice after motor vehicle accident (MVA) acquired severe traumatic brain injury (sTBI) under fault-based vs no-fault motor accident insurance (MAI). In-depth qualitative interviews with 10 adults with sTBI and 17 family members examined experiences of pathways, outcomes and choice and how these were shaped by both compensable status and interactions with service providers and service funders under a no-fault and a fault-based MAI scheme. Participants were sampled to provide variation in compensable status, injury severity, time post-injury and metropolitan vs regional residency. Interviews were recorded, transcribed and thematically analysed to identify dominant themes under each scheme. Dominant themes emerging under the no-fault scheme included: (a) rehabilitation-focused pathways; (b) a sense of security; and (c) bounded choices. Dominant themes under the fault-based scheme included: (a) resource-rationed pathways; (b) pressured lives; and (c) unknown choices. Participants under the no-fault scheme experienced superior access to specialist rehabilitation services, greater surety of support and more choice over how rehabilitation and life-time care needs were met. This study provides valuable insights into individual experiences under fault-based vs no-fault MAI. Implications for an injury insurance scheme design to optimize pathways, outcomes and choice after sTBI are discussed.

  12. Effect of ERK1/2 signal pathway on the expression of OPG/RANKL in cementoblasts under stress stimulation

    Directory of Open Access Journals (Sweden)

    Feng-xue YANG

    2015-01-01

    Full Text Available Objective To explore the effect of extracellular signal regulated kinase (ERK1/2 on the expression of osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL in cementoblasts under mechanical tensile stress stimulation. Methods Using Flexcell FX4000T tension loading system and the ERK1/2-specific inhibitor PD98059, cementoblasts OCCM30 were randomly divided into four groups: group A (without loading and inhibitor, group B (without loading but inhibitor, group C (loading but without inhibitor, and group D (with both loading and inhibitor. The phosphorylation level of ERK1/2 was measured by Western blotting after 5, 15, 30 and 60min loading. OPG and RANKL mRNA were analyzed with fluorescent quantitative RT-PCR after 12h loading. Results Mechanical tensile stress activated ERK1/2 signal pathway of group C rapidly, and the P-ERK1/2 levels were significantly higher in group C than in group A at 5, 15 and 30min (P<0.05, then the P-ERK1/2 level of group C resumed to similar level of group A at 60min. The P-ERK levels of group B and D were significantly reduced by inhibitor PD98059. Tension stress up-regulated the expression of RANKL mRNA, and down-regulated the expression of OPG mRNA in OCCM30, the RANKL/OPG ratio increased after tension loading. With PD98059, the expression of RANKL mRNA decreased, that of OPG mRNA increased, and the RANKL/OPG ratio decreased (P<0.05. Conclusion ERK1/2 may be a signal transduction pathway for the regulation of OPG and RANKL expression after tension stress loading, but it is not the only one of activation pathways, and there may be other common signal pathways involved in the regulation of OPG and RANKL expression. DOI: 10.11855/j.issn.0577-7402.2014.12.03

  13. Modeling the photochemical transformation of nitrobenzene under conditions relevant to sunlit surface waters: Reaction pathways and formation of intermediates.

    Science.gov (United States)

    Vione, Davide; De Laurentiis, Elisa; Berto, Silvia; Minero, Claudio; Hatipoglu, Arzu; Cinar, Zekiye

    2016-02-01

    Nitrobenzene (NB) would undergo photodegradation in sunlit surface waters, mainly by direct photolysis and triplet-sensitized oxidation, with a secondary role of the *OH reaction. Its photochemical half-life time would range from a few days to a couple of months under fair-weather summertime irradiation, depending on water chemistry and depth. NB phototransformation gives phenol and the three nitrophenol isomers, in different yields depending on the considered pathway. The minor *OH role in degradation would make NB unsuitable as *OH probe in irradiated natural water samples, but the selectivity towards *OH could be increased by monitoring the formation of phenol from NB+*OH. The relevant reaction would proceed through ipso-addition of *OH on the carbon atom bearing the nitro-group, forming a pre-reactive complex that would evolve into a transition state (and then into a radical addition intermediate) with very low activation energy barrier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biological nitrogen fixation in mung bean under stress environment (acid soils)

    International Nuclear Information System (INIS)

    Rosales, C.M.; Grafia, A.O.; Rivera, F.G.

    1996-01-01

    Our previous studies in biological nitrogen fixation by different mung bean varieties showed the 15 N isotope dilution technique proved to be useful and reliable im measuring the amount of N 2 fixed. These studies were done in nearly neutral soil pH. But since acid soils in the Philippines are widely distributed which comprises about 56 percent of the total land area of the country, this prompted us to conduct studies in this kind of soil to help the farmers in the hilly lands and marginal lands. A preliminary pot experiment was first conducted to determine what are limiting factors/elements in mung bean production in an acid soil. Field experiment followed to verify and implement our results. It was conducted at the National Research Center, Bureau of Soils and Water Management (BSWM), Cuyambay, Tanay, Rizal, 73 kms. northeast of Manila to determine the N 2 fixation and yield performance of 3 mung bean varieties grown under stress environment (acid soils) using isotope dilution technique. PAEC (Philippine Atomic Energy Agency) 3 mung bean variety responded better to phosphorous (P) application compared with neither NIAB 92 or M79-25-106. From a mean seed yield of only 50 kg/ha without lime and P, PAEC 3 further increased its yield to 523 kg/ha with the application of both P and lime. The dry matter yields of three mung bean varieties responded well with P application than lime. Without lime or P, the dry matter yield was only 287 kg/ha. The addition increased the dry matter yield to 533 kg/ha. Both P and lime added dry matter yield further increased to 1359 kg/ha. N 2 fixation increased slightly with the application of lime. With both lime and phosphorous, N 2 fixation increased further. M79-25-106 fixed the highest amount of nitrogen (23.56 kg/ha) while PAEC 3 and NIAB 92 fixed only about 18.8 and 18.67 kg/ha respectively. (author)

  15. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study

    DEFF Research Database (Denmark)

    Gudmundsdottir, Valborg; Pedersen, Helle Krogh; Allebrandt, Karla Viviani

    2018-01-01

    cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one...

  16. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress.

    Science.gov (United States)

    Ge, Pei; Hao, Pengchao; Cao, Min; Guo, Guangfang; Lv, Dongwen; Subburaj, Saminathan; Li, Xiaohui; Yan, Xing; Xiao, Jitian; Ma, Wujun; Yan, Yueming

    2013-10-01

    As an abundant ROS, hydrogen peroxide (H2 O2 ) plays pivotal roles in plant growth and development. In this work, we conducted for the first time an iTRAQ-based quantitative proteomic analysis of wheat seedling growth under different exogenous H2 O2 treatments. The growth of seedlings and roots was significantly restrained by increased H2 O2 concentration stress. Malondialdehyde, soluble sugar, and proline contents as well as peroxidase activity increased with increasing H2 O2 levels. A total of 3,425 proteins were identified by iTRAQ, of which 157 showed differential expression and 44 were newly identified H2 O2 -responsive proteins. H2 O2 -responsive proteins were mainly involved in stress/defense/detoxification, signal transduction, and carbohydrate metabolism. It is clear that up-regulated expression of signal transduction and stress/defence/detoxification-related proteins under H2 O2 stress, such as plasma membrane intrinsic protein 1, fasciclin-like arabinogalactan protein, and superoxide dismutase, could contribute to H2 O2 tolerance of wheat seedlings. Increased gluconeogenesis (phosphoenol-pyruvate carboxykinase) and decreased pyruvate kinase proteins are potentially related to the higher H2 O2 tolerance of wheat seedlings. A metabolic pathway of wheat seedling growth under H2 O2 stress is presented. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  18. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  19. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  20. High rate of serious infection in juvenile idiopathic arthritis patients under biologic therapy in a real-life setting.

    Science.gov (United States)

    Brunelli, Juliana Barbosa; Schmidt, Ana Renata; Sallum, Adriana Maluf Elias; Goldenstein-Schainberg, Claudia; Bonfá, Eloisa; Silva, Clovis A; Aikawa, Nádia Emi

    2018-03-01

    To assess the rate of serious and/or opportunistic infections in juvenile idiopathic arthritis (JIA) patients from a single tertiary center under biologic therapy and to identify possible risk factors associated to these complications. A total of 107 JIA patients followed at the biologic therapy center of our tertiary university hospital using a standardized electronic database protocol including demographic data, clinical and laboratorial findings and treatment at baseline and at the moment of infection. Opportunistic infections included tuberculosis, herpes zoster and systemic mycosis. A total of 398 patient-yrs(py) were included. The median time of biologic exposure was 3.0 years (0.15-11.5). We observed 35 serious/opportunistic infectious events in 27 (25%) patients: 31(88.6%) were serious infections and four (11.4%) opportunistic infections. Serious/opportunistic infections rates were 10.6/100py for ETN, 10.9/100py for ADA, 2.6/100py for ABA and 14.8/100py for TCZ. Comparison of 27 patients with and 80 without infection showed a higher frequency of systemic-onset JIA, lower age at biologic therapy initiation and a history of previous serious infection (p biologic therapy in a real-life setting. Systemic-onset JIA, lower age at biologic therapy start and history of previous serious infections were important risk factors for these complications. Also, higher rates of severe infections comparing to the former studies was possibly due to elevated MTX doses in our patients.

  1. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  2. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  3. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  4. Quantitative Proteomic Analyses Identify ABA-related Proteins and Signal Pathways in Maize Leaves Under Drought Conditions

    Directory of Open Access Journals (Sweden)

    zhao Yulong

    2016-12-01

    Full Text Available Drought stress is one of major factors resulting in maize yield loss. The roles of abscisic acid (ABA have been widely studied in crops in response to drought stress. However, more attention is needed to identify key ABA-related proteins and also gain deeper molecular insights about drought stress in maize. Based on this need, the physiology and proteomics of the ABA-deficient maize mutant vp5 and its wild-type Vp5 under drought stress were examined and analyzed. Malondialdehyde content increased and quantum efficiency of photosystem II decreased under drought stress in both genotypes. However, the magnitude of the increase or decrease was significantly higher in vp5 than in Vp5. A total of 7051 proteins with overlapping expression patterns among three replicates in the two genotypes were identified by Multiplex run iTRAQ-based quantitative proteomic and liquid chromatography-tandem mass spectrometry methods, of which the expression of only 150 proteins (130 in Vp5, 27 in vp5 showed changes of at least 1.5-fold under drought stress. Among the 150 proteins, 67 and 60 proteins were up-regulated and down-regulated by drought stress in an ABA-dependent way, respectively. ABA was found to play active roles in regulating signaling pathways related to photosynthesis, oxidative phosphorylation (mainly related to ATP synthesis, and glutathione metabolism (involved in antioxidative reaction in the maize response to drought stress. Our results provide an extensive dataset of ABA-dependent, drought-regulated proteins in maize plants, which may help to elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress in maize.

  5. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  6. Mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    Yin XP

    2015-11-01

    Full Text Available Xiao-ping Yin,1,2 Zhi-ying Chen,2 Jun Zhou,1 Dan Wu,1,3 Bing Bao2 1Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China; 2Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, People’s Republic of China; 3Department of Neurology, The Sixth Hospital of Wuhan, Wuhan, People’s Republic of China Background: It has been found that nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2–ARE signaling pathway plays a role in antioxidative response, anti-inflammatory response, and neuron-protection in intracerebral hemorrhage (ICH. The aim of this study is to explore mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after ICH.Methods: There were a total of 90 rats with basal ganglia hemorrhage, which were randomly divided into the following four groups: ICH (Sprague–Dawley rats with autologous femoral arterial blood injection into the basal ganglia, sulforaphane (SFN (SFN was intraperitoneally administered into rats, retinoic acid (RA (RA was intraperitoneally administered into rats, and dimethyl sulfoxide (the rats were treated with dimethyl sulfoxide. We observed the neurological score of the rats in the different groups, and collected brain tissues for immunofluorescence, Western blot, and reverse transcription polymerase chain reaction to detect expression of Nrf2, heme oxygenase (HO-1, nuclear factor-κB (NF-κB, and tumor necrosis factor-α (TNF-α.Results: The results indicated that neurological dysfunction of rats was significantly improved in the SFN group, and the expressions of Nrf2 and HO-1 in tissues surrounding the hemorrhage were increased. Also, the level of NF-κB and TNF-α were reduced compared to the ICH group. The RA group exhibited more severe neurological dysfunction and lower levels of Nrf2 and HO-1 than the SFN and ICH groups. Compared to the ICH group, the NF

  7. Using biological effects tools to define Good Environmental Status under the Marine Strategy Framework Directive

    NARCIS (Netherlands)

    Lyons, B.P.; Thain, J.E.; Hylland, K.; Davis, I.; Vethaak, A.D.

    2010-01-01

    The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status

  8. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.

    2016-01-01

    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S,

  9. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  10. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    OpenAIRE

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such oppor...

  11. Nutrient cycling and soil biology in row crop systems under intensive tillage

    Science.gov (United States)

    Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface so...

  12. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  13. Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells.

    Science.gov (United States)

    Dubey, Divya; Chopra, Deepti; Singh, Jyoti; Srivastav, Ajeet K; Kumari, Smita; Verma, Ankit; Ray, Ratan Singh

    2017-10-01

    Methyl paraben (MP), is a widely used preservative in pharmaceutical, food and cosmetic products. Its molecular mechanism under ambient ultraviolet radiation is not well understood. We investigated photosensitizing mechanism of MP under ambient UVB (0.6 mW/cm 2 ) intensity. MP showed dose dependent decrease in cell viability of human keratinocyte cell line (HaCaT) by MTT and NRU assays. Study showed 40% reduction in antimicrobial activity of UVB irradiated MP through E. coli culture. Photosensitized MP (25 μg/ml) significantly enhanced lipid peroxidation, intracellular ROS generation and disrupted mitochondrial membrane integrity. MP induced loss of lysosomal membrane integrity and endoplasmic reticulum (ER) mediated stress evident from Ca +2 release. Phototoxicity of MP showed nuclear fragmentation, phosphatidylserine translocation, 30% tail DNA and micronuclei formation. Study showed mitochondria mediated apoptosis via upregulation of Bax, Apaf-1, Cytochrome C and Caspase-3. Upregulation of Caspase-12 (2 folds) specifically showed role of ER in apoptosis. Specific caspase inhibitor, Z-VAD-FMK showed involvement of caspase cascade pathway in apoptosis. Results indicate that photosensitive MP leads to oxidative stress mediated DNA damage and apoptosis through mitochondria and ER. MP causes deleterious effects and its long term exposure to human skin may promote skin diseases. Therefore, MP should be replaced by other photosafe preservatives for humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  15. Crosstalk between adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism under red blood cell microrheological changes.

    Science.gov (United States)

    Muravyov, Alexei V; Tikhomirova, Irina A; Maimistova, Alla A; Bulaeva, Svetlana V; Zamishlayev, Andrey V; Batalova, Ekaterina A

    2010-01-01

    There are evidences that red blood cell (RBC) deformation and aggregation change under their incubation with catecholamines and it is connected with activation of intracellular signaling pathways. The present study was designed to explore the adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism of RBCs together with their microrheological changes. The washed RBCs were resuspended in PBS. In each of the three research sessions RBC suspensions were divided into two aliquots: 1) control (without drug) and 2) with an appropriate drug. After cell incubation RBC deformability (RBCD) and aggregation (RBCA) were estimated. RBC incubation with catecholamines resulted in RBCD changes by 18-30%. RBCs incubation with forskolin facilitated an increase of RBCD by 17% (p RBCA; whereas red cell deformability was changed only slightly. On the other hand, Ca2+ entry blocking into the cells by verapamil has led to significant RBCA decrease and RBCD rise. The obtained results make us believe that RBCD change was closely associated with Ca2+ control mechanisms. An effect of Ca2+ concentration increase on RBC microrheology was removed, if it was preliminary added to incubation medium EGTA as Ca2+ chelator. It was found that all four PDE inhibitors: IBMX, vinpocetine, rolipram, pentoxifylline decreased RBCA significantly and, quite the contrary, they increased red cell deformability. Our data have shown that Ca2+ entry increase was accompanied by red cell aggregation rise, while adenylyl cyclase-cAMP system stimulation led to red cell deformability increase and its aggregation lowered. The crosstalk between two intracellular signaling systems is probably connected with phosphodiesterase activity.

  16. Systems Biology-Based Identification of Crosstalk between E2F Transcription Factors and the Fanconi Anemia Pathway

    Directory of Open Access Journals (Sweden)

    Moe Tategu

    2007-01-01

    Full Text Available Fanconi anemia (FA is an autosomal recessive disorder characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. At least eleven members of the FA gene family have been identified using complementation experiments. Ubiquitin-proteasome has been shown to be a key regulator of FA proteins and their involvement in the repair of DNA damage. Here, we identifi ed a novel functional link between the FA/BRCA pathway and E2F-mediated cell cycle regulome. In silico mining of a transcriptome database and promoter analyses revealed that a significant number of FA gene members were regulated by E2F transcription factors, known to be pivotal regulators of cell cycle progression – as previously described for BRCA1. Our findings suggest that E2Fs partly determine cell fate through the FA/BRCA pathway.

  17. [Biological properties of lateritic red soil and their relationships with soil fertility in Southern China under different land use types].

    Science.gov (United States)

    Zhang, Jing; Gao, Yun-Hua; Zhang, Chi; Zhou, Bo; Li, Jing-Juan; Yang, Xiao-Xue; Xu, Huan; Dai, Jun

    2013-12-01

    Taking the lateritic red soil on a typical slopeland in Southern China as test object, this paper studied the soil microbial properties, enzyme activities, and their relationships with soil fertility under four land use types (newly cultivated dryland, shrub land, Eucalyptus land, and orchard). There existed significant differences in the soil biological properties under different land use types, among which, orchard soil had the highest microbial quantity and enzyme activities, newly cultivated dryland soil had the fastest soil respiration rate, the fewest soil microorganism quantity, and the lowest enzyme activities, whereas shrub land and woodland soils had the biological properties ranged between newly cultivated dryland and orchard soils, and there was a high similarity in the biological properties between shrub land and woodland soils. Under different land use types, the soil microbial quantity and enzyme activities were positively correlated with soil organic carbon and most of the soil nutrients. It was suggested the soils with high soil organic matter content and high fertility level were beneficial to the soil microbial growth and enzyme activities.

  18. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  19. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    Science.gov (United States)

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  20. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  1. Beyond prostaglandins - chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich; Galano, J. M.; Durand, T.

    2008-01-01

    Roč. 47, č. 32 (2008), s. 5894-5955 ISSN 1433-7851 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological activity * fatty acids * isoprostanes * oxidation * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 10.879, year: 2008

  2. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Directory of Open Access Journals (Sweden)

    Daniel Z Grunspan

    Full Text Available Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  3. Quality of life of patients with rheumatoid arthritis under biological therapy

    Directory of Open Access Journals (Sweden)

    Amanda Figueiredo Barbosa Azevedo

    2015-04-01

    Full Text Available Summary Objective: assessing health-related quality of life (HRQL in patients with rheumatoid arthritis (RA, before and after treatment with biological therapy. Methods: a longitudinal study, conducted from November 2010 to September 2011, with implementation of the instruments HAQ II (health assessment questionnaire and SF-36 (medical outcomes short-from health survey. Barlett test, Anova, Friedman and paired t-test were performed for multiple extracts. Results: 30 patients were evaluated, mean age of 47.6 (SD: 12.25 years and prevalence of females (90%. The mean score of HAQ II before treatment was 1.97, with significant reduction of up to 1.23 after six months of biological therapy (p<0.01. Most of the SF-36 domains showed significant improvement after six months of treatment (p<0.01, highlighting the social aspects, pain, physical functioning, emotional issues, vitality and physical aspects. Conclusion: the use of biologic therapy in patients with RA refractory to standard therapies proved to be an important pharmacological strategy for improving HRQL.

  4. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Science.gov (United States)

    Grunspan, Daniel Z; Eddy, Sarah L; Brownell, Sara E; Wiggins, Benjamin L; Crowe, Alison J; Goodreau, Steven M

    2016-01-01

    Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  5. Commonalities in Biological Pathways, Genetics, and Cellular Mechanism between Alzheimer Disease and Other Neurodegenerative Diseases: An In Silico-Updated Overview.

    Science.gov (United States)

    Ahmad, Khurshid; Baig, Mohammad Hassan; Mushtaq, Gohar; Kamal, Mohammad Amjad; Greig, Nigel H; Choi, Inho

    2017-01-01

    Alzheimer's disease (AD) is the most common and well-studied neurodegenerative disease (ND). Biological pathways, pathophysiology and genetics of AD show commonalities with other NDs viz. Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Prion disease and Dentatorubral-pallidoluysian atrophy (DRPLA). Many of the NDs, sharing the common features and molecular mechanisms suggest that pathology may be directly comparable and be implicated in disease prevention and development of highly effective therapies. In this review, a brief description of pathophysiology, clinical symptoms and available treatment of various NDs have been explored with special emphasis on AD. Commonalities in these fatal NDs provide support for therapeutic advancements and enhance the understanding of disease manifestation. The studies concentrating on the commonalities in biological pathways, cellular mechanisms and genetics may provide the scope to researchers to identify few novel common target(s) for disease prevention and development of effective common drugs for multi-neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Increased Thymic Cell Turnover under Boron Stress May Bypass TLR3/4 Pathway in African Ostrich.

    Science.gov (United States)

    Huang, Hai-bo; Xiao, Ke; Lu, Shun; Yang, Ke-li; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Zhong, Juming; Liu, Hua-zhen; Peng, Ke-mei

    2015-01-01

    Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory

  7. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr

    2015-01-16

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.

  8. Regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29

    Directory of Open Access Journals (Sweden)

    Yuan-Hui Wang

    2016-04-01

    Full Text Available Objective: To study the regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29. Methods: Colorectal cancer cell lines HT29 were cultured and divided into blank control group and evodiamine group, and after different treatment, cell viability, proportion of different cell cycle as well as the contents of VEGFA, VEGFB, VEGFC, MMP3, MMP14, Wnt and β-catenin were detected. Results: (1 Cell viability: MTT value of evodiamine group was significantly lower than that of blank control group; (2 Cell cycle: proportion of both S phase and G2/M phase of evodiamine group were lower than those of blank control group, and proportion of G0/ G1 phase was higher than that of blank control group; (3 VEGF and MMP contents: VEGFA, VEGFB, VEGFC, MMP3 and MMP14 contents of evodiamine group were lower than those of blank control group; (4 Wnt/β-catenin signaling pathway: Wnt and β-catenin contents of evodiamine group were lower than those of blank control group. Conclusion: Evodiamine can inhibit the proliferation of colorectal cancer cell lines HT29 and down-regulate the expression of VEGF and MMP, and the effect may be achieved by inhibiting the activation of Wnt/β-catenin signaling pathway.

  9. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    International Nuclear Information System (INIS)

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle

    2015-01-01

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

  10. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets.

    Science.gov (United States)

    Zhang, Ai-hua; Sun, Hui; Han, Ying; Yan, Guang-li; Yuan, Ye; Song, Gao-chen; Yuan, Xiao-xia; Xie, Ning; Wang, Xi-jun

    2013-08-06

    Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC-MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.

  11. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    Science.gov (United States)

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  12. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.

    studied. The exact quantities for ``mainly'' and ``most'' are modeled with two easy-to-interpret parameters that allow the user to control the number of outliers (not dysregulated genes/cases) in the solutions. We developed two slightly varying models that fall into the class of NP-Hard optimization...... problems and designed a set of algorithms to tackle the combinatorial explosion of the search space. During the presentation we will demonstrate how to: Import and process the data, set the parameters for the two models, compute and visualize the key pathways, judge and statistically evaluate the results...

  13. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Science.gov (United States)

    Zheng, Shanqing; Liao, Sentai; Zou, Yuxiao; Qu, Zhi; Liu, Fan

    2014-01-01

    DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  14. Measuring enzyme activities under standardized in vivo-like conditions for Systems Biology

    NARCIS (Netherlands)

    van Eunen, K.; Bouwman, J.; Daran-Lapujade, P.A.L.; Postmus, J.; Canelas, A.; Mensonides, F.I.C.; Orij, R.; Tuzun, I.; van der Brink, J.; Smits, G.J.; van Gulik, W.M.; Brul, S.; Heijnen, J.J.; de Winde, J.H.; Teixeira de Mattos, M.J.; Kettner, C.; Nielsen, J.; Westerhoff, H.V.; Bakker, B.M.

    2010-01-01

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  15. Measuring enzyme activities under standardized in vivo-like conditions for systems biology

    NARCIS (Netherlands)

    van Eunen, Karen; Bouwman, Jildau; Daran-Lapujade, Pascale; Postmus, Jarne; Canelas, Andre B.; Mensonides, Femke I. C.; Orij, Rick; Tuzun, Isil; van den Brink, Joost; Smits, Gertien J.; van Gulik, Walter M.; Brul, Stanley; de Winde, Johannes H.; de Mattos, M. J. Teixeira; Kettner, Carsten; Nielsen, Jens; Westerhoff, Hans V.; Bakker, Barbara M.; Heijnen, J.J.

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  16. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes.

    Science.gov (United States)

    Levy, Dorainne J; Heissel, Jennifer A; Richeson, Jennifer A; Adam, Emma K

    2016-09-01

    We present the race-based disparities in stress and sleep in context model (RDSSC), which argues that racial/ethnic disparities in educational achievement and attainment are partially explained by the effects of race-based stressors, such as stereotype threat and perceived discrimination, on psychological and biological responses to stress, which, in turn, impact cognitive functioning and academic performance. Whereas the roles of psychological coping responses, such as devaluation and disidentification, have been theorized in previous work, the present model integrates the roles of biological stress responses, such as changes in stress hormones and sleep hours and quality, to this rich literature. We situate our model of the impact of race-based stress in the broader contexts of other stressors [e.g., stressors associated with socioeconomic status (SES)], developmental histories of stress, and individual and group differences in access to resources, opportunity and employment structures. Considering both psychological and biological responses to race-based stressors, in social contexts, will yield a more comprehensive understanding of the emergence of academic disparities between Whites and racial/ethnic minorities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. A system biology approach to identify regulatory pathways underlying the neuroendocrine control of female puberty in rats and nonhuman primates.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Sonmez, Kemal; Ojeda, Sergio R

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". Puberty is a major developmental milestone controlled by the interaction of genetic factors and environmental cues of mostly metabolic and circadian nature. An increased pulsatile release of the decapeptide gonadotropin releasing hormone (GnRH) from hypothalamic neurosecretory neurons is required for both the initiation and progression of the pubertal process. This increase is brought about by coordinated changes that occur in neuronal and glial networks associated with GnRH neurons. These changes ultimately result in increased neuronal and glial stimulatory inputs to the GnRH neuronal network and a reduction of transsynaptic inhibitory influences. While some of the major players controlling pubertal GnRH secretion have been identified using gene-centric approaches, much less is known about the system-wide control of the overall process. Because the pubertal activation of GnRH release involves a diversity of cellular phenotypes, and a myriad of intracellular and cell-to-cell signaling molecules, it appears that the overall process is controlled by a highly coordinated and interactive regulatory system involving hundreds, if not thousands, of gene products. In this article we will discuss emerging evidence suggesting that these genes are arranged as functionally connected networks organized, both internally and across sub-networks, in a hierarchical fashion. According to this concept, the core of these networks is composed of transcriptional regulators that, by directing expression of downstream subordinate genes, provide both stability and coordination to the cellular networks involved in initiating the pubertal process. The integrative response of these gene networks to external inputs is postulated to be coordinated by epigenetic mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    NARCIS (Netherlands)

    Scott, Robert A.; Lagou, Vasiliki; Welch, Ryan P.; Wheeler, Eleanor; Montasser, May E.; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J.; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J.; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C. D.; Jukema, J. Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V.; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J.; Evans, David M.; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S.; Hui, Jennie; Bielak, Lawrence F.; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R.; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M.; Fall, Tove; Voight, Benjamin F.; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M.; Morris, Andrew P.; Rayner, Nigel W.; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S.; Willems, Sara M.; Chines, Peter S.; Jackson, Anne U.; Kang, Hyun Min; Stringham, Heather M.; Song, Kijoung; Tanaka, Toshiko; Peden, John F.; Goel, Anuj; Hicks, Andrew A.; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J.; Bruinenberg, Marcel; Pankow, James S.; North, Kari E.; Forouhi, Nita G.; Loos, Ruth J. F.; Edkins, Sarah; Varga, Tibor V.; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J. L.; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B.; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Palmer, Colin N. A.; Doney, Alex S. F.; Willemsen, Gonneke; Smit, Johannes H.; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L.; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L.; Fowkes, Gerard R.; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H.; Basart, Hanneke V.; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E.; Boehm, Bernhard O.; Peters, Annette; Pramstaller, Peter P.; Province, Michael A.; Borecki, Ingrid B.; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M.; Bergman, Richard N.; Collins, Francis S.; Tuomilehto, Jaakko; Watanabe, Richard M.; de Geus, Eco J. C.; Penninx, Brenda W.; Hofman, Albert; Oostra, Ben A.; Psaty, Bruce M.; Vollenweider, Peter; Wilson, James F.; Wright, Alan F.; Hovingh, G. Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K. E.; Kyvik, Kirsten O.; Kaprio, Jaakko; Price, Jackie F.; Dedoussis, George V.; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R.; van Duijn, Cornelia M.; Morris, Andrew D.; Toenjes, Anke; Peyser, Patricia A.; Beilby, John P.; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R.; Schwarz, Peter E. H.; Lakka, Timo A.; Rauramaa, Rainer; Adair, Linda S.; Smith, George Davey; Spector, Tim D.; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Boomsma, Dorret I.; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L.; Sattar, Naveed; Harris, Tamara B.; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L.; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J.; Bouatia-Naji, Nabila; McCarthy, Mark I.; Franks, Paul W.; Meigs, James B.; Teslovich, Tanya M.; Florez, Jose C.; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes

  19. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    NARCIS (Netherlands)

    Scott, Robert A.; Lagou, Vasiliki; Welch, Ryan P.; Wheeler, Eleanor; Montasser, May E.; Luan, Jian'an; Maegi, Reedik; Strawbridge, Rona J.; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J.; Yengo, Loic; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C. D.; Jukema, J. Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V.; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J.; Evans, David M.; St Pourcain, Beate; Wu, Ying; Andrews, Jeanette S.; Hui, Jennie; Bielak, Lawrence F.; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R.; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tonu; Mihailov, Evelin; Fraser, Ross M.; Fall, Tove; Voight, Benjamin F.; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M.; Morris, Andrew P.; Rayner, Nigel W.; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S.; Willems, Sara M.; Chines, Peter S.; Jackson, Anne U.; Kang, Hyun Min; Stringham, Heather M.; Song, Kijoung; Tanaka, Toshiko; Peden, John F.; Goel, Anuj; Hicks, Andrew A.; An, Ping; Mueller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J.; Bruinenberg, Marcel; Pankow, James S.; North, Kari E.; Forouhi, Nita G.; Loos, Ruth J. F.; Edkins, Sarah; Varga, Tibor V.; Hallmans, Goeran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J. L.; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B.; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Palmer, Colin N. A.; Doney, Alex S. F.; Willemsen, Gonneke; Smit, Johannes H.; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L.; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L.; Fowkes, Gerard R.; Kovacs, Peter; Lindstrom, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H.; Basart, Hanneke V.; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E.; Boehm, Bernhard O.; Peters, Annette; Pramstaller, Peter P.; Province, Michael A.; Borecki, Ingrid B.; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M.; Bergman, Richard N.; Collins, Francis S.; Tuomilehto, Jaakko; Watanabe, Richard M.; de Geus, Eco J. C.; Penninx, Brenda W.; Hofman, Albert; Oostra, Ben A.; Psaty, Bruce M.; Vollenweider, Peter; Wilson, James F.; Wright, Alan F.; Hovingh, G. Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K. E.; Kyvik, Kirsten O.; Kaprio, Jaakko; Price, Jackie F.; Dedoussis, George V.; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R.; van Duijn, Cornelia M.; Morris, Andrew D.; Toenjes, Anke; Peyser, Patricia A.; Beilby, John P.; Koerner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R.; Schwarz, Peter E. H.; Lakka, Timo A.; Rauramaa, Rainer; Adair, Linda S.; Smith, George Davey; Spector, Tim D.; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Boomsma, Dorret I.; Stefansson, Kari; van der Harst, Pim; Dupuis, Josee; Pedersen, Nancy L.; Sattar, Naveed; Harris, Tamara B.; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L.; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J.; Bouatia-Naji, Nabila; McCarthy, Mark I.; Franks, Paul W.; Meigs, James B.; Teslovich, Tanya M.; Florez, Jose C.; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Ines

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes

  20. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    DEFF Research Database (Denmark)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes...

  1. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes ( p T2DM related genes using extensive data mapping. In our constructed gene-network, T2DM-related differentially expressed seeder genes (9-genes) are found to interact with functionally related gene signatures (31-genes). The genetic interaction network of both T2DM-associated seeder as well as signature genes generally relates well with the disease condition based on toxicogenomic and data curation. Results: These networks showed significant enrichment of insulin signaling, insulin secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride metabolic pathways. We found some enriched pathways that are common in different conditions. We recognized 11-signaling pathways as a connecting link between gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network, the interacting genes showed significant overlap with 13-FDA approved and few non-approved drugs. This study demonstrates the value of systems genetics for identifying 18 potential genes associated with T2DM that are probable drug targets. Conclusions: This integrative and network based approaches for finding variants in genomic data expect to accelerate identification of new drug target molecules for different diseases and can speed up drug discovery outcomes.

  2. Transcriptional profiling and biological pathway analysis of human equivalence PCB exposure in vitro: indicator of disease and disorder development in humans.

    Science.gov (United States)

    Ghosh, Somiranjan; Mitra, Partha S; Loffredo, Christopher A; Trnovec, Tomas; Murinova, Lubica; Sovcikova, Eva; Ghimbovschi, Svetlana; Zang, Shizhu; Hoffman, Eric P; Dutta, Sisir K

    2015-04-01

    Our earlier gene-expression studies with a Slovak PCBs-exposed population have revealed possible disease and disorder development in accordance with epidemiological studies. The present investigation aimed to develop an in vitro model system that can provide an indication of disrupted biological pathways associated with developing future diseases, well in advance of the clinical manifestations that may take years to appear in the actual human exposure scenario. We used human Primary Blood Mononuclear Cells (PBMC) and exposed them to a mixture of human equivalence levels of PCBs (PCB-118, -138, -153, -170, -180) as found in the PCBs-exposed Slovak population. The microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR Taqman Low Density Array (TLDA) was done to further validate the selected 6 differentially expressed genes of our interest, viz., ARNT, CYP2D6, LEPR, LRP12, RRAD, TP53, with a small population validation sample (n=71). Overall, we revealed a discreet gene expression profile in the experimental model that resembled the diseases and disorders observed in PCBs-exposed population studies. The disease pathways included endocrine system disorders, genetic disorders, metabolic diseases, developmental disorders, and cancers, strongly consistent with the evidence from epidemiological studies. These gene finger prints could lead to the identification of populations and subgroups at high risk for disease, and can pose as early disease biomarkers well ahead of time, before the actual disease becomes visible. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  4. Opto-mechanical coupling in interfaces under static and propagative conditions and its biological implications.

    Science.gov (United States)

    Shrivastava, Shamit; Schneider, Matthias F

    2013-01-01

    Fluorescent dyes are vital for studying static and dynamic patterns and pattern formation in cell biology. Emission properties of the dyes incorporated in a biological interface are known to be sensitive to their local environment. We report that the fluorescence intensity of dye molecules embedded in lipid interfaces is indeed a thermodynamic observable of the system. Opto-mechanical coupling of lipid-dye system was measured as a function of the thermodynamic state of the interface. The corresponding state diagrams quantify the thermodynamic coupling between intensity I and lateral pressure π. We further demonstrate that the coupling is conserved upon varying the temperature T. Notably, the observed opto-mechanical coupling is not limited to equilibrium conditions, but also holds for propagating pressure pulses. The non-equilibrium data show, that fluorescence is especially sensitive to dynamic changes in state such as the LE-LC phase transition. We conclude that variations in the thermodynamic state (here π and T, in general pH, membrane potential V, etc also) of lipid membranes are capable of controlling fluorescence intensity. Therefore, interfacial thermodynamic state diagrams of I should be obtained for a proper interpretation of intensity data.

  5. Opto-mechanical coupling in interfaces under static and propagative conditions and its biological implications.

    Directory of Open Access Journals (Sweden)

    Shamit Shrivastava

    Full Text Available Fluorescent dyes are vital for studying static and dynamic patterns and pattern formation in cell biology. Emission properties of the dyes incorporated in a biological interface are known to be sensitive to their local environment. We report that the fluorescence intensity of dye molecules embedded in lipid interfaces is indeed a thermodynamic observable of the system. Opto-mechanical coupling of lipid-dye system was measured as a function of the thermodynamic state of the interface. The corresponding state diagrams quantify the thermodynamic coupling between intensity I and lateral pressure π. We further demonstrate that the coupling is conserved upon varying the temperature T. Notably, the observed opto-mechanical coupling is not limited to equilibrium conditions, but also holds for propagating pressure pulses. The non-equilibrium data show, that fluorescence is especially sensitive to dynamic changes in state such as the LE-LC phase transition. We conclude that variations in the thermodynamic state (here π and T, in general pH, membrane potential V, etc also of lipid membranes are capable of controlling fluorescence intensity. Therefore, interfacial thermodynamic state diagrams of I should be obtained for a proper interpretation of intensity data.

  6. [Rome: capital of an empire under the banner of political biology (1936-1942)].

    Science.gov (United States)

    Vallejo, Gustavo

    2012-01-01

    This paper analyzes the symbolic conformation of Rome and Romanism as important factors in the affirmation of the power of fascism, especially after the proclamation of the Empire in 1936. Within this framework, it explores the role of science in legitimizing the direct correlation of this symbolic universe with a praxis that exalted racial superiority inherited from Ancient Rome. It investigates the links between the eugenic discourse and the exercise of power behind the "biology policy", including fascist organicism and racism. In fact, Rome was the essence of an empire that was reborn after fifteen centuries and, between its historical legacy and the new scenarios created by fascism for disciplining the population, Romanism had to condense all of the merits of the race, encouraging military conquests and promoting responsibility for maintaining racial purity and avoiding "unwanted miscegenation" with conquered peoples. The idea of Romanism also encouraged a continuation of the persecution of Jews started in Germany. Hence, science ratified a widespread idea of the Romanization as a crusade to impose a force, exaggerated on racial grounds, which integrated confidence in environmental factors with a crude biological determinism.

  7. Physiological and Molecular Changes in Various Biological Organisms Cultured under Simulated Microgravity Conditions

    Science.gov (United States)

    Udave, Ceasar

    2017-01-01

    Microgravity is one of the most import factors in space flight where its impact on living biological organisms is concerned. Many different ailments have been reported in astronauts such as spaceflight related osteopenia, cardiovascular concerns, and loss of eye sight. In order to understand why µg causes these issues we must understand what is happening at the most basic of biological structures, the cell. The work done in this report is a culmination of contributions made to a much larger project. The project seeks to understand how cellular physiology is changing in SMG conditions and use this knowledge to feed into a follow-up study on the genetic changes that are seen in SMG environments. Cells were imaged using confocal microscopy after 20hrs and 48hrs in a 3D clinostat called the Gravite. Lengths, widths, heights, and total cell areas were measured using an image analysis software package ImageJ. There were significant differences in lengths and widths of cell nuclei, and total area of cell coverage. The report then discusses some of the problems with the testing apparatus and how 3D printing technology may be used to create better sample holders for the 3D clinostat.

  8. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  9. Biological parameters of Amblyomma coelebs Neumann, 1906 (Acari: Ixodidae under experimental conditions

    Directory of Open Access Journals (Sweden)

    André de Abreu Rangel Aguirre

    2018-02-01

    Full Text Available Abstract One generation of Amblyomma coelebs life cycle under experimental conditions was evaluated. Ten tick pairs were allowed to feed on rabbits under laboratory conditions (LC, resulting six engorged females with a mean weight of 1,403.9 mg. Two females were maintained in a forest reserve under natural conditions (NC, and four were maintained in incubators (LC. The engorgement period lasted 10.33 days. Pre-oviposition periods were 10.75 (NC and 22 days (LC. The mean egg-mass weight was 514.76 mg, and the blood meal conversion index was 36.67% (LC. Incubation period under NC and LC were 91 and 56.33 days and hatching rates were 50% and 28.33%, respectively. Larval engorgement period ranged from 4 to 10 days, with average weight of 1.1 mg. Engorged larvae were incubated under NC and LC, with a premolt period of 27 to 36 days and molting rate of 7.1% and 28.7%, respectively. Nymphal engorgement period ranged from 5 to 7 days, with a mean weight of 18.8 mg and a recovery rate of 54.54%. In LC, the ecdysis mean period was 24.5 days, and molting rate was 44.44%, resulting in 24 adult A. coelebs. Our results show a life cycle of 187.45 (NC and 149 (LC days.

  10. Involvement of PKA-dependent upregulation of nNOS-CGRP in adrenomedullin-initiated mechanistic pathway underlying CFA-induced response in rats.

    Science.gov (United States)

    Wang, Dongmei; Ruan, Liqin; Hong, Yanguo; Chabot, Jean-Guy; Quirion, Rémi

    2013-01-01

    We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn. An intrathecal administration of AM(22-52), but not the CGRP antagonist BIBN4096BS, abolished the CFA-induced increase of nNOS. Moreover, AM-induced increase of CGRP was inhibited by the nNOS inhibitors L-NAME and 7-nitroindazole in cultured ganglion explants. Addition of AM to ganglion cultures induced an increase in nNOS protein, which was attenuated by the PKA inhibitor H-89. Treatment with AM also concentration-dependently increased cAMP content and pPKA protein level, but not its non-phosphorylated form, in cultured ganglia. In addition, nNOS was shown to be co-localized with the AM receptor components calcitonin receptor-like receptor and receptor activity-modifying protein 2- and 3 in DRG neurons. The present study suggests that the enhanced activity of nitric oxide (NO) mediates the biological action of AM at the spinal level and that AM recruits NO-CGRP via cAMP/PKA signaling in a mechanistic pathway underlying CFA-induced hyperalgesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A global water scarcity assessment under Shared Socio-economic Pathways - Part 2: Water availability and scarcity

    Science.gov (United States)

    Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; Kanae, S.

    2013-07-01

    A global water scarcity assessment for the 21st century was conducted under the latest socio-economic scenario for global change studies, namely Shared Socio-economic Pathways (SSPs). SSPs depict five global situations with substantially different socio-economic conditions. In the accompanying paper, a water use scenario compatible with the SSPs was developed. This scenario considers not only quantitative socio-economic factors such as population and electricity production but also qualitative ones such as the degree of technological change and overall environmental consciousness. In this paper, water availability and water scarcity were assessed using a global hydrological model called H08. H08 simulates both the natural water cycle and major human activities such as water abstraction and reservoir operation. It simulates water availability and use at daily time intervals at a spatial resolution of 0.5° × 0.5°. A series of global hydrological simulations were conducted under the SSPs, taking into account different climate policy options and the results of climate models. Water scarcity was assessed using an index termed the Cumulative Abstraction to Demand ratio, which is expressed as the accumulation of daily water abstraction from a river divided by the daily consumption-based potential water demand. This index can be used to express whether renewable water resources are available from rivers when required. The results suggested that by 2071-2100 the population living under severely water-stressed conditions for SSP1-5 will reach 2588-2793 × 106 (39-42% of total population), 3966-4298 × 106 (46-50%), 5334-5643 × 106 (52-55%), 3427-3786 × 106 (40-45%), 3164-3379 × 106 (46-49%) respectively, if climate policies are not adopted. Even in SSP1 (the scenario with least change in water use and climate) global water scarcity increases considerably, as compared to the present-day. This is mainly due to the growth in population and economic activity in developing

  12. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  13. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    Science.gov (United States)

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. ACTIVITY OF LICHENS UNDER THE INFLUENCE OF SNOW AND ICE (18th Symposium on Polar Biology)

    OpenAIRE

    Ludger, KAPPEN; Burkhard, SCHROETER

    1997-01-01

    A major aim of our investigations is to explain the adaptation of vegetation to the peculiar environmental conditions in polar regions. Our concept describes the main limiting and favorable factors influencing photosynthetic production of cryptogams, mainly lichens. Snow and ice-usually stress factors to the activity of plants-can be effectively used by lichens because of their poikilohydrous nature. Light, the basic driving force for photosynthetic activity, may be deleterious under certain ...

  15. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  16. Biological properties of Majnnthemum bifolium (L. F. W. Schm. polycormones under various ecological conditions

    Directory of Open Access Journals (Sweden)

    Bożena Czarnecka

    2014-01-01

    Full Text Available Majanthemum bifolium (L. F. W. Schm. populations exhibit a two-level organisation. Individuals in the biological sense (polycormones consists of a number of basic units-above-ground shoots joined by durable rhizomes. The role of the individual in the population and plant community depends on its age, size and individual area which is the exponent of the number and biomass of the produced organs. It is considered that there exist both intra- and interpopulation differences in the number of above-ground shoots and length of rhizomes as well as in the structure of the developmental phases and age states of the above- and underground parts of the polycormones. In all populations the greater part of the biomass falls to underground organs. A more favourable ratio of shoot biomass to that of rhizomes is, however, found in the polycormones of Dentario glandulosae-Fagetum and Carici elongatae-Alnetum where the presence of nitrogen in nitrate form was disclosed. With increase of participation of young age classes of shoots more of the total biomass falls to the above-ground parts.

  17. Biology of Anicla infecta (Ochsenheimer, 1816 (Lepidoptera, Noctuidae, Noctuinae, under laboratory conditions

    Directory of Open Access Journals (Sweden)

    J. A. TESTON

    Full Text Available Larvae of Anicla infecta (Ochsenheimer, 1816 (Noctuidae feed upon many grasses and may be harmful to cereals and fodder of economic importance. This study was developed aiming to contribute to knowledge of the biology of this species. The rearing was done in an environmental chamber with the following settings: temperature of 25 ± 1ºC; relative humidity of 70% ± 10%, and photoperiod of L14: D10. The larvae fed on ryegrass, Lolium multiflorum Lam. The results express the mean and standard error for the length of every stage in days. For each stage we observed the following time of development: egg 3.2 ± 0.09; larvae 18.7 ± 0.07; pre-pupae 3.3 ± 0.04; pupae 12.6 ± 0.14; and adult longevity was 12.1 ± 1.03. Also the pre-egg-laying period was 4.4 ± 0.59; the egg-laying period was 8.1 ± 0.84; and the post-egg-laying period was 0.3 ± 0.14. The mean number of egg-laying cycles per female was 6.7 ± 0.73; that of eggs per cycle was 77.5 ± 4.37; and total eggs per female was 521.4 ± 47.36.

  18. Biology and predatory potential of coccinella septempunctata linn. on schizaphis graminum aphid under controlled conditions

    International Nuclear Information System (INIS)

    Rauf, M.; Gillani, W.A.; Haq, E.U.; Khan, J.; Ali, A.

    2013-01-01

    The biology and predatory potential of Coccinella septempunctata (Linn.) were studied on aphid, Schizaphis graminum (Rondani) at three constant temperatures 20+-1 degree C, 25+-1 degree C and 30+-1 degree C in Insectary-Bio Control Laboratories, National Agricultural Research Centre (NARC), Islamabad. The results revealed that incubation period of C. septempunctata was 5.12, 3.62 and 3.20 days with 75.6%, 82.0% and 71.2% hatchability, respectively. The larval durations were 29.5, 15.9 and 8.1 days with predatory potential of 573.7, 575.0 and 667.8 aphids per larvae. The results indicated that with increasing temperature, develop-mental duration decreases significantly. The pupal developmental duration was 14.0, 9.2 and 5.2 days, respectively which are significantly different from each other. The adult male and female longevity were 44.7, 37.7, 30.0 and 60.3, 58.9 and 43.7 days. Fecundity rate of females were 123.5, 251.5 and 293.2 eggs per female, respectively. This indicates that adult male and female developmental duration, female fecundity rate were significantly different from each other at three constant temperatures. Maximum female and male predatory potential was 3262.8 and 2571.7 aphids at 25 +-1 degree C while minimum was 2276.8 and 1890.6 aphids, respectively. (author)

  19. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    International Nuclear Information System (INIS)

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize 125 I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished 125 I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type

  20. The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2013-09-01

    Full Text Available Dynamical downscaling was applied in this study to link the global climate-chemistry model Community Atmosphere Model (CAM-Chem with the regional models Weather Research and Forecasting (WRF Model and Community Multi-scale Air Quality (CMAQ. Two representative concentration pathway (RCP scenarios (RCP 4.5 and RCP 8.5 were used to evaluate the climate impact on ozone concentrations in the 2050s. From the CAM-Chem global simulation results, ozone concentrations in the lower to mid-troposphere (surface to ~300 hPa, from mid- to high latitudes in the Northern Hemisphere, decreases by the end of the 2050s (2057–2059 in RCP 4.5 compared to present (2001–2004, with the largest decrease of 4–10 ppbv occurring in the summer and the fall; and an increase as high as 10 ppbv in RCP 8.5 resulting from the increased methane emissions. From the regional model CMAQ simulation results, under the RCP 4.5 scenario (2057–2059, in the summer when photochemical reactions are the most active, the large ozone precursor emissions reduction leads to the greatest decrease of downscaled surface ozone concentrations compared to present (2001–2004, ranging from 6 to 10 ppbv. However, a few major cities show ozone increases of 3 to 7 ppbv due to weakened NO titration. Under the RCP 8.5 scenario, in winter, downscaled ozone concentrations increase across nearly the entire continental US in winter, ranging from 3 to 10 ppbv due to increased methane emissions. More intense heat waves are projected to occur by the end of the 2050s in RCP 8.5, leading to a 0.3 ppbv to 2.0 ppbv increase (statistically significant except in the Southeast of the mean maximum daily 8 h daily average (MDA8 ozone in nine climate regions in the US. Moreover, the upper 95% limit of MDA8 increase reaches 0.4 ppbv to 1.5 ppbv in RCP 4.5 and 0.6 ppbv to 3.2 ppbv in RCP 8.5. The magnitude differences of increase between RCP 4.5 and 8.5 also reflect that the increase of methane emissions may favor or

  1. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  2. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  3. Integrative analysis of hepatic microRNA and mRNA to identify potential biological pathways associated with monocrotaline-induced liver injury in mice.

    Science.gov (United States)

    Huang, Zhenlin; Chen, Minwei; Zhang, Jiaqi; Sheng, Yuchen; Ji, Lili

    2017-10-15

    Pyrrolizidine alkaloids (PAs) are a type of natural hepatotoxic compounds. Monocrotaline (MCT), belongs to PAs, is a main compound distributed in medicinal herb Crotalaria ferruginea Grah. ex Benth. This study aims to identify the potential biological signaling pathway associated with MCT-induced liver injury by analyzing the integrative altered hepatic microRNA (miRNA) and mRNA expression profile. C57BL/6 mice were orally given with MCT (270, 330mg/kg). Serum alanine/aspartate aminotransferase (ALT/AST) activity, total bilirubin (TBil) amount and liver histological evaluation showed the liver injury induced by MCT. Results of miRNA chip analysis showed that the hepatic expression of 15 miRNAs (whose signal intensity>200) was significantly altered in MCT-treated mice, and among them total 11 miRNAs passed further validation by using Real-time PCR assay. Results of mRNA chip analysis demonstrated that the hepatic expression of 569 genes was up-regulated and of other 417 genes was down-regulated in MCT-treated mice. There are total 426 predicted target genes of those above altered 11 miRNAs, and among them total 10 genes were also altered in mice treated with both MCT (270mg/kg) and MCT (330mg/kg) from the results of mRNA chip. Among these above 10 genes, total 8 genes passed further validation by using Real-time PCR assay. Only 1 biological signaling pathway was annotated by using those above 8 genes, which is phagosome. In conclusion, this study demonstrated the integrative altered expression profile of liver miRNA and mRNA, and identified that innate immunity may be critically involved in MCT-induced liver injury in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways

    Science.gov (United States)

    Ballester, Benoit; Medina-Rivera, Alejandra; Schmidt, Dominic; Gonzàlez-Porta, Mar; Carlucci, Matthew; Chen, Xiaoting; Chessman, Kyle; Faure, Andre J; Funnell, Alister PW; Goncalves, Angela; Kutter, Claudia; Lukk, Margus; Menon, Suraj; McLaren, William M; Stefflova, Klara; Watt, Stephen; Weirauch, Matthew T; Crossley, Merlin; Marioni, John C; Odom, Duncan T; Flicek, Paul; Wilson, Michael D

    2014-01-01

    As exome sequencing gives way to genome sequencing, the need to interpret the function of regulatory DNA becomes increasingly important. To test whether evolutionary conservation of cis-regulatory modules (CRMs) gives insight into human gene regulation, we determined transcription factor (TF) binding locations of four liver-essential TFs in liver tissue from human, macaque, mouse, rat, and dog. Approximately, two thirds of the TF-bound regions fell into CRMs. Less than half of the human CRMs were found as a CRM in the orthologous region of a second species. Shared CRMs were associated with liver pathways and disease loci identified by genome-wide association studies. Recurrent rare human disease causing mutations at the promoters of several blood coagulation and lipid metabolism genes were also identified within CRMs shared in multiple species. This suggests that multi-species analyses of experimentally determined combinatorial TF binding will help identify genomic regions critical for tissue-specific gene control. DOI: http://dx.doi.org/10.7554/eLife.02626.001 PMID:25279814

  5. Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: new evidences and old challenges

    Directory of Open Access Journals (Sweden)

    Paulo Michel Pinheiro Ferreira

    2017-07-01

    Full Text Available ABSTRACT Human epidermal receptors (HER1/2/3/4 belong to the class of receptor-type tyrosine kinases. After binding a ligand, dimerization, it will ocurr activation of intracellular kinases after two-dimensional and cytoplasmic tail reciprocal transphosphorylation. This transphosphorylation recruits signaling pathways such as Ras/Raf/MEK/Erk1-2, PI3-K/AKT and JAK/STAT, which can affect the cell cycle, cytoskeleton reorganization, apoptosis, metastasis, differentiation, angiogenesis and transcription. HER deregulation is found in epithelial, mesenchymal and nervous neoplasms and is associated with poor prognosis and tumor severity. Since HER are promiscuous proteins when subjected to mutations, resultant modifications confer cellular metabolic superiority and activate complex, interconnected and overlapping networks of cytoplasmic signaling. Moreover, overexpression of HER1/2 is involved in tumor resistance to radiation and anti-hormone therapies. Indeed, HER2 expression is up to 100-fold higher in 25-30% of invasive breast cancers. These characteristics support the development of resistance to anti-HER1/2 chemotherapy such as monoclonal antibodies and tyrosine kinase inhibitors. Then, the challenges in research with HER-positive cancers include planning therapeutic strategies against known resistance mechanisms and identifying novel mechanisms as a way to overcome and control cell growth and malignant progression.

  6. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases.

    Science.gov (United States)

    Taché, Yvette; Brunnhuber, Stefan

    2008-12-01

    Selye pioneered the concept of biological stress in 1936, culminating in the identification of the corticotropin-releasing factor (CRF) signaling pathways by Vale's group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2, and urocortin 3, and the cloning of CRF(1) and CRF(2) receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable us to unravel the importance of CRF(1) receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system), and immune responses. The activation of CRF(1) receptors is also one of the key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF(1) receptor antagonists in blunting these stress-related components. The importance of CRF(1) signaling pathway in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain, for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in a subset of patients.

  7. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    Malenchenko, A.F.

    1985-01-01

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N 2 O 4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60 Co. Methemoglobin was determined in the interval of 15-180 min after NaNO 2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  8. Biology of Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 under laboratory conditions.

    Science.gov (United States)

    Cardozo-de-Almeida, Margareth; Neves, Simone Caldas Teves; Almeida, Carlos Eduardo de; Lima, Nathanielly Rocha Casado de; Oliveira, Maria Luiza Ribeiro de; Santos-Mallet, Jacenir Reis dos; Gonçalves, Teresa Cristina Monte

    2014-01-01

    Triatoma carcavalloi is a wild species that is found in sympatry with Triatoma rubrovaria and Triatoma circummaculata, which are vectors of Trypanosoma cruzi currently found in rural areas of Rio Grande do Sul, Brazil. Fertility was assessed and to determine the incubation period, the eggs were observed until hatching. The first meal was offered to 1st stage nymphs. The intermolt period was also determined. The number of blood meals was quantified at each nymphal stage and the resistance to fasting as the period between ecdysis and death. Mortality was assessed and longevity was determined by recording the time that elapsed from molting to the adult stage and until death. The developmental cycle was assessed by recording the length in days of each stage from molting to adult hood. The average incubation period was 22.7 days. The average first meal occurred 3.1 days after hatching. The 5th stage nymph to adult intermolting period was the longest at 193.4 days. The average number of feedings during nymphal development was 13.4. The resistance to fasting assay indicated that the 3rd, 4th and 5th stage nymphs presented higher resistance than did adults. The highest mortality rate was observed in the 3rd stage nymphs (22.2%). The average length of adult survival was 25.6 weeks, and the average total life cycle lasted 503.4 days. This study is the first report on the biology of T. carcavalloi that fed on mice. The presented findings expand the bionomic knowledge of these species.

  9. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    Science.gov (United States)

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    -associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme.

  10. Treatment of the azo dye direct blue 2 in a biological aerated filter under anaerobic/aerobic conditions.

    Science.gov (United States)

    González-Martínez, S; Piña-Mondragón, S; González-Barceló, O

    2010-01-01

    The main objective of this research was to determine the feasibility to treat the azo dye direct blue 2 together with municipal wastewater in a biological aerated filter (BAF) using lava stones as support of the microorganisms and under combined anaerobic/aerobic conditions. A 3 m high pilot biological aerated filter was fed with municipal wastewater and, after several weeks, the azo dye direct blue 2 was added to the wastewater to reach a final concentration of 50 mg/L (34 mgCOD/L). Under continuous operation, two strategies were tested: Alternating aeration (12 h anaerobic and 12 h aerobic) and combined aeration (the lower part of the filter anaerobic and the upper part aerobic). The results indicate that municipal wastewater acted as a good electron donor resulting in satisfactory COD and dye removal rates. Better dye removal (61%) was obtained with combined aeration than with alternating aeration (45%). After beginning the azo dye addition, the COD removal rates decreased from 87 to 81% for both alternating and combined aeration procedures. The average ammonia nitrogen removal, without the addition of the dye, was 73% and increased to 90% shortly after beginning the dye addition, then it decreased to 81% during the combined aeration period. Excellent nitrification was observed in the upper aerobic part of the filter. For the combined aeration phase, the conditions change from anaerobic to aerobic does not seem to affect the behavior of the COD and TSS curves.

  11. Biological control of broad-leaved dock infestation in wheat using plant antagonistic bacteria under field conditions.

    Science.gov (United States)

    Abbas, Tasawar; Zahir, Zahir Ahmad; Naveed, Muhammad; Aslam, Zubair

    2017-06-01

    Conventional weed management systems have produced many harmful effects on weed ecology, human health and environment. Biological control of invasive weeds may be helpful to minimize these harmful effects and economic losses incurred to crops by weeds. In our earlier studies, plant antagonistic bacteria were obtained after screening a large number of rhizobacteria for production of phytotoxic substances and effects on wheat and its associated weeds under laboratory conditions. In this study, five efficient strains inhibitory to broad-leaved dock and non-inhibitory to wheat were selected and applied to broad-leaved dock co-seeded with wheat both in pot trial and chronically infested field trial. Effects of plant antagonistic bacteria on the weed and infested wheat were studied at tillering, booting and harvesting stage of wheat. The applied strains significantly inhibited the germination and growth of the weed to variable extent. Similarly, variable recovery in losses of grain and straw yield of infested wheat from 11.6 to 68 and 13 to 72.6% was obtained in pot trial while from 17.3 to 62.9 and 22.4 to 71.3% was obtained in field trial, respectively. Effects of plant antagonistic bacteria were also evident from the improvement in physiology and nutrient contents of infested wheat. This study suggests the use of these plant antagonistic bacteria to biologically control infestation of broad-leaved dock in wheat under field conditions.

  12. Biological and physical factors controlling aggregate stability under different climatic conditions in Southern Spain.

    Science.gov (United States)

    Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch

    2013-04-01

    Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in

  13. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-09-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  14. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  15. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Directory of Open Access Journals (Sweden)

    Klára Kosová

    2015-09-01

    Full Text Available Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum, durum wheat (Triticum durum, barley (Hordeum vulgare, maize (Zea mays; leguminous plants: alfalfa (Medicago sativa, soybean (Glycine max, common bean (Phaseolus vulgaris, pea (Pisum sativum; oilseed rape (Brassica napus; potato (Solanum tuberosum; tobacco (Nicotiana tabaccum; tomato (Lycopersicon esculentum; and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  16. Are biological effects of space radiation really altered under the microgravity environment?

    Science.gov (United States)

    Yatagai, Fumio; Ishioka, Noriaki

    2014-10-01

    Two major factors of space environment are space radiation and microgravity. It is generally considered that a high level of ionizing radiation (IR) in space has an influence on living organisms including humans; therefore, the possible alteration of space-radiation influences by the microgravity environment is of great concern. In fact, examination of such a possibility has been extensively conducted since the early days of space experiments, suggesting a possible synergistic effect of radiation and microgravity in some experiments but a negative observation in others. Because these complicated results remain not well understood, we propose a solution to this problem. Gene expression analysis is one of the solutions to the problem. In fact, gene expression may be changed by microgravity, and further modification may be possible through IR. This result could reveal an interactive effect of both factors on the cellular responses, which could in turn reveal whether the human-health abnormalities expected under the microgravity environment can be altered by space radiation. We believe that this is a new aspect in the study of the interactive effect of radiation and microgravity. However, further improvements in space experimental technologies are required for future studies.

  17. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations

    Directory of Open Access Journals (Sweden)

    Kleessen Sabrina

    2012-03-01

    Full Text Available Abstract Background Flux balance analysis (FBA together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. Results Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. Conclusions Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.

  18. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions.

    Science.gov (United States)

    Urubschurov, Vladimir; Janczyk, Pawel; Pieper, Robert; Souffrant, Wolfgang B

    2008-12-01

    The study was conducted to determine yeasts present in the gastrointestinal tract (GIT) of piglets kept under experimental farm (EF) and commercial farm (CF) conditions. Ninety five German Landrace full- and half-sibling piglets were sacrificed at 39 days of age. Sixty eight piglets were weaned at 28th day of life, when they were offered one diet ad libitum. Twenty seven piglets remained unweaned by their dams. None of the piglets received any creep feed before weaning. Digesta samples were collected from 1/3 distal small intestine (SI), caecum and proximal colon. One hundred seventy three colonies of isolated yeasts were characterized by sequence analysis of the PCR-amplified D1/D2 domain of the 26S rRNA gene with following alignment of the recovered sequences to GenBank entries. From the 17 phylotypes found, isolates most closely related to Galactomyces geotrichum, Kazachstania slooffiae and Candida catenulata dominated in the GIT of CF piglets. Kazachstania slooffiae and Candida glabrata dominated in GIT of EF piglets. Sørenson and Morisita-Horn similarity indices between farms were low (0.44 and 0.54 respectively) and the Simpson diversity index was higher for EF (7.58) than for CF (4.34). The study brings new data on yeasts composition in the pig GIT and shows differences in yeasts biodiversity between farms operated at different hygiene conditions.

  19. Influence of tillage practices on soil biologically active organic matter content over a growing season under semiarid Mediterranean climate

    Directory of Open Access Journals (Sweden)

    D. Martín-Lammerding

    2013-02-01

    Full Text Available In semiarid areas, traditional, intensive tillage has led to the depletion of soil organic matter, which has resulted in reduced soil fertility. The aim of the present work was to evaluate the effects of different soil management systems, practised over 12 years, on soil organic carbon (SOC, nitrogen (SN and biologically active organic matter (particulate organic matter [POM]; potentially mineralisable nitrogen [PMN]; microbial biomass [MB]. A Mediterranean Alfisol, located in central Spain, was managed using combinations of conventional tillage (CT, minimum tillage (MT or no-tillage (NT, plus a cropping background of either continuous wheat (WW or a fallow/wheat/pea/barley rotation (FW. Soil was sampled at two depths on four occasions during 2006-2007. The results showed the sampling date and the cropping background to significantly affect the SOC (p<0.0057 and p<0.0001 respectively. Tillage practice, however, had no effect on SOC or SN. The C-and N-POM contents were significantly influenced by the date, tillage and rotation. These variables were significantly higher under NT than CT and under WW than FW. The PMN was influenced by date, tillage and rotation, while C-MB was significantly affected by tillage (p< 0.0063, but not by rotation. The NT plots accumulated 66% C-POM, 60% N-POM, 39% PMN and 84% C-MB more than the CT plots. After more than 12 years, the benefits of conservation practices were found in the considered soil properties, mainly under no tillage. In order to obtain a consistent data set to predict soil biological status, it is necessary further study over time.

  20. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Picou, Laura; McMann, Casey; Boldor, Dorin [Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, 149 E B Doran Building, Baton Rouge, LA 70803-4505 (United States); Elzer, Philip H; Enright, Frederick M [Department of Veterinary Sciences, Louisiana State University Agricultural Center, 111 Dalrymple Building, Baton Rouge, LA 70803 (United States); Biris, Alexandru S, E-mail: DBoldor@agcenter.lsu.edu [Nanotechnology Center, University of Arkansas-Little Rock, 2801 South University Avenue, ETAS 151, Little Rock, AR 72204-1099 (United States)

    2010-10-29

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  1. Chemical Composition and Biological Activity of Essential Oils of Origanum vulgare L. subsp. vulgare L. under Different Growth Conditions

    Directory of Open Access Journals (Sweden)

    Enrica De Falco

    2013-12-01

    Full Text Available This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L. under different spatial distribution of the plants (single and binate rows. This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  2. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    International Nuclear Information System (INIS)

    Yahya, Liyana; Chik, Muhammad Nazry; Pang, Mohd Asyraf Mohd Azmir

    2013-01-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive – observed by increases in optical densities, number of cells and weights – in the presence of actual coal-fired flue gas containing on average 4.08 % O 2 , 200.21 mg/m 3 SO 2 , 212.29 mg/m 3 NO x , 4.73 % CO 2 and 50.72 mg/m 3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  3. Biological artificial fluid-induced non-lamellar phases in glyceryl monooleate: the kinetics pathway and its digestive process by bile salts.

    Science.gov (United States)

    Zhou, Yanyan; Wang, Qifang; Wang, Yan; Xu, Hui; Yuan, Bo; Li, Sanming; Liu, Hongzhuo

    2014-02-01

    The cubic (Q(II)) phase is a promising sustained-release system. However, its rigid gel-like propensity is highly viscous, which makes it difficult to handle in pharmaceutical applications. To circumvent this problem, a less viscous lamellar (L(α)) phase that could spontaneously transform to Q(II) phase by the introduction of water or biological artificial fluid can be used. However, the kinetics pathway of phase transition, susceptibility to digestive processes and impact of the transition on drug release are not yet well understood. We investigated various biological artificial fluid-induced L(α) to inverse Q(II) phase transition over time in glyceryl monooleate (GMO) by water penetration scan and light polarizing microscopy. To reveal the structure stability, fluorescence spectroscopy studies were conducted using pyrene as a probe. Furthermore, the release mechanism of pyrene as a lipophilic drug model in the spontaneously formed Q(II) was investigated. Although hexagonal (H(II)) mesophases occurred when phosphate buffered saline (PBS) 7.4, 0.1 M HCl or sodium taurocholate (NaTC) solutions were introduced to GMO at room temperature, they disappear with the exception of 0.1 M HCl at 37 °C. Compared with 25 °C, L(α) to Q(II) phase transition was in a faster rate as almost completely transforms were observed after 2 h post-immersion. The spontaneously formed mesophases were stable over 24 h immersions in PBS or pancreatic lipase solutions as proven by the extremely low fluorescence signal, however they were digestible by bile salts. This result indicated that digestion by bile salts was the major pathway instead of digestion by lipases. Moreover, pyrene fluorescence spectroscopy confirmed that the digestion by bile salts induced the formation of GMO-bile salt mixed micelles whose performance depended on the bile salt concentrations. This dependence influenced the drug release from the spontaneously formed Q(II) phase. All the results concluded that

  4. Transients and cooperative action of β-carotine, vitamine E and vitamine C in biological systems in vitro under irradiation

    International Nuclear Information System (INIS)

    Getof, N.; Platzer, I.; Winkelbauer, C.

    1998-01-01

    Complete text of publication follows. In the scope of clinical studies in the USA it has been established that β-carotine (β car) and vitamine A (vit A; retinol) give rise to lung cancer and cardiovascular diseases on humans. The consumption of vitamine E (vit E) and β-carotine provokes lung cancer and other types of tumors on male smokers. This effect increases even significantly by a simultaneous consumption of alcohol. In contrary to these results there are other scientists, who did not observe any increase of the rate of lung cancer or other tumors by the consumption of β-car or vit E. Based on these contradictory statements experiments following two pathways were performed: Pulse radiolysis studies on radical cations and radical anions of β-car and vit E Investigations on baeteria (E. coli AB 1157) and cell cultures (SCC VII): their survival was studied as a function of the absorbed dose in the abscence and in the presence of the above mentioned vitamines and vitamine C (vit C). From our extensive studies we obtain following conclusions: - Metabolic changes in normal cells could probably be initiated by the radical cation of β-carotine (β-car '+) resulting from the action of β-car as an antioxidant. - Vitamine E can repair β-car '+ by electron transfer, forming the radical cation of vit E (vit E '+), whose biological action is yet unknown. - Vitamine C (ascorbate) is able to repair both, the β-caz'+ and the vit E'+ by electron transfer (cascade electron transfer), resulting in ascorbate radical, which can disproportionate to vit C and dehydroascorbic acid (DHA). The last one can be converted again enzymatically into ascorbic acid

  5. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a

  6. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-03-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  7. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  8. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    Science.gov (United States)

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary

  9. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant.

    Science.gov (United States)

    Takshak, Swabha; Agrawal, S B

    2014-11-01

    The present study aims to investigate the effects of supplemental ultraviolet B (3.6 kJ m(-2)day(-1) above ambient) radiation on secondary metabolites and phenylpropanoid pathway enzymes of Withania somnifera under field conditions at 40, 70, and 100 days after transplantation. Secondary metabolites' (alkaloids, anthocyanins, carotenoids, flavonoids, lignin, phytosterols, saponins, and tannins) concentrations were analysed at the end of the treatments. Activities of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR) were also determined. In treated plants, secondary metabolite-concentrations generally increased (higher concentrations being recorded in roots compared to leaves). Anomalies were recorded for lycopene in roots and phytosterols in leaves (all sampling ages); β-carotene declined in leaves at third sampling age. s-UV-B-treated plants depicted decrease in withanolide A content with concomitant increase in withaferin A (two major alkaloids analysed by HPLC) compared to their respective controls. Phenylpropanoid pathway enzyme-activities increased in leaves and roots under s-UV-B treatment, the latter showing greater increase. The study concludes that s-UV-B is a potent factor in increasing the concentrations of secondary metabolites and their biosynthetic pathway enzymes in W. somnifera. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Health assessment of future PM2.5 exposures from indoor, outdoor, and secondhand tobacco smoke concentrations under alternative policy pathways in Ulaanbaatar, Mongolia.

    Directory of Open Access Journals (Sweden)

    L Drew Hill

    Full Text Available Winter air pollution in Ulaanbaatar, Mongolia is among the worst in the world. The health impacts of policy decisions affecting air pollution exposures in Ulaanbaatar were modeled and evaluated under business as usual and two more-strict alternative emissions pathways through 2024. Previous studies have relied on either outdoor or indoor concentrations to assesses the health risks of air pollution, but the burden is really a function of total exposure. This study combined projections of indoor and outdoor concentrations of PM2.5 with population time-activity estimates to develop trajectories of total age-specific PM2.5 exposure for the Ulaanbaatar population. Indoor PM2.5 contributions from secondhand tobacco smoke (SHS were estimated in order to fill out total exposures, and changes in population and background disease were modeled. The health impacts were derived using integrated exposure-response curves from the Global Burden of Disease Study.Annual average population-weighted PM2.5 exposures at baseline (2014 were estimated at 59 μg/m3. These were dominated by exposures occurring indoors, influenced considerably by infiltrated outdoor pollution. Under current control policies, exposures increased slightly to 60 μg/m3 by 2024; under moderate emissions reductions and under a switch to clean technologies, exposures were reduced from baseline levels by 45% and 80%, respectively. The moderate improvement pathway decreased per capita annual disability-adjusted life year (DALY and death burdens by approximately 40%. A switch to clean fuels decreased per capita annual DALY and death burdens by about 85% by 2024 with the relative SHS contribution increasing substantially.This study demonstrates a way to combine estimated changes in total exposure, background disease and population levels, and exposure-response functions to project the health impacts of alternative policy pathways. The resulting burden analysis highlights the need for aggressive

  11. TNF-α promotes survival and migration of MSCs under oxidative stress via NF-κB pathway to attenuate intimal hyperplasia in vein grafts.

    Science.gov (United States)

    Bai, Xiao; Xi, Jie; Bi, Yanwen; Zhao, Xin; Bing, Weidong; Meng, Xiangbin; Liu, Yimin; Zhu, Zhonglai; Song, Guangmin

    2017-09-01

    The oxidative stress caused by endothelial injury is involved in intimal hyperplasia (IH) in vein grafts. Mesenchymal stem cells (MSCs) can home to injured intima and promote endothelial repair. However, MSC apoptosis is increased accompanied by decreased functional activity under oxidative stress. Thus, we investigate whether tumour necrosis factor-α (TNF-α) can promote the survival and activity of MSCs under oxidative stress to reduce IH more effectively, and establish what role the NF-κB pathway plays in this. In this study, we preconditioned MSCs with TNF-α ( TNF -α-PC MSCs) for 24 hrs and measured the activation of the IKK/NF-κB pathway. EdU and transwell assays were performed to assess proliferation and migration of TNF -α-PC MSCs. Apoptosis and migration of TNF -α- PC MSCs were evaluated in conditions of oxidative stress by analysis of the expression of Bcl-2 and CXCR4 proteins. TNF -α- PC MSCs were transplanted into a vein graft model, so that cell homing could be tracked, and endothelial apoptosis and IH of vein grafts were measured. The results demonstrated that TNF-α promotes proliferation and migration of MSCs. Furthermore, survival and migration of TNF -α- PC MSCs under oxidative stress were both enhanced. A greater number of MSCs migrated to the intima of vein grafts after preconditioning with TNF-α, and the formation of neointima was significantly reduced. These effects could be partially abolished by IKK XII (NF-κB inhibitor). All these results indicate that preconditioning with TNF-α can promote survival and migration of MSCs under oxidative stress via the NF-κB pathway and thus attenuate IH of vein grafts. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  13. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  14. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  15. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  16. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  17. Molecular hypotheses to explain the shared pathways and underlying pathobiological causes in catatonia and in catatonic presentations in neuropsychiatric disorders.

    Science.gov (United States)

    Peter-Ross, E M

    2018-04-01

    The pathobiological causes, the shared cellular and molecular pathways in catatonia and in catatonic presentation in neuropsychiatric disorders are yet to be determined. The hypotheses in this paper have been deduced from the latest scientific research findings and clinical observations of patients with genetic disorders, behavioral phenotypes and other family members suffering mental disorders. The first hypothesis postulates that catatonia and the heterogeneity of catatonic signs and symptoms involve nucleolar dysfunction arising from abnormalities of the brain-specific, non-coding micro-RNA, SNORD115 genes (either duplications or deletions) which result in pathobiological dysfunction of various combinations in the downstream pathways (possibly along with other genes in these shared pathways). SNORD115 controls five genes CRHR1, PBRM1, TAF1, DPM2, and RALGPS1 as well as the alternative splicing of serotonin 2C receptor. SNORD115 abnormalities with varying downstream multigene involvement would account for catatonia across the life span within some subtypes of autism spectrum disorders, schizophrenia, bipolar and major depressive disorder, psychosis, genetic disorders, and in immune disorders such as anti-N-methyl-d-aspartate receptor (NMDAR) antibody encephalitis as well as the susceptibility to the neuroleptic malignant syndrome (NMS) if environmentally triggered. Furthermore, SNORD115 genes may underlie a genetic vulnerability when environmental triggers result in excess serotonin producing the serotonin syndrome, a condition similar to NMS in which catatonia may occur. Dysfunction of SNORD115-PBRM1 connecting with SMARCA2 as well as other proven schizophrenia-associated genes might explain why traditionally catatonia has been classified with schizophrenia. SNORD115-TAF1 and SNORD-DPM2 dysfunction introduce possible clues to the parkinsonism and increased creatinine phosphokinase in NMS, while abnormalities of SNORD115-RALGPS1 suggest links to both anti

  18. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  19. Characterization and expression patterns of key C4photosynthetic pathway genes in bread wheat (Triticum aestivum L.) under field conditions.

    Science.gov (United States)

    Bachir, Daoura Goudia; Saeed, Iqbal; Song, Quanhao; Linn, Tay Zar; Chen, Liang; Hu, Yin-Gang

    2017-06-01

    Wheat is a C 3 plant with relatively low photosynthetic efficiency and is a potential target for C 4 photosynthetic pathway engineering. Here we reported the characterization of four key C 4 pathway genes and assessed their expression patterns and enzymatic activities at three growth stages in flag leaves of 59 bread wheat genotypes. The C 4 -like genes homologous to PEPC, NADP-ME, MDH, and PPDK in maize were identified in the A, B, and D sub-genomes of bread wheat, located on the long arms of chromosomes 3 and 5 (TaPEPC), short arms of chromosomes 1 and 3 (TaNADP-ME), long arms of chromosomes 1 and 7 (TaMDH), and long arms of chromosome 1 (TaPPDK), respectively. All the four C 4 -like genes were expressed in the flag leaves at the three growth stages with considerable variations among the 59 bread wheat genotypes. Significant differences were observed between the photosynthesis rates (A) of wheat genotypes with higher expressions of TaPEPC_5, TaNADP-ME_1, and TaMDH_7 at heading and middle grain-filling stages and those with intermediate and low expressions. Our results also indicated that the four C 4 enzymes showed activity in the flag leaves and were obviously different among the 59 wheat genotypes. The activities of PEPcase and PPDK decreased at anthesis and slightly increased at grain-filling stage, while NADP-ME and MDH exhibited a decreasing trend at the three stages. The results of the current study could be very valuable and useful for wheat researchers in improving photosynthetic capacity of wheat. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. A genome-wide association meta-analysis of diarrhoeal disease in young children identifies FUT2 locus and provides plausible biological pathways.

    Science.gov (United States)

    Bustamante, Mariona; Standl, Marie; Bassat, Quique; Vilor-Tejedor, Natalia; Medina-Gomez, Carolina; Bonilla, Carolina; Ahluwalia, Tarunveer S; Bacelis, Jonas; Bradfield, Jonathan P; Tiesler, Carla M T; Rivadeneira, Fernando; Ring, Susan; Vissing, Nadja H; Fink, Nadia R; Jugessur, Astanand; Mentch, Frank D; Ballester, Ferran; Kriebel, Jennifer; Kiefte-de Jong, Jessica C; Wolsk, Helene M; Llop, Sabrina; Thiering, Elisabeth; Beth, Systke A; Timpson, Nicholas J; Andersen, Josefine; Schulz, Holger; Jaddoe, Vincent W V; Evans, David M; Waage, Johannes; Hakonarson, Hakon; Grant, Struan F A; Jacobsson, Bo; Bønnelykke, Klaus; Bisgaard, Hans; Davey Smith, George; Moll, Henriette A; Heinrich, Joachim; Estivill, Xavier; Sunyer, Jordi

    2016-09-15

    More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N = 5758) followed by replication (N = 3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Microdosimetric study on influence of low energy photons on relative biological effectiveness under therapeutic conditions using 6 MV linac

    International Nuclear Information System (INIS)

    Okamoto, Hiroyuki; Kohno, Toshiyuki; Kanai, Tatsuaki; Kase, Yuki; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Fujita, Yukio; Saitoh, Hidetoshi; Itami, Jun

    2011-01-01

    Purpose: Microdosimetry has been developed for the evaluation of radiation quality, and single-event dose-mean lineal energy y D is well-used to represent the radiation quality. In this study, the changes of the relative biological effectiveness (RBE) values under the therapeutic conditions using a 6 MV linac were investigated with a microdosimetric method. Methods: The y D values under the various irradiation conditions for x-rays from a 6 MV linac were measured with a tissue-equivalent proportional counter (TEPC) at an extremely low dose rate of a few tens of μGy/min by decreasing the gun grid voltage of the linac. According to the microdosimetric kinetic model (MK model), the RBE MK values for cell killing of the human salivary gland (HSG) tumor cells can be derived if the y D values are obtained from TEPC measurements. The Monte Carlo code GEANT4 was also used to calculate the photon energy distributions and to investigate the changes of the y D values under the various conditions. Results: The changes of the y D values were less than approximately 10% when the field size and the depth in a phantom varied. However, in the measurements perpendicular to a central beam axis, large changes were observed between the y D values inside the field and those outside the field. The maximum increase of approximately 50% in the y D value outside the field was obtained compared with those inside the field. The GEANT4 calculations showed that there existed a large relative number of low energy photons outside of the field as compared with inside of the field. The percentages of the photon fluences below 200 keV outside the field were approximately 40% against approximately 8% inside the field. By using the MK model, the field size and the depth dependence of the RBE MK values were less than approximately 2% inside the field. However, the RBE MK values outside the field were 6.6% higher than those inside the field. Conclusions: The increase of the RBE MK values by 6

  2. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  3. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice.

    Science.gov (United States)

    Tkatchenko, Andrei V; Luo, Xiaoyan; Tkatchenko, Tatiana V; Vaz, Candida; Tanavde, Vivek M; Maurer-Stroh, Sebastian; Zauscher, Stefan; Gonzalez, Pedro; Young, Terri L

    2016-01-01

    Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.

  4. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice.

    Directory of Open Access Journals (Sweden)

    Andrei V Tkatchenko

    Full Text Available Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12 of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.

  5. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    Science.gov (United States)

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  6. Blood -brain barrier disruption was less under isoflurane than pentobarbital anesthesia via a PI3K/Akt pathway in early cerebral ischemia.

    Science.gov (United States)

    Chi, Oak Z; Mellender, Scott J; Kiss, Geza K; Liu, Xia; Weiss, Harvey R

    2017-05-01

    One of the important factors altering the degree of blood-brain barrier (BBB) disruption in cerebral ischemia is the anesthetic used. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway has been reported to be involved in modulating BBB permeability and in isoflurane induced neuroprotection. This study was performed to compare the degree of BBB disruption in focal cerebral ischemia under isoflurane vs pentobarbital anesthesia and to determine whether inhibition of PI3K/Akt would affect the disruption in the early stage of focal cerebral ischemia. Permanent middle cerebral artery (MCA) occlusion was performed in rats under 1.4% isoflurane or pentobarbital (50mg/kg i.p.) anesthesia with controlled ventilation. In half of each group LY294002, which is a PI3K/Akt inhibitor, was applied on the ischemic cortex immediately after MCA occlusion. After one hour of MCA occlusion, the transfer coefficient (K i ) of 14 C-α-aminoisobutyric acid ( 14 C-AIB) was determined to quantify the degree of BBB disruption. MCA occlusion increased the K i both in the isoflurane and pentobarbital anesthetized rats. However, the value of K i was lower under isoflurane (11.5±6.0μL/g/min) than under pentobarbital (18.3±7.1μL/g/min) anesthesia. The K i of the contralateral cortex of the pentobarbital group was higher (+74%) than that of the isoflurane group. Application of LY294002 on the ischemic cortex increased the K i (+99%) only in the isoflurane group. The degree of BBB disruption by MCA occlusion was significantly lower under isoflurane than pentobarbital anesthesia in the early stage of cerebral ischemia. Our data demonstrated the importance of choice of anesthetics and suggest that PI3K/Akt signaling pathway plays a significant role in altering BBB disruption in cerebral ischemia during isoflurane but not during pentobarbital anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available Chinese medicine is a complex system guided by traditional Chinese medicine (TCM theories, which has proven to be especially effective in treating chronic and complex diseases. However, the underlying modes of action (MOA are not always systematically investigated. Herein, a systematic study was designed to elucidate the multi-compound, multi-target and multi-pathway MOA of a Chinese medicine, QiShenYiQi (QSYQ, on myocardial infarction. QSYQ is composed of Astragalus membranaceus (Huangqi, Salvia miltiorrhiza (Danshen, Panax notoginseng (Sanqi, and Dalbergia odorifera (Jiangxiang. Male Sprague Dawley rat model of myocardial infarction were administered QSYQ intragastrically for 7 days while the control group was not treated. The differentially expressed genes (DEGs were identified from myocardial infarction rat model treated with QSYQ, followed by constructing a cardiovascular disease (CVD-related multilevel compound-target-pathway network connecting main compounds to those DEGs supported by literature evidences and the pathways that are functionally enriched in ArrayTrack. 55 potential targets of QSYQ were identified, of which 14 were confirmed in CVD-related literatures with experimental supporting evidences. Furthermore, three sesquiterpene components of QSYQ, Trans-nerolidol, (3S,6S,7R-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol and (3S,6R,7R-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol from Dalbergia odorifera T. Chen, were validated experimentally in this study. Their anti-inflammatory effects and potential targets including extracellular signal-regulated kinase-1/2, peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 were identified. Finally, through a three-level compound-target-pathway network with experimental analysis, our study depicts a complex MOA of QSYQ on myocardial infarction.

  8. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  9. Biological process linkage networks.

    Directory of Open Access Journals (Sweden)

    Dikla Dotan-Cohen

    Full Text Available The traditional approach to studying complex biological networks is based on the identification of interactions between internal components of signaling or metabolic pathways. By comparison, little is known about interactions between higher order biological systems, such as biological pathways and processes. We propose a methodology for gleaning patterns of interactions between biological processes by analyzing protein-protein interactions, transcriptional co-expression and genetic interactions. At the heart of the methodology are the concept of Linked Processes and the resultant network of biological processes, the Process Linkage Network (PLN.We construct, catalogue, and analyze different types of PLNs derived from different data sources and different species. When applied to the Gene Ontology, many of the resulting links connect processes that are distant from each other in the hierarchy, even though the connection makes eminent sense biologically. Some others, however, carry an element of surprise and may reflect mechanisms that are unique to the organism under investigation. In this aspect our method complements the link structure between processes inherent in the Gene Ontology, which by its very nature is species-independent. As a practical application of the linkage of processes we demonstrate that it can be effectively used in protein function prediction, having the power to increase both the coverage and the accuracy of predictions, when carefully integrated into prediction methods.Our approach constitutes a promising new direction towards understanding the higher levels of organization of the cell as a system which should help current efforts to re-engineer ontologies and improve our ability to predict which proteins are involved in specific biological processes.

  10. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes under the Representative Concentration Pathways 8.5 climate change scenario in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available The yellow crazy ant (Anoplolepis gracilipes has destroyed local ecosystems in numerous countries, and their population sizes and distribution are likely to increase under global warming. To evaluate the risk of invasion by yellow crazy ant in South Korea, this study identified their potential habitats and predicted their future global distribution by modeling various climate change scenarios using CLIMEX software. Our modeling predicted that future climate conditions in South Korea will be favorable for the yellow crazy ant, and they could invade by the mid-21st century. We highlight the use of predictive algorithms to establish geographical areas with a high risk of yellow crazy ant invasion under Representative Concentration Pathways (RCP 8.5 climate scenarios. Keywords: Anoplolepis gracilipes, climate change scenario, CLIMEX, invasive species, yellow crazy ant

  11. Identification of genes from the ICE-CBF-COR pathway under cold stress inAegilops-Triticumcomposite group and the evolution analysis with those fromTriticeae.

    Science.gov (United States)

    Jin, Ya'nan; Zhai, Shanshan; Wang, Wenjia; Ding, Xihan; Guo, Zhifu; Bai, Liping; Wang, Shu

    2018-03-01

    Adverse environmental conditions limit various aspects of plant growth, productivity, and ecological distribution. To get more insights into the signaling pathways under low temperature, we identified 10 C-repeat binding factors ( CBFs ), 9 inducer of CBF expression ( ICEs ) and 10 cold-responsive ( CORs ) genes from Aegilops - Triticum composite group under cold stress. Conserved amino acids analysis revealed that all CBF, ICE, COR contained specific and typical functional domains. Phylogenetic analysis of CBF proteins from Triticeae showed that these CBF homologs were divided into 11 groups. CBFs from Triticum were found in every group, which shows that these CBFs generated prior to the divergence of the subfamilies of Triticeae . The evolutionary relationship among the ICE and COR proteins in Poaceae were divided into four groups with high multispecies specificity, respectively. Moreover, expression analysis revealed that mRNA accumulation was altered by cold treatment and the genes of three types involved in the ICE-CBF-COR signaling pathway were induced by cold stress. Together, the results make CBF , ICE , COR genes family in Triticeae more abundant, and provide a starting point for future studies on transcriptional regulatory network for improvement of chilling tolerance in crop.

  12. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Science.gov (United States)

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  13. Redox Signaling and CBF-Responsive Pathway are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    2016-10-01

    Full Text Available Salicylic acid (SA plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus. Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-ɑ-aminooxy-β-phenylpropionic acid (AOPP increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon.

  14. Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress.

    Science.gov (United States)

    Jiang, Li-Bo; Cao, Lu; Yin, Xiao-Fan; Yasen, Miersalijiang; Yishake, Mumingjiang; Dong, Jian; Li, Xi-Lei

    2015-01-01

    Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.

  15. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.

    Science.gov (United States)

    Planchet, Elisabeth; Verdu, Isabelle; Delahaie, Julien; Cukier, Caroline; Girard, Clément; Morère-Le Paven, Marie-Christine; Limami, Anis M

    2014-05-01

    Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.

  16. [Impact of biologically important anions on reactive oxygen species formation in water under the effect of non-ionizing physical agents].

    Science.gov (United States)

    Gudkov, S V; Ivanov, V E; Karp, O É; Chernikov, A V; Belosludtsev, K N; Bobylev, A G; Astashev, M E; Gapeev, A B; Bruskov, V I

    2014-01-01

    The influence of biologically relevant anions (succinate, acetate, citrate, chloride, bicarbonate, hydroorthophosphate, dihydroorthophosphate, nitrite, nitrate) on the formation of hydrogen peroxide and hydroxyl radicals in water was studied under the effect of non-ionizing radiation: heat, laser light with a wavelength of 632.8 nm, corresponding to the maximum absorption of molecular oxygen, and electromagnetic radiation of extremely high frequencies. It has been established that various anions may both inhibit the formation of reactive oxygen species and increase it. Bicarbonate and sulfate anions included in the biological fluids' and medicinal mineral waters have significant, but opposite effects on reactive oxygen species production. Different molecular mechanisms of reactive oxygen species formation are considered under the action of the investigated physical factors involving these anions, which may influence the biological processes by signal-regulatory manner and provide a healing effect in physical therapy.

  17. Network biology concepts in complex disease comorbidities

    DEFF Research Database (Denmark)

    Hu, Jessica Xin; Thomas, Cecilia Engel; Brunak, Søren

    2016-01-01

    The co-occurrence of diseases can inform the underlying network biology of shared and multifunctional genes and pathways. In addition, comorbidities help to elucidate the effects of external exposures, such as diet, lifestyle and patient care. With worldwide health transaction data now often being...

  18. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis

    Directory of Open Access Journals (Sweden)

    Hafidh Said

    2012-02-01

    Full Text Available Abstract Background Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. Results Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9% gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4% probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1, a WD-40 containing protein (BP130384, and Replication factor C1 (NtRFC1 are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. Conclusions The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of

  19. Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis

    Science.gov (United States)

    2012-01-01

    Background Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. Results Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. Conclusions The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen

  20. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  1. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    Science.gov (United States)

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  2. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways

    Directory of Open Access Journals (Sweden)

    Xiang Gu

    2017-11-01

    Full Text Available Given that the pathogenesis of ankylosing spondylitis (AS remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs, which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  3. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2017-07-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination ( R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had

  4. A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain

    Science.gov (United States)

    Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B.; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress. PMID:24595051

  5. Biomolecular Cell-Signaling Mechanisms and Dental Implants: A Review on the Regulatory Molecular Biologic Patterns Under Functional and Immediate Loading.

    Science.gov (United States)

    Romanos, Georgios E

    2016-01-01

    Bone tissue adapts its structure and mass to the stresses of mechanical loading. The purpose of this review article was to summarize recent advances on cell signaling relating to the phenomenon of bone remodeling, focused on bone ossification and healing at the interface of dental implants and bone under loading conditions. When a dental implant is placed within an osteotomy, osteocytes, osteoblasts, and osteoclasts are all present. As functional loads are imposed, the remodeling processes adapt the peri-implant bony tissues to mechanical stimuli over time and reestablish a steady state. Based on the current literature, this article demonstrates fundamental information to these remodeling processes, such as the conversion of mechanical cues to electrical or biochemical signals. Multiple intracellular signals are involved in cellular mechanotransduction; the two Wnt signaling pathways (the canonical, β-catenin-dependent and the noncanonical, β-catenin-independent Wnt pathway) are particularly significant. Knowledge of how these molecular signaling pathways are translated into intracellular signals that regulate cell behavior may provide new therapeutic approaches to enhancing osteogenesis, especially around implants with immediate function or placed in areas of poor bone quality. New knowledge about the primary cilia as an organelle and bone cellular mechanosensor is critical for endochondral ossification and proper signal transduction. Other mechanisms, such as the expression of sclerostin as a negative regulator of bone formation (due to deactivation of the Wnt receptor) and downregulation of sclerostin under loading conditions, also present new understanding of the cellular and pericellular mechanics of bone. The complexity of the cell signaling pathways and the mechanisms involved in the mechanoregulation of the bone formation provide new technologies and perspectives for mechanically induced cellular response. Future novel therapeutic approaches based on the

  6. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro.

    Directory of Open Access Journals (Sweden)

    Sara P Y Che

    Full Text Available Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF. High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI, the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 - 1.3 dyn/cm2. We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell, but not low TF-expressing MCF-7 (with a TF density of 1,400/cell, adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa, but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.

  7. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  8. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Liu, Li; Dinu, Valentin

    2018-01-01

    Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes

  9. A liquid chromatography-mass spectrometry method based on class characteristic fragmentation pathways to detect the class of indole-derivative synthetic cannabinoids in biological samples.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Botrè, Francesco

    2014-07-21

    This article describes a liquid chromatographic/tandem mass spectrometric method, based on the use of precursor ion scan as the acquisition mode, specifically developed to detect indole-derived cannabinoids (phenylacetylindoles, naphthoylindoles and benzoylindoles) in biological fluids (saliva, urine and blood). The method is designed to recognize one or more common "structural markers", corresponding to mass spectral fragments originating from the specific portion of the molecular structure that is common to the aminoalkylindole analogues and that is fundamental for their pharmacological classification. As such, the method is also suitable for detecting unknown substances, provided they contain the targeted portion of the molecular structure. The pre-treatment procedure consists in a liquid/liquid extraction step carried out at neutral pH: this is the only pretreatment in the case of analyses carried out in saliva, while it follows an enzymatic hydrolysis procedure in the case of urine samples, or a protein precipitation step in the case of blood samples. The chromatographic separation is achieved using an octadecyl reverse-phase 5 μm fused-core particle column; while the mass spectrometric detection is carried out by a triple-quadrupole instrument in positive electrospray ionization and precursor ion scan as acquisition mode, selecting, as mass spectral fragments, the indole (m/z 144), the carbonylnaphthalenyl (m/z 155) and the naphthalenyl (m/z 127) moieties. Once developed and optimized, the analytical procedure was validated in term of sensitivity (lower limits of detection in the range of 0.1-0.5 ng mL(-1)), specificity (no interference was detected at the retention times of the analytes under investigation), recovery (higher than 65% with a satisfactory repeatability: CV% lower than 10), matrix effect (lower than 30% for all the biological specimens tested), repeatability of the retention times (CV% lower than 0.1), robustness, and carry over (the positive

  10. Data mining and biological sample exportation from South Africa: A new wave of bioexploitation under the guise of clinical care?

    Science.gov (United States)

    Staunton, Ciara; Moodley, Keymanthri

    2016-01-07

    Discovery Health, one of the leading healthcare funders in South Africa (SA), will offer genetic testing to its members for USD250 (approximately ZAR3 400) per test from 2016. On the surface, this appears to be innovative and futuristic. However, a deeper look at this announcement reveals considerable problems in the exportation of biological samples and data out of SA, and brings into sharp focus the lack of protection in place for potential donors. In return for a reduced-cost genetic test, which will nevertheless be billed to a member's savings plan, data from the patient's results, and probably the sample itself, will be sent to the USA for storage, research purposes and possible commercial use, with no further benefit for the patient. This development has demonstrated the need for more stringent protection of the movement of biological samples and data out of SA, particularly with reference to consenting procedures, material transfer agreements, and the export of biological data themselves.

  11. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  12. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday.

    Science.gov (United States)

    Hall, Damien; Takagi, Junichi; Nakamura, Haruki

    2018-03-02

    This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.

  13. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flicldnger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gailagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Laengstroem, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nwulia, Evaristus A.; Nyholt, Dale R.; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; Cair, David St.; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutdiffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; Van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Kendler, Kenneth S.; Weiss, Lauren A.; Wray, Naomi R.; Zhao, Zhaoming; Geschwind, Daniel H.; Sullivan, Patrick F.; Smoller, Jordan W.; Holmans, Peter A.; Breen, Gerome

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  14. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breuer, René; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Mattheisen, Manuel; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; de Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisén, Louise; Gallagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; de Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andrés; Ising, Marcus; Jamain, Stéphane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kähler, Anna K.; Kahn, René S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landén, Mikael; Längström, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-de-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Mühleisen, Thomas W.; Muir, Walter J.; Müller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Nöthen, Markus M.; Nwulia, Evaristus A.; Nyholt, Dale R.; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnström, Karola; Reif, Andreas; Ribasés, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutcliffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, J. C. G.; van Grootheest, Gerard; van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zöllner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Kendler, Kenneth S.; Weiss, Lauren A.; Wray, Naomi R.; Zhao, Zhaoming; Geschwind, Daniel H.; Sullivan, Patrick F.; Smoller, Jordan W.; Holmans, Peter A.; Breen, Gerome

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  15. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    DEFF Research Database (Denmark)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ...

  16. Pathways of topological rank analysis (PoTRA: a novel method to detect pathways involved in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chaoxing Li

    2018-04-01

    Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several

  17. The Impact of climate change on heat-related mortality in six major cities, South Korea, under representative concentration pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Youngmin eKim

    2014-02-01

    Full Text Available Background: We aimed to quantify the excess mortality associated with increased temperature due to climate change in six major Korean cities under Representative Concentration Pathways (RCPs which are new emission scenarios designed for the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC. Methods: We first examined the association between daily mean temperature and mortality in each during the summertime (June to September from 2001 to 2008. This was done using a generalized linear Poisson model with adjustment for a long-term time trend, relative humidity, air pollutants, and day of the week. We then computed heat-related mortality attributable to future climate change using estimated mortality risks, projected future populations, and temperature increments for both future years 2041-2070 and 2071-2100 under RCP 4.5 and 8.5. We considered effects from added days with high temperatures over thresholds and shifted effects from high to higher temperature.Results: Estimated excess all-cause mortalities for six cities in Korea ranged from 500 (95% CI: 313-703 for 2041-2070 to 2,320 (95% CI: 1,430-3,281 deaths per year for 2071-2100 under two RCPs. Excess cardiovascular mortality was estimated to range from 192 (95% CI: 41-351 to 896 (95% CI: 185-1,694 deaths per year, covering about 38.5% of all-cause excess mortality. Increased rates of heat-related mortality were higher in cities located at relatively lower latitude than cities with higher latitude. Estimated excess mortality under RCP 8.5, a fossil fuel-intensive emission scenario, was more than twice as high compared with RCP 4.5, low to medium emission scenario.Conclusions: Excess mortality due to climate change is expected to be profound in the future showing spatial variation. Efforts to mitigate climate change can cause substantial health benefits via reducing heat-related mortality.

  18. Identification of putative RuBisCo activase (TaRca1 ˗ the catalytic chaperone regulating carbon assimilatory pathway in wheat (Triticum aestivum under the heat stress

    Directory of Open Access Journals (Sweden)

    RANJEET RANJAN KUMAR

    2016-07-01

    Full Text Available RuBisCo activase (Rca is a catalytic chaperone involved in modulating the activity of RuBisCo (key enzyme of photosynthetic pathway. Here, we identified eight novel transcripts from wheat through data mining predicted to be Rca and cloned a transcript of 1.4 kb from cv. HD2985, named as TaRca1 (GenBank acc. no. KC776912. Single copy number of TaRca1 was observed in wheat genome. Expression analysis in diverse wheat genotypes (HD2985, Halna, PBW621 and HD2329 showed very high relative expression of TaRca1 in Halna under control and HS-treated, as compared to other cultivars at different stages of growth. TaRca1 protein was predicted to be chloroplast-localized with numerous potential phosphorylation sites. Nothern blot analysis showed maximum accumulation of TaRca1 transcript in thermotolerant cv. during mealy-ripe stage, as compared to thermosusceptible. Decrease in the photosynthetic parameters was observed in all the cultivars, except PBW621 in response to HS. We observed significant increase in the Rca activity in all the cultivars under HS at different stages of growth. HS causes decrease in the RuBisCo activity; maximum reduction was observed during pollination stage in thermosusceptible cvs. as validated through immunoblotting. We observed uniform carbon distribution in different tissues of thermotolerant cvs., as compared to thermosusceptible. Similarly, tolerance level of leaf was observed maximum in Halna having high Rca activity under HS. A positive correlation was observed between the transcript and activity of TaRca1 in HS-treated Halna. Similarly, TaRca1 enzyme showed positive correlation with the activity of RuBisCo. There is, however, need to manipulate the thermal stability of TaRca1 enzyme through protein engineering for sustaining the photosynthetic rate under HS – a novel approach towards development of ‘climate-smart’ crop.

  19. Biological Phosphorus Release and Uptake Under Alternating Anaerobic and Anoxic Conditions In a Fixed-Film Reactor

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens; Strube, Rune

    1994-01-01

    Biological phosphorus removal was investigated in a fixed-film reactor with alternating anaerobic and anoxic conditions. The tests showed that biological phosphorus removal can be obtained in a fixed-film reactor with nitrate as oxidising agent. In the anaerobic period, 0.52 mg of PO4-P...... was released per mg of acetate taken up on an average. In the anoxic period, 2.0 mg of PO4-P was taken up per mg of NO3-N reduced on an average. The relationship between potassium released and phosphate released in the anaerobic phase was determined to be 0.37 mg K/mg P, while the relationship between...

  20. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions.

    Science.gov (United States)

    Lipinski, Marta M; Hoffman, Greg; Ng, Aylwin; Zhou, Wen; Py, Bénédicte F; Hsu, Emily; Liu, Xuxin; Eisenberg, Jason; Liu, Jun; Blenis, John; Xavier, Ramnik J; Yuan, Junying

    2010-06-15

    Autophagy is a cellular catabolic mechanism that plays an essential function in protecting multicellular eukaryotes from neurodegeneration, cancer, and other diseases. However, we still know very little about mechanisms regulating autophagy under normal homeostatic conditions when nutrients are not limiting. In a genome-wide human siRNA screen, we demonstrate that under normal nutrient conditions upregulation of autophagy requires the type III PI3 kinase, but not inhibition of mTORC1, the essential negative regulator of starvation-induced autophagy. We show that a group of growth factors and cytokines inhibit the type III PI3 kinase through multiple pathways, including the MAPK-ERK1/2, Stat3, Akt/Foxo3, and CXCR4/GPCR, which are all known to positively regulate cell growth and proliferation. Our study suggests that the type III PI3 kinase integrates diverse signals to regulate cellular levels of autophagy, and that autophagy and cell proliferation may represent two alternative cell fates that are regulated in a mutually exclusive manner. Copyright 2010 Elsevier Inc. All rights reserved.

  1. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway[OPEN

    Science.gov (United States)

    Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook

    2017-01-01

    Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871

  2. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway.

    Science.gov (United States)

    Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook; Pai, Hyun-Sook

    2017-11-01

    Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes ( MRF1 - MRF4 ) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. © 2017 American Society of Plant Biologists. All rights reserved.

  3. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  4. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    OpenAIRE

    Ramu SENTHIL; Kuppusamy PRABAKAR; Lingan RAJENDRAN; Gandhi KARTHIKEYAN

    2011-01-01

    Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoder...

  5. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    Science.gov (United States)

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries. Copyright © 2015. Published by Elsevier Inc.

  6. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Yu, Jack X; Sieuwerts, Anieta M; Zhang, Yi; Martens, John WM; Smid, Marcel; Klijn, Jan GM; Wang, Yixin; Foekens, John A

    2007-01-01

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  7. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    Directory of Open Access Journals (Sweden)

    Ramu SENTHIL

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoderma viride strain (Tv Tvm was the most effective, inhibiting mycelial growth by 88.8 per cent. The biological control agents were tested in pre, post and combined inoculation studies against postharvest pathogens of grapes.  In the pre inoculation, B. subtilis (EPC-8 reduced the disease incidence of A. carbonarius causing rot, T. harzianum (Th Co was effective against P. expansum, and T. viride (Tv Tvm was effective against F. moniliforme. The same trend of effectiveness was also found in the post-inoculation and combined inoculation tests.

  8. A strategy for evaluating pathway analysis methods.

    Science.gov (United States)

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  9. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  10. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  12. Complex Systems Biology Approach To Understanding Coordination of JAK-STAT Signaling

    OpenAIRE

    Soebiyanto, Radina P.; Sreenath, Sree N.; Qu, Cheng-Kui; Loparo, Kenneth A.; Bunting, Kevin D.

    2007-01-01

    In this work, we search for coordination as an organizing principle in a complex signaling system using a multilevel hierarchical paradigm. The objective is to explain the underlying mechanism of Interferon (IFNγ) induced JAK-STAT (specifically JAK1/JAK2-STAT1) pathway behavior. Starting with a mathematical model of the pathway from the literature, we modularize the system using biological knowledge via principles of biochemical cohesion, biological significance, and functionality. The modula...

  13. Biological transformation of anthracene in soil by Pleurotus ostreatus under solid-state fermentation conditions using wheat bran and compost

    International Nuclear Information System (INIS)

    Vargas, M C; Rodriguez, R; Sanchez, F; Ramirez, N

    2001-01-01

    Pleurotus ostreatus was grown in a soil mixture contaminated with anthracene, wheat bran and compost, in varying combinations. Assays with added bacteria and reinoculation of the fungus were also included. The results indicated that in many of the combinations, most of the anthracene was removed at the earliest sample time, 15 days. The most effective combination was spiked (anthracene-added) soil, fungus and compost and the addition of acclimated bacteria to this mixture inhibited anthracene removal. Analyses of extract by high-pressure liquid chromatography HPLC indicated that - anthraquinone, was the major metabolite formed. The results of this study indicate that solid-state fermentation of anthracene-contaminated soils using P. ostreatus in combination with wheat bran and compost additives can produce an accelerated rate of biological removal of anthracene from the soil

  14. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  15. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  16. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    Science.gov (United States)

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four