WorldWideScience

Sample records for biological pathways underlying

  1. Survival pathways under stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Survival pathways under stress. Bacteria survive by changing gene expression. pattern. Three important pathways will be discussed: Stringent response. Quorum sensing. Proteins performing function to control oxidative damage.

  2. Pathway Distiller - multisource biological pathway consolidation.

    Science.gov (United States)

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow

  3. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Science.gov (United States)

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  4. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    and that these variants are enriched for genes that are connected in biological pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes on the basis of SNP......-data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that evaluate the collective...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  5. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    Science.gov (United States)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  6. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  7. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  8. A systems biology approach for pathway level analysis

    OpenAIRE

    Draghici, Sorin; Khatri, Purvesh; Tarca, Adi Laurentiu; Amin, Kashyap; Done, Arina; Voichita, Calin; Georgescu, Constantin; Romero, Roberto

    2007-01-01

    A common challenge in the analysis of genomics data is trying to understand the underlying phenomenon in the context of all complex interactions taking place on various signaling pathways. A statistical approach using various models is universally used to identify the most relevant pathways in a given experiment. Here, we show that the existing pathway analysis methods fail to take into consideration important biological aspects and may provide incorrect results in certain situations. By usin...

  9. Modeling biological pathway dynamics with timed automata.

    Science.gov (United States)

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.

  10. Genes and (Common) Pathways Underlying Drug Addiction

    Science.gov (United States)

    Li, Chuan-Yun; Mao, Xizeng; Wei, Liping

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn), the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction. PMID:18179280

  11. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  12. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  13. Interleukins and their signaling pathways in the Reactome biological pathway database.

    Science.gov (United States)

    Jupe, Steve; Ray, Keith; Roca, Corina Duenas; Varusai, Thawfeek; Shamovsky, Veronica; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    There is a wealth of biological pathway information available in the scientific literature, but it is spread across many thousands of publications. Alongside publications that contain definitive experimental discoveries are many others that have been dismissed as spurious, found to be irreproducible, or are contradicted by later results and consequently now considered controversial. Many descriptions and images of pathways are incomplete stylized representations that assume the reader is an expert and familiar with the established details of the process, which are consequently not fully explained. Pathway representations in publications frequently do not represent a complete, detailed, and unambiguous description of the molecules involved; their precise posttranslational state; or a full account of the molecular events they undergo while participating in a process. Although this might be sufficient to be interpreted by an expert reader, the lack of detail makes such pathways less useful and difficult to understand for anyone unfamiliar with the area and of limited use as the basis for computational models. Reactome was established as a freely accessible knowledge base of human biological pathways. It is manually populated with interconnected molecular events that fully detail the molecular participants linked to published experimental data and background material by using a formal and open data structure that facilitates computational reuse. These data are accessible on a Web site in the form of pathway diagrams that have descriptive summaries and annotations and as downloadable data sets in several formats that can be reused with other computational tools. The entire database and all supporting software can be downloaded and reused under a Creative Commons license. Pathways are authored by expert biologists who work with Reactome curators and editorial staff to represent the consensus in the field. Pathways are represented as interactive diagrams that include as

  14. Building executable biological pathway models automatically from BioPAX

    NARCIS (Netherlands)

    Willemsen, Timo; Feenstra, Anton; Groth, Paul

    2013-01-01

    The amount of biological data exposed in semantic formats is steadily increasing. In particular, pathway information (a model of how molecules interact within a cell) from databases such as KEGG and WikiPathways are available in a standard RDF-based format BioPAX. However, these models are

  15. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  16. Impact of constitutional copy number variants on biological pathway evolution.

    Science.gov (United States)

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  17. cPath: open source software for collecting, storing, and querying biological pathways

    Directory of Open Access Journals (Sweden)

    Gross Benjamin E

    2006-11-01

    Full Text Available Abstract Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  18. The Biological Connection Markup Language: a SBGN-compliant format for visualization, filtering and analysis of biological pathways.

    Science.gov (United States)

    Beltrame, Luca; Calura, Enrica; Popovici, Razvan R; Rizzetto, Lisa; Guedez, Damariz Rivero; Donato, Michele; Romualdi, Chiara; Draghici, Sorin; Cavalieri, Duccio

    2011-08-01

    Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions. The Biological Connection Markup Language (BCML) is a format to describe, annotate and visualize pathways. BCML is able to store multiple information, permitting a selective view of the pathway as it exists and/or behave in specific organisms, tissues and cells. Furthermore, BCML can be automatically converted into data formats suitable for analysis and into a fully SBGN-compliant graphical representation, making it an important tool that can be used by both computational biologists and 'wet lab' scientists. The XML schema and the BCML software suite are freely available under the LGPL for download at http://bcml.dc-atlas.net. They are implemented in Java and supported on MS Windows, Linux and OS X.

  19. [Advance in flavonoids biosynthetic pathway and synthetic biology].

    Science.gov (United States)

    Zou, Li-Qiu; Wang, Cai-Xia; Kuang, Xue-Jun; Li, Ying; Sun, Chao

    2016-11-01

    Flavonoids are the valuable components in medicinal plants, which possess a variety of pharmacological activities, including anti-tumor, antioxidant and anti-inflammatory activities. There is an unambiguous understanding about flavonoids biosynthetic pathway, that is,2S-flavanones including naringenin and pinocembrin are the skeleton of other flavonoids and they can transform to other flavonoids through branched metabolic pathway. Elucidation of the flavonoids biosynthetic pathway lays a solid foundation for their synthetic biology. A few flavonoids have been produced in Escherichia coli or yeast with synthetic biological technologies, such as naringenin, pinocembrin and fisetin. Synthetic biology will provide a new way to get valuable flavonoids and promote the research and development of flavonoid drugs and health products, making flavonoids play more important roles in human diet and health. Copyright© by the Chinese Pharmaceutical Association.

  20. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  1. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  2. Precise generation of systems biology models from KEGG pathways.

    Science.gov (United States)

    Wrzodek, Clemens; Büchel, Finja; Ruff, Manuel; Dräger, Andreas; Zell, Andreas

    2013-02-21

    The KEGG PATHWAY database provides a plethora of pathways for a diversity of organisms. All pathway components are directly linked to other KEGG databases, such as KEGG COMPOUND or KEGG REACTION. Therefore, the pathways can be extended with an enormous amount of information and provide a foundation for initial structural modeling approaches. As a drawback, KGML-formatted KEGG pathways are primarily designed for visualization purposes and often omit important details for the sake of a clear arrangement of its entries. Thus, a direct conversion into systems biology models would produce incomplete and erroneous models. Here, we present a precise method for processing and converting KEGG pathways into initial metabolic and signaling models encoded in the standardized community pathway formats SBML (Levels 2 and 3) and BioPAX (Levels 2 and 3). This method involves correcting invalid or incomplete KGML content, creating complete and valid stoichiometric reactions, translating relations to signaling models and augmenting the pathway content with various information, such as cross-references to Entrez Gene, OMIM, UniProt ChEBI, and many more.Finally, we compare several existing conversion tools for KEGG pathways and show that the conversion from KEGG to BioPAX does not involve a loss of information, whilst lossless translations to SBML can only be performed using SBML Level 3, including its recently proposed qualitative models and groups extension packages. Building correct BioPAX and SBML signaling models from the KEGG database is a unique characteristic of the proposed method. Further, there is no other approach that is able to appropriately construct metabolic models from KEGG pathways, including correct reactions with stoichiometry. The resulting initial models, which contain valid and comprehensive SBML or BioPAX code and a multitude of cross-references, lay the foundation to facilitate further modeling steps.

  3. Efficient algorithms for extracting biological key pathways with global constraints

    DEFF Research Database (Denmark)

    Baumbach, Jan; Friedrich, T.; Kötzing, T.

    2012-01-01

    The integrated analysis of data of different types and with various interdependencies is one of the major challenges in computational biology. Recently, we developed KeyPathwayMiner, a method that combines biological networks modeled as graphs with disease-specific genetic expression data gained....... Here we present an alternative approach that avoids a certain bias towards hub nodes: We now aim for extracting all maximal connected sub-networks where all but at most K nodes are expressed in all cases but in total (!) at most L, i.e. accumulated over all cases and all nodes in a solution. We call...... this strategy GLONE (global node exceptions); the previous problem we call INES (individual node exceptions). Since finding GLONE-components is computationally hard, we developed an Ant Colony Optimization algorithm and implemented it with the KeyPathwayMiner Cytoscape framework as an alternative to the INES...

  4. Crossing frontiers in tackling pathways of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Bacher, S.; Blackburn, T. M.; Booy, O.; Brundu, G.; Brunel, S.; Cardoso, A.-C.; Eschen, R.; Gallardo, B.; Galil, B.; García-Berthou, E.; Genovesi, P.; Groom, Q.; Harrower, C.; Hulme, P. E.; Katsanevakis, S.; Kenis, M.; Kühn, I.; Kumschick, S.; Martinou, A. F.; Nentwig, W.; O´Flynn, C.; Pagad, S.; Pergl, Jan; Pyšek, Petr; Rabitsch, W.; Richardson, D. M.; Roques, A.; Roy, H. E.; Sclarea, R.; Schindler, S.; Seebens, H.; Vanderhoeven, S.; Vila, M.; Wilson, J. R. U.; Zenetos, A.; Jeschke, J.M.

    2015-01-01

    Roč. 65, č. 8 (2015), s. 769-782 ISSN 0006-3568 R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * pathways * management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.294, year: 2015

  5. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  6. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  7. Stress and DNA repair biology of the Fanconi anemia pathway

    Science.gov (United States)

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  8. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    Science.gov (United States)

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  9. An overview of bioinformatics methods for modeling biological pathways in yeast.

    Science.gov (United States)

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin

    2016-03-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    Science.gov (United States)

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  11. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  12. Ecological and biological systems under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, V S; Nenishkiene, V B

    1989-01-01

    The behaviour of biological and ecological systems under extreme conditions (high and low temperatures, electromagnetic fields of different frequencies, ultraviolet. X-ray and gamma radiation) is analyzed. The ecosystems of macro- and microalgae living in salt, brackinsh and fresh waters are considered in the evolutional aspect basing on their chemical and biochemical composition taking into account the mechanism of radionuclide uptake by water plant cells, osmotic regulation, water and ice structures, combined water in a living organism. The problems of life-support in cosmic flights and of mastering the planets of the Solar system, for instance Mars and Venus, utilizing some microalgae and bacteria with high adaptive properties are discussed. Abnormal water points and their role in the metabolism of a water plant cell are estimated. The 'life niches' are determined at the temperatures exceeding 100 deg C and the possibility of existence for living organisms in high pressure and temperature is grounded. Attempts are made to change the metabolism of the plant and animal cell by subjecting it to the action of electromagnetic and thermal fields, heavy water, chemical and pharmocological substances changing the structure of bound water. 333 refs.; 79 tabs.

  13. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  14. THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK: A FRAMEWORK FOR ORGANIZING BIOLOGICAL KNOWLEDGE LEADING TO HEALTH RISKS.

    Science.gov (United States)

    An Adverse Outcome Pathway (AOP) represents the organization of current and newly acquired knowledge of biological pathways. These pathways contain a series of nodes (Key Events, KEs) that when sufficiently altered influence the next node on the pathway, beginning from an Molecul...

  15. Identifying biological pathway interrupting toxins using multi-tree ensembles

    Directory of Open Access Journals (Sweden)

    Gergo Barta

    2016-08-01

    Full Text Available The pharmaceutical industry constantly seeks new ways to improve current methods that scientists use to evaluate environmental chemicals and develop new medicines. Various automated steps are involved in the process as testing hundreds of thousands of chemicals manually would be infeasible. Our research effort and the Toxicology in the 21st Century Data Challenge focused on cost-effective automation of toxicological testing, a chemical substance screening process looking for possible toxic effects caused by interrupting biological pathways. The computational models we propose in this paper successfully combine various publicly available substance fingerprinting tools with advanced machine learning techniques. In our paper, we explore the significance and utility of assorted feature selection methods as the structural analyzers generate a plethora of features for each substance. Machine learning models were carefully selected and evaluated based on their capability to cope with the high-dimensional high-variety data with multi-tree ensemble methods coming out on top. Techniques like Random forests and Extra trees combine numerous simple tree models and proved to produce reliable predictions on toxic activity while being nearly non-parametric and insensitive to dimensionality extremes. The Tox21 Data Challenge contest offered a great platform to compare a wide range of solutions in a controlled and orderly manner. The results clearly demonstrate that the generic approach presented in this paper is comparable to advanced deep learning and domain-specific solutions. Even surpassing the competition in some nuclear receptor signaling and stress pathway assays and achieving an accuracy of up to 94 percent.

  16. Informatics approaches in the Biological Characterization of Adverse Outcome Pathways

    Science.gov (United States)

    Adverse Outcome Pathways (AOPs) are a conceptual framework to characterize toxicity pathways by a series of mechanistic steps from a molecular initiating event to population outcomes. This framework helps to direct risk assessment research, for example by aiding in computational ...

  17. No longer "if," but "when": the coming abbreviated approval pathway for follow-on biologics.

    Science.gov (United States)

    Kelly, Jeremiah J; David, Michael

    2009-01-01

    Abbreviated approval of follow-on biologics involves answering complex scientific, legal, and policy questions. The Food and Drug Administration (FDA or the Agency) asserts that it lacks the statutory authority to approve follow-on versions of biologics licensed under Section 351 of the Public Health Service Act (PHSA). Despite persuasive arguments to the contrary the one hundred and tenth Congress entertained four legislative proposals to give FDA this authority, each markedly different. It is no longer a question of "if," but "when" FDA will receive authority to review and license abbreviated applications for follow-on biologics. Any legislation in the one hundred and eleventh Congress must determine: (1) if FDA should be granted authority to develop an abbreviated pathway through rulemaking or guidance; (2) if human clinical trials should be mandatory or discretionary; (3) the feasibility of interchangeability determinations in light of patient safety concerns; (4) the duration of marketing exclusivity for associated products; (5) which products are eligible for follow-on approval; and (6) the degree to which uniformity is achievable between the FD&C Act and the PHSA. This paper recommends the one hundred and eleventh Congress strike a balance between patient safety, incentives for product innovation, price competition, and the need for a flexible, transparent process that capitalizes on FDA's growing expertise with follow-on biologics approvals under Section 505(b)(2) of the FD&C Act.

  18. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DEFF Research Database (Denmark)

    King, Zachary A.; Draeger, Andreas; Ebrahim, Ali

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users c...... of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools....

  19. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  20. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    Science.gov (United States)

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  1. Biological pathways and genetic variables involved in pain

    NARCIS (Netherlands)

    Shi, Qiuling; Cleeland, Charles S.; Klepstad, Pål; Miaskowski, Christine; Pedersen, Nancy L.; Abernethy, Amy P.; Baas, Frank; Barsevick, Andrea M.; Bartels, Meike; Boomsma, Dorret I.; Chauhan, Cynthia; Dueck, Amylou C.; Frost, Marlene H.; Hall, Per; Halyard, Michele Y.; Martin, Nicholas G.; Mosing, Miriam; Movsas, Benjamin; van Noorden, Cornelis J. F.; Patrick, Donald L.; Ropka, Mary E.; Shinozaki, Gen; Singh, Jasvinder A.; Sloan, Jeff A.; Sprangers, Mirjam A. G.; Veenhoven, Ruut; Yang, Ping; Zwinderman, Ailko H.

    2010-01-01

    Purpose This paper summarizes current knowledge of pain-related and analgesic-related pathways as well as genetic variations involved in pain perception and management. Methods The pain group of the GENEQOL Consortium was given the task of summarizing the current status of research on genetic

  2. Pathways to smoking behaviours : biological insights from the Tobacco and Genetics Consortium meta-analysis

    NARCIS (Netherlands)

    Minicã, C C; Mbarek, H; Pool, R; Dolan, C V; Boomsma, D I; Vink, J M

    By running gene and pathway analyses for several smoking behaviours in the Tobacco and Genetics Consortium (TAG) sample of 74 053 individuals, 21 genes and several chains of biological pathways were implicated. Analyses were carried out using the HYbrid Set-based Test (HYST) as implemented in the

  3. Potential biological pathways linking Type-D personality and poor health: A cross-sectional investigation.

    Directory of Open Access Journals (Sweden)

    Vera K Jandackova

    Full Text Available Type-D personality, defined as a combination of high negative affect and high social isolation, has been associated with poor health outcomes. However, pathways underlying this association are largely unknown. We investigated the relationship between Type-D personality and several biological and behavioral pathways including the autonomic nervous system, the immune system, glucose regulation and sleep in a large, apparently healthy sample.Data from a total of 646 respondents (age 41.6±11.5, 12,2% women were available for analysis. Persons with Type-D (negative affect and social isolation score ≥10 were contrasted with those without Type-D. Measures of plasma fibrinogen levels, white blood cell count, high sensitivity C-reactive protein, fasting plasma glucose (FPG, cholesterol, high-density and low-density lipoprotein, glycated hemoglobin (HbA1c, creatinine, triglycerides, and albumin were derived from fasting blood samples. Urine norepinephrine and free cortisol were determined by high-performance liquid chromatography. Time-domain heart rate variability (HRV measures were calculated for the 24hr recording period and for nighttime separately.Persons with Type-D had higher HbA1c, FPG, and fibrinogen, and lower nighttime HRV than those without Type-D, suggesting worse glycemic control, systemic inflammation and poorer autonomic nervous system modulation in Type-D persons. In addition, those with Type-D reported less social support and greater sleep difficulties while no group differences were observed for alcohol and cigarette consumption, physical activity and body mass index.Findings provide some of the first evidence for multiple possible biological and behavioral pathways between Type-D personality and increased morbidity and mortality.

  4. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    International Nuclear Information System (INIS)

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-01-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C_1_2E_9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C_1_2E_9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C_1_2E_9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C_1_2E_9, C_1_2E_8, C_1_2E_7 and C_1_2E_6. Apart from the substrate, the homologues C_1_2E_8, C_1_2E_7 and C_1_2E_6, being metabolites of C_1_2E_9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C_1_2E_8COOH, C_1_2E_7COOH, C_1_2E_6COOH and C_1_2E_5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C_1_2E_9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. - Highlights: • Two parallel biodegradation pathways of alcohol ethoxylates have been discovered. • Apart from central fission

  5. Design of Adaptive Policy Pathways under Deep Uncertainties

    Science.gov (United States)

    Babovic, Vladan

    2013-04-01

    The design of large-scale engineering and infrastructural systems today is growing in complexity. Designers need to consider sociotechnical uncertainties, intricacies, and processes in the long- term strategic deployment and operations of these systems. In this context, water and spatial management is increasingly challenged not only by climate-associated changes such as sea level rise and increased spatio-temporal variability of precipitation, but also by pressures due to population growth and particularly accelerating rate of urbanisation. Furthermore, high investment costs and long term-nature of water-related infrastructure projects requires long-term planning perspective, sometimes extending over many decades. Adaptation to such changes is not only determined by what is known or anticipated at present, but also by what will be experienced and learned as the future unfolds, as well as by policy responses to social and water events. As a result, a pathway emerges. Instead of responding to 'surprises' and making decisions on ad hoc basis, exploring adaptation pathways into the future provide indispensable support in water management decision-making. In this contribution, a structured approach for designing a dynamic adaptive policy based on the concepts of adaptive policy making and adaptation pathways is introduced. Such an approach provides flexibility which allows change over time in response to how the future unfolds, what is learned about the system, and changes in societal preferences. The introduced flexibility provides means for dealing with complexities of adaptation under deep uncertainties. It enables engineering systems to change in the face of uncertainty to reduce impacts from downside scenarios while capitalizing on upside opportunities. This contribution presents comprehensive framework for development and deployment of adaptive policy pathway framework, and demonstrates its performance under deep uncertainties on a case study related to urban

  6. Pathways of the Maillard reaction under physiological conditions.

    Science.gov (United States)

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  7. Improving the Timed Automata Approach to Biological Pathway Dynamics

    NARCIS (Netherlands)

    Langerak, R.; Pol, Jaco van de; Post, Janine N.; Schivo, Stefano; Aceto, Luca; Bacci, Giorgio; Bacci, Giovanni; Ingólfsdóttir, Anna; Legay, Axel; Mardare, Radu

    2017-01-01

    Biological systems such as regulatory or gene networks can be seen as a particular type of distributed systems, and for this reason they can be modeled within the Timed Automata paradigm, which was developed in the computer science context. However, tools designed to model distributed systems often

  8. Biological phosphorus uptake under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens

    1993-01-01

    Biological phosphorus removal was investigated under anoxic and aerobic conditions. Tests were made to establish whether phosphorus accumulating bacteria can take up phosphate under anoxic conditions and thus utilise nitrate as oxidant. Furthermore, it was tested how the amount of organic matter...... as oxidant. The phosphorus uptake was more rapid under aerobic conditions than under anoxic conditions. The explanation of this is that all phosphorus accumulating bacteria take up phosphate under aerobic conditions, whereas only part of the phosphorus accumulating bacteria take up phosphate under anoxic...

  9. Genome-wide association study and biological pathway analysis of the Eimeria maxima response in broilers.

    Science.gov (United States)

    Hamzić, Edin; Buitenhuis, Bart; Hérault, Frédéric; Hawken, Rachel; Abrahamsen, Mitchel S; Servin, Bertrand; Elsen, Jean-Michel; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand

    2015-11-25

    Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozoans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respectively. Therefore, the current control programs must be expanded with complementary approaches such as the use of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying response to Eimeria maxima challenge. In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological pathways and networks involved in tissue proliferation and repair along with the primary innate immune response may play the most important role during the early stage of Eimeria maxima infection in broilers.

  10. PathJam: a new service for integrating biological pathway information

    Directory of Open Access Journals (Sweden)

    Glez-Peña Daniel

    2010-03-01

    Full Text Available Biological pathways are crucial to much of the scientific research today including the study of specific biological processes related with human diseases. PathJam is a new comprehensive and freely accessible web-server application integrating scattered human pathway annotation from several public sources. The tool has been designed for both (i being intuitive for wet-lab users providing statistical enrichment analysis of pathway annotations and (ii giving support to the development of new integrative pathway applications. PathJam’s unique features and advantages include interactive graphs linking pathways and genes of interest, downloadable results in fully compatible formats, GSEA compatible output files and a standardized RESTful API.

  11. Radiotracers For Lipid Signaling Pathways In Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S. J. [Northeastern Univ., Boston, MA (United States)

    2016-09-26

    enzymes such as fatty acid amide hydrolase, which may regulate endocannabinoid tone in animals. Early results were presented at the 2011 ICRS meeting, and at the 2012 Society for Neurosciences. Narachidonoylethanolamine is an endocannabinoid signaling messenger in animals and is known as “anandamide”. It is one of several families of signaling molecules derived from arachidonic acid, the principal omega-6 polyunsaturated fatty acids (PUFA’s) in animal species. Other derivatives of arachidonic acid include thromboxanes and prostaglandins. Full details of the studies with the ethanolamide isotopomers were a part of the PhD dissertation of Kun Hu (nee Qian), and were submitted for publication to Nuclear Medicine and Biology in August 2016. Syntheses of [14C]docosahexanoylethanolamine isotopomers and preliminary biological investigations Docosahexaenoic acid (DHA) is the omega-3 PUFA that can be regarded in some respects as the counterpart of arachidonic acid in the omega-6 series. While arachidonic acid is proinflammatory, DHA is anti-inflammatory, and foods high in DHA (or artificially enriched in DHA) are commonly regarded as promoting health. In contrast to the large literature on the Nethanolamide of arachidonic acid (i.e. the endocannabinoid anandamide) as of now (9/25/2016) there are only six papers on the corresponding ethanolamide of DHA, and when our studies under this grant began there were none. Beneficial actions of endogenously produced DHAethanolamine (“synaptamide”) have been indicated, and to help elucidate the possible roles of synaptamide, we have synthesized this molecule for the first time labeled with C-14 in either the ethanolamine moiety or the fatty acid moiety. Studies of the disposition of endogenously administered isotopomers of DHA-ethanolamine are in progress, to complement tissue culture experiments evaluation hypothesized protective effects of this DHA derivative.

  12. Future changes in global warming potentials under representative concentration pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reisinger, Andy [New Zealand Agricultural Greenhouse Gas Research Centre, PO Box 10002, Wellington 6143 (New Zealand); Meinshausen, Malte [Earth System Analysis, Potsdam Institute for Climate Impact Research (Germany); Manning, Martin, E-mail: andy.reisinger@nzagrc.org.nz [Climate Change Research Institute, Victoria University of Wellington (New Zealand)

    2011-04-15

    Global warming potentials (GWPs) are the metrics currently used to compare emissions of different greenhouse gases under the United Nations Framework Convention on Climate Change. Future changes in greenhouse gas concentrations will alter GWPs because the radiative efficiencies of marginal changes in CO{sub 2}, CH{sub 4} and N{sub 2}O depend on their background concentrations, the removal of CO{sub 2} is influenced by climate-carbon cycle feedbacks, and atmospheric residence times of CH{sub 4} and N{sub 2}O also depend on ambient temperature and other environmental changes. We calculated the currently foreseeable future changes in the absolute GWP of CO{sub 2}, which acts as the denominator for the calculation of all GWPs, and specifically the GWPs of CH{sub 4} and N{sub 2}O, along four representative concentration pathways (RCPs) up to the year 2100. We find that the absolute GWP of CO{sub 2} decreases under all RCPs, although for longer time horizons this decrease is smaller than for short time horizons due to increased climate-carbon cycle feedbacks. The 100-year GWP of CH{sub 4} would increase up to 20% under the lowest RCP by 2100 but would decrease by up to 10% by mid-century under the highest RCP. The 100-year GWP of N{sub 2}O would increase by more than 30% by 2100 under the highest RCP but would vary by less than 10% under other scenarios. These changes are not negligible but are mostly smaller than the changes that would result from choosing a different time horizon for GWPs, or from choosing altogether different metrics for comparing greenhouse gas emissions, such as global temperature change potentials.

  13. Network Expansion and Pathway Enrichment Analysis towards Biologically Significant Findings from Microarrays

    Directory of Open Access Journals (Sweden)

    Wu Xiaogang

    2012-06-01

    Full Text Available In many cases, crucial genes show relatively slight changes between groups of samples (e.g. normal vs. disease, and many genes selected from microarray differential analysis by measuring the expression level statistically are also poorly annotated and lack of biological significance. In this paper, we present an innovative approach - network expansion and pathway enrichment analysis (NEPEA for integrative microarray analysis. We assume that organized knowledge will help microarray data analysis in significant ways, and the organized knowledge could be represented as molecular interaction networks or biological pathways. Based on this hypothesis, we develop the NEPEA framework based on network expansion from the human annotated and predicted protein interaction (HAPPI database, and pathway enrichment from the human pathway database (HPD. We use a recently-published microarray dataset (GSE24215 related to insulin resistance and type 2 diabetes (T2D as case study, since this study provided a thorough experimental validation for both genes and pathways identified computationally from classical microarray analysis and pathway analysis. We perform our NEPEA analysis for this dataset based on the results from the classical microarray analysis to identify biologically significant genes and pathways. Our findings are not only consistent with the original findings mostly, but also obtained more supports from other literatures.

  14. [Exploration of common biological pathways for attention deficit hyperactivity disorder and low birth weight].

    Science.gov (United States)

    Xiang, Bo; Yu, Minglan; Liang, Xuemei; Lei, Wei; Huang, Chaohua; Chen, Jing; He, Wenying; Zhang, Tao; Li, Tao; Liu, Kezhi

    2017-12-10

    To explore common biological pathways for attention deficit hyperactivity disorder (ADHD) and low birth weight (LBW). Thei-Gsea4GwasV2 software was used to analyze the result of genome-wide association analysis (GWAS) for LBW (pathways were derived from Reactome), and nominally significant (Ppathways were tested for replication in ADHD.Significant pathways were analyzed with DAPPLE and Reatome FI software to identify genes involved in such pathways, with each cluster enriched with the gene ontology (GO). The Centiscape2.0 software was used to calculate the degree of genetic networks and the betweenness value to explore the core node (gene). Weighed gene co-expression network analysis (WGCNA) was then used to explore the co-expression of genes in these pathways.With gene expression data derived from BrainSpan, GO enrichment was carried out for each gene module. Eleven significant biological pathways was identified in association with LBW, among which two (Selenoamino acid metabolism and Diseases associated with glycosaminoglycan metabolism) were replicated during subsequent ADHD analysis. Network analysis of 130 genes in these pathways revealed that some of the sub-networksare related with morphology of cerebellum, development of hippocampus, and plasticity of synaptic structure. Upon co-expression network analysis, 120 genes passed the quality control and were found to express in 3 gene modules. These modules are mainly related to the regulation of synaptic structure and activity regulation. ADHD and LBW share some biological regulation processes. Anomalies of such proces sesmay predispose to ADHD.

  15. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zembrzuska, Joanna, E-mail: Joanna.Zembrzuska@put.poznan.pl; Budnik, Irena, E-mail: Irena.Budnik@gmail.com; Lukaszewski, Zenon, E-mail: zenon.lukaszewski@put.poznan.pl

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C{sub 12}E{sub 9} having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C{sub 12}E{sub 9} as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C{sub 12}E{sub 9} and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C{sub 12}E{sub 9}, C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}. Apart from the substrate, the homologues C{sub 12}E{sub 8}, C{sub 12}E{sub 7} and C{sub 12}E{sub 6}, being metabolites of C{sub 12}E{sub 9} biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C{sub 12}E{sub 8}COOH, C{sub 12}E{sub 7}COOH, C{sub 12}E{sub 6}COOH and C{sub 12}E{sub 5}COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C{sub 12}E{sub 9} and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a

  16. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  17. Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways.

    Science.gov (United States)

    Rohat, Guillaume

    2018-03-19

    The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure-i.e., mainly future population patterns-, neglecting future human vulnerability. This paper first explores the research gaps-mainly linked to the paucity of available projections-that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs-namely the scenario matching approach and an approach based on experts' elicitation and correlation analyses-and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods-such as the spatial disaggregation of existing projections and the use of sectoral models-show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely

  18. Climate Change and Health under the Shared Socioeconomic Pathway Framework

    Directory of Open Access Journals (Sweden)

    Samuel Sellers

    2017-12-01

    Full Text Available A growing body of literature addresses how climate change is likely to have substantial and generally adverse effects on population health and health systems around the world. These effects are likely to vary within and between countries and, importantly, will vary depending on different socioeconomic development patterns. Transitioning to a more resilient and sustainable world to prepare for and manage the effects of climate change is likely to result in better health outcomes. Sustained fossil fuel development will likely result in continued high burdens of preventable conditions, such as undernutrition, malaria, and diarrheal diseases. Using a new set of socioeconomic development trajectories, the Shared Socioeconomic Pathways (SSPs, along with the World Health Organization’s Operational Framework for Building Climate Resilient Health Systems, we extend existing storylines to illustrate how various aspects of health systems are likely to be affected under each SSP. We also discuss the implications of our findings on how the burden of mortality and the achievement of health-related Sustainable Development Goal targets are likely to vary under different SSPs.

  19. Identifying biological pathways in the MRI findings of people with low back pain

    DEFF Research Database (Denmark)

    Jensen, Rikke Krüger; Jensen, Tue Secher; Kjaer, Per

    strategy to advance this area of investigation would be to recognise which MRI findings typically occur together and whether those clusters appear to reflect discrete biological pathways. Therefore, the objectives of this proof-of-concept study were to identify which vertebral MRI findings cluster together...... fitting clusters of MRI findings. The distribution of lumbar disc levels in each cluster was also reported. Based on known histological changes inherent in the degeneration process of the motion segment, the clusters were grouped into hypothetical biological pathways. Results Latent class analysis...

  20. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    Science.gov (United States)

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  1. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.

    Science.gov (United States)

    Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy

    2013-08-01

    Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association

  2. Two oxidation pathways of bioactive flavonol rhamnazin under ambient conditions

    International Nuclear Information System (INIS)

    Ramešová, Šárka; Degano, Ilaria; Sokolová, Romana

    2014-01-01

    Graphical abstract: - Highlights: • The oxidation mechanism of rhamnazin has not been solved yet. • Rhamnazin decomposes in solution during minutes handled in the presence of air. • The main oxidation product of rhamnazin was identified even if it is not stable. • Two parallel oxidation mechanisms of rhamnazin in air were determined. - Abstract: Two pathways of the oxidation mechanism of rhamnazin under ambient conditions are proposed. The redox potential of rhamnazin strongly depends on the presence of dissociation forms in solution. In situ spectroelectrochemistry and identification of degradation products by HPLC-DAD and HPLC–ESI-MS/MS confirmed the presence of fast subsequent chemical reactions following the electron transfer. As demonstrated, strict anaerobic conditions have to be preserved in studies of antioxidant properties and of its pharmacological efficiency. In the absence of oxygen, 2,4-dihydroxy-2-(4′-hydroxy-3′-methoxybenzoyl) -6-methoxy-benzofuran-3(2H)-one was identified as the only oxidation product

  3. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  4. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-12-01

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  5. 75 FR 61497 - Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request...

    Science.gov (United States)

    2010-10-05

    ... Price Competition and Innovation Act of 2009 (BPCI Act) that amends the Public Health Service Act (PHS... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0477] Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request for...

  6. Generative models versus underlying symmetries to explain biological pattern.

    Science.gov (United States)

    Frank, S A

    2014-06-01

    Mathematical models play an increasingly important role in the interpretation of biological experiments. Studies often present a model that generates the observations, connecting hypothesized process to an observed pattern. Such generative models confirm the plausibility of an explanation and make testable hypotheses for further experiments. However, studies rarely consider the broad family of alternative models that match the same observed pattern. The symmetries that define the broad class of matching models are in fact the only aspects of information truly revealed by observed pattern. Commonly observed patterns derive from simple underlying symmetries. This article illustrates the problem by showing the symmetry associated with the observed rate of increase in fitness in a constant environment. That underlying symmetry reveals how each particular generative model defines a single example within the broad class of matching models. Further progress on the relation between pattern and process requires deeper consideration of the underlying symmetries. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Biological Pathways

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  8. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    Science.gov (United States)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  9. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  10. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    Science.gov (United States)

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  11. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    Directory of Open Access Journals (Sweden)

    Andra Waagmeester

    2016-06-01

    Full Text Available The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  12. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    Science.gov (United States)

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  13. PathText: a text mining integrator for biological pathway visualizations

    Science.gov (United States)

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  14. Biology of Dermacentor marginatus (Acari: Ixodidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Darvishi

    2014-02-01

    Full Text Available Objective: To investigate and survey the biology of Dermacentor marginatus (D. marginatus under laboratory conditions. Methods: In this investigation, D. marginatus adult ticks were collected from sheep in Semnan province. Then various developmental stages of D. marginatus including larvae, nymphs and adult males and females under laboratory condition were bred and their biology was scrutinized. Results: The requisite time to complete the life cycle of D. marginatus under controlled laboratory conditions for larvae (26 °C, 75% relative humidity and nymph (26 °C, 95% relative humidity moulting, was on average 92 d (range 75-104 d, including preoviposition and egg incubation (22.5 d, larvae incubation (20.5 d, nymphal stage (28 d along with male maturation (21 d. The index of conversion efficiency and the index of reproduction efficiency in females were 0.397 and 8.300, respectively. Conclusions: Although in this investigation, there was no meaningful correlation between preoviposition period and the weight of female ticks which were laid successfully. The significant linear relationship was fully observed between the weight of engorged female of D. marginatus and the number of eggs laid. The mean of preoviposition period from 5.4 d in autumn to 34.2 d in spring increased. The minimum weight of ticks with laying capacity was 69 mg and lighter ticks (21 mg either did not lay or if they did their eggs did not hatch.

  15. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes.

    Science.gov (United States)

    Lannon, Sophia M R; Vanderhoeven, Jeroen P; Eschenbach, David A; Gravett, Michael G; Adams Waldorf, Kristina M

    2014-10-01

    Preterm premature rupture of membranes (PPROM) occurs in 1% to 2% of births. Impact of PPROM is greatest in low- and middle-income countries where prematurity-related deaths are most common. Recent investigations identify cytokine and matrix metalloproteinase activation, oxidative stress, and apoptosis as primary pathways to PPROM. These biological processes are initiated by heterogeneous etiologies including infection/inflammation, placental bleeding, uterine overdistention, and genetic polymorphisms. We hypothesize that pathways to PPROM overlap and act synergistically to weaken membranes. We focus our discussion on membrane composition and strength, pathways linking risk factors to membrane weakening, and future research directions to reduce the global burden of PPROM. © The Author(s) 2014.

  16. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  17. PyPathway: Python Package for Biological Network Analysis and Visualization.

    Science.gov (United States)

    Xu, Yang; Luo, Xiao-Chun

    2018-05-01

    Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.

  18. Cognitive mechanisms underlying third graders' arithmetic skills: Expanding the pathways to mathematics model.

    Science.gov (United States)

    Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard

    2018-03-01

    A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach.

    Science.gov (United States)

    Chatterjee, Shatakshee; Verma, Srikant Prasad; Pandey, Priyanka

    2017-09-05

    Initiation and progression of fluid filled cysts mark Autosomal Dominant Polycystic Kidney Disease (ADPKD). Thus, improved therapeutics targeting cystogenesis remains a constant challenge. Microarray studies in single ADPKD animal models species with limited sample sizes tend to provide scattered views on underlying ADPKD pathogenesis. Thus we aim to perform a cross species meta-analysis to profile conserved biological pathways that might be key targets for therapy. Nine ADPKD microarray datasets on rat, mice and human fulfilled our study criteria and were chosen. Intra-species combined analysis was performed after considering removal of batch effect. Significantly enriched GO biological processes and KEGG pathways were computed and their overlap was observed. For the conserved pathways, biological modules and gene regulatory networks were observed. Additionally, Gene Set Enrichment Analysis (GSEA) using Molecular Signature Database (MSigDB) was performed for genes found in conserved pathways. We obtained 28 modules of significantly enriched GO processes and 5 major functional categories from significantly enriched KEGG pathways conserved in human, mice and rats that in turn suggest a global transcriptomic perturbation affecting cyst - formation, growth and progression. Significantly enriched pathways obtained from up-regulated genes such as Genomic instability, Protein localization in ER and Insulin Resistance were found to regulate cyst formation and growth whereas cyst progression due to increased cell adhesion and inflammation was suggested by perturbations in Angiogenesis, TGF-beta, CAMs, and Infection related pathways. Additionally, networks revealed shared genes among pathways e.g. SMAD2 and SMAD7 in Endocytosis and TGF-beta. Our study suggests cyst formation and progression to be an outcome of interplay between a set of several key deregulated pathways. Thus, further translational research is warranted focusing on developing a combinatorial therapeutic

  1. Sea level rise under the Shared Socioeconomic Pathways (SSPs)

    Science.gov (United States)

    Schleussner, C. F.; Nauels, A.; Rogelj, J.; Mengel, M.; Meinshausen, M.

    2017-12-01

    In order to assess future sea level rise and its impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present Sea Level Rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative Forcing Targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for latest research on additional Antarctic rapid discharge dynamics from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986-2005 of 102 cm (likely range: 77 to 135 cm) for SSP1, 118 cm (90 to 151 cm) for SSP2, 118 cm (91 to 149 cm) for SSP3, 107 cm (81 to 137 cm) for SSP4, and 144 cm (112 to 184 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios is dominated by the mitigation targets and yield median estimates of 68 cm (56 to 87 cm) for FT 2.6 Wm-2, 76 cm (61 to 107 cm) for FT 3.4 Wm-2, 90 cm (68 to 120 cm) for FT 4.5 Wm-2, and 105 cm (79 to 136 cm) for FT 6.0 Wm-2. Average 2081-2100 annual rates of SLR are 6 mm/yr and 19 mm/yr for the FT 2.6 Wm-2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. For limiting median 2100 SSP SLR projections to below 80 cm, we find that 2050 cumulative CO2 emissions since pre-industrial should not exceed around 860 GtC, with the global coal phase-out nearly completed. For SSP mitigation scenarios, the median 2050 carbon price of 90 US$2005 tCO2-1 would correspond to a median 2100 SLR of around 80 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.

  2. Pathway reconstruction of airway remodeling in chronic lung diseases: a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ali Najafi

    Full Text Available Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD, asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients.

  3. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    Science.gov (United States)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  4. KeyPathwayMiner - De-novo network enrichment by combining multiple OMICS data and biological networks

    DEFF Research Database (Denmark)

    Baumbach, Jan; Alcaraz, Nicolas; Pauling, Josch K.

    We tackle the problem of de-novo pathway extraction. Given a biological network and a set of case-control studies, KeyPathwayMiner efficiently extracts and visualizes all maximal connected sub-networks that contain mainly genes that are dysregulated, e.g., differentially expressed, in most cases ...

  5. Stepfather or biological father? Education-specific pathways of postdivorce fatherhood

    Directory of Open Access Journals (Sweden)

    Christine Schnor

    2017-11-01

    Full Text Available Background: Men are commonly assigned the role of economic providers in the family, and education informs about their capacity to fulfil this role. Yet having biological ties to coresident children can determine the man's willingness to step into the provider role. This study investigates how education is linked to fatherhood after divorce, distinguishing between biological father and stepfather positions. Methods: We analysed life course data from 1,111 divorced Belgian men collected in the 'Divorce in Flanders' project. We used descriptive methods of sequence analysis to illustrate the pathways of postdivorce fatherhood. In multinomial logistic regressions, we estimated the likelihood of, firstly, being a father with coresident biological children or/and stepchildren and, secondly, repartnering with a mother and fathering children in this union. Results: Divorced men's family situation depend on their educational levels. More educated men are more often in the role of a resident biological father, whereas the less educated men are more often stepfathers. Men's resident arrangement for first-marriage children, their selection into a new union and the parental status of their new partner help explaining educational differences in post-divorce father positions. Highly educated men live more often with their children from first marriage and repartner more often and especially women without own coresident children, which is beneficial for their transition to a post-divorce birth. Contribution: The findings suggest that both capacity and willingness to support the postdivorce family are lower among the less educated. These education-specific pathways of postdivorce fatherhood are likely to enhance social inequalities.

  6. Pathways to Aging: The Mitochondrion at the Intersection of Biological and Psychosocial Sciences

    Directory of Open Access Journals (Sweden)

    Martin Picard

    2011-01-01

    Full Text Available Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality, behavioral factors (e.g., physical activity, diet, and stress management, and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.

  7. Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences.

    Science.gov (United States)

    Picard, Martin

    2011-01-01

    Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.

  8. The Glutamate Dehydrogenase Pathway and Its Roles in Cell and Tissue Biology in Health and Disease

    Directory of Open Access Journals (Sweden)

    Andreas Plaitakis

    2017-02-01

    Full Text Available Glutamate dehydrogenase (GDH is a hexameric enzyme that catalyzes the reversible conversion of glutamate to α-ketoglutarate and ammonia while reducing NAD(P+ to NAD(PH. It is found in all living organisms serving both catabolic and anabolic reactions. In mammalian tissues, oxidative deamination of glutamate via GDH generates α-ketoglutarate, which is metabolized by the Krebs cycle, leading to the synthesis of ATP. In addition, the GDH pathway is linked to diverse cellular processes, including ammonia metabolism, acid-base equilibrium, redox homeostasis (via formation of fumarate, lipid biosynthesis (via oxidative generation of citrate, and lactate production. While most mammals possess a single GDH1 protein (hGDH1 in the human that is highly expressed in the liver, humans and other primates have acquired, via duplication, an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. The novel hGDH2 underwent rapid evolutionary adaptation, acquiring unique properties that enable enhanced enzyme function under conditions inhibitory to its ancestor hGDH1. These are thought to provide a biological advantage to humans with hGDH2 evolution occurring concomitantly with human brain development. hGDH2 is co-expressed with hGDH1 in human brain, kidney, testis and steroidogenic organs, but not in the liver. In human cerebral cortex, hGDH1 and hGDH2 are expressed in astrocytes, the cells responsible for removing and metabolizing transmitter glutamate, and for supplying neurons with glutamine and lactate. In human testis, hGDH2 (but not hGDH1 is densely expressed in the Sertoli cells, known to provide the spermatids with lactate and other nutrients. In steroid producing cells, hGDH1/2 is thought to generate reducing equivalents (NADPH in the mitochondria for the biosynthesis of steroidal hormones. Lastly, up-regulation of hGDH1/2 expression occurs in cancer, permitting neoplastic cells to utilize glutamine/glutamate for their growth

  9. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions

    International Nuclear Information System (INIS)

    Freedman, D.L.; Gossett, J.M.

    1989-01-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [ 14 C]PCE indicated that [ 14 C]ethylene was the terminal product; significant conversion to 14 CO 2 or 14 CH 4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE

  10. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    Science.gov (United States)

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were

  11. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyrille Hoarau

    Full Text Available BACKGROUND: Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK, glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. METHODOLOGY/PRINCIPAL FINDINGS: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS or Zymosan, with or without specific inhibitors of p38MAPK (SB203580, ERK (PD98059, PI3K (LY294002 and GSK3 (SB216763. We found that 1 the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2 p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3 ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4 BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. CONCLUSION/SIGNIFICANCE: We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.

  12. Value-Relevance of Biological Assets under IFRS

    OpenAIRE

    Rute Gonçalves; Patrícia Lopes

    2015-01-01

    Using 389 firm-year observations of listed firms worldwide in 27 countries that adopted International Financial Reporting Standards (IFRS) until 2010, for the period 2011-2013, the purpose of this paper is to examine the value-relevance of fair value accounting of biological assets. In order to operationalize it as the book value’s ability to explain market equity value, this study adjusts the Ohlson model. The results support that recognized biological assets are value-relevant. After includ...

  13. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hirofumi Nakaoka

    Full Text Available Genome-wide association studies (GWAS have yielded novel genetic loci underlying common diseases. We propose a systems genetics approach to utilize these discoveries for better understanding of the genetic architecture of rheumatoid arthritis (RA. Current evidence of genetic associations with RA was sought through PubMed and the NHGRI GWAS catalog. The associations of 15 single nucleotide polymorphisms and HLA-DRB1 alleles were confirmed in 1,287 cases and 1,500 controls of Japanese subjects. Among these, HLA-DRB1 alleles and eight SNPs showed significant associations and all but one of the variants had the same direction of effect as identified in the previous studies, indicating that the genetic risk factors underlying RA are shared across populations. By receiver operating characteristic curve analysis, the area under the curve (AUC for the genetic risk score based on the selected variants was 68.4%. For seropositive RA patients only, the AUC improved to 70.9%, indicating good but suboptimal predictive ability. A simulation study shows that more than 200 additional loci with similar effect size as recent GWAS findings or 20 rare variants with intermediate effects are needed to achieve AUC = 80.0%. We performed the random walk with restart (RWR algorithm to prioritize genes for future mapping studies. The performance of the algorithm was confirmed by leave-one-out cross-validation. The RWR algorithm pointed to ZAP70 in the first rank, in which mutation causes RA-like autoimmune arthritis in mice. By applying the hierarchical clustering method to a subnetwork comprising RA-associated genes and top-ranked genes by the RWR, we found three functional modules relevant to RA etiology: "leukocyte activation and differentiation", "pattern-recognition receptor signaling pathway", and "chemokines and their receptors".These results suggest that the systems genetics approach is useful to find directions of future mapping strategies to illuminate

  14. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  15. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology.

    Science.gov (United States)

    Akaberi, M; Iranshahi, M; Mehri, S

    2016-06-01

    The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Depressive symptoms predict head and neck cancer survival: Examining plausible behavioral and biological pathways.

    Science.gov (United States)

    Zimmaro, Lauren A; Sephton, Sandra E; Siwik, Chelsea J; Phillips, Kala M; Rebholz, Whitney N; Kraemer, Helena C; Giese-Davis, Janine; Wilson, Liz; Bumpous, Jeffrey M; Cash, Elizabeth D

    2018-03-01

    Head and neck cancers are associated with high rates of depression, which may increase the risk for poorer immediate and long-term outcomes. Here it was hypothesized that greater depressive symptoms would predict earlier mortality, and behavioral (treatment interruption) and biological (treatment response) mediators were examined. Patients (n = 134) reported depressive symptomatology at treatment planning. Clinical data were reviewed at the 2-year follow-up. Greater depressive symptoms were associated with significantly shorter survival (hazard ratio, 0.868; 95% confidence interval [CI], 0.819-0.921; P ratio, 0.865; 95% CI, 0.774-0.966; P = .010), and poorer treatment response (odds ratio, 0.879; 95% CI, 0.803-0.963; P = .005). The poorer treatment response partially explained the depression-survival relation. Other known prognostic indicators did not challenge these results. Depressive symptoms at the time of treatment planning predict overall 2-year mortality. Effects are partly influenced by the treatment response. Depression screening and intervention may be beneficial. Future studies should examine parallel biological pathways linking depression to cancer survival, including endocrine disruption and inflammation. Cancer 2018;124:1053-60. © 2018 American Cancer Society. © 2018 American Cancer Society.

  17. SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

    NARCIS (Netherlands)

    Albers, S.V.; Birkeland, N.K.; Driessen, A.J.M.; Gertig, S.; Haferkamp, P.; Klenk, H.P.; Kouril, T.; Manica, A.; Pham, T.K.; Ruoff, P.; Schleper, C.; Schomburg, D.; Sharkey, K.; Siebers, B.; Sierocinski, P.; Steur, R.; Oost, van der J.; Westerhoff, H.V.; Wieloch, P.; Wright, P.C.; Zaparty, M.

    2009-01-01

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from

  18. Sulfosys (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation.

    NARCIS (Netherlands)

    Albers, S.V.; Birkeland, N.K.; Driessen, A.J.; Gertig, S.; Haferkamp, P.; Klenk, H.P.; Kouril, T.; Manica, A.; Pham, T.K.; Ruoff, P.; Schleper, C.; Schomburg, D.; Sharkey, K.J.; Siebers, B.; Sierocinski, P.; Steuer, R.; van der Oost, J.; Westerhoff, H.V.; Wieloch, P.; Wright, P.C.; Zaparty, M.

    2009-01-01

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from

  19. SulfoSYS (Sulfolobus Systems Biology) : towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

    NARCIS (Netherlands)

    Albers, Sonja-Verena; Birkeland, Nils-Kare; Driessen, Arnold J. M.; Gertig, Susanne; Haferkamp, Patrick; Klenk, Hans-Peter; Kouril, Theresa; Manica, Andrea; Pham, Trong K.; Ruoff, Peter; Schleper, Christa; Schomburg, Dietmar; Sharkey, Kieran J.; Siebers, Bettina; Sierocinski, Pawel; Steuer, Ralf; van der Oost, John; Westerhoff, Hans V.; Wieloch, Patricia; Wright, Phillip C.; Zaparty, Melanie; Birkeland, Nils-Kåre

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. in Archaea, carbohydrates are metabolized by modifications of the classical pathways known from

  20. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  1. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  2. Long ligands reinforce biological adhesion under shear flow

    Science.gov (United States)

    Belyaev, Aleksey V.

    2018-04-01

    In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.

  3. MO-DE-207B-03: Improved Cancer Classification Using Patient-Specific Biological Pathway Information Via Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Young, M; Craft, D [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchical clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve

  4. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard

    2014-01-01

    provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  5. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    Directory of Open Access Journals (Sweden)

    Sara eDomingos

    2015-06-01

    Full Text Available Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc sprays was monitored in grapevine (Vitis vinifera L. growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid (TCA metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.

  6. Complex systems of biological interest stability under ionising radiations

    International Nuclear Information System (INIS)

    Maclot, Sylvain

    2014-01-01

    This PhD work presents the study of stability of molecular systems of biological interest in the gas phase after interaction with ionising radiations. The use of ionising radiation can probe the physical chemistry of complex systems at the molecular scale and thus consider their intrinsic properties. Beyond the fundamental aspect, this work is part of the overall understanding of radiation effects on living organisms and in particular the use of ionizing radiation in radiotherapy. Specifically, this study focused on the use of low-energy multiply charged ions (tens of keV) provided by the GANIL (Caen), which includes most of the experiments presented. In addition, experiments using VUV photons were also conducted at synchrotron ELETTRA (Trieste, Italy). The bio-molecular systems studied are amino acids and nucleic acid constituents. Using an experimental crossed beams device allows interaction between biomolecules and ionising radiation leads mainly to the ionization and fragmentation of the system. The study of its relaxation dynamics is by time-of-flight mass spectrometry coupled to a coincidences measurements method. It is shown that an approach combining experiment and theory allows a detailed study of the fragmentation dynamics of complex systems. The results indicate that fragmentation is generally governed by the Coulomb repulsion but the intramolecular rearrangements involve specific relaxation mechanisms. (author) [fr

  7. Understanding the basic biology underlying the flavor world of children

    Directory of Open Access Journals (Sweden)

    Julie A. MENNELLA, Alison K. VENTURA

    2010-12-01

    Full Text Available Health organizations worldwide recommend that adults and children minimize intakes of excess energy and salty, sweet, and fatty foods (all of which are highly preferred tastes and eat diets richer in whole grains, low- and non- fat dairy products, legumes, fish, lean meat, fruits, and vegetables (many of which taste bitter. Despite such recommendations and the well-established benefits of these foods to human health, adults are not complying, nor are their children. A primary reason for this difficulty is the remarkably potent rewarding properties of the tastes and flavors of foods high in sweetness, saltiness, and fatness. While we cannot easily change children’s basic ingrained biology of liking sweets and avoiding bitterness, we can modulate their flavor preferences by providing early exposure, starting in utero, to a wide variety of flavors within healthy foods, such as fruits, vegetables, and whole grains. Because the flavors of foods mothers eat during pregnancy and lactation also flavor amniotic fluid and breast milk and become preferred by infants, pregnant and lactating women should widen their food choices to include as many flavorful and healthy foods as possible. These experiences, combined with repeated exposure to nutritious foods and flavor variety during the weaning period and beyond, should maximize the chances that children will select and enjoy a healthier diet [Current Zoology 56 (6: 834–841, 2010].

  8. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    Science.gov (United States)

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.

  9. Biological methane production under putative Enceladus-like conditions.

    Science.gov (United States)

    Taubner, Ruth-Sophie; Pappenreiter, Patricia; Zwicker, Jennifer; Smrzka, Daniel; Pruckner, Christian; Kolar, Philipp; Bernacchi, Sébastien; Seifert, Arne H; Krajete, Alexander; Bach, Wolfgang; Peckmann, Jörn; Paulik, Christian; Firneis, Maria G; Schleper, Christa; Rittmann, Simon K-M R

    2018-02-27

    The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H 2 ) and methane (CH 4 ) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH 4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH 4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H 2 gas production to serve as a substrate for CH 4 production on Enceladus. We conclude that some of the CH 4 detected in the plume of Enceladus might, in principle, be produced by methanogens.

  10. Genome-wide association study and biological pathway analysis for response to Eimeria maxima in broilers

    DEFF Research Database (Denmark)

    Hamzic, Edin; Buitenhuis, Albert Johannes; Hérault, Frédéric

    2015-01-01

    Background Coccidiosis is the most common and costly disease in the poultry industry and which caused by protozoans from the genus of Eimeria. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high...... costs for development of efficient vaccines, respectively. Therefore, the present control programs must be expanded with complementary approaches such as the use of genetics for improvement of the host’s response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500...... of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis with the aim of gaining a better biological understanding of the underlying response to Eimeria maxima challenge in broilers. Results In total, we identified 22 single nucleotide...

  11. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  12. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Directory of Open Access Journals (Sweden)

    Ketan K. Marballi

    2018-02-01

    Full Text Available While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD. Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3, early growth response 1 (EGR1 and NGFI-A Binding Protein 2 (NAB2; each of which contains the “Index single nucleotide polymorphism (SNP” (most SNP at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may

  13. Immediate Early Genes Anchor a Biological Pathway of Proteins Required for Memory Formation, Long-Term Depression and Risk for Schizophrenia

    Science.gov (United States)

    Marballi, Ketan K.; Gallitano, Amelia L.

    2018-01-01

    While the causes of myriad medical and infectious illnesses have been identified, the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is determined by both genetic and environmental factors. Second, numerous genes influence susceptibility for these illnesses. Genome-wide association studies have identified at least 108 genomic loci for schizophrenia, and more are expected to be published shortly. In addition, numerous biological processes contribute to the neuropathology underlying schizophrenia. These include immune dysfunction, synaptic and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics lacks a unifying model to explain how environment may interact with numerous genes to influence these various biological processes and cause schizophrenia. Here we describe a biological cascade of proteins that are activated in response to environmental stimuli such as stress, a schizophrenia risk factor. The central proteins in this pathway are critical mediators of memory formation and a particular form of hippocampal synaptic plasticity, long-term depression (LTD). Each of these proteins is also implicated in schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3), early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of which contains the “Index single nucleotide polymorphism (SNP)” (most SNP) at its respective locus. Environmental stimuli activate this biological pathway in neurons, resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We hypothesize that dysfunction in any of the genes in this pathway disrupts the normal activation of Egrs in response to stress. This may result in

  14. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations.

    Science.gov (United States)

    Louissaint, Abner; Schafernak, Kristian T; Geyer, Julia T; Kovach, Alexandra E; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G; Paxton, Christian N; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A; Neuberg, Donna S; South, Sarah T; Harris, Marian H; Hasserjian, Robert P; Hochberg, Ephraim P; Garraway, Levi A; Harris, Nancy Lee; Weinstock, David M

    2016-08-25

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. © 2016 by The American Society of Hematology.

  15. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  16. 78 FR 55326 - Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological...

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF STATE [Public Notice 8460] Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological Weapons Control and Warfare Elimination Act of 1991 AGENCY: Bureau of... Government has determined on August 2, pursuant to Section 306(a) of the Chemical and Biological Weapons...

  17. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  18. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Guillevin, Rémy; Vallée, Jean-Noël

    2018-01-26

    The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by

  19. Mechanisms Underlying the Antidepressant Response of Acupuncture via PKA/CREB Signaling Pathway.

    Science.gov (United States)

    Jiang, Huili; Zhang, Xuhui; Wang, Yu; Zhang, Huimin; Li, Jing; Yang, Xinjing; Zhao, Bingcong; Zhang, Chuntao; Yu, Miao; Xu, Mingmin; Yu, Qiuyun; Liang, Xingchen; Li, Xiang; Shi, Peng; Bao, Tuya

    2017-01-01

    Protein kinase A (PKA)/cAMP response element-binding (CREB) protein signaling pathway, contributing to impaired neurogenesis parallel to depressive-like behaviors, has been identified as the crucial factor involved in the antidepressant response of acupuncture. However, the molecular mechanisms associated with antidepressant response of acupuncture, neurogenesis, and depressive-like behaviors ameliorating remain unexplored. The objective was to identify the mechanisms underlying the antidepressant response of acupuncture through PKA signaling pathway in depression rats by employing the PKA signaling pathway inhibitor H89 in in vivo experiments. Our results indicated that the expression of hippocampal PKA- α and p-CREB was significantly downregulated by chronic unpredicted mild stress (CUMS) procedures. Importantly, acupuncture reversed the downregulation of PKA- α and p-CREB. The expression of PKA- α was upregulated by fluoxetine, but not p-CREB. No significant difference was found between Acu and FLX groups on the expression of PKA- α and p-CREB. Interestingly, H89 inhibited the effects of acupuncture or fluoxetine on upregulating the expression of p-CREB, but not PKA- α . There was no significant difference in expression of CREB among the groups. Conclusively, our findings further support the hypothesis that acupuncture could ameliorate depressive-like behaviors by regulating PKA/CREB signaling pathway, which might be mainly mediated by regulating the phosphorylation level of CREB.

  20. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    International Nuclear Information System (INIS)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-01-01

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe 2+ , Ca 2+ , HCO 3 − , and NO 3 − , of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h −1 . Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions

  1. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Li [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhanqi, Gao [State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210036 (China); Yuefei, Ji [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Xiaobin, Hu [School of Life Science, Huzhou University, Huzhou 313000 (China); Cheng, Sun, E-mail: envidean@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-03-21

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe{sup 2+}, Ca{sup 2+}, HCO{sub 3}{sup −}, and NO{sub 3}{sup −}, of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h{sup −1}. Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.

  2. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Biological pathways and chemical behavior of plutonium and other actinides in the environment

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Bondietti, E.A.; Eyman, L.D.

    1976-01-01

    The principal long-lived actinide elements that may enter the environment from either U or Pu fuel cycles are Pu, Am, Cm, and Np. Approximately 25% of the alpha activity estimated to be released to the atmosphere from the LMFBR fuel cycle will be contributed by 241 Am, 242 Cm, and 244 Cm. The balance of the alpha activity will come from Pu isotopes. Activities of 242 Cm, 244 Cm, 241 Am, 243 Am, and 237 Np in waste may exceed concentrations of Pu isotopes in waste after various periods of decay. Thorium and uranium isotopes may also be released by operations of the thorium fuel cycle. Environmental actinides are discussed under the following headings: sources of man-made actinide elements; pathways of exposure; environmental chemistry of actinides; uptake of actinides by plants; distribution of actinides in components of White Oak Lake; entry of actinides into terrestrial food chains; relationship between chemical behavior and uptake of actinides by organisms; and behavior of Pu in freshwater and marine food chains

  4. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors...: signaling and biology. PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  5. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun

    2004-01-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9±4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7± 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder

  6. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  7. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Guangli Yan

    2013-01-01

    Full Text Available Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at “Zusanli” acupoint (ST-36 as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  8. Dissection of Biological Property of Chinese Acupuncture Point Zusanli Based on Long-Term Treatment via Modulating Multiple Metabolic Pathways.

    Science.gov (United States)

    Yan, Guangli; Zhang, Aihua; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Zhang, Yingzhi; Xie, Ning; Wang, Xijun

    2013-01-01

    Acupuncture has a history of over 3000 years and is a traditional Chinese medical therapy that uses hair-thin metal needles to puncture the skin at specific points on the body to promote wellbeing, while its molecular mechanism and ideal biological pathways are still not clear. High-throughput metabolomics is the global assessment of endogenous metabolites within a biologic system and can potentially provide a more accurate snap shot of the actual physiological state. We hypothesize that acupuncture-treated human would produce unique characterization of metabolic phenotypes. In this study, UPLC/ESI-HDMS coupled with pattern recognition methods and system analysis were carried out to investigate the mechanism and metabolite biomarkers for acupuncture treatment at "Zusanli" acupoint (ST-36) as a case study. The top 5 canonical pathways including alpha-linolenic acid metabolism, d-glutamine and d-glutamate metabolism, citrate cycle, alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism pathways were acutely perturbed, and 53 differential metabolites were identified by chemical profiling and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Urine metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture.

  9. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.

    Science.gov (United States)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-03-21

    In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  11. Modelling climate change under no-policy and policy emissions pathways

    International Nuclear Information System (INIS)

    Wigley, T.M.L.

    2003-01-01

    Future emissions under the SRES scenarios are described as examples of no-climate-policy scenarios. The production of policy scenarios is guided by Article 2 of the UN Framework Convention on Climate Change, which requires stabilization of greenhouse-gas concentrations. It is suggested that the choice of stabilization targets should be governed by the need to avoid dangerous interference with the climate system, while the choice of the pathway towards a given target should be determined by some form of cost-benefit analysis. The WRE (Wigley, Richels and Edmonds) concentration profiles are given as examples of stabilization pathways, and an alternative 'overshoot' pathway is introduced. Probabilistic projections (as probability density functions - pdfs) for global-mean temperature under the SRES scenarios are given. The relative importance of different sources of uncertainty is determined by removing individual sources of uncertainty and examining the change in the output temperature pdf. Emissions and climate sensitivity uncertainties dominate, while carbon cycle, aerosol forcing and ocean mixing uncertainties are shown to be small. It is shown that large uncertainties remain even if the emissions are prescribed. Uncertainties in regional climate change are defined by comparing normalized changes (i.e., changes per 1C global-mean warming) across multiple models and using the inter-model standard deviation as an uncertainty metric. Global-mean temperature projections for the policy case are given using the WRE profiles. Different stabilization targets are considered, and the overshoot case for 550ppm stabilization is used to quantify the effects of pathway differences. It is shown that large emissions reductions (from the no-policy to the policy case) will lead to only relatively small reductions in warming over the next 100 years

  12. Signaling pathway underlying the octopaminergic modulation of myogenic contraction in the cricket lateral oviduct.

    Science.gov (United States)

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    Octopamine (OA), a biogenic monoamine, is a neurotransmitter and neuromodulator in invertebrates. Here, we report the effect of OA on the spontaneous rhythmic contractions (SRCs) of the lateral oviduct of the cricket Gryllus bimaculatus and the possible signaling pathway involved. Application of OA increased both the frequency and amplitude of SRCs in a dose-dependent manner. The effect of OA was inhibited by subsequent application of the OA receptor antagonist epinastine, indicating that the action of OA is mediated by OA receptor. To investigate the predominant signaling pathway underlying the action of OA, we first examined a possible involvement of the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway. Application of the membrane-permeable cAMP analog 8-Br-cAMP had little effect on SRCs and the effect of OA was not influenced by subsequent application of the PKA inhibitor H89, indicating that the cAMP/PKA signaling pathway is not the predominant pathway in the action of OA. Next, we examined a possible involvement of the second messenger inositol 1,4,5-trisphosphate in the action of OA. The effect of OA on SRCs was inhibited by subsequent application of the phosphoinositide-specific phospholipase C (PLC) inhibitor U73122, indicating that the PLC pathway is involved in the action of OA. The OA-induced increase in the frequency of SRCs was inhibited by pretreatment of the cell with the ryanodine receptor antagonist tetracaine but was not significantly affected by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB). On the other hand, the OA-induced increase in the amplitude of SRCs was inhibited by pretreatment of the cells with 2-APB but was not significantly affected by tetracaine. Taken together, these results suggest that the OA-induced excitatory effect on SRCs is mediated by the PLC signaling pathway: Ca2+ release from IP3 receptors may contribute to the modulation of the amplitude of SRCs, whereas Ca2+ release from ryanodine

  13. Optimal processing pathway selection for microalgae-based biorefinery under uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Zaman, Muhammad; Lee, Jay H.

    2015-01-01

    We propose a systematic framework for the selection of optimal processing pathways for a microalgaebased biorefinery under techno-economic uncertainty. The proposed framework promotes robust decision making by taking into account the uncertainties that arise due to inconsistencies among...... and shortage in the available technical information. A stochastic mixed integer nonlinear programming (sMINLP) problem is formulated for determining the optimal biorefinery configurations based on a superstructure model where parameter uncertainties are modeled and included as sampled scenarios. The solution...... the accounting of uncertainty are compared with respect to different objectives. (C) 2015 Elsevier Ltd. All rights reserved....

  14. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    Science.gov (United States)

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  15. An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence.

    Science.gov (United States)

    Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P

    2008-10-01

    This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/

  16. TC-1 (c8orf4) enhances aggressive biologic behavior in lung cancer through the Wnt/β-catenin pathway.

    Science.gov (United States)

    Su, Kai; Huang, Lijun; Li, Wenhai; Yan, Xiaolong; Li, Xiaofei; Zhang, Zhipei; Jin, Faguang; Lei, Jie; Ba, Guangzhen; Liu, Boya; Wang, Xiaoping; Wang, Yunjie

    2013-11-01

    The thyroid cancer-1 (TC-1) or c8orf4 gene encodes a 106-residue naturally disordered protein that has been found to be associated with thyroid, gastric, and breast cancer. A recent study has indicated that the protein functions as a positive regulator in the Wnt/β-catenin signaling pathway in human breast cancer. However, no research has been done in the area of lung cancer. Therefore, the goal of the present study was to confirm the relationship among TC-1, lung cancer, and the Wnt/β-catenin signaling pathway. The expression of TC-1 was immunohistochemically examined in 147 patients with non-small-cell lung cancer. TC-1-overexpressed and silenced A549 cells were infected using lentivirus and MTT cell proliferation analysis, and Matrigel invasion assays and scratch-wound assays were performed to confirm the biologic behavioral changes in different A549 cell subsets. The Wnt/β-catenin signaling pathway, key gene β-catenin, target genes of vascular endothelial growth factor, cyclin D1, matrix metalloproteinase-7, c-myc, and survivin were tested at the mRNA and protein level. TC-1 was detected in 97 of the 147 non-small-cell lung cancer primary tumor specimens, and its expression correlated with the TNM stage and regional lymph node metastasis (P cell line. Furthermore, expression of TC-1 protein affected the Wnt/β-catenin signaling pathway's downstream genes, such as vascular endothelial growth factor and matrix metalloproteinase-7, at the mRNA and protein level. TC-1 expression is associated with aggressive biologic behavior in lung cancer and might coordinate with the Wnt/β-catenin pathway as a positive upstream regulator that induces these behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Pathways between under/unemployment and health among racialized immigrant women in Toronto.

    Science.gov (United States)

    Premji, Stephanie; Shakya, Yogendra

    2017-02-01

    We sought to document pathways between under/unemployment and health among racialized immigrant women in Toronto while exploring the ways in which gender, class, migration and racialization, as interlocking systems of social relations, structure these relationships. We conducted 30 interviews with racialized immigrant women who were struggling to get stable employment that matched their education and/or experience. Participants were recruited through flyers, partner agencies and peer researcher networks. Most interviews (21) were conducted in a language other than English. Interviews were transcribed, translated as appropriate and analyzed using NVivo software. The project followed a community-based participatory action research model. Under/unemployment negatively impacted the physical and mental health of participants and their families. It did so directly, for example through social isolation, as well as indirectly through representation in poor quality jobs. Under/unemployment additionally led to the intensification of job search strategies and of the household/caregiving workload which also negatively impacted health. Health problems, in turn, contributed to pushing participants into long-term substandard employment trajectories. Participants' experiences were heavily structured by their social location as low income racialized immigrant women. Our study provides needed qualitative evidence on the gendered and racialized dimensions of under/unemployment, and adverse health impacts resulting from this. Drawing on intersectional analysis, we unpack the role that social location plays in creating highly uneven patterns of under/unemployment and negative health pathways for racialized immigrant women. We discuss equity informed strategies to help racialized immigrant women overcome barriers to stable work that match their education and/or experience.

  18. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yaowen [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China); Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Wuhan University, Wuhan, 430079 (China); Shenzhen Research Institute of Wuhan University, Shenzhen, 518057 (China)

    2017-05-05

    Highlights: • Persulfate could decolorize Rhodamine B (RhB) directly via non-radical reactions. • LED lamps emitting white light were utilized as the visible light source. • Dyes could activate peroxides through photoexcitation pathway. • Decolorization of dyes and production of radicals were achieved simultaneously. • The catalyst-free peroxide/dye/Vis process was effective in a broad pH range. - Abstract: Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (·OH) and sulfate radical (SO{sub 4}·{sup −})) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of ·OH and/or SO{sub 4}·{sup −} through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of ·OH and/or SO{sub 4}·{sup −} in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  19. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    Science.gov (United States)

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  20. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  1. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  2. Genes and pathways underlying susceptibility to impaired lung function in the context of environmental tobacco smoke exposure

    NARCIS (Netherlands)

    K. de Jong (Kim); J.M. Vonk (Judith); M. Imboden (Medea); L. Lahousse (Lies); A. Hofman (Albert); G.G. Brusselle (Guy); N.M. Probst-Hensch (Nicole M.); D.S. Postma (Dirkje); H.M. Boezen (Marike)

    2017-01-01

    textabstractBackground: Studies aiming to assess genetic susceptibility for impaired lung function levels upon exposure to environmental tobacco smoke (ETS) have thus far focused on candidate-genes selected based on a-priori knowledge of potentially relevant biological pathways, such as glutathione

  3. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    Science.gov (United States)

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of

  4. Modeling the intra- and extracellular cytokine signaling pathway under heat stroke in the liver.

    Directory of Open Access Journals (Sweden)

    Maria Rodriguez-Fernandez

    Full Text Available Heat stroke (HS is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS. The observation that pro- (e.g., IL-1 and anti-inflammatory (e.g., IL-10 cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation and proteomic (circulating cytokines and receptors data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico.

  5. Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Science.gov (United States)

    Lenton, Andrew; Matear, Richard J.; Keller, David P.; Scott, Vivian; Vaughan, Naomi E.

    2018-04-01

    Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr-1) over the period 2020-2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ˜ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020-2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.

  6. Photodegradation of gemfibrozil in aqueous solution under UV irradiation: kinetics, mechanism, toxicity, and degradation pathways.

    Science.gov (United States)

    Ma, Jingshuai; Lv, Wenying; Chen, Ping; Lu, Yida; Wang, Fengliang; Li, Fuhua; Yao, Kun; Liu, Guoguang

    2016-07-01

    The lipid regulator gemfibrozil (GEM) has been reported to be persistent in conventional wastewater treatment plants. This study investigated the photolytic behavior, toxicity of intermediate products, and degradation pathways of GEM in aqueous solutions under UV irradiation. The results demonstrated that the photodegradation of GEM followed pseudo-first-order kinetics, and the pseudo-first-order rate constant was decreased markedly with increasing initial concentrations of GEM and initial pH. The photodegradation of GEM included direct photolysis via (3)GEM(*) and self-sensitization via ROS, where the contribution rates of degradation were 0.52, 90.05, and 8.38 % for ·OH, (1)O2, and (3)GEM(*), respectively. Singlet oxygen ((1)O2) was evidenced by the molecular probe compound, furfuryl alcohol (FFA), and was identified as the primary reactive species in the photolytic process. The steady-state concentrations of (1)O2 increased from (0.324 ± 0.014) × 10(-12) to (1.021 ± 0.040) × 10(-12) mol L(-1), as the initial concentrations of GEM were increased from 5 to 20 mg L(-1). The second-order rate constant for the reaction of GEM with (1)O2 was calculated to be 2.55 × 10(6) M(-1) s(-1). The primary transformation products were identified using HPLC-MS/MS, and possible photodegradation pathways were proposed by hydroxylation, aldehydes reactions, as well as the cleavage of ether side chains. The toxicity of phototransformation product evaluation revealed that photolysis potentially provides a critical pathway for GEM toxicity reduction in potable water and wastewater treatment facilities.

  7. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Lim Da-jeong

    2010-11-01

    , which is involved in connective tissue degradation, could play a role in an important biological pathway for building up marbling in cattle. Moreover, ADAMTS4 and TGFβ1could potentially be used as an early biological marker for marbling fat content in the early stages of growth.

  8. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    Science.gov (United States)

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  9. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  10. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  11. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    Science.gov (United States)

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  12. Identification of differentially expressed genes and biological pathways in bladder cancer

    Science.gov (United States)

    Tang, Fucai; He, Zhaohui; Lei, Hanqi; Chen, Yuehan; Lu, Zechao; Zeng, Guohua; Wang, Hangtao

    2018-01-01

    The purpose of the present study was to identify key genes and investigate the related molecular mechanisms of bladder cancer (BC) progression. From the Gene Expression Omnibus database, the gene expression dataset GSE7476 was downloaded, which contained 43 BC samples and 12 normal bladder tissues. GSE7476 was analyzed to screen the differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for the DEGs using the DAVID database, and a protein-protein interaction (PPI) network was then constructed using Cytoscape software. The results of the GO analysis showed that the upregulated DEGs were significantly enriched in cell division, nucleoplasm and protein binding, while the downregulated DEGs were significantly enriched in ‘extracellular matrix organization’, ‘proteinaceous extracellular matrix’ and ‘heparin binding’. The results of the KEGG pathway analysis showed that the upregulated DEGs were significantly enriched in the ‘cell cycle’, whereas the downregulated DEGs were significantly enriched in ‘complement and coagulation cascades’. JUN, cyclin-dependent kinase 1, FOS, PCNA, TOP2A, CCND1 and CDH1 were found to be hub genes in the PPI network. Sub-networks revealed that these gene were enriched in significant pathways, including the ‘cell cycle’ signaling pathway and ‘PI3K-Akt signaling pathway’. In summary, the present study identified DEGs and key target genes in the progression of BC, providing potential molecular targets and diagnostic biomarkers for the treatment of BC. PMID:29532898

  13. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  14. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  15. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  16. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    Science.gov (United States)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  17. A novel bi-level meta-analysis approach: applied to biological pathway analysis.

    Science.gov (United States)

    Nguyen, Tin; Tagett, Rebecca; Donato, Michele; Mitrea, Cristina; Draghici, Sorin

    2016-02-01

    The accumulation of high-throughput data in public repositories creates a pressing need for integrative analysis of multiple datasets from independent experiments. However, study heterogeneity, study bias, outliers and the lack of power of available methods present real challenge in integrating genomic data. One practical drawback of many P-value-based meta-analysis methods, including Fisher's, Stouffer's, minP and maxP, is that they are sensitive to outliers. Another drawback is that, because they perform just one statistical test for each individual experiment, they may not fully exploit the potentially large number of samples within each study. We propose a novel bi-level meta-analysis approach that employs the additive method and the Central Limit Theorem within each individual experiment and also across multiple experiments. We prove that the bi-level framework is robust against bias, less sensitive to outliers than other methods, and more sensitive to small changes in signal. For comparative analysis, we demonstrate that the intra-experiment analysis has more power than the equivalent statistical test performed on a single large experiment. For pathway analysis, we compare the proposed framework versus classical meta-analysis approaches (Fisher's, Stouffer's and the additive method) as well as against a dedicated pathway meta-analysis package (MetaPath), using 1252 samples from 21 datasets related to three human diseases, acute myeloid leukemia (9 datasets), type II diabetes (5 datasets) and Alzheimer's disease (7 datasets). Our framework outperforms its competitors to correctly identify pathways relevant to the phenotypes. The framework is sufficiently general to be applied to any type of statistical meta-analysis. The R scripts are available on demand from the authors. sorin@wayne.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e

  18. A systems biology framework for pathway level culture media engineering: pplication to Pichia pastoris cultures

    OpenAIRE

    Ferreira, Ana Raquel Santos

    2012-01-01

    Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica Culture media (CM) formulations contain hundreds of ingredients in aqueous solutions that may be involved in complex interactions in the same or competing pathways within the cell. This thesis proposes a new methodology for determining the optimal composition of CM that migrates from an empirical to a mechanistic or hybrid mechanistic CM development approach. A framework consisting in the execution of an a...

  19. Recent advances in modeling languages for pathway maps and computable biological networks.

    Science.gov (United States)

    Slater, Ted

    2014-02-01

    As our theories of systems biology grow more sophisticated, the models we use to represent them become larger and more complex. Languages necessarily have the expressivity and flexibility required to represent these models in ways that support high-resolution annotation, and provide for simulation and analysis that are sophisticated enough to allow researchers to master their data in the proper context. These languages also need to facilitate model sharing and collaboration, which is currently best done by using uniform data structures (such as graphs) and language standards. In this brief review, we discuss three of the most recent systems biology modeling languages to appear: BEL, PySB and BCML, and examine how they meet these needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways

    OpenAIRE

    Mi, Huaiyu; Guo, Nan; Kejariwal, Anish; Thomas, Paul D.

    2006-01-01

    PANTHER is a freely available, comprehensive software system for relating protein sequence evolution to the evolution of specific protein functions and biological roles. Since 2005, there have been three main improvements to PANTHER. First, the sequences used to create evolutionary trees are carefully selected to provide coverage of phylogenetic as well as functional information. Second, PANTHER is now a member of the InterPro Consortium, and the PANTHER hidden markov Models (HMMs) are distri...

  1. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  2. The constitutional protection of trade secrets and patents under the Biologics Price Competition and Innovation Act of 2009.

    Science.gov (United States)

    Epstein, Richard A

    2011-01-01

    The Biologics Price Competition and Innovation Act of 2009 ("Biosimilars Act") is for the field of pharmaceutical products the single most important legislative development since passage of the Drug Price Competition and Patent Term Restoration Act of 1984 ("Hatch-Waxman Act"), on which portions of the Biosimilars Act are clearly patterned. Congress revised section 351 of the Public Health Service Act (PHSA) to create a pathway for FDA approval of "biosimilar" biological products. Each biosimilar applicant is required to cite in its application a "reference product" that was approved on the basis of a full application containing testing data and manufacturing information, which is owned and was submitted by another company and much of which constitutes trade secret information subject to constitutional protection. Because the Biosimilars Act authorizes biosimilar applicants to cite these previously approved applications, the implementation of the new legislative scheme raises critical issues under the Fifth Amendment of the Constitution, pursuant to which private property--trade secrets included--may not be taken for public use, without "just compensation." FDA must confront those issues as it implements the scheme set out in the Biosimilars Act. This article will discuss these issues, after providing a brief overview of the Biosimilars Act and a more detailed examination of the law of trade secrets.

  3. Extending and Applying Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological Pathways in Computational Models.

    Science.gov (United States)

    Alden, Kieran; Timmis, Jon; Andrews, Paul S; Veiga-Fernandes, Henrique; Coles, Mark

    2017-01-01

    Through integrating real time imaging, computational modelling, and statistical analysis approaches, previous work has suggested that the induction of and response to cell adhesion factors is the key initiating pathway in early lymphoid tissue development, in contrast to the previously accepted view that the process is triggered by chemokine mediated cell recruitment. These model derived hypotheses were developed using spartan, an open-source sensitivity analysis toolkit designed to establish and understand the relationship between a computational model and the biological system that model captures. Here, we extend the functionality available in spartan to permit the production of statistical analyses that contrast the behavior exhibited by a computational model at various simulated time-points, enabling a temporal analysis that could suggest whether the influence of biological mechanisms changes over time. We exemplify this extended functionality by using the computational model of lymphoid tissue development as a time-lapse tool. By generating results at twelve- hour intervals, we show how the extensions to spartan have been used to suggest that lymphoid tissue development could be biphasic, and predict the time-point when a switch in the influence of biological mechanisms might occur.

  4. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lorazo, Patrick; Lewis, Laurent J.; Meunier, Michel

    2006-01-01

    The thermodynamic pathways involved in laser irradiation of absorbing solids are investigated in silicon for pulse durations of 500 fs and 100 ps. This is achieved by accounting for carrier and atom dynamics within a combined Monte Carlo and molecular-dynamics scheme and simultaneously tracking the time evolution of the irradiated material in ρ-T-P space. Our simulations reveal thermal changes in long-range order and state of aggregation driven, in most cases, by nonequilibrium states of rapidly heated or promptly cooled matter. Under femtosecond irradiation near the ablation threshold, the system is originally pulled to a near-critical state following rapid ( -12 s) disordering of the mechanically unstable crystal and isochoric heating of the resulting metallic liquid. The latter is then adiabatically cooled to the liquid-vapor regime where phase explosion of the subcritical, superheated melt is initiated by a direct conversion of translational, mechanical energy into surface energy on a ∼10 -12 -10 -11 s time scale. At higher fluences, matter removal involves, instead, the fragmentation of an initially homogeneous fluid subjected to large strain rates upon rapid, supercritical expansion in vacuum. Under picosecond irradiation, homogeneous and, at later times, heterogeneous melting of the superheated solid are followed by nonisochoric heating of the molten metal. In this case, the subcritical liquid material is subsequently cooled onto the binodal by thermal conduction and explosive boiling does not take place; as a result, ablation is associated with a ''trivial'' fragmentation process, i.e., the relatively slow expansion and dissociation into liquid droplets of supercritical matter near thermodynamic equilibrium. This implies a liquid-vapor equilibration time of ∼10 -11 -10 -10 s and heating along the binodal under nanosecond irradiation. Solidification of the nonablated, supercooled molten material is eventually observed on a ∼10 -11 -10 -9 s time scale

  5. An efficient biological pathway layout algorithm combining grid-layout and spring embedder for complicated cellular location information.

    Science.gov (United States)

    Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

    2010-06-18

    Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to

  6. Pathway profiles based on gene-set enrichment analysis in the honey bee Apis mellifera under brood rearing-suppressed conditions.

    Science.gov (United States)

    Kim, Kyungmun; Kim, Ju Hyeon; Kim, Young Ho; Hong, Seong-Eui; Lee, Si Hyeock

    2018-01-01

    Perturbation of normal behaviors in honey bee colonies by any external factor can immediately reduce the colony's capacity for brood rearing, which can eventually lead to colony collapse. To investigate the effects of brood-rearing suppression on the biology of honey bee workers, gene-set enrichment analysis of the transcriptomes of worker bees with or without suppressed brood rearing was performed. When brood rearing was suppressed, pathways associated with both protein degradation and synthesis were simultaneously over-represented in both nurses and foragers, and their overall pathway representation profiles resembled those of normal foragers and nurses, respectively. Thus, obstruction of normal labor induced over-representation in pathways related with reshaping of worker bee physiology, suggesting that transition of labor is physiologically reversible. In addition, some genes associated with the regulation of neuronal excitability, cellular and nutritional stress and aggressiveness were over-expressed under brood rearing suppression perhaps to manage in-hive stress under unfavorable conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  8. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  9. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  10. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    Science.gov (United States)

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  11. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    Directory of Open Access Journals (Sweden)

    Casper Nyamukondiwa

    2012-11-01

    Full Text Available The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  12. Signaling pathways underlying the antidepressant-like effect of inosine in mice.

    Science.gov (United States)

    Gonçalves, Filipe Marques; Neis, Vivian Binder; Rieger, Débora Kurrle; Lopes, Mark William; Heinrich, Isabella A; Costa, Ana Paula; Rodrigues, Ana Lúcia S; Kaster, Manuella P; Leal, Rodrigo Bainy

    2017-06-01

    Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A 1 and A 2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca 2+ /calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine

  13. Geochemical pathways and biological uptake of radium in small Canadian Shield lakes

    International Nuclear Information System (INIS)

    Hesslein, R.H.; Slavicek, E.

    1984-01-01

    The sediment-water interactions and biological uptake of 226 Ra are described for four small Canadian Shield lakes at the Experimental Lakes Area, Kenora, Ontario. A single addition of 226 Ra was made to each lake between 1970 and 1976. Approximately 90 percent of the added 226 Ra initially sorbed to the sediments. Outflow from the lakes showed losses of only 5-11 percent 226 Ra per year. Models are proposed for adsorption and outflow of 226 Ra from lakes. Biological uptake and long-term 226 Ra concentrations were measured in three species of macrophytes, crayfish, and five species of fish. Bioaccumulation ranged from 1100 to 5000 in macrophytes, 705 in crayfish, from 30 to 80 in large trout (Salvelinus namaycush), white sucker (Catostomus commersoni), and lake whitefish (Coregonus clupeaformis), and from 230 to 1200 in fathead minnows (Pimephales promelas), pearl dace (Semotilus margarita), and northern redbelly dace (Chrosomus eos). The concept of Ra/Ca ratio in organisms versus water and food is used to explain the differences in bioaccumulation. 226 Ra is discriminated against versus calcium by fish but favoured by macrophytes and crayfish

  14. Under-reporting of accidents involving biological material by nursing professionals at a Brazilian emergency hospital.

    Science.gov (United States)

    Facchin, Luiza Tayar; Gir, Elucir; Pazin-Filho, Antonio; Hayashida, Miyeko; da Silva Canini, Silvia Rita Marin

    2013-01-01

    Pathogens can be transmitted to health professionals after contact with biological material. The exact number of infections deriving from these events is still unknown, due to the lack of systematic surveillance data and under-reporting. A cross-sectional study was carried out, involving 451 nursing professionals from a Brazilian tertiary emergency hospital between April and July 2009. Through an active search, cases of under-reporting of occupational accidents with biological material by the nursing team were identified by means of individual interviews. The Institutional Review Board approved the research project. Over half of the professionals (237) had been victims of one or more accidents (425 in total) involving biological material, and 23.76% of the accidents had not been officially reported using an occupational accident report. Among the underreported accidents, 53.47% were percutaneous and 67.33% were bloodborne. The main reason for nonreporting was that the accident had been considered low risk. The under-reporting rate (23.76%) was low in comparison with other studies, but most cases of exposure were high risk.

  15. The TCA Pathway is an Important Player in the Regulatory Network Governing Vibrio alginolyticus Adhesion Under Adversity.

    Science.gov (United States)

    Huang, Lixing; Huang, Li; Yan, Qingpi; Qin, Yingxue; Ma, Ying; Lin, Mao; Xu, Xiaojin; Zheng, Jiang

    2016-01-01

    Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway) might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, quantitative Real-Time PCR (qPCR), RNAi, and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity, and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that (1) the TCA pathway plays a key role in V. alginolyticus adhesion: (2) the TCA pathway is sensitive to environmental stresses.

  16. The TCA pathway is an important player in the regulatory network governing Vibrio alginolyticus adhesion under adversity

    Directory of Open Access Journals (Sweden)

    Lixing eHuang

    2016-02-01

    Full Text Available Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, qPCR, RNAi and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that 1 the TCA pathway plays a key role in V. alginolyticus adhesion: 2 the TCA pathway is sensitive to environmental stresses.

  17. Shedding Light on the Mechanisms Underlying Health Disparities Through Community Participatory Methods: The Stress Pathway

    Science.gov (United States)

    Schetter, Christine Dunkel; Schafer, Peter; Lanzi, Robin Gaines; Clark-Kauffman, Elizabeth; Raju, Tonse N. K.; Hillemeier, Marianne M.

    2015-01-01

    Health disparities are large and persistent gaps in the rates of disease and death between racial/ethnic and socioeconomic status subgroups in the population. Stress is a major pathway hypothesized to explain such disparities. The Eunice Kennedy Shriver National Institute of Child Health and Human Development formed a community/research collaborative—the Community Child Health Network—to investigate disparities in maternal and child health in five high-risk communities. Using community participation methods, we enrolled a large cohort of African American/Black, Latino/Hispanic, and non-Hispanic/White mothers and fathers of newborns at the time of birth and followed them over 2 years. A majority had household incomes near or below the federal poverty level. Home interviews yielded detailed information regarding multiple types of stress such as major life events and many forms of chronic stress including racism. Several forms of stress varied markedly by racial/ethnic group and income, with decreasing stress as income increased among Caucasians but not among African Americans; other forms of stress varied by race/ethnicity or poverty alone. We conclude that greater sophistication in studying the many forms of stress and community partnership is necessary to uncover the mechanisms underlying health disparities in poor and ethnic-minority families and to implement community health interventions. PMID:26173227

  18. Shedding Light on the Mechanisms Underlying Health Disparities Through Community Participatory Methods: The Stress Pathway.

    Science.gov (United States)

    Dunkel Schetter, Christine; Schafer, Peter; Lanzi, Robin Gaines; Clark-Kauffman, Elizabeth; Raju, Tonse N K; Hillemeier, Marianne M

    2013-11-01

    Health disparities are large and persistent gaps in the rates of disease and death between racial/ethnic and socioeconomic status subgroups in the population. Stress is a major pathway hypothesized to explain such disparities. The Eunice Kennedy Shriver National Institute of Child Health and Human Development formed a community/research collaborative-the Community Child Health Network-to investigate disparities in maternal and child health in five high-risk communities. Using community participation methods, we enrolled a large cohort of African American/Black, Latino/Hispanic, and non-Hispanic/White mothers and fathers of newborns at the time of birth and followed them over 2 years. A majority had household incomes near or below the federal poverty level. Home interviews yielded detailed information regarding multiple types of stress such as major life events and many forms of chronic stress including racism. Several forms of stress varied markedly by racial/ethnic group and income, with decreasing stress as income increased among Caucasians but not among African Americans; other forms of stress varied by race/ethnicity or poverty alone. We conclude that greater sophistication in studying the many forms of stress and community partnership is necessary to uncover the mechanisms underlying health disparities in poor and ethnic-minority families and to implement community health interventions. © The Author(s) 2013.

  19. B1-B2 phase transition mechanism and pathway of PbS under pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  20. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  1. [Preneoplasias of ovarian carcinoma: biological and clinical aspects of different pathways of tumorigenesis].

    Science.gov (United States)

    Staebler, A

    2011-11-01

    Ovarian carcinomas consist of a heterogeneous group of malignant epithelial neoplasms with specific pathogenic mechanisms. This review provides a brief introduction to the different pathways of tumor progression and the associated molecular changes. However, the main focus will be on two areas with major paradigm shifting developments in recent years. Mutational analysis of ovarian clear cell carcinomas, endometrioid carcinomas and endometriotic lesions identified mutations in the ARID1A gene as common and early genetic changes in carcinomas with associated endometriosis and in atypical endometriosis itself. Extensive pathological work-up of the fallopian tubes of BRCA1/2 mutation carriers have demonstrated the existence of serous tubal intraepithelial carcinomas (STIC). Further studies showed that this lesion can also be found in 50-60% of patients with serous ovarian carcinomas without BRCA1/2 germline mutations. Pre-precursors which share the p53 mutations with STICs but proliferate very little are called p53-signatures and provide conclusive evidence that STICs develop in the fallopian tubes.

  2. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  3. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2014-01-01

    Ammonia is a major environmental factor influencing biomethanation in full-scale anaerobic digesters. In this study, the effect of different ammonia levels on methanogenic pathways and methanogenic community composition of full-scale biogas plants was investigated. Eight full-scale digesters...... operating under different ammonia levels were sampled, and the residual biogas production was followed in fed-batch reactors. Acetate, labelled in the methyl group, was used to determine the methanogenic pathway by following the 14CH4 and 14CO2 production. Fluorescence in situ hybridisation was used...... to determine the methanogenic communities’ composition. Results obtained clearly demonstrated that syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis was the dominant pathway in all digesters with high ammonia levels (2.8–4.57 g NH4 +-N L−1), while acetoclastic methanogenic pathway...

  4. Pathways to Disease: The Biological Consequences of Social Adversity on Asthma in Minority Youth

    Science.gov (United States)

    2016-10-01

    Under Review. o Books or other non-periodical, one-time publications: Nothing to Report o Other publications, conference papers, and presentations...et al. Effect of secondhand smoke on asthma control among black and Latino children. The Journal of Allergy and Clinical Immunology. 2012;129:1478

  5. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  6. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    Science.gov (United States)

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  7. Brain drains: new insights into brain clearance pathways from lymphatic biology.

    Science.gov (United States)

    Bower, Neil I; Hogan, Benjamin M

    2018-05-01

    The lymphatic vasculature act as the drainage system for most of our tissues and organs, clearing interstitial fluid and waste and returning them to the blood circulation. This is not the case for the central nervous system (CNS), which is devoid of parenchymal lymphatic vessels. Nevertheless, the brain is responsible for 25% of the body's metabolism and only compromises 2% of the body's mass. This high metabolic load requires an efficient system to remove waste products and maintain homeostasis. Well-described mechanisms of waste clearance include phagocytic immune cell functions as well as perivascular fluid flow; however, the need for active drainage of waste from the brain is becoming increasingly appreciated. Recent developments in lymphatic vascular biology challenge the proposition that the brain lacks lymphatic drainage or an equivalent. In this review, we describe the roles of the glymphatic system (a key drainage mechanism in the absence of lymphatics), the recently characterized meningeal lymphatic vessels, and explore an enigmatic cell population found in zebrafish called mural lymphatic endothelial cells. These systems may play important individual and collective roles in draining and clearing wastes from the brain.

  8. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  9. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  10. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy

    Directory of Open Access Journals (Sweden)

    Anastasia eYendiki

    2011-10-01

    Full Text Available We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls.

  11. Biological pathways of radionuclides originating from the Chernobyl fallout in a boreal forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Guillitte, O. (Unite de Radioecologie, Faculte des Sciences Agronomiques, Gembloux (Belgium)); Melin, J.; Wallberg, L. (Swedish Radiation Protection Institute, Stockholm (Sweden))

    1994-10-14

    In an attempt to understand the mechanisms governing the transfer and retention of radiocaesium in the understorey vegetation, 39 macromycetes species and 33 plant species, together with humus samples, were systematically collected from the undercover vegetation in a boreal coniferous forest. The results indicate that the main factors determining interspecific differences in contamination level are the rooting depth in plants, the depth of mycelium in fungi, and the ecophysiological behaviour of fungi, mycotrophism or plant parasitism. A comparison between the investigated species and the same species growing in similar ecosystems, albeit under different climatic conditions, resulted in an almost identical ranking in terms of radiocaesium contamination levels; the contamination ratios between species were also relatively constant. From an experiment involving humus samples, it was shown that up to 40% of the radiocaesium could be retained by the microflora, particularly by mycelia.

  12. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  13. Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

    Science.gov (United States)

    2013-09-05

    to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names...commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or...pathway. Nature Medicine 6: 422–428. 93. Murray PJ (2007) The jak-stat signaling pathway: Input and output intergration . Journal of Immunology 178

  14. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Generation of radicals in hard biological tissues under the action of laser radiation

    Science.gov (United States)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  17. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.

    Directory of Open Access Journals (Sweden)

    Weiping Shi

    2018-05-01

    Full Text Available Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L. production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways in M79, including photosystem II (PSII oxygen-evolving complex, peroxidase (POD activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.

  18. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Shi, Weiping; Cheng, Jingye; Wen, Xiaojie; Wang, Jixiang; Shi, Guanyan; Yao, Jiayan; Hou, Liyuan; Sun, Qian; Xiang, Peng; Yuan, Xiangyang; Dong, Shuqi; Guo, Pingyi; Guo, Jie

    2018-01-01

    Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet ( Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F 1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.

  19. Evaluation of biological attributes of soil type latossol under agroecological production

    Directory of Open Access Journals (Sweden)

    Marisol Rivero Herrada

    2016-10-01

    Full Text Available Biological soil attributes have shown to be good indicators of soil changes as a result of the management function. The aim of this study was to evaluate the effect of using cover crops, as well as planting and tillage systems on the biological attributes of a yellowish red latosol soil. Soil samples were taken at 0 to 0.10 m depth, seven days before the bean harvest. Microbial biomass carbon and nitrogen, basal soil respiration, metabolic ratio and total enzyme activity were evaluated in this study. The best agroecological management was achieved under the association of the ground cover with millet and in direct seeding because they showed higher soil microbial biomass carbon and nitrogen content and lower metabolic quotient, being pork bean the best plant coverage. All biological soil attributes were sensitive to the tillage system, which showed the best results of the total enzyme activity and of the soil metabolic quotient which resulted to be the most efficient.

  20. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we......, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated....

  1. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    International Nuclear Information System (INIS)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole; Testa, Mauro; Tang, Shikui; Gheorghiu, Liliana; Biggs, Peter; Paganetti, Harald; Efstathiou, Jason A.; Lu, Hsiao-Ming; Held, Kathryn D.; Willers, Henning

    2015-01-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and 137 Cs γ-rays were used. To estimate the RBE of protons relative to 60 Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation

  2. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Testa, Mauro; Tang, Shikui [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gheorghiu, Liliana [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Biggs, Peter; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D. [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  3. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  4. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions.

    Science.gov (United States)

    Le Roux, Johannes J; Hui, Cang; Keet, Jan-Hendrik; Ellis, Allan G

    2017-09-01

    Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  6. Pathways and Mechanisms Underlying the Photophysics and Photochemistry of Riboflavin induced cornea crosslinking

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen

    In this talk, we will describe general pathways involved in the photophysics of a photosensitized process, which can lead to crosslinking due to light excitation of Riboflavin in the cornea. Furthermore, we will elucidate different aspects of reactions that can produce crosslinks, with respect...

  7. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario

    NARCIS (Netherlands)

    Haile, Alemseged Tamiru; Akawka, Ashenafi Lekasa; Berhanu, Beza; Rientjes, T.H.M.

    2017-01-01

    Climatic and hydrological changes will likely be intensified in the Upper Blue Nile (UBN) basin by the effects of global warming. The extent of such effects for representative concentration pathways (RCP) climate scenarios is unknown. We evaluated projected changes in rainfall and evapotranspiration

  8. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  9. Generation of computationally predicted Adverse Outcome Pathway networks through integration of publicly available in vivo, in vitro, phenotype, and biological pathway data.

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is becoming a widely used tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse ecological and human health outcomes. However, the conventional process...

  10. Regulation of the kynurenine metabolism pathway by Xiaoyao San and the underlying effect in the hippocampus of the depressed rat.

    Science.gov (United States)

    Wang, Jiajia; Li, Xiaofang; He, Shugui; Hu, Lijun; Guo, Jiewen; Huang, Xiangning; Hu, Jinqing; Qi, Yaoqun; Chen, Bin; Shang, Dewei; Wen, Yuguan

    2018-03-25

    significantly reduced (p < 0.05). XYS reversed the abnormalities of the tryptophan-kynurenine metabolic pathways in depressed rats and achieved an excellent antidepressant effect. Its direct impact may be observed as changes in biological indicators in rat hippocampus tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Systems Biology Genetic Approach Identifies Serotonin Pathway as a Possible Target for Obstructive Sleep Apnea: Results from a Literature Search Review

    Directory of Open Access Journals (Sweden)

    Ram Jagannathan

    2017-01-01

    Full Text Available Rationale. Overall validity of existing genetic biomarkers in the diagnosis of obstructive sleep apnea (OSA remains unclear. The objective of this systematic genetic study is to identify “novel” biomarkers for OSA using systems biology approach. Methods. Candidate genes for OSA were extracted from PubMed, MEDLINE, and Embase search engines and DisGeNET database. The gene ontology (GO analyses and candidate genes prioritization were performed using Enrichr tool. Genes pertaining to the top 10 pathways were extracted and used for Ingenuity Pathway Analysis. Results. In total, we have identified 153 genes. The top 10 pathways associated with OSA include (i serotonin receptor interaction, (ii pathways in cancer, (iii AGE-RAGE signaling in diabetes, (iv infectious diseases, (v serotonergic synapse, (vi inflammatory bowel disease, (vii HIF-1 signaling pathway, (viii PI3-AKT signaling pathway, (ix regulation lipolysis in adipocytes, and (x rheumatoid arthritis. After removing the overlapping genes, we have identified 23 candidate genes, out of which >30% of the genes were related to the genes involved in the serotonin pathway. Among these 4 serotonin receptors SLC6A4, HTR2C, HTR2A, and HTR1B were strongly associated with OSA. Conclusions. This preliminary report identifies several potential candidate genes associated with OSA and also describes the possible regulatory mechanisms.

  12. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    Science.gov (United States)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  13. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism

    Science.gov (United States)

    Zielinski, Daniel C.; Jamshidi, Neema; Corbett, Austin J.; Bordbar, Aarash; Thomas, Alex; Palsson, Bernhard O.

    2017-01-01

    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.

  14. Decision-Making Under Risk: Integrating Perspectives From Biology, Economics, and Psychology.

    Science.gov (United States)

    Mishra, Sandeep

    2014-08-01

    Decision-making under risk has been variably characterized and examined in many different disciplines. However, interdisciplinary integration has not been forthcoming. Classic theories of decision-making have not been amply revised in light of greater empirical data on actual patterns of decision-making behavior. Furthermore, the meta-theoretical framework of evolution by natural selection has been largely ignored in theories of decision-making under risk in the human behavioral sciences. In this review, I critically examine four of the most influential theories of decision-making from economics, psychology, and biology: expected utility theory, prospect theory, risk-sensitivity theory, and heuristic approaches. I focus especially on risk-sensitivity theory, which offers a framework for understanding decision-making under risk that explicitly involves evolutionary considerations. I also review robust empirical evidence for individual differences and environmental/situational factors that predict actual risky decision-making that any general theory must account for. Finally, I offer steps toward integrating various theoretical perspectives and empirical findings on risky decision-making. © 2014 by the Society for Personality and Social Psychology, Inc.

  15. Neural pathway in the right hemisphere underlies verbal insight problem solving.

    Science.gov (United States)

    Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L

    2014-01-03

    Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  17. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  18. Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Mengmeng Su

    2018-06-01

    Full Text Available Chinese is a logographic language that is different from alphabetic languages in visual and semantic complexity. Thus far, it is still unclear whether Chinese children with dyslexia show similar disruption of white matter pathways as in alphabetic languages. The present study focused on the alteration of white matter pathways in Chinese children with dyslexia. Using diffusion tensor imaging tractography, the bilateral arcuate fasciculus (AF-anterior, AF-posterior and AF-direct segments, inferior fronto-occipital fasciculus (IFOF and inferior longitudinal fasciculus (ILF were delineated in each individual’s native space. Compared with age-matched controls, Chinese children with dyslexia showed reduced fractional anisotropy in the left AF-direct and the left ILF. Further regression analyses revealed a functional dissociation between the left AF-direct and the left ILF. The AF-direct tract integrity was associated with phonological processing skill, an ability important for reading in all writing systems, while the ILF integrity was associated with morphological processing skill, an ability more strongly recruited for Chinese reading. In conclusion, the double disruption locus in Chinese children with dyslexia, and the functional dissociation between dorsal and ventral pathways reflect both universal and specific properties of reading in Chinese.

  19. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia

    Science.gov (United States)

    Weiss, Linda C.; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-01-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  20. The biology and polymer physics underlying large-scale chromosome organization.

    Science.gov (United States)

    Sazer, Shelley; Schiessel, Helmut

    2018-02-01

    Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  1. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  2. Single-dose relative biological effectiveness and toxicity studies under conditions of hypothermia and hyperbaric oxygen

    International Nuclear Information System (INIS)

    Hering, E.R.; Blekkenhorst, G.; Harrison, G.G.; Morrell, D.; Korrubel, J.; Gregory, A.; Phillips, J.; Manca, V.; Sealy, R.; Cape Town Univ.

    1986-01-01

    An approach to using hyperbaric oxygen with radiation in a clinical situation has been described in the preceding paper in this issue. To ascertain whether there might be a change in the relative biological effectiveness of radiation on normal mammalian tissue treated under conditions of hypothermia and hyperbaric oxygen, the acute reaction to radiation of pig skin was studied. A single dose enhancement ratio at the erythema reaction level of 1.4+-0.08 was obtained when compared with irradiation at normal body temperature in air. The authors studied also a series of antioxidant enzymes in rat liver and lung after exposure to hypothermia and hyperbaric oxygen. Enzyme changes were such as to combat oxygen toxicity which might develop as a result of the pre-treatment. (author)

  3. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  4. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea.

    Science.gov (United States)

    Empadinhas, Nuno; da Costa, Milton S

    2011-08-01

    A decade ago the compatible solutes mannosylglycerate (MG) and glucosylglycerate (GG) were considered to be rare in nature. Apart from two species of thermophilic bacteria, Thermus thermophilus and Rhodothermus marinus, and a restricted group of hyperthermophilic archaea, the Thermococcales, MG had only been identified in a few red algae. Glucosylglycerate was considered to be even rarer and had only been detected as an insignificant solute in two halophilic microorganisms, a cyanobacterium, as a component of a polysaccharide and of a glycolipid in two actinobacteria. Unlike the hyper/thermophilic MG-accumulating microorganisms, branching close to the root of the Tree of Life, those harbouring GG shared a mesophilic lifestyle. Exceptionally, the thermophilic bacterium Persephonella marina was reported to accumulate GG. However, and especially owing to the identification of the key-genes for MG and GG synthesis and to the escalating numbers of genomes available, a plethora of new organisms with the resources to synthesize these solutes has been recognized. The accumulation of GG as an 'emergency' compatible solute under combined salt stress and nitrogen-deficient conditions now seems to be a disseminated survival strategy from enterobacteria to marine cyanobacteria. In contrast, the thermophilic and extremely radiation-resistant bacterium Rubrobacter xylanophilus is the only actinobacterium known to accumulate MG, and under all growth conditions tested. This review addresses the environmental factors underlying the accumulation of MG, GG and derivatives in bacteria and archaea and their roles during stress adaptation or as precursors for more elaborated macromolecules. The diversity of pathways for MG and GG synthesis as well as those for some of their derivatives is also discussed. The importance of glycerate-derived organic solutes in the microbial world is only now being recognized. Their stress-dependent accumulation and the molecular aspects of their

  5. N deposition as a threat to the World's protected areas under the Convention on Biological Diversity

    International Nuclear Information System (INIS)

    Bleeker, A.; Hicks, W.K.; Dentener, F.; Galloway, J.; Erisman, J.W.

    2011-01-01

    This paper combines the world's protected areas (PAs) under the Convention on Biological Diversity (CBD), common classification systems of ecosystem conservation status, and current knowledge on ecosystem responses to nitrogen (N) deposition to determine areas most at risk. The results show that 40% (approx. 11% of total area) of PAs currently receive >10 kg N/ha/yr with projections for 2030 indicating that this situation is not expected to change. Furthermore, 950 PAs are projected to receive >30 kg N/ha/yr by 2030 (approx. twice the 2000 number), of which 62 (approx. 11,300 km 2 ) are also Biodiversity Hotspots and G200 ecoregions; with forest and grassland ecosystems in Asia particularly at risk. Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide. Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Highlights: → Significant areas of the Protected Areas Programme under the CBD will likely be under threat of high N deposition levels by the year 2030.→ Approx. 950 PAs are projected to receive N deposition levels of more than 30 kg N/ha/yr by 2030.→ 62 of these sites are also Biodiversity Hotspots and G200 ecoregions, where forest and grassland ecosystems in Asia will be particularly at risk.→ Many of these sites are known to be sensitive to N deposition effects, both in terms of biodiversity changes and ecosystem services they provide → Urgent assessment of high risk areas identified in this study is recommended to inform the conservation efforts of the CBD. - Significant areas of the UNEP Protected Areas Programme under the CBD receive high N deposition rates that are likely to increase in the future, especially in Asia, and may pose a significant threat to biodiversity.

  6. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2016-04-01

    Full Text Available Microgravity induces three-dimensional (3D growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS and spheroid non-forming (AD thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line after a 24 h-exposure on the Random Positioning Machine (RPM and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

  7. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Lyons, Brett P.; Thain, John E.; Law, Robin J.

    2013-01-01

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology

  8. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    Science.gov (United States)

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Biological treatment of refinery spent caustics under halo-alkaline conditions.

    Science.gov (United States)

    de Graaff, Marco; Bijmans, Martijn F M; Abbas, Ben; Euverink, Gert-J W; Muyzer, Gerard; Janssen, Albert J H

    2011-08-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 μM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties.

    Science.gov (United States)

    Zischg, Jonatan; Goncalves, Mariana L R; Bacchin, Taneha Kuzniecow; Leonhardt, Günther; Viklander, Maria; van Timmeren, Arjan; Rauch, Wolfgang; Sitzenfrei, Robert

    2017-09-01

    In the urban water cycle, there are different ways of handling stormwater runoff. Traditional systems mainly rely on underground piped, sometimes named 'gray' infrastructure. New and so-called 'green/blue' ambitions aim for treating and conveying the runoff at the surface. Such concepts are mainly based on ground infiltration and temporal storage. In this work a methodology to create and compare different planning alternatives for stormwater handling on their pathways to a desired system state is presented. Investigations are made to assess the system performance and robustness when facing the deeply uncertain spatial and temporal developments in the future urban fabric, including impacts caused by climate change, urbanization and other disruptive events, like shifts in the network layout and interactions of 'gray' and 'green/blue' structures. With the Info-Gap robustness pathway method, three planning alternatives are evaluated to identify critical performance levels at different stages over time. This novel methodology is applied to a real case study problem where a city relocation process takes place during the upcoming decades. In this case study it is shown that hybrid systems including green infrastructures are more robust with respect to future uncertainties, compared to traditional network design.

  13. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress

    Directory of Open Access Journals (Sweden)

    Sofia Caretto

    2015-11-01

    Full Text Available Higher plants synthesize an amazing diversity of phenolic secondary metabolites. Phenolics are defined secondary metabolites or natural products because, originally, they were considered not essential for plant growth and development. Plant phenolics, like other natural compounds, provide the plant with specific adaptations to changing environmental conditions and, therefore, they are essential for plant defense mechanisms. Plant defensive traits are costly for plants due to the energy drain from growth toward defensive metabolite production. Being limited with environmental resources, plants have to decide how allocate these resources to various competing functions. This decision brings about trade-offs, i.e., promoting some functions by neglecting others as an inverse relationship. Many studies have been carried out in order to link an evaluation of plant performance (in terms of growth rate with levels of defense-related metabolites. Available results suggest that environmental stresses and stress-induced phenolics could be linked by a transduction pathway that involves: (i the proline redox cycle; (ii the stimulated oxidative pentose phosphate pathway; and, in turn, (iii the reduced growth of plant tissues.

  14. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes.

    Science.gov (United States)

    Nomura, Yoko; John, Rosalind M; Janssen, Anna Bugge; Davey, Charles; Finik, Jackie; Buthmann, Jessica; Glover, Vivette; Lambertini, Luca

    2017-06-01

    Preeclampsia is known to be a leading cause of mortality and morbidity among mothers and their infants. Approximately 3-8% of all pregnancies in the US are complicated by preeclampsia and another 5-7% by hypertensive symptoms. However, less is known about its long-term influence on infant neurobehavioral development. The current review attempts to demonstrate new evidence for imprinting gene dysregulation caused by hypertension, which may explain the link between maternal preeclampsia and neurocognitive dysregulation in offspring. Pub Med and Web of Science databases were searched using the terms "preeclampsia," "gestational hypertension," "imprinting genes," "imprinting dysregulation," and "epigenetic modification," in order to review the evidence demonstrating associations between preeclampsia and suboptimal child neurodevelopment, and suggest dysregulation of placental genomic imprinting as a potential underlying mechanism. The high mortality and morbidity among mothers and fetuses due to preeclampsia is well known, but there is little research on the long-term biological consequences of preeclampsia and resulting hypoxia on the fetal/child neurodevelopment. In the past decade, accumulating evidence from studies that transcend disciplinary boundaries have begun to show that imprinted genes expressed in the placenta might hold clues for a link between preeclampsia and impaired cognitive neurodevelopment. A sudden onset of maternal hypertension detected by the placenta may result in misguided biological programming of the fetus via changes in the epigenome, resulting in suboptimal infant development. Furthering our understanding of the molecular and cellular mechanisms through which neurodevelopmental trajectories of the fetus/infant are affected by preeclampsia and hypertension will represent an important first step toward preventing adverse neurodevelopment in infants.

  15. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  16. A shortcut to wide-ranging biological actions of dietary polyphenols: modulation of the nitrate-nitrite-nitric oxide pathway in the gut.

    Science.gov (United States)

    Rocha, Bárbara S; Nunes, Carla; Pereira, Cassilda; Barbosa, Rui M; Laranjinha, João

    2014-08-01

    Dietary polyphenols are complex, natural compounds with recognized health benefits. Initially attractive to the biomedical area due to their in vitro antioxidant properties, the biological implications of polyphenols are now known to be far from their acute ability to scavenge free radicals but rather to modulate redox signaling pathways. Actually, it is now recognized that dietary polyphenols are extensively metabolized in vivo and that the chemical, biophysical and biological properties of their metabolites are, in most cases, quite different from the ones of the parent molecules. Hence, the study of the metabolic, absorptive and signaling pathways of both phenolics and derivatives has become a major issue. In this paper we propose a short-cut for the systemic effects of polyphenols in connection with nitric oxide (˙NO) biology. This free radical is a ubiquitous signaling molecule with pivotal functions in vivo. It is produced through an enzymatic pathway and also through the reduction of dietary nitrate and nitrite in the human stomach. At acidic gastric pH, dietary polyphenols, in the form they are conveyed in foods and at high concentration, not only promote nitrite reduction to ˙NO but also embark in a complex network of chemical reactions to produce higher nitrogen oxides with signaling functions, namely by inducing post-translational modifications. Modified endogenous molecules, such as nitrated proteins and lipids, acquire important physiological functions. Thus, local and systemic effects of ˙NO such as modulation of vascular tone, mucus production in the gut and protection against ischemia-reperfusion injury are, in this sense, triggered by dietary polyphenols. Evidence to support the signaling and biological effects of polyphenols by modulation of the nitrate-nitrite-NO pathway will be herein provided and discussed. General actions of polyphenols encompassing absorption and metabolism in the intestine/liver are short-cut via the production of

  17. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    International Nuclear Information System (INIS)

    Fukunaga, Satoki; Kakehashi, Anna; Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki; Gi, Min; Wanibuchi, Hideki

    2015-01-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis

  18. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  19. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes

    DEFF Research Database (Denmark)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan

    2016-01-01

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approac...

  20. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin

    Science.gov (United States)

    Yin, Yuanyuan; Tang, Qiuhong; Liu, Xingcai; Zhang, Xuejun

    2017-02-01

    Increasing population and socio-economic development have put great pressure on water resources of the Yellow River (YR) basin. The anticipated climate and socio-economic changes may further increase water stress. Many studies have investigated the changes in renewable water resources under various climate change scenarios, but few have considered the joint pressure from both climate change and socio-economic development. In this study, we assess water scarcity under various socio-economic pathways with emphasis on the impact of water scarcity on food production. The water demands in the 21st century are estimated based on the newly developed shared socio-economic pathways (SSPs) and renewable water supply is estimated using the climate projections under the Representative Concentration Pathway (RCP) 8.5 scenario. The assessment predicts that the renewable water resources would decrease slightly then increase. The domestic and industrial water withdrawals are projected to increase in the next a few decades and then remain at the high level or decrease slightly during the 21st century. The increase in water withdrawals will put the middle and lower reaches in a condition of severe water scarcity beginning in the next a few decades. If 40 % of the renewable water resources were used to sustain ecosystems, a portion of irrigated land would have to be converted to rain-fed agriculture, which would lead to a 2-11 % reduction in food production. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

  1. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  2. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Q. Wang

    Full Text Available Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC based on the functional dependency among pathways. Protein-protein interaction (PPI information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN, where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  3. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  4. α-Syntrophin is involved in the survival signaling pathway in myoblasts under menadione-induced oxidative stress.

    Science.gov (United States)

    Lim, Jeong-A; Choi, Su Jin; Moon, Jae Yun; Kim, Hye Sun

    2016-05-15

    Dystrophin-deficient muscle is known to be more vulnerable to oxidative stress, but not much is known about the signaling pathway(s) responsible for this phenomenon. α-Syntrophin, a component of the dystrophin-glycoprotein complex, can function as a scaffold protein because of its multiple protein interaction domains. In this study, we investigated the role of α-syntrophin in C2 myoblasts under menadione-induced oxidative stress. We found that the protein level of α-syntrophin was elevated when cells were exposed to menadione. To investigate the function of α-syntrophin during oxidative stress, we established α-syntrophin-overexpressing and knockdown cell lines. The α-syntrophin-overexpressing cells were resistant to the menadione-induced oxidative stress. In addition, survival signalings such as protein kinase B (Akt) phosphorylation and the Bcl-2/BAX ratio were increased in these cells. On the other hand, apoptotic signals such as cleavage of caspase-3 and poly ADP ribose polymerase (PARP) were increased in the α-syntrophin knockdown cells. Furthermore, Ca(2+)influx, which is known to increase when cells are exposed to oxidative stress, decreased in the α-syntrophin-overexpressing cells, but increased in the knockdown cells. These results suggest that α-syntrophin plays a pivotal role in the survival pathway triggered by menadione-induced oxidative stress in cultured myoblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improvement of Chickpea Growth and Biological N Fixation under Water Salinity Stress

    International Nuclear Information System (INIS)

    Gadalla, A. M.; Galal, Y. G. M.; Hamdy, A.

    2004-01-01

    This work had been carried out under greenhouse conditions of IAM-Bari, aimed at evaluating the effects of water and soil salinity on growth, yield and nitrogen fixation by chickpea plants inoculated with selected Rhizobium strains. Isotope dilution approach ( 15 N) was applied for quantification of biological N fixation and portions derived from fertilizer and soil (Ndff and Ndfs, respectively). Number of pods was decreased gradually with increasing water salinity levels. High levels of salinity negatively affected shoot, root dry matter, seed yield and N accumulated in shoots and roots. A slight difference in seed N was noticed between fresh water and 9 dS/m treatments. Nitrogen derived from fertilizer by shoots was slightly increased with 3, 6 and 9 dS/m treatments, while they were notably higher than the fresh water control. More than 80% and 70% of N accumulated in shoots and seeds, respectively were derived from fixation. Portions of N 2 -fixed in shoots was decreased with the level of 3 dS/m as compared to the fresh water, then tended to increase with both 6 and 9 dS/m treatments. Stability of %Ndfa with increasing salinity was noticed with seeds-N. Soil-N came next as a fraction of nitrogen demand, where it increased with increasing water salinity levels. Under adverse conditions of salinity, the plants offered some of their N requirements from the other two N sources. Application of the suitable Rhizobium bacteria strains could be profits for both of the plant growth and soil fertility via N 2 fixation. (Authors)

  6. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  7. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G, E-mail: crstorres@yahoo.com.mx [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Ingenieria Mecanica y Electrica Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, CP 07738, Mexico, D. F. (Mexico)

    2011-07-19

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  8. Biology and bionomics of dysdercus koenigii f. (hemiptera: pyrrhocoridae) under laboratory conditions

    International Nuclear Information System (INIS)

    Jaleel, W.; Naqqash, M.N.

    2013-01-01

    Red Cotton Bug, Dysdercus koenigii F., (Hemiptera: Pyrrhocoridae) is an important pest of cotton in South East Asia. Studies were carried out during 2012 to find the effect of temperature on incubation period and to explore the reproductive biology and bionomics of D. koenigii under laboratory conditions. Minimum incubation period (4.70+-0.42 days) was recorded at 35 degree C while the eggs failed to hatch at 40 degree C at 70-75% relative humidity. There were five nymphal instars which completed their development in 23.42+-2.49 days. The female lived longer (20.85+-6.12 days) than the male (16.18+-6.06 days). Each female mated three times in her life and there was statistically significant difference in mating duration (days), number of eggs laid and hatching percentage in each mating time. Number of eggs and hatching percentage was significantly higher after 1st time mating followed by 2nd and 3rd time matings. Duration of pre-oviposition, oviposition and post oviposition period recorded was 7.47+-0.86, 12.43+-0.82 and 8.77+-2.41 days, respectively. The study will help in devising pest management strategy against D. koenigii. (author)

  9. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    International Nuclear Information System (INIS)

    Morales-Bonilla, S; Torres-Torres, C; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Urriolagoitia-Calderon, G

    2011-01-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  10. Interferometric laser detection of nanomechanical perturbations in biological media under ablation conditions

    Science.gov (United States)

    Morales-Bonilla, S.; Torres-Torres, C.; Urriolagoitia-Sosa, G.; Hernández-Gómez, L. H.; Urriolagoitia-Calderón, G.

    2011-07-01

    This article has to do with the development of a reliable and sensitive non-invasive laser technique for assessing damage of structures and systems involved in laser ablation processes. The optical response of a Michelson Interferometer in combination with a Measuring Reflectance System has been analyzed in order to identify the stability of the mechanical properties of the sample, the physical perturbations associated with the systems and the environment where the target is contained. This test includes the use of a cyan laser system with 10 mW at 488 nm wavelength as optical source. We found out that with the inclusion of an optical feedback in a sensing system it is possible to determine the modification of the physical properties exhibited by a biological medium under sharp ablation conditions with a high accuracy degree. The results reported in this research have potential applications related to the amount of light intensity that can be tolerated by human tissue. A wide array of disciplines, such as medicine, mechanical industry and optical instrumentation can benefit from this ultrafast optical feedback for controlling high intensity laser signals. Collateral damage of tissue around the laser irradiated zones can be reduced by using intelligent lasers systems with ultra-short temporal response.

  11. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    Science.gov (United States)

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  12. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways

    Science.gov (United States)

    Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich; Meinshausen, Malte; Mengel, Matthias

    2017-11-01

    In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative forcing targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for Antarctic rapid discharge from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986-2005 of 89 cm (likely range: 57-130 cm) for SSP1, 105 cm (73-150 cm) for SSP2, 105 cm (75-147 cm) for SSP3, 93 cm (63-133 cm) for SSP4, and 132 cm (95-189 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios are dominated by the mitigation targets and yield median estimates of 52 cm (34-75 cm) for FT 2.6 Wm-2, 62 cm (40-96 cm) for FT 3.4 Wm-2, 75 cm (47-113 cm) for FT 4.5 Wm-2, and 91 cm (61-132 cm) for FT 6.0 Wm-2. Average 2081-2100 annual SLR rates are 5 mm yr-1 and 19 mm yr-1 for FT 2.6 Wm-2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. We find that 2100 median SSP SLR projections could be limited to around 50 cm if 2050 cumulative CO2 emissions since pre-industrial stay below 850 GtC, with a global coal phase-out nearly completed by that time. For SSP mitigation scenarios, a 2050 carbon price of 100 US2005 tCO2 -1 would correspond to a median 2100 SLR of around 65 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.

  13. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia.

    Science.gov (United States)

    Kelly, Rachel S; Croteau-Chonka, Damien C; Dahlin, Amber; Mirzakhani, Hooman; Wu, Ann C; Wan, Emily S; McGeachie, Michael J; Qiu, Weiliang; Sordillo, Joanne E; Al-Garawi, Amal; Gray, Kathryn J; McElrath, Thomas F; Carey, Vincent J; Clish, Clary B; Litonjua, Augusto A; Weiss, Scott T; Lasky-Su, Jessica A

    2017-01-01

    Preeclampsia is a leading cause of maternal and fetal mortality worldwide, yet its exact pathogenesis remains elusive. This study, nested within the Vitamin D Antenatal Asthma Reduction Trial (VDAART), aimed to develop integrated omics models of preeclampsia that have utility in both prediction and in the elucidation of underlying biological mechanisms. Metabolomic profiling was performed on first trimester plasma samples of 47 pregnant women from VDAART who subsequently developed preeclampsia and 62 controls with healthy pregnancies, using liquid-chromatography tandem mass-spectrometry. Metabolomic profiles were generated based on logistic regression models and assessed using Received Operator Characteristic Curve analysis. These profiles were compared to profiles from generated using third trimester samples. The first trimester metabolite profile was then integrated with a pre-existing transcriptomic profile using network methods. In total, 72 (0.9%) metabolite features were associated (pIntegration with the transcriptomic signature refined these results suggesting a particular role for lipid imbalance, immune function and the circulatory system. These findings suggest it is possible to develop a predictive metabolomic profile of preeclampsia. This profile is characterized by changes in lipid and amino acid metabolism and dysregulation of immune response and can be refined through interaction with transcriptomic data. However validation in larger and more diverse populations is required.

  14. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    Directory of Open Access Journals (Sweden)

    Widad Dantoft

    2017-09-01

    Full Text Available Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1 and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1 roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity

  15. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    Science.gov (United States)

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These

  16. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway.

    Science.gov (United States)

    Wang, M-D; Huang, Y; Zhang, G-P; Mao, L; Xia, Y-P; Mei, Y-W; Hu, B

    2012-12-13

    Previous studies demonstrated that exendin-4 (Ex-4) may possess neurotrophic and neuroprotective functions in ischemia insults, but its mechanism remained unknown. Here, by using real-time PCR and ELISA, we identified the distribution of active GLP-1Rs in the rat primary cortical neurons. After establishment of an in vitro ischemia model by oxygen/glucose deprivation (OGD), neurons were treated with various dosages of Ex-4. The MTT assay showed that the relative survival rate increased with the dosage of Ex-4 ranging from 0.2 to 0.8 μg/ml (Pglucose-regulated proteins 78 (GRP78) and reduced C/EBP-homologous protein (CHOP). Western blot analysis demonstrated that, after neurons were treated with Ex-4, GRP78 was up-regulated over time (Pneurons, down-regulated the expression of B-cell lymphoma 2 (Bcl-2) and up-regulated the Bax expression 3h after ODG (Pneurons against OGD by modulating the unfolded protein response (UPR) through the PKA pathway and may serve as a novel therapeutic agent for stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  18. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability.

    Science.gov (United States)

    Zhu, Xia; Burger, Martin; Doane, Timothy A; Horwath, William R

    2013-04-16

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by (15)N-(18)O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils.

  19. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  20. A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2013-07-01

    Full Text Available A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs, which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment, and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr−1, and municipal water between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  1. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s......The research in the field of microalgae-based biofuels and chemicals is in early phase of the development, and therefore a wide range of uncertainties exist due to inconsistencies among and shortage of technical information. In order to handle and address these uncertainties to ensure robust......MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...

  3. An ontology-driven semantic mash-up of gene and biological pathway information: Application to the domain of nicotine dependence

    Science.gov (United States)

    Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.

    2008-01-01

    Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495

  4. Reaction progress pathways for glass and spent fuel under unsaturated conditions

    International Nuclear Information System (INIS)

    Bates, J.; Finn, P.; Bourcier, W.; Stout, R.

    1994-10-01

    The source term for the release of radionuclides from a nuclear waste repository is the waste form. In order to assess the performance of the repository and the engineered barrier system (EBS) compared to regulations established by the Nuclear Regulatory Commission and the Environmental Protection Agency it is necessary (1) to use available data to place bounding limits on release rates from the EBS, and (2) to develop a mechanistic predictive model of the radionuclide release and validate the model against tests done under a variety of different potential reaction conditions. The problem with (1) is that there is little experience to use when evaluating waste form reaction under unsaturated conditions such that errors in applying expert judgment to the problem may be significant. The second approach, to test and model the waste form reaction, is a more defensible means of providing input to the prediction of radionuclide release. In this approach, information related to the source term has a technical basis and provides a starting point to make reasonable assumptions for long-term behavior. Key aspects of this approach are an understanding of the reaction progress mechanism and the ability to model the tests using a geochemical code such as EQ3/6. Current knowledge of glass, UO 2 , and spent fuel reactions under different conditions are described below

  5. An Introductory Review of Parallel Independent Component Analysis (p-ICA and a Guide to Applying p-ICA to Genetic Data and Imaging Phenotypes to Identify Disease-Associated Biological Pathways and Systems in Common Complex Disorders

    Directory of Open Access Journals (Sweden)

    Godfrey D Pearlson

    2015-09-01

    Full Text Available Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010. Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g. genome wide association (GWA. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e. simultaneous combination of SNP and neuroimage information independent component analysis (p-ICA, which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method.

  6. Los itinerarios profesionales en Biología: un ejemplo de formación académica orientada a la inserción profesional Professional pathways in Biology: an example of professionally-oriented teaching

    Directory of Open Access Journals (Sweden)

    José Aramburu

    2006-12-01

    Full Text Available Uno de los retos de la Universidad es formar los profesionales necesarios para la sociedad en que está inserta. Este ajuste no es fácil de obtener debido a la rigidez de los planes de estudios oficiales y a las cambiantes necesidades sociales. Sin embargo, el próximo Espacio Europeo de Educación Superior tiene este empeño como uno de sus principales objetivos. En el presente artículo se presenta la experiencia de los itinerarios profesionales de la licenciatura en Biología de la Universitat Pompeu Fabra durante dos cursos académicos. Situados en el quinto curso del plan de estudios, permiten a los estudiantes una formación específica en uno de los ámbitos profesionales en los que pueden insertarse laboralmente. La experiencia muestra que, tras un período de uno o dos años de su graduación, el 83% de los egresados se encuentran realizando un trabajo remunerado, en la mayoría de los casos relacionado con la biología, mientras que un 9% realizan otros estudios (no doctorado. Sólo el 3% de los graduados están buscando trabajo de forma activa. En conclusión, los itinerarios profesionales pueden constituir una estrategia educativa adecuada para permitir que los licenciados en Biología se inserten con éxito en ocupaciones laborales acordes con su formación.One of the main challenges facing universities is to train professionals who possess the skills that society requires. This is difficult to achieve due to the rigidity of official curricula and the constantly changing needs of society. However, it remains one of the main goals of the Bologna process. This paper describes the experience of the professional pathways which form part of the biology degree offered by the Universitat Pompeu Fabra, over a period of two academic years. Professional pathways are an essential part of the fifth year syllabus and provide students with specific training in one of the professional settings in which they may eventually work. Our experience

  7. THE STUDY OF THE BIOLOGICAL PROPERTIES OF PROBIOTIC LACTOBACILLUS SPP. STRAINS UNDER AEROBIC AND MICROAEROPHILIC CULTIVATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Babych E.M.

    2014-01-01

    Full Text Available The biological properties (growth characteristics, adhesive activity and sensitivity to antimicrobial of probiotic Lactobacillus strains were studied under different gas composition of incubation atmosphere. It was found that the number of viable lactobacilli cells in the one dose of investigated probiotic preparations was lower than it was claimed by the manufacturer. Gas composition of incubation atmosphere affects cell viability of probiotic strains. The number of colony forming units of lactobacilli under microaerophilic conditions increased in 1,19-1,33 times as compared with aerobic conditions. It was proved that adhesive activity of probiotic Lactobacillus strains and sensitivity to 2th, 3th, 4th generations of cephalosporins (cefuroxime, cefotaxime, cefepime and tetracyclines (doxycycline also increased under microaerophilic conditions. The changes of the biological properties of lactobacilli under different cultivation conditions require further study for optimization of correction of dysbiotic disorders.

  8. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  9. Manufacturing and Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the Manduca Sexta Wing Under Simulated Flapping Conditions

    Science.gov (United States)

    2011-03-24

    and tested under simplified flapping conditions by analyzing ‘frozen’ digital images of the de - formed wing by methods of photogrammetry. This... Rocker System to Biological Flapping Mechanism . . . . . . . . . . . . . . 49 2.6 PhotoModeler Methods . . . . . . . . . . . . . . . . . . 55 2.7 A Word on...126 4.5.3 Residual Calculation . . . . . . . . . . . . . . . 127 4.5.4 Orientation Angle Determination (Torsional De

  10. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  11. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  12. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  13. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  14. Cancer-related marketing centrality motifs acting as pivot units in the human signaling network and mediating cross-talk between biological pathways.

    Science.gov (United States)

    Li, Wan; Chen, Lina; Li, Xia; Jia, Xu; Feng, Chenchen; Zhang, Liangcai; He, Weiming; Lv, Junjie; He, Yuehan; Li, Weiguo; Qu, Xiaoli; Zhou, Yanyan; Shi, Yuchen

    2013-12-01

    Network motifs in central positions are considered to not only have more in-coming and out-going connections but are also localized in an area where more paths reach the networks. These central motifs have been extensively investigated to determine their consistent functions or associations with specific function categories. However, their functional potentials in the maintenance of cross-talk between different functional communities are unclear. In this paper, we constructed an integrated human signaling network from the Pathway Interaction Database. We identified 39 essential cancer-related motifs in central roles, which we called cancer-related marketing centrality motifs, using combined centrality indices on the system level. Our results demonstrated that these cancer-related marketing centrality motifs were pivotal units in the signaling network, and could mediate cross-talk between 61 biological pathways (25 could be mediated by one motif on average), most of which were cancer-related pathways. Further analysis showed that molecules of most marketing centrality motifs were in the same or adjacent subcellular localizations, such as the motif containing PI3K, PDK1 and AKT1 in the plasma membrane, to mediate signal transduction between 32 cancer-related pathways. Finally, we analyzed the pivotal roles of cancer genes in these marketing centrality motifs in the pathogenesis of cancers, and found that non-cancer genes were potential cancer-related genes.

  15. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity.

    Science.gov (United States)

    Lalonde, Robert; Strazielle, Catherine

    2017-07-26

    When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.

  16. Can agricultural groundwater economies collapse? An inquiry into the pathways of four groundwater economies under threat

    Science.gov (United States)

    Petit, Olivier; Kuper, Marcel; López-Gunn, Elena; Rinaudo, Jean-Daniel; Daoudi, Ali; Lejars, Caroline

    2017-09-01

    The aim of this paper is to investigate the notion of collapse of agricultural groundwater economies using the adaptive-cycle analytical framework. This framework was applied to four case studies in southern Europe and North Africa to question and discuss the dynamics of agricultural groundwater economies. In two case studies (Saiss in Morocco and Clain basin in France), the imminent physical or socio-economic collapse was a major concern for stakeholders and the early signs of collapse led to re-organization of the groundwater economy. In the other two cases (Biskra in Algeria and Almeria in Spain), collapse was either not yet a concern or had been temporarily resolved through increased efficiency and access to additional water resources. This comparative analysis shows the importance of taking the early signs of collapse into account. These signs can be either related to resource depletion or to environmental and socio-economic impacts. Beyond these four case studies, the large number of groundwater economies under threat in (semi-)arid areas should present a warning regarding their possible collapse. Collapse can have severe and irreversible consequences in some cases, but it can also mean new opportunities and changes.

  17. Experiences of pathways, outcomes and choice after severe traumatic brain injury under no-fault versus fault-based motor accident insurance.

    Science.gov (United States)

    Harrington, Rosamund; Foster, Michele; Fleming, Jennifer

    2015-01-01

    To explore experiences of pathways, outcomes and choice after motor vehicle accident (MVA) acquired severe traumatic brain injury (sTBI) under fault-based vs no-fault motor accident insurance (MAI). In-depth qualitative interviews with 10 adults with sTBI and 17 family members examined experiences of pathways, outcomes and choice and how these were shaped by both compensable status and interactions with service providers and service funders under a no-fault and a fault-based MAI scheme. Participants were sampled to provide variation in compensable status, injury severity, time post-injury and metropolitan vs regional residency. Interviews were recorded, transcribed and thematically analysed to identify dominant themes under each scheme. Dominant themes emerging under the no-fault scheme included: (a) rehabilitation-focused pathways; (b) a sense of security; and (c) bounded choices. Dominant themes under the fault-based scheme included: (a) resource-rationed pathways; (b) pressured lives; and (c) unknown choices. Participants under the no-fault scheme experienced superior access to specialist rehabilitation services, greater surety of support and more choice over how rehabilitation and life-time care needs were met. This study provides valuable insights into individual experiences under fault-based vs no-fault MAI. Implications for an injury insurance scheme design to optimize pathways, outcomes and choice after sTBI are discussed.

  18. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  19. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  20. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  1. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  2. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  3. Systems Biology-Based Identification of Crosstalk between E2F Transcription Factors and the Fanconi Anemia Pathway

    Directory of Open Access Journals (Sweden)

    Moe Tategu

    2007-01-01

    Full Text Available Fanconi anemia (FA is an autosomal recessive disorder characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. At least eleven members of the FA gene family have been identified using complementation experiments. Ubiquitin-proteasome has been shown to be a key regulator of FA proteins and their involvement in the repair of DNA damage. Here, we identifi ed a novel functional link between the FA/BRCA pathway and E2F-mediated cell cycle regulome. In silico mining of a transcriptome database and promoter analyses revealed that a significant number of FA gene members were regulated by E2F transcription factors, known to be pivotal regulators of cell cycle progression – as previously described for BRCA1. Our findings suggest that E2Fs partly determine cell fate through the FA/BRCA pathway.

  4. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    Science.gov (United States)

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after intracranial hemorrhage

    Directory of Open Access Journals (Sweden)

    Yin XP

    2015-11-01

    Full Text Available Xiao-ping Yin,1,2 Zhi-ying Chen,2 Jun Zhou,1 Dan Wu,1,3 Bing Bao2 1Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China; 2Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, People’s Republic of China; 3Department of Neurology, The Sixth Hospital of Wuhan, Wuhan, People’s Republic of China Background: It has been found that nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2–ARE signaling pathway plays a role in antioxidative response, anti-inflammatory response, and neuron-protection in intracerebral hemorrhage (ICH. The aim of this study is to explore mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after ICH.Methods: There were a total of 90 rats with basal ganglia hemorrhage, which were randomly divided into the following four groups: ICH (Sprague–Dawley rats with autologous femoral arterial blood injection into the basal ganglia, sulforaphane (SFN (SFN was intraperitoneally administered into rats, retinoic acid (RA (RA was intraperitoneally administered into rats, and dimethyl sulfoxide (the rats were treated with dimethyl sulfoxide. We observed the neurological score of the rats in the different groups, and collected brain tissues for immunofluorescence, Western blot, and reverse transcription polymerase chain reaction to detect expression of Nrf2, heme oxygenase (HO-1, nuclear factor-κB (NF-κB, and tumor necrosis factor-α (TNF-α.Results: The results indicated that neurological dysfunction of rats was significantly improved in the SFN group, and the expressions of Nrf2 and HO-1 in tissues surrounding the hemorrhage were increased. Also, the level of NF-κB and TNF-α were reduced compared to the ICH group. The RA group exhibited more severe neurological dysfunction and lower levels of Nrf2 and HO-1 than the SFN and ICH groups. Compared to the ICH group, the NF

  6. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  7. Using biological effects tools to define Good Environmental Status under the Marine Strategy Framework Directive

    NARCIS (Netherlands)

    Lyons, B.P.; Thain, J.E.; Hylland, K.; Davis, I.; Vethaak, A.D.

    2010-01-01

    The use of biological effects tools offer enormous potential to meet the challenges outlined by the European Union Marine Strategy Framework Directive (MSFD) whereby Member States are required to develop a robust set of tools for defining 11 qualitative descriptors of Good Environmental Status

  8. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  9. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  10. A Western blot-based investigation of the yeast secretory pathway designed for an intermediate-level undergraduate cell biology laboratory.

    Science.gov (United States)

    Hood-Degrenier, Jennifer K

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in two distinct steps of protein secretion were differentiated using a genetic reporter designed specifically to identify defects in the first step of the pathway, the insertion of proteins into the endoplasmic reticulum (Vallen, 2002). We have developed two versions of a Western blotting assay that serves as a second way of distinguishing the two secretory mutants, which we pair with the genetic assay in a 3-wk laboratory module. A quiz administered before and after students participated in the lab activities revealed significant postlab gains in their understanding of the secretory pathway and experimental techniques used to study it. A second survey administered at the end of the lab module assessed student perceptions of the efficacy of the lab activities; the results of this survey indicated that the experiments were successful in meeting a set of educational goals defined by the instructor.

  11. Regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29

    Directory of Open Access Journals (Sweden)

    Yuan-Hui Wang

    2016-04-01

    Full Text Available Objective: To study the regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29. Methods: Colorectal cancer cell lines HT29 were cultured and divided into blank control group and evodiamine group, and after different treatment, cell viability, proportion of different cell cycle as well as the contents of VEGFA, VEGFB, VEGFC, MMP3, MMP14, Wnt and β-catenin were detected. Results: (1 Cell viability: MTT value of evodiamine group was significantly lower than that of blank control group; (2 Cell cycle: proportion of both S phase and G2/M phase of evodiamine group were lower than those of blank control group, and proportion of G0/ G1 phase was higher than that of blank control group; (3 VEGF and MMP contents: VEGFA, VEGFB, VEGFC, MMP3 and MMP14 contents of evodiamine group were lower than those of blank control group; (4 Wnt/β-catenin signaling pathway: Wnt and β-catenin contents of evodiamine group were lower than those of blank control group. Conclusion: Evodiamine can inhibit the proliferation of colorectal cancer cell lines HT29 and down-regulate the expression of VEGF and MMP, and the effect may be achieved by inhibiting the activation of Wnt/β-catenin signaling pathway.

  12. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    Science.gov (United States)

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  13. Studies on the changes of biologically active complexes of sunflower oil, tard, and butter under gamma irradiation

    International Nuclear Information System (INIS)

    Ivanov, A.; Stamatov, D.

    1976-01-01

    Investigations of changes in the biologically active complex of sunflower oil, lard and butter under the influence of gamma rays: The points examined are the effect of small, medium and large doses (10 4 , 10 6 and 10 7 ) of gamma rays (Co 60 ) and the after-effect on the carotenes, tocopherols, sterols and linoleic acid in sunflower oil, lard and butter. Under these conditions, only the carotenes and tocopherols are subjected to changes to the point of destruction. What was found is a good correlative connection between the changes in the tocopherols and the degree of oxidation of the corresponding fats. (orig.) [de

  14. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  15. Identifying the underlying causes of biological instability in a full-scale drinking water supply system.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2018-05-15

    Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary

  16. Males Under-Estimate Academic Performance of Their Female Peers in Undergraduate Biology Classrooms.

    Science.gov (United States)

    Grunspan, Daniel Z; Eddy, Sarah L; Brownell, Sara E; Wiggins, Benjamin L; Crowe, Alison J; Goodreau, Steven M

    2016-01-01

    Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other's mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

  17. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  18. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    DEFF Research Database (Denmark)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes...

  19. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    NARCIS (Netherlands)

    Scott, Robert A.; Lagou, Vasiliki; Welch, Ryan P.; Wheeler, Eleanor; Montasser, May E.; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J.; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J.; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C. D.; Jukema, J. Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V.; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J.; Evans, David M.; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S.; Hui, Jennie; Bielak, Lawrence F.; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R.; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M.; Fall, Tove; Voight, Benjamin F.; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M.; Morris, Andrew P.; Rayner, Nigel W.; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S.; Willems, Sara M.; Chines, Peter S.; Jackson, Anne U.; Kang, Hyun Min; Stringham, Heather M.; Song, Kijoung; Tanaka, Toshiko; Peden, John F.; Goel, Anuj; Hicks, Andrew A.; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J.; Bruinenberg, Marcel; Pankow, James S.; North, Kari E.; Forouhi, Nita G.; Loos, Ruth J. F.; Edkins, Sarah; Varga, Tibor V.; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J. L.; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B.; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Palmer, Colin N. A.; Doney, Alex S. F.; Willemsen, Gonneke; Smit, Johannes H.; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L.; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L.; Fowkes, Gerard R.; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H.; Basart, Hanneke V.; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E.; Boehm, Bernhard O.; Peters, Annette; Pramstaller, Peter P.; Province, Michael A.; Borecki, Ingrid B.; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M.; Bergman, Richard N.; Collins, Francis S.; Tuomilehto, Jaakko; Watanabe, Richard M.; de Geus, Eco J. C.; Penninx, Brenda W.; Hofman, Albert; Oostra, Ben A.; Psaty, Bruce M.; Vollenweider, Peter; Wilson, James F.; Wright, Alan F.; Hovingh, G. Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K. E.; Kyvik, Kirsten O.; Kaprio, Jaakko; Price, Jackie F.; Dedoussis, George V.; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R.; van Duijn, Cornelia M.; Morris, Andrew D.; Toenjes, Anke; Peyser, Patricia A.; Beilby, John P.; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R.; Schwarz, Peter E. H.; Lakka, Timo A.; Rauramaa, Rainer; Adair, Linda S.; Smith, George Davey; Spector, Tim D.; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Boomsma, Dorret I.; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L.; Sattar, Naveed; Harris, Tamara B.; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L.; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J.; Bouatia-Naji, Nabila; McCarthy, Mark I.; Franks, Paul W.; Meigs, James B.; Teslovich, Tanya M.; Florez, Jose C.; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes

  20. From the Physical World to the Biological Universe: Historical Developments Underlying SETI

    Science.gov (United States)

    Dick, Steven J.

    More than thirty years ago the French historian of science Alexandre Koyré (1957) wrote his classic volume, From the Closed World to the Infinite Universe, in which he argued that a fundamental shift in world view had taken place in 17th century cosmology. Between Nicholas of Cusa in the fifteenth century and Newton and Leibniz in the seventeenth, he found that the very terms in which humans thought about their universe had changed. These changes he characterized broadly as the destruction of the closed finite cosmos and the geometrization of space. The occasion of the Third International Bioastronomy Symposium in France is an especially appropriate time to argue that the SETI endeavor represents a test for a similar fundamental shift in cosmological world view, from the physical world to the biological universe. I define the biological universe, equivalent to what I have called before the biophysical cosmology (Dick, 1989), as the scientific world view which holds that life is widespread throughout the universe. In this case the biological universe does not necessarily supersede the physical universe, but a universe filled with life would certainly fundamentally alter our attitude toward the universe, and our place in it. Although Koyré mentioned life beyond the Earth as an adjunct to the revolution from the closed world to the infinite universe, only in the 1980s has the history of science begun to give full treatment to the subject. What follows is meant to be a contribution to that ongoing endeavor to understand where the extraterrestrial life debate fits in the history of science. The modern era in the extraterrestrial life debate is normally dated from Cocconi and Morrison's paper in 1959, and though one can always find precursors, this in my view is a valid perception. Cocconi and Morrison gave definite form to SETI, Frank Drake independently first carried out the experiment, a network of interested scientists began to form and met in Green Bank in

  1. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Directory of Open Access Journals (Sweden)

    Shanqing Zheng

    Full Text Available DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS, and this is notably true when Caenorhabditis elegans (C. elegans is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  2. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Science.gov (United States)

    Zheng, Shanqing; Liao, Sentai; Zou, Yuxiao; Qu, Zhi; Liu, Fan

    2014-01-01

    DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  3. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    Science.gov (United States)

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  6. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    Science.gov (United States)

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. [Rome: capital of an empire under the banner of political biology (1936-1942)].

    Science.gov (United States)

    Vallejo, Gustavo

    2012-01-01

    This paper analyzes the symbolic conformation of Rome and Romanism as important factors in the affirmation of the power of fascism, especially after the proclamation of the Empire in 1936. Within this framework, it explores the role of science in legitimizing the direct correlation of this symbolic universe with a praxis that exalted racial superiority inherited from Ancient Rome. It investigates the links between the eugenic discourse and the exercise of power behind the "biology policy", including fascist organicism and racism. In fact, Rome was the essence of an empire that was reborn after fifteen centuries and, between its historical legacy and the new scenarios created by fascism for disciplining the population, Romanism had to condense all of the merits of the race, encouraging military conquests and promoting responsibility for maintaining racial purity and avoiding "unwanted miscegenation" with conquered peoples. The idea of Romanism also encouraged a continuation of the persecution of Jews started in Germany. Hence, science ratified a widespread idea of the Romanization as a crusade to impose a force, exaggerated on racial grounds, which integrated confidence in environmental factors with a crude biological determinism.

  8. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  9. Involvement of PKA-dependent upregulation of nNOS-CGRP in adrenomedullin-initiated mechanistic pathway underlying CFA-induced response in rats.

    Science.gov (United States)

    Wang, Dongmei; Ruan, Liqin; Hong, Yanguo; Chabot, Jean-Guy; Quirion, Rémi

    2013-01-01

    We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn. An intrathecal administration of AM(22-52), but not the CGRP antagonist BIBN4096BS, abolished the CFA-induced increase of nNOS. Moreover, AM-induced increase of CGRP was inhibited by the nNOS inhibitors L-NAME and 7-nitroindazole in cultured ganglion explants. Addition of AM to ganglion cultures induced an increase in nNOS protein, which was attenuated by the PKA inhibitor H-89. Treatment with AM also concentration-dependently increased cAMP content and pPKA protein level, but not its non-phosphorylated form, in cultured ganglia. In addition, nNOS was shown to be co-localized with the AM receptor components calcitonin receptor-like receptor and receptor activity-modifying protein 2- and 3 in DRG neurons. The present study suggests that the enhanced activity of nitric oxide (NO) mediates the biological action of AM at the spinal level and that AM recruits NO-CGRP via cAMP/PKA signaling in a mechanistic pathway underlying CFA-induced hyperalgesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  11. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  12. Pathway decision-making strategies for generating pancreatic beta-cells: systems biology or hit and miss?

    Science.gov (United States)

    Jensen, Jan

    2007-08-01

    Method selection strategies to achieve beta-cell differentiation from human embryonic stem cells are reviewed. Expectations are high for an embryonic stem cell derived cellular replacement method to cure diabetes, and recent observations indicate that mature beta-cells can be derived from human embryonic stem cells. In terms of the translational setting, however, we are not there yet; conversion of embryonic stem cells to fully mature beta-cells is not effective and does not provide an exclusive beta-cell population as the end-product. Studies emphasize that expecting development of a 'magic media bullet' that promotes endocrine fate is rather optimistic; consecutive administration of signaling inducers, carefully provided to mimic normal development, is more likely to succeed. To accomplish this task we need better understanding of the extracellular signaling pathways that drive progressive endodermal fate choices throughout development. Knowledge of cell-intrinsic control of fate assignments in pancreas is growing rapidly. Nevertheless, insufficient information regarding morphogen codes that operate in endoderm and pancreas is hindering development of better, directed differentiation schema of uncommitted embryonic stem cells toward endodermal, pancreatic, and subsequent endocrine specific fates. A systematic approach to defining morphogen codes in developing endoderm and pancreas appears timely and justified.

  13. A pathway underlying the impact of CPAP adherence on intimate relationship with bed partner in men with obstructive sleep apnea.

    Science.gov (United States)

    Lai, Agnes Y K; Ip, Mary S M; Lam, Jamie C M; Weaver, Terri E; Fong, Daniel Y T

    2016-05-01

    Our aim was to determine the pathway underlying the effects of continuous positive airway pressure (CPAP) adherence on intimate relationship with bed partner in men with obstructive sleep apnea (OSA). We hypothesized that CPAP with good adherence affected the intimate relationship with bed partner directly and indirectly, and it was mediated through daytime sleepiness and activity level in men with OSA. Data were obtained from an education program for enhancing CPAP adherence. Men who were newly diagnosed of OSA and CPAP therapy naïve were recruited in a tertiary teaching hospital. Self-reported quality of life [Functional Outcomes of Sleep Questionnaire], daytime sleepiness [Epworth Sleepiness Scale (ESS)], and negative emotion symptoms [depression, anxiety, stress scale] were assessed before and after CPAP treatment at 1-year assessment. Seventy-three men were included in the data analysis, with a mean ± SD age of 52 ± 10 years, body mass index of 29.0 ± 5.2 kg/m(2), ESS of 9.5 ± 5.6, and median [interquartile range(IR)] apnea and hypopnea index of 31 (21, 56) events/h. The median (IR) CPAP daily usage was 4.3(0, 6.1) h/day. From the path analysis, CPAP therapy was shown to improve intimate relationship directly (ß = 0.185) and indirectly (ß = 0.050) by reducing daytime sleepiness and increasing activity level. However, negative emotion symptoms were not the mediators between CPAP adherence and the intimate relationship. CPAP therapy with good adherence is related directly and indirectly to a better intimate relationship with bed partner in men with OSA. It was possibly attributed to reduced daytime sleepiness and increased activity level.

  14. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Science.gov (United States)

    Liang, Li; Zhou, Wei; Yang, Nan; Yu, Jifeng; Liu, Hongchen

    2016-01-01

    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment. PMID:26884650

  15. ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    Directory of Open Access Journals (Sweden)

    Li Liang

    2016-01-01

    Full Text Available Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs. PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment.

  16. ACTIVITY OF LICHENS UNDER THE INFLUENCE OF SNOW AND ICE (18th Symposium on Polar Biology)

    OpenAIRE

    Ludger, KAPPEN; Burkhard, SCHROETER

    1997-01-01

    A major aim of our investigations is to explain the adaptation of vegetation to the peculiar environmental conditions in polar regions. Our concept describes the main limiting and favorable factors influencing photosynthetic production of cryptogams, mainly lichens. Snow and ice-usually stress factors to the activity of plants-can be effectively used by lichens because of their poikilohydrous nature. Light, the basic driving force for photosynthetic activity, may be deleterious under certain ...

  17. Biology of Anicla infecta (Ochsenheimer, 1816 (Lepidoptera, Noctuidae, Noctuinae, under laboratory conditions

    Directory of Open Access Journals (Sweden)

    J. A. TESTON

    Full Text Available Larvae of Anicla infecta (Ochsenheimer, 1816 (Noctuidae feed upon many grasses and may be harmful to cereals and fodder of economic importance. This study was developed aiming to contribute to knowledge of the biology of this species. The rearing was done in an environmental chamber with the following settings: temperature of 25 ± 1ºC; relative humidity of 70% ± 10%, and photoperiod of L14: D10. The larvae fed on ryegrass, Lolium multiflorum Lam. The results express the mean and standard error for the length of every stage in days. For each stage we observed the following time of development: egg 3.2 ± 0.09; larvae 18.7 ± 0.07; pre-pupae 3.3 ± 0.04; pupae 12.6 ± 0.14; and adult longevity was 12.1 ± 1.03. Also the pre-egg-laying period was 4.4 ± 0.59; the egg-laying period was 8.1 ± 0.84; and the post-egg-laying period was 0.3 ± 0.14. The mean number of egg-laying cycles per female was 6.7 ± 0.73; that of eggs per cycle was 77.5 ± 4.37; and total eggs per female was 521.4 ± 47.36.

  18. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    Science.gov (United States)

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  19. Biological properties of Majnnthemum bifolium (L. F. W. Schm. polycormones under various ecological conditions

    Directory of Open Access Journals (Sweden)

    Bożena Czarnecka

    2014-01-01

    Full Text Available Majanthemum bifolium (L. F. W. Schm. populations exhibit a two-level organisation. Individuals in the biological sense (polycormones consists of a number of basic units-above-ground shoots joined by durable rhizomes. The role of the individual in the population and plant community depends on its age, size and individual area which is the exponent of the number and biomass of the produced organs. It is considered that there exist both intra- and interpopulation differences in the number of above-ground shoots and length of rhizomes as well as in the structure of the developmental phases and age states of the above- and underground parts of the polycormones. In all populations the greater part of the biomass falls to underground organs. A more favourable ratio of shoot biomass to that of rhizomes is, however, found in the polycormones of Dentario glandulosae-Fagetum and Carici elongatae-Alnetum where the presence of nitrogen in nitrate form was disclosed. With increase of participation of young age classes of shoots more of the total biomass falls to the above-ground parts.

  20. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities.

    Science.gov (United States)

    De Palma, Michele; Hanahan, Douglas

    2012-04-01

    It is a time of great promise and expectation for the applications of knowledge about mechanisms of cancer toward more effective and enduring therapies for human disease. Conceptualizations such as the hallmarks of cancer are providing an organizing principle with which to distill and rationalize the abject complexities of cancer phenotypes and genotypes across the spectrum of the human disease. A countervailing reality, however, involves the variable and often transitory responses to most mechanism-based targeted therapies, returning full circle to the complexity, arguing that the unique biology and genetics of a patient's tumor will in the future necessarily need to be incorporated into the decisions about optimal treatment strategies, the frontier of personalized cancer medicine. This perspective highlights considerations, metrics, and methods that may prove instrumental in charting the landscape of evaluating individual tumors so to better inform diagnosis, prognosis, and therapy. Integral to the consideration is remarkable heterogeneity and variability, evidently embedded in cancer cells, but likely also in the cell types composing the supportive and interactive stroma of the tumor microenvironment (e.g., leukocytes and fibroblasts), whose diversity in form, regulation, function, and abundance may prove to rival that of the cancer cells themselves. By comprehensively interrogating both parenchyma and stroma of patients' cancers with a suite of parametric tools, the promise of mechanism-based therapy may truly be realized. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  2. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    . Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure

  3. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  4. Some problems of biological effects under the combined action of nitrogen oxides, their metabolites and radiation

    International Nuclear Information System (INIS)

    Malenchenko, A.F.

    1985-01-01

    The progress of power engineering envisages the intensive construction of nuclear-energy plants, where an organic or nuclear fuel is used. Nowadays the concept of nuclear-energy plant with the coolant based on dissociating N 2 O 4 is being developed. A great deal of radioactive and chemical products escapes into surroundings as the result of the power plants being in service. Their action on organisms is performed simultaneously, that could have an essential effect on the quantitative and qualitative regularities of response. The estimation of the combined effect of nitrogen oxides, sodium nitrite and nitrate and radiation has been carried out on the base of the investigation into methemoglobin formation, genetic effects and the pathomorphological changes in lungs. The formation of methemoglobin has been studied on rats in 1, 3, 7 and 15 days after the single total irradiation of 300 and 700 R doses at the gamma-installation (UGU-420) using a radioactive 60 Co. Methemoglobin was determined in the interval of 15-180 min after NaNO 2 administration in the dosage of 7.0 mg per 100 g body weight. The irradiation essentially affects the process of methemoglobin formation and its reduction. The methemoglobin content in the blood of radiation exposed animals exceeds the value, that could be expected to obtain by summing up its concentration under the separate effects of nitrite and irradiation. The genetic effects of sodium nitrite and nitrate and X-radiation have been studied on the Drosophila. The one-day flies were exposed to the radiation dose of 1500 R in the medium with the sodium nitrite or nitrate contents of 0.1 or 1.0 g/l, respectively. The combined action estimated through the frequency of the dominant lethal mutation, recessive coupled with a lethal mutation sex, viability and fecundity definitely differs from the expected summing values of the separate effect indices of radiation and toxic factors. The morpho- and functional changes in the rat lungs (the

  5. Determining Pathways to Improvements in Fatigue in Rheumatoid Arthritis: Results From the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis.

    Science.gov (United States)

    Druce, Katie L; Jones, Gareth T; Macfarlane, Gary J; Basu, Neil

    2015-09-01

    There is debate as to the role of inflammatory disease activity in the etiology of rheumatoid arthritis (RA)-related fatigue. We undertook this study to determine the relationship of fatigue to disease activity by examining pathways associated with change in fatigue in subjects starting anti-tumor necrosis factor (anti-TNF) therapy for the first time. Participants who had been recruited to the British Society for Rheumatology Biologics Register for RA provided information on fatigue (Short Form 36 [SF-36] vitality scale) and other health status variables at the start of anti-TNF therapy and 6 months later. The Disease Activity Score in 28 joints (DAS28) and inflammation (erythrocyte sedimentation rate [ESR]/C-reactive protein [CRP] level) were also reported. A path analysis model comprising changes in fatigue, pain, disease activity, disability, and mental health, along with effects of sex and a history of depression, was used to examine those with high levels of fatigue at baseline (score of ≤12.5 units on the SF-36 vitality scale). The DAS28 was substituted for ESR/CRP to delineate the specific role of inflammation. With a total of 2,652 participants, we identified a well-fitting model (χ2  = 0.18, P = 0.98) accounting for 40% of the variance in fatigue change. There was no direct pathway from change in inflammation to change in fatigue; instead, significant pathways to change in fatigue were observed from changes in disease activity, pain, mental health, and disability, along with effects of sex and a history of depression. A total of 82% of the effect of change in disease activity was indirect, of which ∼50% was mediated through a change in pain. Improvements in fatigue do not appear to be driven by inflammatory disease activity; instead, they appear to result indirectly from improvements in pain. Additional significant pathways through disability and mental health suggest potentially modifiable factors that could be targeted to improve clinically

  6. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    Science.gov (United States)

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  7. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication

    Science.gov (United States)

    Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L.; Searle, Steven M. J.; Minx, Patrick; Hillier, LaDeana W.; Koboldt, Daniel C.; Davis, Brian W.; Driscoll, Carlos A.; Barr, Christina S.; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W. C.; Hahn, Matthew W.; Menotti-Raymond, Marilyn; O’Brien, Stephen J.; Wilson, Richard K.; Lyons, Leslie A.; Murphy, William J.; Warren, Wesley C.

    2014-01-01

    Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae. PMID:25385592

  8. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.

    Science.gov (United States)

    Montague, Michael J; Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L; Searle, Steven M J; Minx, Patrick; Hillier, LaDeana W; Koboldt, Daniel C; Davis, Brian W; Driscoll, Carlos A; Barr, Christina S; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W C; Hahn, Matthew W; Menotti-Raymond, Marilyn; O'Brien, Stephen J; Wilson, Richard K; Lyons, Leslie A; Murphy, William J; Warren, Wesley C

    2014-12-02

    Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.

  9. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a

  10. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    International Nuclear Information System (INIS)

    Yahya, Liyana; Chik, Muhammad Nazry; Pang, Mohd Asyraf Mohd Azmir

    2013-01-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive – observed by increases in optical densities, number of cells and weights – in the presence of actual coal-fired flue gas containing on average 4.08 % O 2 , 200.21 mg/m 3 SO 2 , 212.29 mg/m 3 NO x , 4.73 % CO 2 and 50.72 mg/m 3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  11. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation

    International Nuclear Information System (INIS)

    Picou, Laura; McMann, Casey; Boldor, Dorin; Elzer, Philip H; Enright, Frederick M; Biris, Alexandru S

    2010-01-01

    Carbon nanotubes have many potential applications in life sciences and engineering as they have very high absorbance in the near-infrared (NIR) spectrum, while biological tissues do not. The purpose of this study was to determine the effect of 1064 nm NIR laser power levels on the spatial temperature distribution and the temperature kinetics in mammalian tissue at both macroscopic and microscopic scales. The model tissue was the 'flat' of a chicken wing (the section containing the radius and ulna), which was injected under the skin in the subcutaneous layer of tissue. Specimens were exposed to laser radiation and an infrared thermography system was used to measure and record the temperature distributions in the specimens at both the macroscopic and microscopic scales. Experimental results concluded that power levels of 1536 mW easily achieved hyperthermic temperatures with localized values as high as 172.7 deg. C.

  12. [Physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying biological activities of these complexes].

    Science.gov (United States)

    Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh

    2013-01-01

    Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.

  13. Transients and cooperative action of β-carotine, vitamine E and vitamine C in biological systems in vitro under irradiation

    International Nuclear Information System (INIS)

    Getof, N.; Platzer, I.; Winkelbauer, C.

    1998-01-01

    Complete text of publication follows. In the scope of clinical studies in the USA it has been established that β-carotine (β car) and vitamine A (vit A; retinol) give rise to lung cancer and cardiovascular diseases on humans. The consumption of vitamine E (vit E) and β-carotine provokes lung cancer and other types of tumors on male smokers. This effect increases even significantly by a simultaneous consumption of alcohol. In contrary to these results there are other scientists, who did not observe any increase of the rate of lung cancer or other tumors by the consumption of β-car or vit E. Based on these contradictory statements experiments following two pathways were performed: Pulse radiolysis studies on radical cations and radical anions of β-car and vit E Investigations on baeteria (E. coli AB 1157) and cell cultures (SCC VII): their survival was studied as a function of the absorbed dose in the abscence and in the presence of the above mentioned vitamines and vitamine C (vit C). From our extensive studies we obtain following conclusions: - Metabolic changes in normal cells could probably be initiated by the radical cation of β-carotine (β-car '+) resulting from the action of β-car as an antioxidant. - Vitamine E can repair β-car '+ by electron transfer, forming the radical cation of vit E (vit E '+), whose biological action is yet unknown. - Vitamine C (ascorbate) is able to repair both, the β-caz'+ and the vit E'+ by electron transfer (cascade electron transfer), resulting in ascorbate radical, which can disproportionate to vit C and dehydroascorbic acid (DHA). The last one can be converted again enzymatically into ascorbic acid

  14. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    Science.gov (United States)

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  15. Effect of Biological and Chemical Fertilizers on Oil, Seed Yield and some Agronomic Traits of Safflower under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Hamidreza Fanaei

    2017-08-01

    Full Text Available Introduction Safflower Carthamus tinctorius L. is a tolerant plant to water deficit due to long roots and capability for high water absorption from soil deeper parts. Safflower can growth successfully in regions with low soil fertility and temperature. Behdani and Mosavifar (2011 reported that drought stress affect on yield by reducing yield components and agronomic traits. Biofertilizer during a biological process chanced the nutrients from unusable to usable form for plants in soils (Aseretal, 2008. Mirzakhani et al. (2008 found that inoculation of seed with free-living bacterium azotobacter and a symbiotic fungus productive mycorrhiza addition to increasing oil and seed cause increasing resistance against two factors of unfavorable environmental and to improve quality of product. In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of Safflower under irrigation of different regimes an experimental design was conducted. Materials and methods In order to study the effect of biological and chemical fertilizers on oil, seed yield and some of agronomic traits of safflower under irrigation of different regimes an experiment was carried out split plot based on randomized complete block design (RCBD with three replications in experimental farm of payame-Noor university of Zabol during 2012-2013 growing season. Irrigation regime in three levels include: I1 (control irrigation in all growth stages, I2 stop irrigation from sowing to flowering (irrigation in growth stages flowering, and seed filling, I3 irrigation in growth stages rosset, stem elongation, heading and stop irrigation in flowering, and seed filling were as main plots and fertilizer resources in five levels included: F1 non application chemical fertilizer (control, F2 pure application chemical fertilizer (NPK 99, 44 and 123 kg.ha-1 respectively, F3 Nitroxin application (2 L.ha-1 F4 Azotobacter application (2 L.ha-1 and F5

  16. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    Science.gov (United States)

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in

  17. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  18. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-01-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential. PMID:27020120

  19. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  20. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  1. Completing the cervical screening pathway: Factors that facilitate the increase of self-collection uptake among under-screened and never-screened women, an Australian pilot study.

    Science.gov (United States)

    McLachlan, E; Anderson, S; Hawkes, D; Saville, M; Arabena, K

    2018-02-01

    To examine factors that enhance under-screened and never-screened women's completion of the self-collection alternative pathway of the Renewed National Cervical Screening Program (ncsp) in Victoria, Australia. With the Australian ncsp changing, starting on 1 December 2017, the Medical Services Advisory Committee (msac) recommended implementing human papillomavirus (hpv) testing using a self-collected sample for under-screened and never-screened populations. In response, a multi-agency group implemented an hpv self-collection pilot project to trial self-collection screening pathways for eligible women. Quantitative data were collected on participation rates and compliance rates with follow-up procedures across three primary health care settings. Forty women who self-collected were interviewed in a semi-structured format, and seven agency staff completed in-depth interviews. Qualitative data were used to identify and understand clinical and personal enablers that assisted women to complete self-collection cervical screening pathways successfully. Eighty-five per cent (10 women) of participants who tested positive for hpv successfully received their results and completed follow-up procedures as required. Two remaining participants also received hpv-positive results. However, agencies were unable to engage them in follow-up services and procedures. The overall participation rate in screening (self-collection or Pap test) was 85.7% (84 women), with 79 women self-collecting. Qualitative data indicated that clear explanations on self-collection, development of trusting, empathetic relationships with health professionals, and recognition of participants' past experiences were critical to the successful completion of the self-collection pathway. When asked about possible inhibitors to screening and to following up on results and appointments, women cited poor physical and mental health, as well as financial and other structural barriers. A well-implemented process, led by

  2. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Science.gov (United States)

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  3. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress.

    Science.gov (United States)

    Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo

    2017-08-01

    Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Directory of Open Access Journals (Sweden)

    Troy Patrick Beldini

    2015-11-01

    Full Text Available Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest. Increases in soil bulk density, exchangeable cations and pH were observed in the soy field soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and the microbial community was metabolically more efficient. The sum of basal respiration across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg CO2-C ha-1yr-1, thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg CO2-C ha-1yr-1 across sites and seasons. These estimates are in good agreement with literature values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this study help to further constrain the estimates of autotrophic soil respiration and will be useful for monitoring the effects of future land-use in Amazonian ecosystems.

  5. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.

    2012-01-01

    Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.

  6. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Gao, Lei; Ding, Xiangdong; Sun, Jun; Lookman, Turab; Salje, E. K. H.

    2016-01-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  7. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Salje, E. K. H., E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)

    2016-07-18

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  8. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  9. Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? Supplemental material (case studies, natural enemy releases, country views concerning ABS)

    NARCIS (Netherlands)

    Cock, M.J.W.; Lenteren, van J.C.; Brodeur, J.; Barratt, I.P.; Bigler, F.; Bolckmans, K.; Cônsoli, F.L.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2010-01-01

    Under the Convention on Biological Diversity (CBD) countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties [i.e. Access and Benefit Sharing

  10. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  11. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    Science.gov (United States)

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  12. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  13. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    Science.gov (United States)

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  14. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes under the Representative Concentration Pathways 8.5 climate change scenario in South Korea

    Directory of Open Access Journals (Sweden)

    Jae-Min Jung

    2017-12-01

    Full Text Available The yellow crazy ant (Anoplolepis gracilipes has destroyed local ecosystems in numerous countries, and their population sizes and distribution are likely to increase under global warming. To evaluate the risk of invasion by yellow crazy ant in South Korea, this study identified their potential habitats and predicted their future global distribution by modeling various climate change scenarios using CLIMEX software. Our modeling predicted that future climate conditions in South Korea will be favorable for the yellow crazy ant, and they could invade by the mid-21st century. We highlight the use of predictive algorithms to establish geographical areas with a high risk of yellow crazy ant invasion under Representative Concentration Pathways (RCP 8.5 climate scenarios. Keywords: Anoplolepis gracilipes, climate change scenario, CLIMEX, invasive species, yellow crazy ant

  15. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Science.gov (United States)

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  16. Redox Signaling and CBF-Responsive Pathway are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    2016-10-01

    Full Text Available Salicylic acid (SA plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus. Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-ɑ-aminooxy-β-phenylpropionic acid (AOPP increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon.

  17. Synthesis of Apoptotic New Quinazolinone-Based Compound and Identification of its Underlying Mitochondrial Signalling Pathway in Breast Cancer Cells.

    Science.gov (United States)

    Zahedifard, Maryam; Faraj, Fadhil Lafta; Paydar, Mohammadjavad; Looi, Chung Yeng; Hasandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Majid, Nazia Abdul; Khalifa, Shaden A M; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; El-Seedi, Hesham R

    2015-01-01

    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.

  18. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    Science.gov (United States)

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  19. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...... metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease...

  20. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE

    Directory of Open Access Journals (Sweden)

    Constantinos Yeles

    2017-11-01

    Full Text Available Ionizing radiation-induced bystander effects (RIBE encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR, something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

  1. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    Science.gov (United States)

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  2. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    Science.gov (United States)

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  3. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    Science.gov (United States)

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  4. A liquid chromatography-mass spectrometry method based on class characteristic fragmentation pathways to detect the class of indole-derivative synthetic cannabinoids in biological samples.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Botrè, Francesco

    2014-07-21

    This article describes a liquid chromatographic/tandem mass spectrometric method, based on the use of precursor ion scan as the acquisition mode, specifically developed to detect indole-derived cannabinoids (phenylacetylindoles, naphthoylindoles and benzoylindoles) in biological fluids (saliva, urine and blood). The method is designed to recognize one or more common "structural markers", corresponding to mass spectral fragments originating from the specific portion of the molecular structure that is common to the aminoalkylindole analogues and that is fundamental for their pharmacological classification. As such, the method is also suitable for detecting unknown substances, provided they contain the targeted portion of the molecular structure. The pre-treatment procedure consists in a liquid/liquid extraction step carried out at neutral pH: this is the only pretreatment in the case of analyses carried out in saliva, while it follows an enzymatic hydrolysis procedure in the case of urine samples, or a protein precipitation step in the case of blood samples. The chromatographic separation is achieved using an octadecyl reverse-phase 5 μm fused-core particle column; while the mass spectrometric detection is carried out by a triple-quadrupole instrument in positive electrospray ionization and precursor ion scan as acquisition mode, selecting, as mass spectral fragments, the indole (m/z 144), the carbonylnaphthalenyl (m/z 155) and the naphthalenyl (m/z 127) moieties. Once developed and optimized, the analytical procedure was validated in term of sensitivity (lower limits of detection in the range of 0.1-0.5 ng mL(-1)), specificity (no interference was detected at the retention times of the analytes under investigation), recovery (higher than 65% with a satisfactory repeatability: CV% lower than 10), matrix effect (lower than 30% for all the biological specimens tested), repeatability of the retention times (CV% lower than 0.1), robustness, and carry over (the positive

  5. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Liu, Li; Dinu, Valentin

    2018-01-01

    Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes

  6. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2017-07-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination ( R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had

  7. Pathways to high and low performance: factors differentiating primary care facilities under performance-based financing in Nigeria

    Science.gov (United States)

    Mabuchi, Shunsuke; Sesan, Temilade; Bennett, Sara C

    2018-01-01

    Abstract The determinants of primary health facility performance in developing countries have not been well studied. One of the most under-researched areas is health facility management. This study investigated health facilities under the pilot performance-based financing (PBF) scheme in Nigeria, and aimed to understand which factors differentiated primary health care centres (PHCCs) which had performed well, vs those which had not, with a focus on health facility management practices. We used a multiple case study where we compared two high-performing PHCCs and two low-performing PHCCs for each of the two PBF target states. Two teams of two trained local researchers spent 1 week at each PHCC and collected semi-structured interview, observation and documentary data. Data from interviews were transcribed, translated and coded using a framework approach. The data for each PHCC were synthesized to understand dynamic interactions of different elements in each case. We then compared the characteristics of high and low performers. The areas in which critical differences between high and low-performers emerged were: community engagement and support; and performance and staff management. We also found that (i) contextual and health system factors particularly staffing, access and competition with other providers; (ii) health centre management including community engagement, performance management and staff management; and (iii) community leader support interacted and drove performance improvement among the PHCCs. Among them, we found that good health centre management can overcome some contextual and health system barriers and enhance community leader support. This study findings suggest a strong need to select capable and motivated health centre managers, provide long-term coaching in managerial skills, and motivate them to improve their practices. The study also highlights the need to position engagement with community leaders as a key management practice and a central

  8. Tissue factor-expressing tumor cells can bind to immobilized recombinant tissue factor pathway inhibitor under static and shear conditions in vitro.

    Directory of Open Access Journals (Sweden)

    Sara P Y Che

    Full Text Available Mammary tumors and malignant breast cancer cell lines over-express the coagulation factor, tissue factor (TF. High expression of TF is associated with a poor prognosis in breast cancer. Tissue factor pathway inhibitor (TFPI, the endogenous inhibitor of TF, is constitutively expressed on the endothelium. We hypothesized that TF-expressing tumor cells can bind to immobilized recombinant TFPI, leading to arrest of the tumor cells under shear in vitro. We evaluated the adhesion of breast cancer cells to immobilized TFPI under static and shear conditions (0.35 - 1.3 dyn/cm2. We found that high-TF-expressing breast cancer cells, MDA-MB-231 (with a TF density of 460,000/cell, but not low TF-expressing MCF-7 (with a TF density of 1,400/cell, adhered to recombinant TFPI, under static and shear conditions. Adhesion of MDA-MB-231 cells to TFPI required activated factor VII (FVIIa, but not FX, and was inhibited by a factor VIIa-blocking anti-TF antibody. Under shear, adhesion to TFPI was dependent on the TFPI-coating concentration, FVIIa concentration and shear stress, with no observed adhesion at shear stresses greater than 1.0 dyn/cm2. This is the first study showing that TF-expressing tumor cells can be captured by immobilized TFPI, a ligand constitutively expressed on the endothelium, under low shear in vitro. Based on our results, we hypothesize that TFPI could be a novel ligand mediating the arrest of TF-expressing tumor cells in high TFPI-expressing vessels under conditions of low shear during metastasis.

  9. Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility.

    Science.gov (United States)

    Turner, A K; Paterson, S

    2013-11-01

    Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.

  10. Expression profiling of a genetic animal model of depression reveals novel molecular pathways underlying depressive-like behaviours.

    Directory of Open Access Journals (Sweden)

    Ekaterini Blaveri

    2010-09-01

    Full Text Available The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL and control Flinders Depression Resistant (FRL lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7 and serotonergic receptors (Htr1a, Htr2a in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.

  11. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Bruggeman, Richard; Nolen, Willem A.; Penninx, Brenda W.

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  12. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    DEFF Research Database (Denmark)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from ...

  13. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways

    NARCIS (Netherlands)

    O'Dushlaine, Colm; Rossin, Lizzy; Lee, Phil H.; Duncan, Laramie; Parikshak, Neelroop N.; Newhouse, Stephen; Ripke, Stephan; Neale, Benjamin M.; Purcell, Shaun M.; Posthuma, Danielle; Nurnberger, John I.; Lee, S. Hong; Faraone, Stephen V.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; de Haan, Lieuwe; Linszen, Don H.

    2015-01-01

    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from

  14. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  15. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  16. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    Science.gov (United States)

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN.

  17. Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available The Pacific white shrimp Litopenaeus vannamei is a euryhaline penaeid species that shows ontogenetic adaptations to salinity, with its larvae inhabiting oceanic environments and postlarvae and juveniles inhabiting estuaries and lagoons. Ontogenetic adaptations to salinity manifest in L. vannamei through strong hyper-osmoregulatory and hypo-osmoregulatory patterns and an ability to tolerate extremely low salinity levels. To understand this adaptive mechanism to salinity stress, RNA-seq was used to compare the transcriptomic response of L. vannamei to changes in salinity from 30 (control to 3 practical salinity units (psu for 8 weeks. In total, 26,034 genes were obtained from the hepatopancreas tissue of L. vannamei using the Illumina HiSeq 2000 system, and 855 genes showed significant changes in expression under salinity stress. Eighteen top Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were significantly involved in physiological responses, particularly in lipid metabolism, including fatty-acid biosynthesis, arachidonic acid metabolism and glycosphingolipid and glycosaminoglycan metabolism. Lipids or fatty acids can reduce osmotic stress in L. vannamei by providing additional energy or changing the membrane structure to allow osmoregulation in relevant organs, such as the gills. Steroid hormone biosynthesis and the phosphonate and phosphinate metabolism pathways were also involved in the adaptation of L. vannamei to low salinity, and the differential expression patterns of 20 randomly selected genes were validated by quantitative real-time PCR (qPCR. This study is the first report on the long-term adaptive transcriptomic response of L. vannamei to low salinity, and the results will further our understanding of the mechanisms underlying osmoregulation in euryhaline crustaceans.

  18. Pathways of topological rank analysis (PoTRA: a novel method to detect pathways involved in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chaoxing Li

    2018-04-01

    Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several

  19. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  20. Does grazing of cover crops impact biologically active soil C and N fractions under inversion and no tillage management

    Science.gov (United States)

    Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...

  1. Biologics beyond TNF-α inhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders

    DEFF Research Database (Denmark)

    Tougaard, Peter; Zervides, Kristoffer Alexander; Skov, Søren

    2016-01-01

    novel drugs that target TNF-α signaling are still being developed. Indeed, blockade of this pathway seems so important amongst immune-targets that TNF-α targeted therapies will continue to have a significant role in the treatment of chronic inflammation. However, up to 40% of RA and IBD patients do...... as a highly promising strategy for treatment of chronic inflammatory disorders....

  2. A genome-wide association meta-analysis of diarrhoeal disease in young children identifies FUT2 locus and provides plausible biological pathways

    DEFF Research Database (Denmark)

    Bustamante, Mariona; Standl, Marie; Bassat, Quique

    2016-01-01

    implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro...

  3. The Impact of climate change on heat-related mortality in six major cities, South Korea, under representative concentration pathways (RCPs

    Directory of Open Access Journals (Sweden)

    Youngmin eKim

    2014-02-01

    Full Text Available Background: We aimed to quantify the excess mortality associated with increased temperature due to climate change in six major Korean cities under Representative Concentration Pathways (RCPs which are new emission scenarios designed for the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC. Methods: We first examined the association between daily mean temperature and mortality in each during the summertime (June to September from 2001 to 2008. This was done using a generalized linear Poisson model with adjustment for a long-term time trend, relative humidity, air pollutants, and day of the week. We then computed heat-related mortality attributable to future climate change using estimated mortality risks, projected future populations, and temperature increments for both future years 2041-2070 and 2071-2100 under RCP 4.5 and 8.5. We considered effects from added days with high temperatures over thresholds and shifted effects from high to higher temperature.Results: Estimated excess all-cause mortalities for six cities in Korea ranged from 500 (95% CI: 313-703 for 2041-2070 to 2,320 (95% CI: 1,430-3,281 deaths per year for 2071-2100 under two RCPs. Excess cardiovascular mortality was estimated to range from 192 (95% CI: 41-351 to 896 (95% CI: 185-1,694 deaths per year, covering about 38.5% of all-cause excess mortality. Increased rates of heat-related mortality were higher in cities located at relatively lower latitude than cities with higher latitude. Estimated excess mortality under RCP 8.5, a fossil fuel-intensive emission scenario, was more than twice as high compared with RCP 4.5, low to medium emission scenario.Conclusions: Excess mortality due to climate change is expected to be profound in the future showing spatial variation. Efforts to mitigate climate change can cause substantial health benefits via reducing heat-related mortality.

  4. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    Science.gov (United States)

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries. Copyright © 2015. Published by Elsevier Inc.

  5. Supporting Treatment Decisions in Patients with Differentiated Thyroid Carcinoma (DTC) under Radioiodine-131 Therapy: Role of Biological Dosimetry Assessment

    International Nuclear Information System (INIS)

    Fadel, A.M.; Chebel, G.M.; Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Bubniak, R.V.; Oneto, A.

    2010-01-01

    Radioiodine-131 therapy is applied in patients with differentiated thyroid carcinoma (DTC), within the therapeutic scheme following thyroidectomy, for the ablation of thyroid remnants and treatment of metastatic disease. Several approaches for the selection of a therapeutic dose were applied. The aim of this therapy is to achieve a lethal dose in the tumor tissue, without exceeding the dose of tolerance in healthy tissues (doses greater than 2 Gy in bone marrow could lead to myelotoxicity). In this work, the treatment protocol used incorporates the assessment by biological dosimetry (BD) for estimating doses to whole body and bone marrow, to tailor patient's treatment. Biological Dosimetry prospective studies conducted on samples from patients with cumulative activities, before and after each therapeutic administration, allows to evaluate DNA damage and repair capacity in peripheral blood lymphocytes. (authors)

  6. Biological Phosphorus Release and Uptake Under Alternating Anaerobic and Anoxic Conditions In a Fixed-Film Reactor

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens; Strube, Rune

    1994-01-01

    Biological phosphorus removal was investigated in a fixed-film reactor with alternating anaerobic and anoxic conditions. The tests showed that biological phosphorus removal can be obtained in a fixed-film reactor with nitrate as oxidising agent. In the anaerobic period, 0.52 mg of PO4-P...... was released per mg of acetate taken up on an average. In the anoxic period, 2.0 mg of PO4-P was taken up per mg of NO3-N reduced on an average. The relationship between potassium released and phosphate released in the anaerobic phase was determined to be 0.37 mg K/mg P, while the relationship between...

  7. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  8. Maintaining distinctions under threat: heterosexual men endorse the biological theory of sexuality when equality is the norm.

    Science.gov (United States)

    Falomir-Pichastor, Juan M; Hegarty, Peter

    2014-12-01

    According to social identity theory, group members sometimes react to threats to their group's distinctiveness by asserting the distinctiveness of their group. In four studies (n = 261) we tested the hypothesis that heterosexual men with a greater propensity to be threatened by homosexuality would react to egalitarian norms by endorsing biological theories of sexuality. Heterosexual men, but not women, with narrow prototypes of their gender in-group endorsed biological theories the most (Study 1). Heterosexual men with higher gender self-esteem, with heterosexist attitudes, who endorsed traditional gender roles, and with narrow prototypes of their gender in-group, endorsed the biological theories more when egalitarian norms rather than anti-egalitarian norms (Studies 2 and 3) or pro-minority ideologies that emphasized group differences (Study 4) were made salient. These findings show group-level reactive distinctiveness among members of a high-status group in a context of threat to the unique privileges that they once enjoyed. © 2013 The British Psychological Society.

  9. Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China

    Directory of Open Access Journals (Sweden)

    Shouzhang Peng

    2016-07-01

    Full Text Available The current study used the Biome-Bio Geochemical Cycle (Biome-BGC model to simulate water-use efficiency (WUE of Piceacrassi folia (P. crassifolia forest under four representative concentration pathway (RCP scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was validated by comparing simulated forest net primary productivity and transpiration under current climatic condition with independent field-measured data. Subsequently, the model was used to predict P. crassi folia forest WUE response to different climatic and CO2 change scenarios. Results showed that (1 increases in temperature, precipitation and atmospheric CO2 concentrations led to associated increases in WUE (ranging from 54% to 66% above the reference climate; (2 effect of CO2 concentration (increased WUE from 36% to 42.3% was more significant than that of climate change (increased WUE from 2.4% to 15%; and (3 forest WUE response to future global change was more intense at high elevations than at low ones, with CO2 concentration being the main factor that controlled forest WUE variation. These results provide valuable insight to help understand how these forest types might respond to future changes in climate and atmospheric CO2 concentration.

  10. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway[OPEN

    Science.gov (United States)

    Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook

    2017-01-01

    Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes (MRF1-MRF4) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. PMID:29084871

  11. MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway.

    Science.gov (United States)

    Lee, Du-Hwa; Park, Seung Jun; Ahn, Chang Sook; Pai, Hyun-Sook

    2017-11-01

    Dynamic control of protein translation in response to the environment is essential for the survival of plant cells. Target of rapamycin (TOR) coordinates protein synthesis with cellular energy/nutrient availability through transcriptional modulation and phosphorylation of the translation machinery. However, mechanisms of TOR-mediated translation control are poorly understood in plants. Here, we report that Arabidopsis thaliana MRF (MA3 DOMAIN-CONTAINING TRANSLATION REGULATORY FACTOR) family genes encode translation regulatory factors under TOR control, and their functions are particularly important in energy-deficient conditions. Four MRF family genes ( MRF1 - MRF4 ) are transcriptionally induced by dark and starvation (DS). Silencing of multiple MRFs increases susceptibility to DS and treatment with a TOR inhibitor, while MRF1 overexpression decreases susceptibility. MRF proteins interact with eIF4A and cofractionate with ribosomes. MRF silencing decreases translation activity, while MRF1 overexpression increases it, accompanied by altered ribosome patterns, particularly in DS. Furthermore, MRF deficiency in DS causes altered distribution of mRNAs in sucrose gradient fractions and accelerates rRNA degradation. MRF1 is phosphorylated in vivo and phosphorylated by S6 kinases in vitro. MRF expression and MRF1 ribosome association and phosphorylation are modulated by cellular energy status and TOR activity. We discuss possible mechanisms of the function of MRF family proteins under normal and energy-deficient conditions and their functional link with the TOR pathway. © 2017 American Society of Plant Biologists. All rights reserved.

  12. Poor sleep as a pathophysiological pathway underlying the association between stressful experiences and the diurnal cortisol profile among children and adolescents

    Science.gov (United States)

    Ly, Jinshia; McGrath, Jennifer J.; Gouin, Jean-Philippe

    2017-01-01

    Summary Recent evidence suggests that poor sleep is a potential pathway underlying the association between stressful experiences and the diurnal cortisol profile. However, existing findings are largely limited to adults. The present study examines whether poor sleep (duration, quality) mediates the relation between stressful experiences and the diurnal cortisol profile in children and adolescents. Children and adolescents (N = 220, Mage = 12.62) provided six saliva samples over two days to derive cortisol indices (bedtime, AUCAG, AUCTG, slopeMAX). Perceived stress, stressful life events, self-reported sleep duration, and sleep quality were measured. Using bootstrapping analyses, sleep quality mediated the relation between perceived stress and AUCTG (R2 = 0.10, F(7, 212) = 3.55, p = .001; 95% BCI[0.09, 1.15]), as well as the relation between stressful life events and AUCTG (R2 = 0.11, F(7, 212) = 3.69, p = .001; 95% BCI[0.40, 3.82]). These mediation models remained significant after adjusting for sleep duration, suggesting that poor sleep quality underlies the association between stressful experiences and the diurnal cortisol profile in children and adolescents. Longitudinal data combined with objectively-measured sleep is essential to further disentangle the complex association between sleep and stress. PMID:25889840

  13. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Yu, Jack X; Sieuwerts, Anieta M; Zhang, Yi; Martens, John WM; Smid, Marcel; Klijn, Jan GM; Wang, Yixin; Foekens, John A

    2007-01-01

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  14. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Science.gov (United States)

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  15. A strategy for evaluating pathway analysis methods.

    Science.gov (United States)

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  16. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2016-12-01

    Full Text Available Microbial polyhydroxyalkanoates (PHA have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.

  17. Genome-wide Study of Atrial Fibrillation Identifies Seven Risk Loci and Highlights Biological Pathways and Regulatory Elements Involved in Cardiac Development

    DEFF Research Database (Denmark)

    Nielsen, Jonas B; Fritsche, Lars G; Zhou, Wei

    2018-01-01

    Atrial fibrillation (AF) is a common cardiac arrhythmia and a major risk factor for stroke, heart failure, and premature death. The pathogenesis of AF remains poorly understood, which contributes to the current lack of highly effective treatments. To understand the genetic variation and biology...

  18. Systematization of the protein sequence diversity in enzymes related to secondary metabolic pathways in plants, in the context of big data biology inspired by the KNApSAcK motorcycle database.

    Science.gov (United States)

    Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2013-05-01

    Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.

  19. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these r......Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed...... in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more...... that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non...

  20. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    Directory of Open Access Journals (Sweden)

    Ramu SENTHIL

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoderma viride strain (Tv Tvm was the most effective, inhibiting mycelial growth by 88.8 per cent. The biological control agents were tested in pre, post and combined inoculation studies against postharvest pathogens of grapes.  In the pre inoculation, B. subtilis (EPC-8 reduced the disease incidence of A. carbonarius causing rot, T. harzianum (Th Co was effective against P. expansum, and T. viride (Tv Tvm was effective against F. moniliforme. The same trend of effectiveness was also found in the post-inoculation and combined inoculation tests.

  1. Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions.

    Science.gov (United States)

    de Roffignac, Laure; Cattan, Philippe; Mailloux, Julie; Herzog, David; Le Bellec, Fabrice

    2008-12-01

    After the rinsing of spray equipment, the rinsing water contains polluting products. One way to avoid pollution is to bring the rinsing water over a purification system, a biological bed. The system consists of an impermeable tub filled with a biomix substrate that facilitates biodegradation of pesticides. Usually, straw is one component of the biomix. The objective of this study was to assess the efficiency of an unusual substrate, bagasse, a residue of sugar cane, for the degradation of three pesticides, glyphosate, malathion and lambda-cyhalothrin. Results showed that more than 99% of malathion and glyphosate were degraded in 6 months. In the biological bed, the DT(50) value for malathion was 17 days, for glyphosate 33 days and for lambda-cyhalothrin 43 days. The degradation rate of aminomethylphosphonic acid (AMPA) residues from the degradation of glyphosate was slower than that of the other pesticides (DT(50) 69 days). Finally, the innocuousness of the biomix after 6 months of degradation was confirmed by biological tests. Although the degradation rates of the three pesticides in the present bagasse-based system were similar to those under temperate conditions, the degradation conditions were improved by comparison with those in soil under the given tropical conditions. Further benefits of this system are pesticide confinement, to avoid their dispersion in the environment by liquids or solids, and a lower overall cost. Finally, possibilities for optimising the bagasse-based system (e.g. management of the water content and nature of the biomix) are discussed.

  2. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2).

    Science.gov (United States)

    Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling

    2014-01-01

    Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its

  3. PathwayAccess: CellDesigner plugins for pathway databases.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  4. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  5. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Hongwei Tian

    2017-05-01

    Full Text Available Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT and mesoporous TiO2/RGO (MTG, the ternary mesoporous TiO2/RGO/Ag (MTGA nanocomposite exhibited superior photocatalytic performance for the degradation of methylene blue (MB under visible light, and the degradation rate reached 0.017 min−1, which was 3.4-times higher than that of MTG. What is more, the degradation rate of MTGA nanocomposite after three cycle times is 91.2%, and the composition is unchanged. In addition, we found that the OH•, h+ and especially O2•− contribute to the high photocatalytic activity of MTGA for MB degradation. It is proposed that Ag nanoparticles can form the local surface plasmon resonance (LSPR to absorb the visible light and distract the electrons into MT, and RGO can accept the electrons from MT to accelerate the separation efficiency of photogenerated carriers. The establishment of MTGA ternary nanocomposite makes the three components act synergistically to enhance the photocatalytic performance.

  7. Biological transformation of anthracene in soil by Pleurotus ostreatus under solid-state fermentation conditions using wheat bran and compost

    International Nuclear Information System (INIS)

    Vargas, M C; Rodriguez, R; Sanchez, F; Ramirez, N

    2001-01-01

    Pleurotus ostreatus was grown in a soil mixture contaminated with anthracene, wheat bran and compost, in varying combinations. Assays with added bacteria and reinoculation of the fungus were also included. The results indicated that in many of the combinations, most of the anthracene was removed at the earliest sample time, 15 days. The most effective combination was spiked (anthracene-added) soil, fungus and compost and the addition of acclimated bacteria to this mixture inhibited anthracene removal. Analyses of extract by high-pressure liquid chromatography HPLC indicated that - anthraquinone, was the major metabolite formed. The results of this study indicate that solid-state fermentation of anthracene-contaminated soils using P. ostreatus in combination with wheat bran and compost additives can produce an accelerated rate of biological removal of anthracene from the soil

  8. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  9. Biological in vivo dosimetry with an external measuring technique under application of a labelled DNA-precursor (iodine-125-desoxyuridine)

    International Nuclear Information System (INIS)

    Porschen, W.; Zamboglou, N.; Muehlensiepen, H.; Feinendegen, L.E.

    1976-01-01

    The depression of the incorporation rate of IDU in the whole body or in the bone marrow is a sensitive indicator for a whole-body irradiation. It was found that the maximum effect is observed some 4 hours after irradiation. For this reason, bone marrow cells were labelled in vitro with IDU 4 hours after whole-body irradiation. This method proved to be extraordinarily sensitive and resulted in reproducible effects which occurred already at doses below 5 rad. All the other biological methods of dosimetry known so far are less sensitive. Although the theory explaining these results is not yet fully clarified, this method of dosimetry appears to offer practical possibilities of application. (orig.) [de

  10. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    Science.gov (United States)

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.

  11. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  12. 75 FR 62916 - Re-Delegation by the Under Secretary of State to the Director, Office of Chemical and Biological...

    Science.gov (United States)

    2010-10-13

    ... effect on October 1, 2010. As used in this delegation of authority, the word ``function'' includes any... Secretary for Management and Resources, and the Under Secretary for Arms Control and International Security... Secretary of State for Arms Control and International Security. [FR Doc. 2010-25613 Filed 10-12-10; 8:45 am...

  13. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  14. GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-03-01

    Full Text Available Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic changes that occur during ginsenoside accumulation in ginseng. To explore this topic, we isolated metabolites from different tissues at different growth stages, and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 30, 16, 20, 36 and 31 metabolites were identified and involved in different developmental stages in leaf, stem, petiole, lateral root and main root, respectively. To investigate the contribution of tissue to the biosynthesis of ginsenosides, we examined the metabolic changes of leaf, stem, petiole, lateral root and main root during five development stages: 1-, 2-, 3-, 4- and 5-years. The score plots of partial least squares-discriminate analysis (PLS-DA showed clear discrimination between growth stages and tissue samples. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis in the same tissue at different growth stages indicated profound biochemical changes in several pathways, including carbohydrate metabolism and pentose phosphate metabolism, in addition, the tissues displayed significant variations in amino acid metabolism, sugar metabolism and energy metabolism. These results should facilitate further dissection of the metabolic flux regulation of ginsenoside accumulation in different developmental stages or different tissues of ginseng.

  15. Novel approach for heterocyclization: a clean and efficient synthesis and biological evaluation of 4-oxothiazolidines under microwave technique

    International Nuclear Information System (INIS)

    Desai, Krunal G.; Desai, K.R.

    2006-01-01

    A new selective method has been developed for rapid synthesis of 2-(aryl)-3-[2-benzoimidazolythio)-acetamidyl]-4-oxothiazolidines 4a-j by the heterocyclization of 2-{(1H-benzemidazol)-ylthio}-N-benzylidene aceto hydrazide 3a-j with HSCH2COOH under microwave irradiation (MWI) is described. The reaction rate and yield is enhanced tremendously under MWI as compared to conventional methods. All the compounds have been screened for their antifungal activity against Candida albicans and Aspergillus niger, antibacterial activity against Escherchia coli and Staphylococcus aureus. In the primary screening, some of the compounds exhibited appreciable activity. The structures of the synthesized compounds 4a-j have been characterized on the basis of their elemental analysis, IR, HNMR and Mass spectral data. (author)

  16. Quantitative trait loci and metabolic pathways

    Science.gov (United States)

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  17. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  18. Study on toxigenic fungi in ruminant feeds under desert conditions with special references to its biological control

    Directory of Open Access Journals (Sweden)

    Shimaa M.S. Hegazy

    2015-06-01

    Full Text Available A total of 435 samples from feedstuff (130 samples of commercial ration feed storage from 1–30 days, 77 samples of commercial ration stored higher than 30 days, 57 samples from each of, derris, grind mixture, Tibn and wheat bran were collected from the feed store houses of private farms located at the desert regions of Ras Sudr at South Sinai and Elameria area at Alexandria Governorate, from December 2012 to May 2014. The collected samples were analyzed for fungal growth. The results revealed that, the main moulds observed in the ruminant feeds were Penicillium spp., Aspergillus (A flavus, Cladosporium spp., Mucor spp., Trichoderma spp., A. niger, Alternaria spp., Rhizopus spp., Fusarium spp., A. fumigates and A. terreus. In addition, the winter season was of higher incidence for moulds isolation than summer season. The most toxigenic aflatoxins secreted by Aspergillus flavus include Aflatoxin B1, Aflatoxin B2, Aflatoxin G1 and Aflatoxin G2. The results of biological treatment of Aflatoxins using Saccharomyces (S cerevisiae, showed that, the addition of Saccharomyces cerevisiae at a level of (1 × 106 cfu.ml−1 and (1 × 109 cfu.ml−1 decreased the level of concentration of aflatoxin B1, B2, G1 and G2 and the level of (1 × 109 cfu.ml−1 was more efficient in reducing aflatoxins than the lower concentration.

  19. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions.

    Science.gov (United States)

    Veldhoen, Nik; Ikonomou, Michael G; Buday, Craig; Jordan, Jameson; Rehaume, Vicki; Cabecinha, Melissa; Dubetz, Cory; Chamberlain, Jon; Pittroff, Sabrina; Vallée, Kurtis; van Aggelen, Graham; Helbing, Caren C

    2012-02-01

    The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K(p)) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, β-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions

    International Nuclear Information System (INIS)

    Veldhoen, Nik; Ikonomou, Michael G.; Buday, Craig; Jordan, Jameson; Rehaume, Vicki; Cabecinha, Melissa; Dubetz, Cory; Chamberlain, Jon; Pittroff, Sabrina; Vallée, Kurtis; Aggelen, Graham van; Helbing, Caren C.

    2012-01-01

    The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1–4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K p ) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, β-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean.

  1. Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Ikonomou, Michael G. [Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, BC, V8L 4B2 (Canada); Buday, Craig [Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC, V7H 1V2 (Canada); Jordan, Jameson; Rehaume, Vicki; Cabecinha, Melissa [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Dubetz, Cory; Chamberlain, Jon [Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, BC, V8L 4B2 (Canada); Pittroff, Sabrina; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada); Aggelen, Graham van [Pacific Environmental Science Centre, Environment Canada, 2645 Dollarton Highway, North Vancouver, BC, V7H 1V2 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Stn CSC, Victoria, BC, V8W 3P6 (Canada)

    2012-02-15

    The potential impact of commercial salmon aquaculture along the coast of British Columbia on the health of non-target marine wildlife is of growing concern. In the current initiative, the biological effects on gene expression within spot prawn (Pandalus platyceros) exposed to the sea lice controlling agent, emamectin benzoate (EB; 0.1-4.8 mg/kg sediment), were investigated. A mean sediment/water partitioning coefficient (K{sub p}) was determined to be 21.81 and significant levels of EB were detected in the tail muscle tissue in all exposed animals. Animals selected for the experiment did not have eggs and were of similar weight. Significant mortality was observed within 8 days of EB treatment at concentrations between 0.1 and 0.8 mg/kg and there was no effect of EB on molting. Twelve spot prawn cDNA sequences were isolated from the tail muscle either by directed cloning or subtractive hybridization of control versus EB exposed tissues. Three of the transcripts most affected by EB exposure matched sequences encoding the 60S ribosomal protein L22, spliceosome RNA helicase WM6/UAP56, and the intracellular signal mediator histidine triad nucleotide binding protein 1 suggesting that translation, transcription regulation, and apoptosis pathways were impacted. The mRNA encoding the molting enzyme, {beta}-N-acetylglucosaminidase, was not affected by EB treatment. However, the expression of this transcript was extremely variable making it unsuitable for effects assessment. The results suggest that short-term exposure to EB can impact biological processes within this non-target crustacean.

  2. Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: Integrating chemical and biological multivariate data

    Science.gov (United States)

    Venturini, Natalia; Muniz, Pablo; Bícego, Márcia C.; Martins, César C.; Tommasi, Luiz Roberto

    2008-07-01

    ratios and specific compound concentrations with biological data to improve the assessment of anthropogenic impact on marine ecosystems.

  3. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    Science.gov (United States)

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute

  4. The microRNA390/TRANS ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway.

    Science.gov (United States)

    He, Fu; Xu, Changzheng; Fu, Xiaokang; Shen, Yun; Guo, Li; Leng, Mi; Luo, Keming

    2018-05-01

    Salt-induced developmental plasticity in a plant root system strongly depends on auxin signaling. However, the molecular events underlying this process are poorly understood. MicroRNA390 (miR390), trans-acting small interference RNAs (tasiRNAs) and AUXIN RESPONSE FACTORs (ARFs) form a regulatory module involved in controlling lateral root (LR) growth. Here, we found that miR390 expression was strongly induced by exposure to salt during LR formation in poplar (Populus spp.) plants. miR390 overexpression stimulated LR development and increased salt tolerance, whereas miR390 knockdown caused by a short tandem target mimic repressed LR growth and compromised salt resistance. ARF3.1, ARF3.2, and ARF4 expression was significantly inhibited by the presence of salt, and transcript abundance was dramatically decreased in the miR390-overexpressing line but increased in the miR390-knockdown line. Constitutive expression of ARF4m harboring mutated trans-acting small interference ARF-binding sites removed the salt resistance of the miR390 overexpressors. miR390 positively regulated auxin signaling in LRs subjected to salt but ARF4 inhibited auxin signaling. Salinity stabilized the poplar Aux/IAA repressor INDOLE-3-ACETIC ACID17.1, and overexpression of an auxin/salt resistant form of this repressor suppressed LR growth in miR390-overexpressing and ARF4-RNAi lines in the presence of salt. Thus, the miR390/TAS3/ARFs module is a key regulator, via modulating the auxin pathway, of LR growth in poplar subjected to salt stress. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  5. Influence of mating disruption on the reproductive biology of the vine mealybug, Planococcus ficus (Hemiptera: Pseudococcidae), under field conditions.

    Science.gov (United States)

    Cocco, Arturo; Muscas, Enrico; Mura, Alessandra; Iodice, Andrea; Savino, Francesco; Lentini, Andrea

    2018-05-08

    Although mating disruption is increasingly being used to control the worldwide grapevine pest vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), its mode of action remains unclear. A three-year field experiment was carried out to investigate the effects of mating disruption on the development and reproduction of the vine mealybug. The influence of mating disruption applied over consecutive years on the pest population density was also evaluated. The percentage of ovipositing females was significantly reduced in disrupted plots by 18.8-66.2%, depending on the year. The absence of ovipositing females in disrupted plots in the autumn of the second and third year indicates the effectiveness of mating disruption throughout the whole growing season. Mating disruption consistently prolonged the pre-oviposition period in all years by up to 12.5 days. Our findings provide new insights into the mechanisms underlying the pheromone-based control of the vine mealybug and indicate that the reduction of the pest population density is due to both a decrease and delay in female mating. In addition, the population density of vine mealybugs under mating disruption decreased over years, indicating that consecutive applications of this control strategy would significantly increase the effectiveness of controlling the vine mealybug by mating disruption. This article is protected by copyright. All rights reserved.

  6. Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Meltem [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Istanbul University, Department of Pharmaceutical Technology, Pharmacy Faculty, Istanbul (Turkey); Helbok, Anna; Rangger, Christine; Decristoforo, Clemens [Innsbruck Medical University, Clinical Department of Nuclear Medicine, Innsbruck (Austria); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department for Nuclear Medicine, Ljubljana (Slovenia); Nock, Berthold A. [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Morelli, Giancarlo [University of Naples ' ' Federico II' ' and IBB-CN, Department of Biological Sciences, CIRPeB, Naples (Italy); Eek, Annemarie [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P. [Erasmus MC Rotterdam, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites. Twelve different 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-minigastrin/CCK conjugates were provided within an European COST Action (BM0607) by different laboratories and radiolabelled with {sup 177}Lu. Their in vitro stabilities were tested in fresh human serum. Radiochemical yields (RCY) and intact radioligands for half-life calculations were determined by radio-HPLC. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis of metabolites was performed to identify cleavage products using conjugates labelled with excess stable {sup nat}Lu, incubated in serum at 37 C. Urine metabolite analysis after injection in normal mice was performed by radio-HPLC analysis. Variable stability in human serum was found for the different peptides with calculated half-lives between 4.5 {+-} 0.1 h and 198 {+-} 0.1 h (n = 2). In urine of normal mice only metabolised peptide fragments were detected even at short times after injection for all peptides. MALDI-TOF MS revealed a major cleavage site of all minigastrin derivatives between Asp and Phe-NH{sub 2} at the C-terminal end. Development of CCK2 receptor ligands especially for therapeutic purposes in patients with MTC or small cell lung cancer (SCLC) is still ongoing in different laboratories. This comparative study provided valuable insight into the importance of biological stability especially in the context of other results of this comparative

  7. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  8. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    role in baking-associated stress tolerance. In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  9. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Science.gov (United States)

    2012-01-01

    plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains. PMID:22462683

  10. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks tha...

  11. Pathway-based analyses.

    Science.gov (United States)

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  12. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  13. Biology Branch

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, W F

    1974-12-31

    Progress is reported on the following studies in biochemistry and molecular biology: study of long pyrimidine polynucleotides in DNA; isolation of thymine dimers from Schizosaccharomyces pombe; thermal stability of high molecular weight RNA; nucleases of Micrococcus radiodurans; effect of ionizing radiation on M. radiodurans cell walls and cell membranes; chemical modification of nucleotides; exonucleases of M. radiodurans; and enzymatic basis of repair of radioinduced damage in M. radiodurans. Genetics, development, and population studies include repair pathways and mutation induction in yeast; induction of pure mutant clones in yeast; radiosensitivity of bacteriophage T4; polyacrylamide gel electrophoresis of bacteriophage T4; radiation genetics of Dahibominus; and radiation studies on bitting flies. (HLW)

  14. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  15. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions.

    Science.gov (United States)

    Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida

    2012-08-02

    The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply

  16. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  17. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  18. Investigating a potential biological treatment to prevent pathological fractures caused by unicameral bone cysts in children under 8 years.

    Science.gov (United States)

    Ramos-Pascua, Luis R; Sánchez-Herraéz, Sergio; Casas-Ramos, Paula; Molnar Fuentes, Sebastián; Santos Sánchez, José Ángel

    2014-10-01

    There is no consensus on when and how to treat unicameral bone cysts (UBCs), partly because of a lack of knowledge of the aetiology. To review the different treatment techniques for UBCs and to describe our results with a single injection of autogenous bone marrow (BM) mixed with demineralised bone matrix (DBM) in very young children. We reviewed five patients under the age of 8 years with UBCs treated by percutaneous aspiration and a single injection of BM associated with DBM. The cyst was located in the proximal humerus in four patients and in the proximal femur in one patient. Assessment of the need for surgery was based on the clinical and radiographic suspicion of new pathological fractures. The administration of a second injection, when necessary, was based on the surgeon's judgement regarding the risk of fracture. The mean follow-up after first injection was 41 months. There were no complications related to the procedure, except a non-displaced fracture, which healed without problems. All patients were pain free and progressively resumed their activities without restriction until a new fracture occurred in two cases. According to Capanna's classification, only one case healed completely (grade 1), one lesion was classified as grade 2, and there were three recurrences at 11, 12 and 27 months after initial treatment (grade 3). The final outcome was treatment failure for three out of the five patients. Two patients were treated with a second injection and one patient is waiting for surgery. A single injection of aspirated autogenous BM mixed with DBM in very young children with active UBCs at risk of fracture is very simple, comfortable and safe. Nevertheless, the results seem to be unpredictable and are probably more dependent on the natural evolution of the cyst than on the treatment. Further comparative studies with larger sample numbers are needed.

  19. Private selective sweeps identified from next-generation pool-sequencing reveal convergent pathways under selection in two inbred Schistosoma mansoni strains.

    Directory of Open Access Journals (Sweden)

    Julie A J Clément

    Full Text Available BACKGROUND: The trematode flatworms of the genus Schistosoma, the causative agents of schistosomiasis, are among the most prevalent parasites in humans, affecting more than 200 million people worldwide. In this study, we focused on two well-characterized strains of S. mansoni, to explore signatures of selection. Both strains are highly inbred and exhibit differences in life history traits, in particular in their compatibility with the intermediate host Biomphalaria glabrata. METHODOLOGY/PRINCIPAL FINDINGS: We performed high throughput sequencing of DNA from pools of individuals of each strain using Illumina technology and identified single nucleotide polymorphisms (SNP and copy number variations (CNV. In total, 708,898 SNPs were identified and roughly 2,000 CNVs. The SNPs revealed low nucleotide diversity (π = 2 × 10(-4 within each strain and a high differentiation level (Fst = 0.73 between them. Based on a recently developed in-silico approach, we further detected 12 and 19 private (i.e. specific non-overlapping selective sweeps among the 121 and 151 sweeps found in total for each strain. CONCLUSIONS/SIGNIFICANCE: Functional annotation of transcripts lying in the private selective sweeps revealed specific selection for functions related to parasitic interaction (e.g. cell-cell adhesion or redox reactions. Despite high differentiation between strains, we identified evolutionary convergence of genes related to proteolysis, known as a key virulence factor and a potential target of drug and vaccine development. Our data show that pool-sequencing can be used for the detection of selective sweeps in parasite populations and enables one to identify biological functions under selection.

  20. Adenosine Receptors as a Biological Pathway for the Anti-Inflammatory and Beneficial Effects of Low Frequency Low Energy Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Katia Varani

    2017-01-01

    Full Text Available Several studies explored the biological effects of low frequency low energy pulsed electromagnetic fields (PEMFs on human body reporting different functional changes. Much research activity has focused on the mechanisms of interaction between PEMFs and membrane receptors such as the involvement of adenosine receptors (ARs. In particular, PEMF exposure mediates a significant upregulation of A2A and A3ARs expressed in various cells or tissues involving a reduction in most of the proinflammatory cytokines. Of particular interest is the observation that PEMFs, acting as modulators of adenosine, are able to increase the functionality of the endogenous agonist. By reviewing the scientific literature on joint cells, a double role for PEMFs could be hypothesized in vitro by stimulating cell proliferation, colonization of the scaffold, and production of tissue matrix. Another effect could be obtained in vivo after surgical implantation of the construct by favoring the anabolic activities of the implanted cells and surrounding tissues and protecting the construct from the catabolic effects of the inflammatory status. Moreover, a protective involvement of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells have suggested the hypothesis of a positive impact of this noninvasive biophysical stimulus.

  1. Updating the Wnt pathways

    Science.gov (United States)

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  2. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  3. IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis.

    Science.gov (United States)

    Zhang, Fan; Drabier, Renee

    2012-01-01

    Next-Generation Sequencing (NGS) technologies and Genome-Wide Association Studies (GWAS) generate millions of reads and hundreds of datasets, and there is an urgent need for a better way to accurately interpret and distill such large amounts of data. Extensive pathway and network analysis allow for the discovery of highly significant pathways from a set of disease vs. healthy samples in the NGS and GWAS. Knowledge of activation of these processes will lead to elucidation of the complex biological pathways affected by drug treatment, to patient stratification studies of new and existing drug treatments, and to understanding the underlying anti-cancer drug effects. There are approximately 141 biological human pathway resources as of Jan 2012 according to the Pathguide database. However, most currently available resources do not contain disease, drug or organ specificity information such as disease-pathway, drug-pathway, and organ-pathway associations. Systematically integrating pathway, disease, drug and organ specificity together becomes increasingly crucial for understanding the interrelationships between signaling, metabolic and regulatory pathway, drug action, disease susceptibility, and organ specificity from high-throughput omics data (genomics, transcriptomics, proteomics and metabolomics). We designed the Integrated Pathway Analysis Database for Systematic Enrichment Analysis (IPAD, http://bioinfo.hsc.unt.edu/ipad), defining inter-association between pathway, disease, drug and organ specificity, based on six criteria: 1) comprehensive pathway coverage; 2) gene/protein to pathway/disease/drug/organ association; 3) inter-association between pathway, disease, drug, and organ; 4) multiple and quantitative measurement of enrichment and inter-association; 5) assessment of enrichment and inter-association analysis with the context of the existing biological knowledge and a "gold standard" constructed from reputable and reliable sources; and 6) cross-linking of

  4. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    Directory of Open Access Journals (Sweden)

    Thomas J Webb

    Full Text Available BACKGROUND: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. CONCLUSIONS/SIGNIFICANCE: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  5. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effect of Corm Density on Yield and Qualitative Traits of Saffron (Crocus sativus L. under Different Urea and Biological Fertilizers in Shahr-e-Rey Region

    Directory of Open Access Journals (Sweden)

    Alireza pazoki

    2017-07-01

    Full Text Available To study the effect of corm density on yield and qualitative traits of saffron (Crocus sativus L. under different biological and chemical nitrogen fertilizers, a factorial experiment based on completely randomized block design with 3 replications was done in 2014 at Shahr-e-Rey region (Ghomi Abad. The experimental factors were: corm density in 3 levels (60, 120 and 180 corm per square meter and biological and chemical nitrogen fertilizers in 4 levels (without fertilizer application, 150 kg.ha-1 of Urea, 5 L.ha-1 of Nitroxin and 75 kg.ha-1 of Urea +5 L.ha-1 of Nitroxin. The results indicated that the corm density affects number of daughter corm, fresh daughter corm weight, corm diameter, dry stigma and style weight, dry and fresh flower weight significantly. Mean comparisons also indicated that by increasing corm density from 6o to 180, saffron dry yield of saffron improved by 2.7 fold. However, increasing corm density reduced corm diameter, fresh corm daughter weight and their numbers per square meter. It can be concluded that nitroxin as an organic fertilizer, increases vegetative traits and saffron dry yield (stigma + style weight to 2.08 kg.ha-1 and highly improves in qualitative traits like Safranal, Picrocrocin, and Crocin. It can be also said that combined use of nitroxin and urea would be an alternative method to reduce application of urea.

  7. Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation.

    Science.gov (United States)

    Kido, Kohei; Yokokawa, Takumi; Ato, Satoru; Sato, Koji; Fujita, Satoshi

    2017-08-01

    Insulin stimulates skeletal muscle glucose uptake via activation of the protein kinase B/Akt (Akt) pathway. Recent studies suggest that insulin downregulates AMP-activated protein kinase (AMPK) activity via Ser485/491 phosphorylation of the AMPK α-subunit. Thus lower blood insulin concentrations may induce AMPK signal activation. Acute exercise is one method to stimulate AMPK activation; however, no study has examined the relationship between blood insulin levels and acute resistance exercise-induced AMPK pathway activation. Based on previous findings, we hypothesized that the acute resistance exercise-induced AMPK pathway activation would be augmented by disruptions in insulin secretion through a decrease in AMPKα Ser485/491 inhibitory phosphorylation. To test the hypothesis, 10-wk-old male Sprague-Dawley rats were administered the toxin streptozotocin (STZ; 55 mg/kg) to destroy the insulin secreting β-cells. Three days postinjection, the right gastrocnemius muscle from STZ and control rats was subjected to resistance exercise by percutaneous electrical stimulation. Animals were killed 0, 1, or 3 h later; activation of the Akt/AMPK and downstream pathways in the muscle tissue was analyzed by Western blotting and real-time PCR. Notably, STZ rats showed a significant decrease in basal Akt and AMPKα Ser485/491 phosphorylation, but substantial exercise-induced increases in both AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79 phosphorylation were observed. Although no significant impact on resistance exercise-induced Akt pathway activation or glucose uptake was found, resistance exercise-induced peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 α (PGC-1α) gene expression was augmented by STZ treatment. Collectively, these data suggest that circulating insulin levels may regulate acute resistance exercise-induced AMPK pathway activation and AMPK-dependent gene expression relating to basal AMPKα Ser485/491 phosphorylation. Copyright © 2017

  8. Adverse outcome pathways (AOPs) to enhance EDC ...

    Science.gov (United States)

    Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway (AOP) framework, which organizes information concerning measureable changes that link initial biological interactions with a chemical to adverse effects that are meaningful to risk assessment and management, can aid this process. This presentation outlines the ways in which the AOP framework has already been employed to support EDSP and how it may further enhance endocrine disruptor assessments in the future. Screening and testing for endocrine active chemicals was mandated under 1996 amendments to the Safe Drinking Water Act and Food Quality Protection Act. Efficiencies can be gained in the endocrine disruptor screening program by using available biological and toxicological knowledge to facilitate greater use of high throughput screening data and other data sources to inform endocrine disruptor assessments. Likewise, existing knowledge, when properly organized, can help aid interpretation of test results. The adverse outcome pathway

  9. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions

    Science.gov (United States)

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi; Abdolmohammadi, Alireza

    2014-07-01

    A study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125 and 250 mg/kg), selenium (Se, 0, 0.5 and 1 mg/kg), or their different combinations on immune response and blood biological parameters of broilers raised under either thermoneutral (TN, 23.9 °C constant) or heat stress (HS, 23.9 to 37 °C cycling) conditions. Humoral immunity was assessed by intravenous injection of 7 % sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Heterophil to lymphocyte (H/L) ratio also determined as an indicator of stress. Furthermore, at the end of the experiment, birds were bled for determination of some biological parameters. There was a significant reduction in body weight and feed intake, but the feed conversion ratio increased when the birds were exposed to HS ( P vitamin E and Se ( P > 0.05), whereas feed conversion was improved significantly by 125 mg/kg vitamin E ( P vitamin E resulted in improvement of primary and secondary antibody responses both in TN and HS broilers ( P Vitamin E and Se had interactive effects on anti-SRBC titers; however, no consistent differences were found between dietary levels during the study. The H/L ratio decreased by feeding vitamin E at both levels either under HS or TN conditions ( P < 0.05). The serum concentrations of glucose, triglycerides, total cholesterol, and LDL-cholesterol were increased but serum HDL-cholesterol decreased in HS broilers ( P < 0.05).

  10. The SUMO Pathway