WorldWideScience

Sample records for biological monitoring techniques

  1. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  2. National Biological Monitoring Inventory

    International Nuclear Information System (INIS)

    Burgess, R.L.

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the computerized data bases. The structure of the system provides for on-line search capabilities to generate details of agency sponsorship, indications of funding levels, taxonomic and geographic coverage, length of program life, managerial focus or emphasis, and condition of the data. Examples of each of these are discussed and illustrated, and potential use of the Inventory in a variety of situations is emphasized

  3. Biological Sample Monitoring Database (BSMDBS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biological Sample Monitoring Database System (BSMDBS) was developed for the Northeast Fisheries Regional Office and Science Center (NER/NEFSC) to record and...

  4. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  5. Industrial chemical exposure: guidelines for biological monitoring

    National Research Council Canada - National Science Library

    Lauwerys, Robert R; Hoet, Perrine

    2001-01-01

    .... With Third Edition of Industrial Chemical Exposure you will understand the objectives of biological monitoring, the types of biological monitoring methods, their advantages and limitations, as well...

  6. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  7. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  8. Biological monitors of air pollution

    International Nuclear Information System (INIS)

    Kucera, J.

    1994-01-01

    Direct biological monitoring of air pollution was introduced about 30 years ago. Although still under development, the application of biological monitors, or indicators, may provide important information on the levels, availability, and pathways of a variety of pollutants including heavy metals and other toxic trace elements in the air. A survey is given of the most frequently used biomonitors, such as herbaceous plants, tree leaves or needles, bryophytes, and lichens, with their possible advantages and/or limitations. In addition to using naturally-occurring biomonitors, a possibility of employing ''transplanted'' species in the study areas, for instance grasses grown in special containers in standard soils or lichens transplanted with their natural substrate to an exposition site, is also mentioned. Several sampling and washing procedures are reported. The important of employing nuclear analytical methods, especially instrumental neutron activation analysis, for multielemental analysis of biomonitors as a pre-requisite for unlocking the information contained in chemical composition of monitor's tissues, such as apportionment of emission sources using multivariate statistical procedures, is also outlined. (author). 32 refs, 2 figs

  9. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  10. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  11. Remote and unattended monitoring techniques

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Whichello, J.

    1998-01-01

    In the last years, there has been a tremendous growth in the number of unattended assay and monitoring systems in the field. These systems have enabled reduced presence of inspectors while increasing the verification coverage. As part of the Strengthened safeguards System and in particular as part of the measures to improve the cost-effectiveness of safeguards, the possibility of remote transfer of authenticated and encrypted video surveillance, seals and radiation sensor data via telephone or special satellite links have been demonstrated and the necessary arrangements and infrastructure have been prepared. The evaluation of field trials of the remote monitoring systems have shown that the systems are effective in monitoring events of safeguards relevance in near real times. The systems are competitive from a cost standpoint when compared to current methods. The reduction of inspection efforts can be realized by application of remote monitoring technique with scheduled inspections and more effectively with the short notice or unannounced random inspections. It is expected that, upon completion of the necessary arrangements with the Member States authorities, the safeguards department will implement the technique widely before the year 2000

  12. A new corrosion monitoring technique

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    Internal Corrosion Monitoring has relied upon 5 basic techniques. Little improvement in performance has been achieved in any of these. Many newer internal corrosion monitoring techniques have proved of little value in the field although some have instances of success in the laboratory. Industry has many high value hydrocarbon applications requiring corrosion rate monitoring for real-time problem solving and control. The high value of assets and the cost of asset replacement makes it necessary to practice cost effective process and corrosion control with sensitivity beyond the 5 basic techniques. This new metal loss technology offers this sensitivity. Traditional metal loss technology today provides either high sensitivity with short life, or conversely, long life but with substantially reduced sensitivity. The new metal loss technology offers an improved working life of sensors without significantly compromising performance. The paper discusses the limitations of existing on-line technologies and describes the performance of a new technology. This new metal loss technology was introduced at NACE Corrosion 99'. Since that time several field projects have been completed or are ongoing. This paper will discuss the new metal loss technology and report on some of the data that has been obtained.(author)

  13. [Retrospective study of the implementation of the qualitative PCR technique in biological samples for monitoring toxoplasmosis in pediatric patients receiving hematopoietic stem cell transplantation].

    Science.gov (United States)

    Nigro, Mónica G; Figueroa, Carlos; Ledesma, Bibiana A

    2014-01-01

    Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Twelve patients receiving HSCT were monitored post-transplant, by qualitative PCR at the Children's Hospital S.A.M.I.C. "Prof. Dr. Juan P. Garrahan". The monitoring of these patients was defined by a history of positive serology for toxoplasmosis in the donor or recipient and because their hematologic condition did not allow the use of trimethoprim-sulfamethoxazole for prophylaxis. During the patients' monitoring, two of them with positive PCR results showed signs of illness by T. gondii and were treated with pyrimethamine-clindamycin. In two other patients, toxoplasmosis was the cause of death and an autopsy finding, showing negative PCR results. Four patients without clinical manifestations received treatment for toxoplasmosis because of positive PCR detection. In four patients there were no signs of toxoplasmosis disease and negative PCR results during follow-up. The qualitative PCR technique proved useful for the detection of toxoplasmosis reactivation in HSCT recipients, but has limitations in monitoring and making clinical decisions due to the persistence of positive PCR over time and manifestations of toxicity caused by the treatment. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  14. Cure Monitoring Techniques for Adhesive Bonding Techniques.

    Science.gov (United States)

    1980-11-01

    l TABLE OF CONTIW Section Pase I INTRODUCTION 1. Program Overviev 1 2. Smary 2 II MONITORING SYSTEM IMPROVEMENTS 3 1. Development of a...encountered in the electronics/signal/ computer interfaces, although solvable, have slowed progress and starting a bondline monitoring program to do a...AIWAL/MLBC) as Project Engineer. The program manager is Mr. C. A. May. The principal investigator is Dr. A. Wereta, Jr., assisted by Mass. W. G. Caple, J

  15. Human biological monitoring of occupational genotoxic exposures

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Sorsa, M

    1993-01-01

    Human biological monitoring is a valuable tool for exposure assessment in groups of persons occupationally exposed to genotoxic agents. If the monitoring activity covers genetic material the term genetic monitoring is used. The methods used for genetic monitoring are either substance specific, e......) occupational exposure limit value of styrene in ambient air. The consideration of ethical issues in human genetic monitoring is an important but often overlooked aspect. This includes the scientific and preventional relevance of performing a test on individuals, pre- and post study information of donors...

  16. Neutron Scattering in Biology Techniques and Applications

    CERN Document Server

    Fitter, Jörg; Katsaras, John

    2006-01-01

    The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

  17. Techniques for monitoring pileated woodpeckers.

    Science.gov (United States)

    Evelyn L Bull; Richard S. Holthausen; Marie G. Henjum

    1990-01-01

    Methods of locating pileated woodpeckers (Dryocopus pileatus) are described, including imitating pileated woodpecker vocalizations, identifying nest and roost trees, and finding foraging signs. Populations of pileated woodpeckers can be monitored by using (1) density of breeding pairs, (2) reproduction, and (3) presence or absence of birds. The...

  18. Use of nuclear techniques in biological control

    International Nuclear Information System (INIS)

    Greany, Patrick D.; Carpenter, James E.

    2000-01-01

    As pointed out by Benbrook (1996), pest management is at a crossroads, and there is a great need for new, biointensive pest management strategies. Among these approaches, biological control is a keystone. However, because of increasing concerns about the introduction of exotic natural enemies of insect pests and weeds (Howarth 1991, Delfosse 1997), the overall thrust of biological control has moved toward augmentative biological control, involving releases of established natural enemy species (Knipling 1992). This in turn has created a need to develop more cost-effective mass rearing technologies for beneficial insects. Nuclear techniques could play an especially important role in augmentative biological control, not only in facilitating mass rearing, but in several other ways, as indicated below. Recognising the potential value for use of nuclear techniques in biological control, the Insect and Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, sponsored a Consultants' Group Meeting on this subject in April 1997. The Group produced a document entitled Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. The consultants included the authors of this paper as well as Ernest Delfosse (at that time, with the USDA-APHIS National Biological Control Institute), Garry Hill (Intl. Institute for Biological Control), Sinthya Penn (Beneficial Insectary), and Felipe Jeronimo (USDA-APHIS PPQ, Guatemala). The remarks presented in this paper reflect the thoughts presented by these consultants and other participants at the IAEA-sponsored meeting. Several potential uses for nuclear techniques were identified by the Consultants' Group, including: 1) improvements in rearing media (either artificial diets or natural hosts/prey), 2) provision of sterilised natural prey to be used as food during shipment, to ameliorate concerns relating to the

  19. Experiences on MIC monitoring by electrochemical techniques

    DEFF Research Database (Denmark)

    Cristiani, P.; Perboni, G.; Hilbert, Lisbeth Rischel

    2002-01-01

    Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper.......Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper....

  20. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  1. Biological basis of the sterile insect technique

    International Nuclear Information System (INIS)

    Lance, D.R.; McInnis, D.O.

    2005-01-01

    In principle, the sterile insect technique (SIT) is applicable to controlling a wide variety of insect pests, but biological factors, interacting with socio-economic and political forces, restrict its practical use to a narrower set of pest species and situations. This chapter reviews how the biology and ecology of a given pest affect the feasibility and logistics of developing and using the SIT against that pest insect. The subjects of pest abundance, distribution, and population dynamics are discussed in relation to producing and delivering sufficient sterile insects to control target populations. Pest movement and distribution are considered as factors that influence the feasibility and design of SIT projects, including the need for population- or area-wide management approaches. Biological characteristics, that affect the ability of sterile insects to interact with wild populations, are presented, including the nature of mating systems of pests, behavioural and physiological consequences of mass production and sterilization, and mechanisms that males use to block a female's acquisition and/or use of sperm from other males. An adequate knowledge of the biology of the pest species and potential target populations is needed, both for making sound decisions on whether integration of the SIT into an area-wide integrated pest management (AW-IPM) programme is appropriate, and for the efficient and effective application of the technique. (author)

  2. Spectrum monitoring procedures and techniques

    Science.gov (United States)

    1990-07-01

    The first step towards operating an emitter on a test range is to contact the local frequency manager to establish a schedule. Since restricted radio frequency bands and operations are different at each test range location, most testing is accomplished by sharing the spectrum available with all range users. The telemetry bands in particular require spectrum activity scheduling. The objective is to resolve scheduling conflicts prior to operations. When two programs or projects request to use the same spectrum, their activity can be separated by quard bands, discrete frequencies, time, or operating locations (terrain masking). Priorities assigned to each program usually dictate which program will be scheduled first; however, use of priorities to schedule activities should be avoided and only considered as a last resort. When a scheduling conflict cannot be resolved using these techniques, it is brought to the attention of the responsible program managers. When scheduling activities involve other federal or nonfederal agencies, it is in the best interest of program managers to be as flexible as possible.

  3. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  4. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  5. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  6. Biological monitoring results for cadmium exposed workers.

    Science.gov (United States)

    McDiarmid, M A; Freeman, C S; Grossman, E A; Martonik, J

    1996-11-01

    As part of a settlement agreement with the Occupational Safety and Health Administration (OSHA) involving exposure to cadmium (Cd), a battery production facility provided medical surveillance data to OSHA for review. Measurements of cadmium in blood, cadmium in urine, and beta 2-microglobulin in urine were obtained for more than 100 workers over an 18-month period. Some airborne Cd exposure data were also made available. Two subpopulations of this cohort were of primary interest in evaluating compliance with the medical surveillance provisions of the Cadmium Standard. These were a group of 16 workers medically removed from cadmium exposure due to elevations in some biological parameter, and a group of platemakers. Platemaking had presented a particularly high exposure opportunity and had recently undergone engineering interventions to minimize exposure. The effect on three biological monitoring parameters of medical removal protection in the first group and engineering controls in platemakers is reported. Results reveal that both medical removal from cadmium exposures and exposure abatement through the use of engineering and work practice controls generally result in declines in biological monitoring parameters of exposed workers. Implications for the success of interventions are discussed.

  7. Economics important in selecting monitoring techniques

    International Nuclear Information System (INIS)

    Moore, D.P.; Byars, H.G.

    1990-01-01

    Failure/risk costs need to be considered when deciding on the type of corrosion monitoring and inspection. Locations with high-pressure, high-velocity streams need closer monitoring. This article discusses the risks associated with different types of fluid streams and the various inspection techniques that can range from a low-cost visual examination to mechanical calipers and electromagnetic, radiographic, and ultrasonic tools

  8. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  9. Flaw evolution monitoring by acoustic emission technique

    International Nuclear Information System (INIS)

    Ghia, S.; Sala, A.; Lucia, A.

    1986-01-01

    Flaw evolution monitoring during mechanical fatigue test has been performed by acoustic emission (AE) technique. Testing on 1:5 reduced scale vessel containing fabrication defects was carried out in the frame of an European program for pressure component residual life evaluation. Characteristics of AE signals associated to flaw evolution are discussed

  10. Cleaning of polluted water using biological techniques

    International Nuclear Information System (INIS)

    Nielsen, M.

    1992-01-01

    Ground-water at many Danish locations has been polluted by organic substances. This pollution has taken place in relation to leaks or spills of, for example, petrol from leaky tanks or oil separators. The article describes a new biological technique for the purification of ground-water polluted by petrol and diesel oils leaked at a petrol station. The technique involves decompostion by bacteria. During decompostion the biomass in the filter increases and carbon dioxide and water is produced, so there is no waste product from this process. The two units consist of an oil-separator which separates the diesel oil and petrol from the water, and a bio-filter which is constructed as an aired-through inverted filter to which nutrient salts are continually added. The filter-material used is in the form of plastic rings on which the oil-decomposing bacteria grow and reproduce themselves. The system is further described. It is claimed that the bio-filter can decompose 7 kg of petrol and diesel oil in one week, larger ones decompose more. The servicelife of the system is expected to be 4-6 years. Current installation costs are 20.000 - 100.000 Danish kroner, according to size. (AB)

  11. Radon monitoring technique with electret collecting

    International Nuclear Information System (INIS)

    Tian Zhiheng; Zuo Fuqi; Xiao Detao; Zhao Xkiuliang

    1991-12-01

    The integrating radon monitoring technique with electret collecting is a method which collects the 218 Po + positive ions by electrostatic field produced by electret. It has greatly improved the sensitivity of radon measurement. The response factor of this method reaches to 4.7 cm -2 Bq -1 m 3 h -1 , 1000 times larger than that of common passive sampling method. The monitoring device and its principle are introduced. The measuring results of radon concentration and radon flux rate and quality assurance system by using this method in the Qinshan Nuclear Power Plant, Human Environmental Monitoring Central Station and some uranium mines are also presented. The analytical results show that the radon concentration in the Qinshan Nuclear Power Plant is affected by wind direction. When wind directs toward sea, the radon concentration is high. If the wind is to the contrary, it is low. The radon concentration ratio of both is about 2

  12. Machine monitoring via current signature analysis techniques

    International Nuclear Information System (INIS)

    Smith, S.F.; Castleberry, K.N.; Nowlin, C.H.

    1992-01-01

    A significant need in the effort to provide increased production quality is to provide improved plant equipment monitoring capabilities. Unfortunately, in today's tight economy, even such monitoring instrumentation must be implemented in a recognizably cost effective manner. By analyzing the electric current drawn by motors, actuator, and other line-powered industrial equipment, significant insights into the operations of the movers, driven equipment, and even the power source can be obtained. The generic term 'current signature analysis' (CSA) has been coined to describe several techniques for extracting useful equipment or process monitoring information from the electrical power feed system. A patented method developed at Oak Ridge National Laboratory is described which recognizes the presence of line-current modulation produced by motors and actuators driving varying loads. The in-situ application of applicable linear demodulation techniques to the analysis of numerous motor-driven systems is also discussed. The use of high-quality amplitude and angle-demodulation circuitry has permitted remote status monitoring of several types of medium and high-power gas compressors in (US DOE facilities) driven by 3-phase induction motors rated from 100 to 3,500 hp, both with and without intervening speed increasers. Flow characteristics of the compressors, including various forms of abnormal behavior such as surging and rotating stall, produce at the output of the specialized detectors specific time and frequency signatures which can be easily identified for monitoring, control, and fault-prevention purposes. The resultant data are similar in form to information obtained via standard vibration-sensing techniques and can be analyzed using essentially identical methods. In addition, other machinery such as refrigeration compressors, brine pumps, vacuum pumps, fans, and electric motors have been characterized

  13. INNOVATIONS IN EQUIPMENT AND TECHNIQUES FOR THE BIOLOGY TEACHING LABORATORY.

    Science.gov (United States)

    BARTHELEMY, RICHARD E.; AND OTHERS

    LABORATORY TECHNIQUES AND EQUIPMENT APPROPRIATE FOR TEACHING BIOLOGICAL SCIENCE CURRICULUM STUDY BIOLOGY ARE EMPHASIZED. MAJOR CATEGORIES INCLUDE (1) LABORATORY FACILITIES, (2) EQUIPMENT AND TECHNIQUES FOR CULTURE OF MICRO-ORGANISMS, (3) LABORATORY ANIMALS AND THEIR HOUSING, (4) TECHNIQUES FOR STUDYING PLANT GROWTH, (5) TECHNIQUES FOR STUDYING…

  14. The development of digital monitoring technique

    International Nuclear Information System (INIS)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator's monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs

  15. Monitoring severe accidents using AI techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Ahn, Kwang Il; Kim, Ju Hyun; Na, Man Gyun; Lim, Dong Hyuk

    2012-01-01

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  16. Monitoring severe accidents using AI techniques

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Lim, Dong Hyuk [Korea Institute of Nuclear Nonproliferation and Control, Daejon (Korea, Republic of)

    2012-05-15

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  17. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  18. Monitoring Severe Accidents Using AI Techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Kim, Ju Hyun; Na, Man Gyun; Ahn, Kwang Il

    2011-01-01

    It is very difficult for nuclear power plant operators to monitor and identify the major severe accident scenarios following an initiating event by staring at temporal trends of important parameters. The objective of this study is to develop and verify the monitoring for severe accidents using artificial intelligence (AI) techniques such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH) and fuzzy neural network (FNN). The SVC and PNN are used for event classification among the severe accidents. Also, GMDH and FNN are used to monitor for severe accidents. The inputs to AI techniques are initial time-integrated values obtained by integrating measurement signals during a short time interval after reactor scram. In this study, 3 types of initiating events such as the hot-leg LOCA, the cold-leg LOCA and SGTR are considered and it is verified how well the proposed scenario identification algorithm using the GMDH and FNN models identifies the timings when the reactor core will be uncovered, when CET will exceed 1200 .deg. F and when the reactor vessel will fail. In cases that an initiating event develops into a severe accident, the proposed algorithm showed accurate classification of initiating events. Also, it well predicted timings for important occurrences during severe accident progression scenarios, which is very helpful for operators to perform severe accident management

  19. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  20. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  1. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko

    2013-01-01

    High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...... to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths....

  2. Surface analysis and techniques in biology

    CERN Document Server

    Smentkowski, Vincent S

    2014-01-01

    This book highlights state-of-the-art surface analytical instrumentation, advanced data analysis tools, and the use of complimentary surface analytical instrumentation to perform a complete analysis of biological systems.

  3. Establishing a national biological laboratory safety and security monitoring program.

    Science.gov (United States)

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  4. Monitoring biological diversity: strategies, tools, limitations, and challenges.

    Science.gov (United States)

    Erik A. Beever

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...

  5. Micro and Nano Techniques for the Handling of Biological Samples

    DEFF Research Database (Denmark)

    Micro and Nano Techniques for the Handling of Biological Samples reviews the different techniques available to manipulate and integrate biological materials in a controlled manner, either by sliding them along a surface (2-D manipulation), or by gripping and moving them to a new position (3-D...

  6. Nutrient Film Technique (NFT Hydroponic Monitoring System

    Directory of Open Access Journals (Sweden)

    Helmy Helmy

    2016-10-01

    Full Text Available Plant cultivation using hydroponic is very popular today. Nutrient Film Technique (NFT hydroponic system is commonly used by people. It can be applied indoor or outdoor. Plants in this systemneed nutrient solution to grow well. pH, TDS and temperature of the nutrient solution must be check to ensure plant gets sufficient nutrients. This research aims todevelop monitoring system of NFT hydroponic. Farmer will be able to monitor pH, TDS and temperature online. It will ease farmer to decide which plant is suitable to be cultivated and time to boost growth.Delay of the system will be measured to know system performance. Result shows that pH is directly proportional with TDS. Temperature value has no correlation with pH and TDS. System has highest delay during daylight and afternoon but it will decline in the night and morning. Average of delay in the morning is 11 s, 28.5 s in daylight, 32 s in the afternoon and 17.5 s in the night.

  7. Baseline requirements for assessment of mining impact using biological monitoring

    International Nuclear Information System (INIS)

    Humphrey, C.L.; Dostine, P.L.

    1995-01-01

    Biological monitoring programmes for environmental protection should provide for both early detection of possible adverse effects, and assessment of the ecological significance of these effects. Monitoring techniques are required that include responses sensitive to the impact, that can be subjected to rigorous statistical analysis and for which statistical power is high. Such issues in baseline research of 'what and how to measure?' and 'for how long?' have been the focus of a programme being developed to monitor and assess effects of mining operations on the essentially pristine, freshwater ecosystems of the Alligator Rivers Region (ARR) in tropical northern Australia. Application of the BACIP (Before, After, Control, Impact, Paired differences) design, utilizing a form of temporal replication, to univariate (single species) and multivariate (community) data is described. The BACIP design incorporates data from single control and impact sites. We argue for modification of the design for particular studies conducted in streams, to incorporate additional independent control sites from adjacent catchment. Inferential power, by way of (i) more confidently attributing cause to an observed change and (ii) providing information about the ecological significance of the change, will be enhanced using a modified BACIP design. In highly valued environments such as the ARR, monitoring programmes require application of statistical tests with high power to guarantee that an impact no greater than a prescribed amount has gone undetected. A minimum number of baseline years using the BACIP approach would therefore be required in order to achieve some desired level of statistical power. This paper describes the results of power analyses conducted on 2-5 years (depending upon the technique) of baseline data from streams of the ARR and discuss the implications of these results for management. 44 refs., 1 tab., 3 figs

  8. Instrumentation for environmental monitoring in biological systems

    International Nuclear Information System (INIS)

    Amer, N.M.; Graven, R.M.; Budnitz, R.J.; Mack, D.A.

    1975-01-01

    A brief review of the status of instrumentation for monitoring environmental pollutants is given. Pollutants are divided into six broad categories: trace elements, pesticides and herbicides, ionizing radiation and radionuclides, asbestos and other microparticulates, and gaseous pollutants. (U.S.)

  9. Application of activation techniques to biological analysis

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1981-01-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials

  10. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  11. Multisensor Instrument for Real-Time Biological Monitoring

    Science.gov (United States)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  12. Survey of immunoassay techniques for biological analysis

    International Nuclear Information System (INIS)

    Burtis, C.A.

    1986-10-01

    Immunoassay is a very specific, sensitive, and widely applicable analytical technique. Recent advances in genetic engineering have led to the development of monoclonal antibodies which further improves the specificity of immunoassays. Originally, radioisotopes were used to label the antigens and antibodies used in immunoassays. However, in the last decade, numerous types of immunoassays have been developed which utilize enzymes and fluorescent dyes as labels. Given the technical, safety, health, and disposal problems associated with using radioisotopes, immunoassays that utilize the enzyme and fluorescent labels are rapidly replacing those using radioisotope labels. These newer techniques are as sensitive, are easily automated, have stable reagents, and do not have a disposal problem. 6 refs., 1 fig., 2 tabs

  13. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  14. Application of ellipsometry techniques to biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Arwin, Hans, E-mail: han@ifm.liu.s

    2011-02-28

    Ellipsometry is well-suited for bioadsorption studies and numerous reports, mainly using null ellipsometry, are found on this subject whereas investigations addressing structural properties of thin biolayers are few. Here two examples based on the use of spectroscopic ellipsometry (SE) on the latter are briefly discussed. In the first example, time evolution of thickness, spectral refractive index and surface mass density of a fibrinogen matrix forming on a silicon substrate are investigated with SE and a structural model of the protein matrix is discussed. In the second example a model dielectric function concept for protein monolayers is presented. The model allows parameterization of the optical properties which facilitates monitoring of temperature induced degradation of a protein layer. More recently, photonic structures in beetles have been studied with SE. It is shown here that full Mueller-matrix SE can resolve very complex nanostructures in scarab beetles, more specifically chiral structures causing reflected light to become circularly polarized.

  15. Review of biological monitoring programs at nuclear facilities

    International Nuclear Information System (INIS)

    Quintana, L.R.; Oakes, T.W.; Shank, K.E.

    Biological monitoring programs, as well as relevant radioecological research studies, are reviewed at specific Department of Energy facilities; the program at Oak Ridge National Laboratory is discussed in detail. The biological measurements that are being used for interpreting the impact of a facility on its surrounding environment and nearby population are given. Suggestions which could facilitate interlaboratory comparison studies are presented

  16. Clustering: An Interactive Technique to Enhance Learning in Biology.

    Science.gov (United States)

    Ambron, Joanna

    1988-01-01

    Explains an interdisciplinary approach to biology and writing which increases students' mastery of vocabulary, scientific concepts, creativity, and expression. Describes modifications of the clustering technique used to summarize lectures, integrate reading and understand textbook material. (RT)

  17. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    A scientific textbook concerning the use of nuclear techniques in agricultural and biological studies has been written. In the early chapters, basic radiation physics principles are described including the nature of isotopes and radiation, nuclear reactions, working with radioisotopes, detection systems and instrumentation, radioassay and tracer techniques. The remaining chapters describe the applications of various nuclear techniques including activation analysis for biological samples, X-ray fluorescence spectrography for plants and soils, autoradiography, isotopes in soils studies, isotopic tracers in field experimentation, nuclear techniques in plant function and soil water studies and radiation-induced mutations in plant breeding. The principles and methods of these nuclear techniques are described in a straightforward manner together with details of many possible agricultural and biological studies which students could perform. (U.K.)

  18. Biological monitoring of lotic ecosystems: the role of diatoms

    Directory of Open Access Journals (Sweden)

    T. Bere

    Full Text Available Increasing anthropogenic influence on lotic environments as a result of civilisation has captured public interest because of the consequent problems associated with deterioration of water quality. Various biological monitoring methods that provide a direct measure of ecological integrity by using the response of biota to environmental changes have been developed to monitor the ecological status of lotic environments. Diatoms have been used extensively in this regard and this review attempts to summarise the basic concepts associated with biological monitoring using benthic diatoms. Where possible, examples from work carried out in Brazil are used.

  19. Biological monitoring of lotic ecosystems: the role of diatoms.

    Science.gov (United States)

    Bere, T; Tundisi, J G

    2010-08-01

    Increasing anthropogenic influence on lotic environments as a result of civilisation has captured public interest because of the consequent problems associated with deterioration of water quality. Various biological monitoring methods that provide a direct measure of ecological integrity by using the response of biota to environmental changes have been developed to monitor the ecological status of lotic environments. Diatoms have been used extensively in this regard and this review attempts to summarise the basic concepts associated with biological monitoring using benthic diatoms. Where possible, examples from work carried out in Brazil are used.

  20. Biological monitoring of radiation using indicator plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author)

  1. Biological monitoring of radiation using indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author).

  2. Manipulation of biological samples using micro and nano techniques

    DEFF Research Database (Denmark)

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable...

  3. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R. (Oak Ridge National Lab., TN (United States)); Hinzman, R.L. (Oak Ridge Research Inst., TN (United States)); Shoemaker, B.A. (Oak Ridge K-25 Site, TN (United States))

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  4. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Hinzman, R.L.; Shoemaker, B.A.

    1993-04-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP is based on results of biological monitoring conducted from 1986 to 1992 and discussions held on November 12, 1992, between staff of Martin Marietta Energy Systems, Inc. (Oak Ridge National Laboratory and the K-25 Site), and the Tennessee Department of Environment and Conservation, Department of Energy Oversight Division. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  5. Biological sampling for marine radioactivity monitoring

    International Nuclear Information System (INIS)

    Fowler, S.W.

    1997-01-01

    Strategies and methodologies for using marine organisms to monitor radioactivity in marine waters are presented. When the criteria for monitoring radioactivity is to determine routes of radionuclide transfer to man, the ''critical pathway'' approach is often applied. Alternatively, where information on ambient radionuclide levels and distributions is sought, the approach of selecting marine organisms as ''bioindicators'' of radioactivity is generally used. Whichever approach is applied, a great deal of knowledge is required about the physiology and ecology of the specific organism chosen. In addition, several criteria for qualifying as a bioindicator species are discussed; e.g., it must be a sedentary species which reflects the ambient radionuclide concentration at a given site, sufficiently long-lived to allow long-term temporal sampling, widely distributed to allow spatial comparisons, able to bioconcentrate the radionuclide to a relatively high degree, while showing a simple correlation between radionuclide content in its tissues with that in the surrounding waters. Useful hints on the appropriate species to use and the best way to collect and prepare organisms for radioanalysis are also given. It is concluded that benthic algae and bivalve molluscs generally offer the greatest potential for use as a ''bioindicator'' species in radionuclide biomonitoring programmes. Where knowledge on contribution to radiological dose is required, specific edible marine species should be the organisms of choice; however, both purposes can be served when the edible species chosen through critical pathway analysis is also an excellent bioaccumulator of the radionuclide of interest. (author)

  6. Innovative Remote Sensing techniques for vegetation monitoring

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Della Rocca, A.B.; Farneti, A.; La Porta, L.; Martini, S.; Giordano, L.; Trotta, C.; Marcoccia, S.

    2008-01-01

    This paper describes methods developed for using ASPIS (Advanced Spectroscopic Imaging System) to monitor biophysical parameters in studying the effects of climatic change, desertification and land degradation on semi-natural and agricultural vegetation in the Mediterranean region [it

  7. Manipulation of biological samples using micro and nano techniques.

    Science.gov (United States)

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  8. Biological monitoring of radiation using indicators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Chun, Ki Jung; Lim, Yong Tak

    1998-06-01

    KAERI and INP(Poland) have been carried out parallel study and joint experiments on the major topics according to MOU about their cooperative project. The experimental materials were T-4430 clones. Main results of the cooperative project were made on {sup r}esponse of TSH mutation to low LET radiation, response of TSH mutation to neutrons, response of TSH to mixed irradiation with different radiations and synergism between radiation and environmental factors such as photo period and diurnal temperature difference. Both institutes have established wide variety of research techniques applicable to tradescantia study through the cooperation. These result of research can make the role of fundamental basis for the better relationship between Korea and Poland. (author). 46 refs., 11 tabs., 31 figs.

  9. Monitoring beach changes using GPS surveying techniques

    Science.gov (United States)

    Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.

    1993-01-01

    A need exists for frequent and prompt updating of shoreline positions, rates of shoreline movement, and volumetric nearshore changes. To effectively monitor and predict these beach changes, accurate measurements of beach morphology incorporating both shore-parallel and shore-normal transects are required. Although it is possible to monitor beach dynamics using land-based surveying methods, it is generally not practical to collect data of sufficient density and resolution to satisfy a three-dimensional beach-change model of long segments of the coast. The challenge to coastal scientists is to devise new beach monitoring methods that address these needs and are rapid, reliable, relatively inexpensive, and maintain or improve measurement accuracy.

  10. Role of cytogenetic techniques in biological dosimetry of absorbed radiation

    International Nuclear Information System (INIS)

    Rao, B.S.

    2016-01-01

    In most of the radiation accidents, physical dosimetric information is rarely available. Further, most of the accidental exposures are non-uniform involving either partial body or localized exposure to significant doses. In such situations, physical dosimetry does not provide reliable dose estimate. It has now been realized that biological dosimetric techniques can play an important role in the assessment of absorbed dose. In recent years, a number of biological indicators of radiation have been identified. These include the kinetics of onset and persistence of prodromal syndromes (radiation sickness), cytogenetic changes in peripheral blood lymphocytes, hematological changes, biochemical indicators, ESR spectroscopy of biological samples, induction of gene mutations in red blood cells, cytogenetic and physiological changes in skin and neurophysiological changes. In general, dosimetric information is derived by a combination of several different methods, as they have potential to serve as prognostic indicators. The role of cytogenetic techniques in peripheral blood lymphocytes (PBL) as biological indicators of absorbed radiation is reviewed here

  11. Gene-environment interaction and biological monitoring of occupational exposures

    International Nuclear Information System (INIS)

    Hirvonen, Ari

    2005-01-01

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants

  12. Monitoring biological diversity: strategies, tools, limitations, and challenges

    Science.gov (United States)

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  13. Ambient and Unobtrusive Cardiorespiratory Monitoring Techniques.

    Science.gov (United States)

    Bruser, Christoph; Antink, Christoph Hoog; Wartzek, Tobias; Walter, Marian; Leonhardt, Steffen

    2015-01-01

    Monitoring vital signs through unobtrusive means is a goal which has attracted a lot of attention in the past decade. This review provides a systematic and comprehensive review over the current state of the field of ambient and unobtrusive cardiorespiratory monitoring. To this end, nine different sensing modalities which have been in the focus of current research activities are covered: capacitive electrocardiography, seismo- and ballistocardiography, reflective photoplethysmography (PPG) and PPG imaging, thermography, methods relying on laser or radar for distance-based measurements, video motion analysis, as well as methods using high-frequency electromagnetic fields. Current trends in these subfields are reviewed. Moreover, we systematically analyze similarities and differences between these methods with respect to the physiological and physical effects they sense as well as the resulting implications. Finally, future research trends for the field as a whole are identified.

  14. Exploiting Analytics Techniques in CMS Computing Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bonacorsi, D. [Bologna U.; Kuznetsov, V. [Cornell U.; Magini, N. [Fermilab; Repečka, A. [Vilnius U.; Vaandering, E. [Fermilab

    2017-11-22

    The CMS experiment has collected an enormous volume of metadata about its computing operations in its monitoring systems, describing its experience in operating all of the CMS workflows on all of the Worldwide LHC Computing Grid Tiers. Data mining efforts into all these information have rarely been done, but are of crucial importance for a better understanding of how CMS did successful operations, and to reach an adequate and adaptive modelling of the CMS operations, in order to allow detailed optimizations and eventually a prediction of system behaviours. These data are now streamed into the CERN Hadoop data cluster for further analysis. Specific sets of information (e.g. data on how many replicas of datasets CMS wrote on disks at WLCG Tiers, data on which datasets were primarily requested for analysis, etc) were collected on Hadoop and processed with MapReduce applications profiting of the parallelization on the Hadoop cluster. We present the implementation of new monitoring applications on Hadoop, and discuss the new possibilities in CMS computing monitoring introduced with the ability to quickly process big data sets from mulltiple sources, looking forward to a predictive modeling of the system.

  15. Monitoring power breakers using vibro acoustic techniques

    Directory of Open Access Journals (Sweden)

    Horia Balan

    2017-09-01

    Full Text Available Speaking about the commutation’s equipment, it can be said that the best solution in increasing reliability and lowering the maintenance costs is a continuous monitoring of the equipment. However, if the price/quality ratio is considered, it is obvious that, for the moment, the diagnosis can be also an acceptable solution. Nowadays the predictive maintenance for equipment’s diagnosis is currently replacing the preventive diagnosis. An efficient modality of lowering the maintenance costs is to online monitoring the power breakers, during their operation in the power systems. Consequently any connecting/disconnecting operations may be used in diagnosing a power breaker. Thus any supplementary and superfluous tests and/or maintenance maneuvers are avoided. The paper presents the operational maintenance in a power station with three high voltage active breakers, Areva type. The method of establishing the state of a breaker consists in the comparison between the signature of the acoustic signal provided by the manufacturer and the signal issued from the testing operation of the breaker’s state. The software processing procedure and the methodology of determining the faults of the monitored equipment are also developed. All the tests on the circuit breaker are made according the prescriptions of normative.

  16. Novel OSNR Monitoring Technique in Dense WDM Systems using Inherently Generated CW Monitoring Channels

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2007-01-01

    We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing.......We present a simple, yet effective OSNR monitoring technique based on an inherent effect in the optical modulator. Highly accurate OSNR monitoring is demonstrated in a 40 Gb/s dense WDM system with 50 GHz channel spacing....

  17. Introduction to nuclear techniques in agronomy and plant biology

    International Nuclear Information System (INIS)

    Vose, P.B.

    1980-01-01

    The subject is covered in chapters, entitled: nature of isotopes and radiation; nuclear reactions; working with radioisotopes; detection systems and instrumentation; radioassay; radioisotopes and tracer principles; stable isotopes as tracers - mainly the use of 15 N; activation analysis for biological samples; x-ray fluorescence spectrography for plants and soils; autoradiography; isotopes in soils studies; isotopic tracers in field experimentation; nuclear techniques in plant science; nuclear techniques for soil water; radiation and other induced mutation in plant breeding. (author)

  18. LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues

    Science.gov (United States)

    Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.

    2002-11-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.

  19. Environmental pollutants monitoring network using nuclear techniques

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1994-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the NSW Environment Protection Authority (EPA), Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 60,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 μm particle diameter cut off and samples for 24 hours using a stretched Teflon filter for each day. Accelerator-based Ion Beam Analysis(IBA) techniques are well suited to analyse the thousands of filter papers a year that originate from such a large scale aerosol sampling network. These techniques are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on a 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. This paper described the four simultaneous accelerator based IBA techniques used at ANSTO, to analyse for the following 24 elements H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. Each analysis requires only a few minutes of accelerator running time to complete. 15 refs., 9 figs

  20. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  1. Biological monitoring program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Ashwood, T.L.; Beaty, T.W.; Brandt, C.C.; Christensen, S.W.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.S.

    1997-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  2. Transformer ageing modern condition monitoring techniques and their interpretations

    CERN Document Server

    Purkait, Prithwiraj

    2017-01-01

    This book is a one-stop guide to state-of-the-art research in transformer ageing, condition monitoring and diagnosis. It is backed by rigorous research projects supported by the Australian Research Council in collaboration with several transmission and distribution companies. Many of the diagnostic techniques and tools developed in these projects have been applied by electricity utilities and would appeal to both researchers and practicing engineers. Important topics covered in this book include transformer insulation materials and their ageing behaviour, transformer condition monitoring techniques and detailed diagnostic techniques and their interpretation schemes. It also features a monitoring framework for smart transformers as well as a chapter on biodegradable oil.

  3. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  4. Environmental monitoring in Slovakia using nuclear techniques

    International Nuclear Information System (INIS)

    Florek, M.; Holy, K.; Sivo, A.; Sykora, I.; Chudy, M.; Richtarikova, M.; Polaskova, A.; Hola, O.; Meresova, J.; Ondo-Estok, D.; Mankovska, B.; Frontasyeva, M.V.; Ermakov, E.V.

    2005-01-01

    The contamination of the atmosphere of Slovakia by stable elements and also by-,radionuclides as 14 C, 7 Be, 210 Pb and 222 Rn were studied during the last decade using nuclear techniques. The main aims of this research were the better understanding of processes taking place in the atmosphere, the quantification of the atmospheric pollution and its trend, as well as the evaluation of the health risk from this pollution

  5. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L. A.; Adams, S. M.; Ashwood, T. L.; Blaylock, B. G.; Greeley, M. S.; Loar, J. M.; Peterson, M. J.; Ryon, M. G.; Smith, J. G.; Southworth, G. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Div.; Shoemaker, B. A. [Oak Ridge K-25 Site, TN (United States); Hinzman, R. L. [Oak Ridge Research Inst., TN (United States)

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions.

  6. Biological Monitoring and Abatement Program for the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Kszos, L.A.; Adams, S.M.; Ashwood, T.L.; Blaylock, B.G.; Greeley, M.S.; Loar, J.M.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Shoemaker, B.A.; Hinzman, R.L.

    1993-02-01

    A proposed Biological Monitoring and Abatement Program (BMAP) for the Oak Ridge K-25 Site was prepared in December 1992 as required by the renewed National Pollutant Discharge Elimination System permit that was issued on October 1, 1992. The proposed BMAP consists of four tasks that reflect different but complementary approaches to evaluating the effects of K-25 Site effluents on the ecological integrity of Mitchell Branch, Poplar Creek, and the Poplar Creek embayment of the Clinch River. These tasks include (1) ambient toxicity monitoring, (2) bioaccumulation monitoring, (3) assessment of fish health, and (4) instream monitoring of biological communities. This overall BMAP plan combines established protocols with current biological monitoring techniques to assess environmental compliance and quantify ecological recovery. The BMAP will also determine whether the effluent limits established for the K-25 Site protect the designated use of the receiving streams (Mitchell Branch, Poplar Creek, and Clinch River) for growth and propagation of fish and other aquatic life. Results obtained from this biological monitoring program will also be used to document the ecological effects (and effectiveness) of remedial actions

  7. Correlation techniques in nuclear power plant monitoring

    International Nuclear Information System (INIS)

    Bastl, W.

    1976-01-01

    Ever increasing effects are recently being made to monitor the mechanical behaviour of the nuclear power plants during operation. For technical as well as economical reasons one is forced to make do with the smallest number of sensors. In order to still obtain efficient control systems, an attempt is made on the one hand to make use of the already existing operational instrumentation, on the other hand to obtain a maximum of information by specific use of few additional sensors. In both cases, correlation analysis plays a large role because an optimum positioning of the sensor is seldom possible and thus, as a rule, the interesting information must be separated from very noisy signals. (orig./LH) [de

  8. Cytogenetic techniques as biological indicator and dosimeter of radiation damage

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.

    2006-01-01

    Full text: The cytogenetic methods are established techniques for bio monitoring and bio dosimetry of professionally and accidentally exposed to ionizing radiation subjects. They are applied to continue the evaluation of the physical dosimetry and to consider the individual radiosensitivity. The results of cytogenetic monitoring and dosimetry of radiation exposed subjects carried out during the last 5 years in laboratory of Radiation Genetics, NCRRP is reported. Laboratory of Radiation genetics performs cytogenetic monitoring of low dose radiation professionally or medically exposed subjects: workers in Kozloduy NPP, radioactive waste repository workers, X-rays diagnostically exposed patients, and radiotherapy exposed as well. Three cytogenetic indicators are applied as the most sensitive indicators for human radiation exposure: analysis of micronuclei (MN), chromosomal aberrations (CA) and stable translocations (FISH). The optimized methodology for application of different cytogenetic techniques for radiation estimation is discussed

  9. Acoustic surveillance techniques for SGU leak monitoring

    International Nuclear Information System (INIS)

    McKnight, J.A.; Rowley, R.; Beesley, M.J.

    1990-01-01

    The paper presents a brief review of the acoustic techniques applicable to the detection of steam generator unit leaks that have been studied in the UK. Before discussion of the acoustic detection methods a reference representation of the required performance as developed in the UK is given. The conclusion is made that preliminary specification for the acoustic leak detection of sodium/water leaks in steam generating units suggests that it will be necessary to detect better than a leak rate of 3 g/s within a few seconds. 10 refs, 12 figs

  10. Modern techniques for condition monitoring of railway vehicle dynamics

    International Nuclear Information System (INIS)

    Ngigi, R W; Pislaru, C; Ball, A; Gu, F

    2012-01-01

    A modern railway system relies on sophisticated monitoring systems for maintenance and renewal activities. Some of the existing conditions monitoring techniques perform fault detection using advanced filtering, system identification and signal analysis methods. These theoretical approaches do not require complex mathematical models of the system and can overcome potential difficulties associated with nonlinearities and parameter variations in the system. Practical applications of condition monitoring tools use sensors which are mounted either on the track or rolling stock. For instance, monitoring wheelset dynamics could be done through the use of track-mounted sensors, while vehicle-based sensors are preferred for monitoring the train infrastructure. This paper attempts to collate and critically appraise the modern techniques used for condition monitoring of railway vehicle dynamics by analysing the advantages and shortcomings of these methods.

  11. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  12. Biological Small Angle Scattering: Techniques, Strategies and Tips

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Barnali [University at Buffalo (SUNY); Muñoz, Inés G. [Centro Nacional de Investigaciones Oncológicas Madrid, Madrid, Spain; Urban, Volker S. [ORNL; Qian, Shuo [ORNL

    2017-12-01

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for

  13. The impact of landsat satellite monitoring on conservation biology.

    Science.gov (United States)

    Leimgruber, Peter; Christen, Catherine A; Laborderie, Alison

    2005-07-01

    Landsat 7's recent malfunctioning will result in significant gaps in long-term satellite monitoring of Earth, affecting not only the research of the Earth science community but also conservation users of these data. To determine whether or how important Landsat monitoring is for conservation and natural resource management, we reviewed the Landsat program's history with special emphasis on the development of user groups. We also conducted a bibliographic search to determine the extent to which conservation research has been based on Landsat data. Conservation biologists were not an early user group of Landsat data because a) biologists lacked technical capacity--computers and software--to analyze these data; b) Landsat's 1980s commercialization rendered images too costly for biologists' budgets; and c) the broad-scale disciplines of conservation biology and landscape ecology did not develop until the mid-to-late 1980s. All these conditions had changed by the 1990s and Landsat imagery became an important tool for conservation biology. Satellite monitoring and Landsat continuity are mandated by the Land Remote Sensing Act of 1992. This legislation leaves open commercial options. However, past experiments with commercial operations were neither viable nor economical, and severely reduced the quality of monitoring, archiving and data access for academia and the public. Future satellite monitoring programs are essential for conservation and natural resource management, must provide continuity with Landsat, and should be government operated.

  14. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  15. Molecular biology - Part I: Techniques, terminology, and concepts

    International Nuclear Information System (INIS)

    Brown, J. Martin

    1996-01-01

    Purpose/Objective: One of the barriers to understanding modern molecular biology is the lack of a clear understanding of the relevant terminology, techniques, and concepts. This refresher course is intended to address these deficiencies starting from a basic level. The lecture will cover many of the common uses of recombinant DNA, including gene cloning and manipulation. The goal is to enable the nonspecialist to increase his or her understanding of molecular biology in order to more fully enjoy reading current publications and/or listening seminars. Radiation biologists trying to understand a little more molecular biology should also benefit. The following concepts will be among those explained and illustrated: restriction endonucleases, gel electrophoresis, gene cloning, use of vectors such as plasmids, bacteriophage, cosmids and viruses, cDNA and genomic libraries, Southern, Northern, and Western blotting, fluorescent in situ hybridization, polymerase chain reaction (PCR), gel retardation, and reporter gene assays

  16. Standard evaluation techniques for containment and surveillance radiation monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1982-01-01

    Evaluation techniques used at Los Alamos for personnel and vehicle radiation monitors that safeguard nuclear material determine the worst-case sensitivity. An evaluation tests a monitor's lowest sensitivity regions with sources that have minimum emission rates. The result of our performance tests are analyzed as a binomial experiment. The number of trials that are required to verify the monitor's probability of detection is determined by a graph derived from the confidence limits for a binomial distribution. Our testing results are reported in a way that characterizes the monitor yet does not compromise security by revealing its routine performance for detecting process materials

  17. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  18. Study of laser monitoring techniques of pollutants in atmosphere

    International Nuclear Information System (INIS)

    Hassan, T. A. A.

    2006-01-01

    There are several techniques used as a tool for monitoring the pollutions in the atmosphere, where the laser radiation sending through the sample of atmosphere to be investigated ether transmission or the scattering of the light, all the way through a variety of different techniques for monitoring the air quality. We are showed in this study the comparison of detection techniques through measuring the light scattered in some particular direction, rather than measuring direction the attenuation due to two type of scattering (Rayieh scattering and Mie scattering) during (optical Radar, Roman backscattering and Resonance fluorescence).(Author)

  19. Study on biological dosimetry of premature chromosome condensation technique

    International Nuclear Information System (INIS)

    Jiang Bo

    2005-01-01

    The premature chromosome condensation technique has been applied for biological dosimetry purpose. Premature chromo-some condensation was induced by incubating unstimulated human peripheral blood lymphocytes in the presence of okadaic acid or calyculin A (a phosphatase inhibitor) which eliminated the need for fusion with mitotic cells. It is now possible to examine the early damage induced by radiation. It is simple, exact when it combines with fluorecence in situ hybridization. (authors)

  20. A vision for global monitoring of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Latombe, G.; Pyšek, Petr; Jeschke, J.M.; Blackburn, T. M.; Bacher, S.; Capinha, C.; Costello, M. J.; Fernández, M.; Gregory, R. D.; Hobern, D.; Hui, C.; Jetz, W.; Kumschick, S.; McGrannachan, C.; Pergl, Jan; Roy, H. E.; Scalera, R.; Squires, Z. E.; Wilson, J. R. U.; Winter, M.; Genovesi, P.; McGeoch, M. A.

    2017-01-01

    Roč. 213, part B (2017), s. 295-308 ISSN 0006-3207 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * monitoring * management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Biodiversity conservation Impact factor: 4.022, year: 2016

  1. Post decommissioning monitoring of uranium mines; a watershed monitoring program based on biological response

    International Nuclear Information System (INIS)

    Russel, C.; Coggan, A.; Ludgate, I.

    2006-01-01

    Rio Algom Limited and Denison Mines own and operated uranium mines in the Elliot Lake area. The mines operated from the late 1950's to the mid 1960's and again for the early 1970's to the 1990's when the mines ceased operations. There are eleven decommissioned mines in the Serpent River watershed. At the time of decommissioning each mine had it's own monitoring program, which had evolved over the operating life of the mine and did not necessarily reflect the objectives associated with the monitoring of decommissioned sites. In order to assess the effectiveness of the decommissioning plans and monitoring the cumulative effects within the watershed, a single watershed monitoring program was developed in 1999: the Serpent River Watershed Monitoring Program which focused on water and sediment quality within the watershed and response of the biological community over time. In order to address other 'source area' monitoring, three complimentary objective-focused programs were developed 1) the In- Basin Monitoring Program, 2) the Source Area Monitoring Program and 3) the TMA Operational Monitoring Program. Through development this program framework and monitoring programs that were objective- focused, more meaningful data has been provided while providing a significant reduction in the cost of monitoring. These programs allow for the reduction in scope over time in response to improvement in the watershed. This talk will describe the development of these programs, their implementation and effectiveness. (author)

  2. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  3. Yucca Mountain biological resources monitoring program; Annual report FY92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  4. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  5. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  6. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  7. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work to investigate acoustic emission as a non-intrusive monitor of corrosion and degradation of cemented wasteforms where the waste is a potentially reactive metal. The acoustic data collected shows good correlation with the corrosion rate as measured by hydrogen gas evolution rates and the electrochemically measured corrosion rates post cement hardening. The technique has been shown to be sensitive in detecting stress caused by expansive corrosion product within the cemented wasteform. The attenuation of the acoustic signal by the wasteform reduced the signal received by the monitoring equipment by a factor of 10 over a distance of approximately 150-400 mm, dependent on the water level in the cement. Full size packages were successfully monitored. It is concluded that the technique offers good potential for monitoring cemented containers of the more reactive metals, for example Magnox and aluminium. (author)

  8. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Agnes S. Meidert

    2018-01-01

    Full Text Available Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation or automatically (e.g., by oscillometry. For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.

  9. Assessment of beta-emitter radionuclides in biological samples using liquid scintillation counting. Application to the study of internal doses in molecular and cellular biology techniques

    International Nuclear Information System (INIS)

    Sierra, I.; Delgado, A.; Navarro, T.; Macias, M. T.

    2007-01-01

    The radioisotopic techniques used in Molecular and Cellular Biology involve external and internal irradiation risk. It is necessary to control the possible internal contamination associated to the development of these techniques. The internal contamination risk can be due to physical and chemical properties of the labelled compounds, aerosols generated during the performance technique. The aim of this work was to estimate the possible intake of specific beta emitters during the technique development and to propose the required criterions to perform Individual Monitoring. The most representative radioisotopic techniques were selected attending their potential risk of internal contamination. Techniques were analysed applying IAEA methodology according to the used activity in each technique. It was necessary to identify the worker groups that would require individual monitoring on the base of their specific risk. Different measurement procedures were applied to study the possible intake in group risk and more than 160 persons were measured by in vitro bioassay. (Author) 96 refs

  10. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  11. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  12. Techniques for the generation and monitoring of vapors

    International Nuclear Information System (INIS)

    Nelson, G.O.

    1981-01-01

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow

  13. Impurity monitoring by laser-induced fluorescence techniques

    International Nuclear Information System (INIS)

    Gelbwachs, J.A.

    1984-01-01

    Laser-induced fluorescence spectroscopy can provide a highly sensitive and selective means of detecting atomic and ionic impurities. Because the photodetector can be physically isolated from the laser-excited region, these techniques can be applied to monitoring in hostile environments. The basic concepts behind fluorescence detection are reviewed. Saturated optical excitation is shown to maximize impurity atom emission yield while mitigating effects of laser intensity fluctuations upon absolute density calibration. Monitoring in high- and low-pressure monitoring environments is compared. Methods to improve detection sensitivity by luminescence background suppression are presented

  14. Monitoring techniques for the manufacture of tapered optical fibers.

    Science.gov (United States)

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  15. Physical integrity: the missing link in biological monitoring and TMDLs.

    Science.gov (United States)

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  16. The isolated Leptospira Spp. Identification by molecular biological techniques

    Directory of Open Access Journals (Sweden)

    Duangjai Suwancharoen

    2017-01-01

    Full Text Available Leptospirosis is a zoonotic disease caused by the bacteria of Leptospira spp. Identification of this bacterium relies on serotyping and genotyping. Data base for animal causative serovars in Thailand is limited. As the unknown serovars are found in the laboratory, they need to be sent overseas for referent identification. To reduce the cost, this research intended to develop a leptospiral identification method which is user–friendly and able to classify efficiently. Ten Leptospira isolations were cultured from urine samples. They were identified by three molecular biological techniques, including Pulsed-Field Gel Electrophoresis (PFGE, Variable Number Tandem Repeat (VNTR and Multilocus Sequence Typing (MLST. These methods were developed and compared to find the most suitable one for leptospiral identification. VNTR was found to be inappropriate since it could not identify the agents and it did not show the PCR product. PFGE and MLST gave the same results of the unknown 1 and 2 which were L.weilii sv Samin st Samin. Unknown 4 showed different results by each technique. Unknown 5 to 10 were likely to be L.meyeri sv Ranarum st ICF and Leptonema illini sv Illini st 3055 by PFGE but MLST could not identify the serovar. However, molecular biological technique for Leptospira identification should be done by several methods in order to confirm the result of each other.

  17. Evaluation of conformal radiotherapy techniques through physics and biologic criteria

    International Nuclear Information System (INIS)

    Bloch, Jonatas Carrero

    2012-01-01

    In the fight against cancer, different irradiation techniques have been developed based on technological advances and aiming to optimize the elimination of tumor cells with the lowest damage to healthy tissues. The radiotherapy planning goal is to establish irradiation technical parameters in order to achieve the prescribed dose distribution over the treatment volumes. While dose prescription is based on radiosensitivity of the irradiated tissues, the physical calculations on treatment planning take into account dosimetric parameters related to the radiation beam and the physical characteristics of the irradiated tissues. To incorporate tissue's radiosensitivity into radiotherapy planning calculations can help particularize treatments and establish criteria to compare and elect radiation techniques, contributing to the tumor control and the success of the treatment. Accordingly, biological models of cellular response to radiation have to be well established. This work aimed to study the applicability of using biological models in radiotherapy planning calculations to aid evaluating radiotherapy techniques. Tumor control probability (TCP) was studied for two formulations of the linear-quadratic model, with and without repopulation, as a function of planning parameters, as dose per fraction, and of radiobiological parameters, as the α/β ratio. Besides, the usage of biological criteria to compare radiotherapy techniques was tested using a prostate planning simulated with Monte Carlo code PENELOPE. Afterwards, prostate planning for five patients from the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, USP, using three different techniques were compared using the tumor control probability. In that order, dose matrices from the XiO treatment planning system were converted to TCP distributions and TCP-volume histograms. The studies performed allow the conclusions that radiobiological parameters can significantly influence tumor control

  18. Computational intelligence techniques for biological data mining: An overview

    Science.gov (United States)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  19. Low dose monitoring by double implant technique in IC fabrication

    International Nuclear Information System (INIS)

    Ahmad, I.B.; Weidemann, J.

    1995-01-01

    The utilisation of low dose implant monitoring (using Boron) in a manufacturing line has been discussed. The utilisation of phosphorus ions as the second implant dose were also studied as comparison. The technique relies on the fact that the sheet resistant of doped layer will increase significantly when damaged by relatively low implant dose. The technique is very sensitive and applicable for adjusting the channel dose so that an accurate threshold voltage in MOS device could be achieved

  20. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  1. Biological monitoring and selected trends in environmental quality

    International Nuclear Information System (INIS)

    Suffern, J.S.; West, D.C.; Kemp, H.T.; Burgess, R.L.

    1976-10-01

    Under a contract with the President's Council on Environmental Quality, the National Inventory of Selected Biological Monitoring Programs at ORNL was used to identify documented environmental trends. Fish population trends were described for the Great Lakes and the Colorado River system. Trends in amphibian populations in the northeast were examined and correlated with acid precipitation. Increases in breeding success among large birds of prey were correlated with reductions in ambient levels of DDT and its residues. Geographic variation in PCB contamination was examined along with differences between aquatic and terrestrial contamination levels. Changes in air quality were documented, and their effects on plant viability were outlined. Trends in the biological effects of environmental deposition of lead were documented. Long-term changes in forest structure in the southeast were presented, and a general reduction in wildlife habitat, associated with land use practices, was documented for several areas in the US

  2. Towards a biological monitoring guidance value for acrylamide.

    Science.gov (United States)

    Sams, C; Jones, K; Warren, N; Cocker, J; Bell, S; Bull, P; Cain, M

    2015-08-19

    Acrylamide is classified as a potential human carcinogen and neurotoxicant. Biological monitoring is a useful tool for monitoring worker exposure. However, other sources of exposure to acrylamide (including cigarette smoke and diet) also need to be considered. This study has performed repeat measurements of the urinary mercapturic acids of acrylamide (AAMA) and its metabolite glycidamide (GAMA) and determined globin adducts in 20 production-plant workers at a UK acrylamide production facility. The relationship between biomarker levels and environmental monitoring data (air levels and hand washes) was investigated. Good correlations were found between all of the biomarkers (r(2)=0.86-0.91) and moderate correlations were found between the biomarkers and air levels (r(2) = 0.56-0.65). Our data show that urinary AAMA is a reliable biomarker of acrylamide exposure. Occupational hygiene data showed that acrylamide exposure at the company was well within the current UK Workplace Exposure Limit. The 90th percentile of urinary AAMA in non-smoking production-plant workers (537 μmol/mol creatinine (n = 59 samples)) is proposed as a possible biological monitoring guidance value. This 90th percentile increased to 798 μmol/mol if smokers were included (n = 72 samples). These values would be expected following an airborne exposure of less than 0.07 mg/m(3), well below the current UK workplace exposure limit of 0.3mg/m(3). Comparison of biomarker levels in non-occupationally exposed individuals suggests regional variations (between UK and Germany), possibly due to differences in diet. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  3. An intensity-monitoring technique for measuring ellipsometric transients

    NARCIS (Netherlands)

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can

  4. Interim Report on Concrete Degradation Mechanisms and Online Monitoring Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The existing nuclear power plants in the United States have initial operating licenses of 40 years, though most of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. The research on online monitoring of concrete structures conducted under the Advanced Instrumentation, Information, and Control Systems Technologies Pathway of the Light Water Reactor Sustainability Program at Idaho National Laboratory will develop and demonstrate concrete structures health monitoring capabilities. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code margins of safety. Therefore, structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses available techniques and ongoing challenges in each of the four elements of the proposed framework with emphasis on degradation mechanisms and online monitoring techniques.

  5. [Applications of spectral analysis technique to monitoring grasshoppers].

    Science.gov (United States)

    Lu, Hui; Han, Jian-guo; Zhang, Lu-da

    2008-12-01

    Grasshopper monitoring is of great significance in protecting environment and reducing economic loss. However, how to predict grasshoppers accurately and effectively is a difficult problem for a long time. In the present paper, the importance of forecasting grasshoppers and its habitat is expounded, and the development in monitoring grasshopper populations and the common arithmetic of spectral analysis technique are illustrated. Meanwhile, the traditional methods are compared with the spectral technology. Remote sensing has been applied in monitoring the living, growing and breeding habitats of grasshopper population, and can be used to develop a forecast model combined with GIS. The NDVI values can be analyzed throughout the remote sensing data and be used in grasshopper forecasting. Hyper-spectra remote sensing technique which can be used to monitor grasshoppers more exactly has advantages in measuring the damage degree and classifying damage areas of grasshoppers, so it can be adopted to monitor the spatial distribution dynamic of rangeland grasshopper population. Differentialsmoothing can be used to reflect the relations between the characteristic parameters of hyper-spectra and leaf area index (LAI), and indicate the intensity of grasshopper damage. The technology of near infrared reflectance spectroscopy has been employed in judging grasshopper species, examining species occurrences and monitoring hatching places by measuring humidity and nutrient of soil, and can be used to investigate and observe grasshoppers in sample research. According to this paper, it is concluded that the spectral analysis technique could be used as a quick and exact tool in monitoring and forecasting the infestation of grasshoppers, and will become an important means in such kind of research for their advantages in determining spatial orientation, information extracting and processing. With the rapid development of spectral analysis methodology, the goal of sustainable monitoring

  6. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  7. Recent advances in nuclear techniques for environmental radioactivity monitoring

    International Nuclear Information System (INIS)

    Kumar, Ajay; Tripathi, R.M.

    2016-01-01

    The environmental radioactivity monitoring was first started in the late 1950s following the global fallout from testing of nuclear weapons in the atmosphere. Nuclear analytical techniques are generally classified into two categories: destructive and non-destructive. Destructive techniques are carried out through several analytical methods such as α-spectrometry, liquid Scintillation counting system, solid state nuclear track detector, spectrophotometry, fluorimetry, atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), chromatography techniques, electro-analytical techniques etc. However, nondestructive methods include gamma spectrometry, X-Ray fluorescence (XRF) spectrometry, neutron activation analysis (NAA) etc. The development of radiochemical methods and measurement techniques using alpha and gamma spectrometry have been described in brief

  8. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  9. Remote sensing techniques in monitoring areas affected by forest fire

    Science.gov (United States)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  10. Selected methods of waste monitoring using modern analytical techniques

    International Nuclear Information System (INIS)

    Hlavacek, I.; Hlavackova, I.

    1993-11-01

    Issues of the inspection and control of bituminized and cemented waste are discussed, and some methods of their nondestructive testing are described. Attention is paid to the inspection techniques, non-nuclear spectral techniques in particular, as employed for quality control of the wastes, waste concentrates, spent waste leaching solutions, as well as for the examination of environmental samples (waters and soils) from the surroundings of nuclear power plants. Some leaching tests used abroad for this purpose and practical analyses by the ICP-AES technique are given by way of example. The ICP-MS technique, which is unavailable in the Czech Republic, is routinely employed abroad for alpha nuclide measurements; examples of such analyses are also given. The next topic discussed includes the monitoring of organic acids and complexants to determine the degree of their thermal decomposition during the bituminization of wastes on an industrial line. All of the methods and procedures highlighted can be used as technical support during the monitoring of radioactive waste properties in industrial conditions, in the chemical and radiochemical analyses of wastes and related matter, in the calibration of nondestructive testing instrumentation, in the monitoring of contamination of the surroundings of nuclear facilities, and in trace analysis. (author). 10 tabs., 1 fig., 14 refs

  11. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  12. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  13. Development of in vitro techniques for individual monitoring of "3"2P

    International Nuclear Information System (INIS)

    Almeida, A.P.F.; Sousa, W.O.; Dantas, A.L.A.; Dantas, B.M.

    2016-01-01

    The "3"2P is used in the form of liquid unsealed sources in medical facilities, research and teaching, representing a risk of internal exposure in routine activities and in case of accidental incorporation. The evaluation of "3"2P incorporation can be accomplished through in vitro bioanalysis of urine. This paper aims to provide a methodology to analyze "3"2P in biological samples, applicable to internal individual monitoring using liquid scintillation technique. The minimum detectable activity of the system was determined and the sensitivity of the technique was evaluated, based on the detected minimum effective dose. (author)

  14. Fuel rod puncturing and fission gas monitoring system examination techniques

    International Nuclear Information System (INIS)

    Song, Woong Sup

    1999-02-01

    Fission gas products accumulated in irradiated fuel rod is 1-2 cm 3 in CANDU and 40-50 cm 3 in PWR fuel rod. Fuel rod puncturing and fission gas monitoring system can be used for both CANDU and PWR fuel rod. This system comprises puncturing device located at in cell part and monitoring device located at out cell part. The system has computerized 9 modes and can calculate both void volume and mass volume only single puncturing. This report describes techniques and procedure for operating fuel rod puncturing and gas monitoring system which can be play an important role in successful operation of the devices. Results obtained from the analysis can give more influence over design for fuel rods. (Author). 6 refs., 9 figs

  15. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  16. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  17. Biological monitoring of chlorpyrifos exposure to rice farmers in Vietnam.

    Science.gov (United States)

    Phung, Dung Tri; Connell, Des; Miller, Greg; Hodge, Mary; Patel, Renu; Cheng, Ron; Abeyewardene, Manel; Chu, Cordia

    2012-04-01

    Chlorpyrifos is the most common organophosphate insecticide registered for use in Vietnam and is widely used in agriculture, particularly rice farming. However, chlorpyrifos exposure to and adverse effects on farmers has not been evaluated. In this study, biological monitoring of chlorpyrifos exposure in a group of rice farmers was conducted after a typical application event using back-pack spraying. Urine samples (24 h) were collected from the rice farmers before and post insecticide application. Samples were analysed for 3,5,6-trichloropyridinol (TCP), the major urinary metabolite of chlorpyrifos, using an enzymatic pre-treatment before extraction followed by HPLC-MS/MS. Absorbed Daily Dose (ADD) of chlorpyrifos for farmers were then estimated from urinary TCP levels, expressed as μg g(-1)creatinine. The analytical method for urinary TCP had a low detection limit (0.6 μg L(-1)), acceptable recovery values (80-114%), and low relative percentage differences in duplicate and repeated samples. Post-application chlorpyrifos ADD of farmers varied from 0.4 to 94.2 μg kg(-1) (body weight) d(-1) with a mean of 19.4 μg kg(-1) d(-1) which was approximately 80-fold higher than the mean baseline exposure level (0.24 μg kg(-1) d(-1)). Hazard Quotients (ratio of the mean ADD for rice farmers to acute oral reference dose) calculated using acute oral reference doses recommended by United States and Australian agencies varied from 2.1 (Australian NRA), 4.2 (US EPA) to 6.9 (ATSDR). Biological monitoring using HPLC-MS/MS analysis of urinary TCP (24 h) was found to be an effective method for measuring chlorpyrifos exposure among farmers. This case study found that Vietnamese rice farmers had relatively high exposures to chlorpyrifos after application, which were likely to have adverse health effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Rossbach, M.; Jayasekera, R.; Kniewald, G.

    2000-01-01

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  20. Development of techniques for monitoring corrosion in Magnox plant

    International Nuclear Information System (INIS)

    Haines, N.F.; Whittle, I.; Wilson, R.

    1974-01-01

    Steel oxidation in Magnox reactors has led to the development of techniques for measuring oxide thicknesses. An account is given of the methods used by the CEGB for making non-destructive measurements of oxide coatings both in the laboratory and remotely in the core regions of reactors. Specific techniques include β back-scattering which is compared with conventional microscope or weight gain methods for particular applications. The laser corrosion monitor and an ultrasonic method are described and compared as in-reactor techniques. An eddy current method is being developed for reactor regions where access is extremely restricted. A discussion considers the effect of oxide form upon the response of the instruments. The necessary further work is described which establishes the usefulness of each instrument over a range of oxide thicknesses and steels of different physical properties. (author)

  1. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    Science.gov (United States)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  2. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  3. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana

    2017-01-01

    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  4. 37Ar monitoring techniques and on-site inspection system

    International Nuclear Information System (INIS)

    Duan Rongliang; Chen Yinliang; Li Wei; Wang Hongxia; Hao Fanhua

    2001-01-01

    37 Ar is separated, purified and extracted from air sample with a low temperature gas-solid chromatographic purifying method, prepared into a radioactive measurement source and its radioactivity is measured with a proportional counter. Based on the monitoring result, a judgement can be made if an nuclear explosion event has happened recently in a spectabilis area. A series of element techniques that are associated the monitoring of the trace element 37 Ar have been investigated and developed. Those techniques include leaked gas sampling, 37 Ar separation and purification, 37 Ar radioactivity measurement and the on-site inspection of 37 Ar. An advanced 37 Ar monitoring method has been developed, with which 200 liters of air can be treated in 2 hours with sensitivity of 0.01 Bq/L for 37 Ar radioactivity measurement. A practical 37 Ar On-site Inspection system has been developed. This research work may provide technical and equipment support for the verification protection, verification supervision and CTBT verification

  5. Biological monitors for low levels of ionising radiation

    International Nuclear Information System (INIS)

    Mohankumar, M.N.; Jeevanram, R.K.

    1995-01-01

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author)

  6. Biological monitors for low levels of ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, M N; Jeevanram, R K [Safety Research and Health Physics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1996-12-31

    The biological effects of high doses of ionising radiation are well understood and the methods of measurement of these doses well established. However the effects due to extremely low doses remain by and large uncertain. This is because of the fact that at such low doses no gross symptoms are seen. In fact, at these levels the occurrence of double strand breaks leading to the formation of chromosomal aberrations like dicentrics is rare and chances of mutation due to base damage are negligible. Hence neither chromosomal aberration studies nor mutational assays are useful for detecting doses of the order of a few milligray. Results of exhaustive work done by various laboratories indicate that below 20 mGy the chromosomal aberration technique based on scoring of dicentrics cannot distinguish between a linear or a threshold model. However indirect methods like unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs) appear to be promising for the detection of radiation exposures due to low levels of radiation. This report reviews the available literature on the biological effects of low levels of ionising radiation and highlights the merits and demerits of the various methods employed in the measurement of UDS and SCE. The phenomenon of radio-adaptive response (RAR) and its relation to DNA repair is also discussed. (author). 98 refs., 11 figs., 4 tabs.

  7. ASSESSMENT OF CABLE AGING USING CONDITION MONITORING TECHNIQUES

    International Nuclear Information System (INIS)

    GROVE, E.; LOFARO, R.; SOO, P.; VILLARAN, M.; HSU, F.

    2000-01-01

    Electric cables in nuclear power plants suffer degradation during service as a result of the thermal and radiation environments in which they are installed. Instrumentation and control cables are one type of cable that provide an important role in reactor safety. Should the polymeric cable insulation material become embrittled and cracked during service, or during a loss-of-coolant-accident (LOCA) and when steam and high radiation conditions are anticipated, failure could occur and prevent the cables from fulfilling their intended safety function(s). A research program is being conducted at Brookhaven National Laboratory to evaluate condition monitoring (CM) techniques for estimating the amount of cable degradation experienced during in-plant service. The objectives of this program are to assess the ability of the cables to perform under a simulated LOCA without losing their ability to function effectively, and to identify CM techniques which may be used to determine the effective lifetime of cables. The cable insulation materials tested include ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE). Accelerated aging (thermal and radiation) to the equivalent of 40 years of service was performed, followed by exposure to simulated LOCA conditions. The effectiveness of chemical, electrical, and mechanical condition monitoring techniques are being evaluated. Results indicate that several of these methods can detect changes in material parameters with increasing age. However, each has its limitations, and a combination of methods may provide an effective means for trending cable degradation in order to assess the remaining life of cables

  8. Mechanical seal monitoring technique by acoustic emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Tadashi; Fujita, Yoshihiro; Kawaguchi, Kazunori; Saito, Kazuhiro; Yokota, Setsuo; Hisada, Yasuhide; Masahiro, Komatsu

    1987-09-20

    This report describes a technique for mechanical seal monitoring through acoustic emission (AE) measurement. The equipment consists of an AE sensor, preamplifier, multiplexer, main amplifier, effective value transducer and computer system. When the sealed liquid pressure undergoes a large change, the seal surface configuration is monitored and evaluated accurately through AE measurement. If the mechanical seal surface id damaged or worn, the AE level is kept high or continues to fluctuate largely for a rather long period. When leak occurs, the AE value shows great fluctuations either at extremely low levels or at high levels. The former trend is considered to result from a decrease in solid contact due to an excessive amount of liquid film being formed at the seal surface during leak. In the latter case, the leak is attributed to severe damage to the seal surface. (18 figs, 1 tab, 5 photos, 3 refs)

  9. Analysis of ultrasonic techniques for monitoring milk coagulation during cheesemaking

    International Nuclear Information System (INIS)

    Budelli, E; Lema, P; Pérez, N; Negreira, C

    2012-01-01

    Experimental determination of time of flight and attenuation has been proposed in the literature as alternatives to monitoring the evolution of milk coagulation during cheese manufacturing. However, only laboratory scale procedures have been described. In this work, the use of ultrasonic time of flight and attenuation to determine cutting time and its feasibility to be applied at industrial scale were analyzed. Limitations to implement these techniques at industrial scale are shown experimentally. The main limitation of the use of time of flight is its strong dependence with temperature. Attenuation monitoring is affected by a thin layer of milk skin covering the transducer, which modifies the signal in a non-repetitive way. The results of this work can be used to develop alternative ultrasonic systems suitable for application in the dairy industry.

  10. Development of infrared spectroscopy techniques for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sandsten, Jonas

    2000-08-01

    Infrared spectroscopy techniques have long been utilized in identifying and quantifying species of interest to us. Many of the elementary molecules in the atmosphere interact with infrared radiation through their ability to absorb and emit energy in vibrational and rotational transitions. A large variety of methods for monitoring of molecules and aerosol particles by collecting samples or by using remote sensing methods are available. The objective of the work presented in this thesis was to develop infrared spectroscopic techniques to further enhance the amount of useful information obtained from gathering spectral data. A new method for visualization and quantification of gas flows based on gas-correlation techniques was developed. Real-time imaging of gas leaks and incomplete or erratic flare combustion of ethene was demonstrated. The method relies on the thermal background as a radiation source and the gas can be visualized in absorption or in emission depending on the temperature difference. Diode laser spectroscopy was utilized to monitor three molecular species at the same time and over the same path. Two near-infrared diode lasers beams were combined in a periodically poled lithium niobate crystal and by difference-frequency generation a third beam was created, enabling simultaneous monitoring of oxygen, water vapor and methane. Models of aerosol particle cross sections were used to simulate the diffraction pattern of light scattered by fibers, spherical particles and real particles, such as pollen, through a new aerosol particle sensing prototype. The instrument, using a coupled cavity diode laser, has been designed with a ray-tracing program and the final prototype was employed for single aerosol particle sizing and identification.

  11. Correlation studies between the results of workplace monitoring and biological parameters

    International Nuclear Information System (INIS)

    Khan, A.H.

    1987-10-01

    Some nuclear-based and non-nuclear analytical techniques have been used to look for correlations between the results of workplace monitoring and biological parameters of exposed workers in various workplace environments. The analytical competence of the external beam thick and thin target particle-induced X-ray emission (PIXE) analysis has been established for elemental analysis of air particulates and biological materials. The capability of low-energy photon spectrometry (LEPS) has also been demonstrated. Using the methods of PIXE and flame AAS, some studies have been performed on the elemental composition of air particulates, human head hair, nail and urine collected in different workplace environments in Dhaka. This report contains a brief account of this research along with an outline of future research projects to be carried out in this and other related areas. 13 refs, 5 figs, 7 tabs

  12. Plants status monitor: Modelling techniques and inherent benefits

    International Nuclear Information System (INIS)

    Breeding, R.J.; Lainoff, S.M.; Rees, D.C.; Prather, W.A.; Fickiessen, K.O.E.

    1987-01-01

    The Plant Status Monitor (PSM) is designed to provide plant personnel with information on the operational status of the plant and compliance with the plant technical specifications. The PSM software evaluates system models using a 'distributed processing' technique in which detailed models of individual systems are processed rather than by evaluating a single, plant-level model. In addition, development of the system models for PSM provides inherent benefits to the plant by forcing detailed reviews of the technical specifications, system design and operating procedures, and plant documentation. (orig.)

  13. Monitoring of Corrientes facility using nuclear registers techniques

    International Nuclear Information System (INIS)

    Yesquen L, S.

    1994-01-01

    Knowledge of fluid movement in the reservoir is a key to enhanced production management. Direct measurement of water and oil saturation variations with time, is the most reliable method in determining the depletion profile of reservoirs with ample range of permeabilities. This paper illustrates how nuclear logging techniques aids proper management in strong water drive reservoir named Cetico Corrientes Field, in east Peru. Important production increase was obtained with work over and drilling program, based on reservoir monitoring using thermal decay tool. (author). 7 figs

  14. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  15. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    Science.gov (United States)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  16. Data verification and evaluation techniques for groundwater monitoring programs

    International Nuclear Information System (INIS)

    Mercier, T.M.; Turner, R.R.

    1990-12-01

    To ensure that data resulting from groundwater monitoring programs are of the quality required to fulfill program objectives, it is suggested that a program of data verification and evaluation be implemented. These procedures are meant to supplement and support the existing laboratory quality control/quality assurance programs by identifying aberrant data resulting from a variety of unforeseen circumstances: sampling problems, data transformations in the lab, data input at the lab, data transfer, end-user data input. Using common-sense principles, pattern recognition techniques, and hydrogeological principles, a computer program was written which scans the data for suspected abnormalities and produces a text file stating sample identifiers, the suspect data, and a statement of how the data has departed from the expected. The techniques described in this paper have been developed to support the Y-12 Plant Groundwater Protection Program Management Plan

  17. Non-contact remote monitoring technique of reactor structural elements

    International Nuclear Information System (INIS)

    Inoue, Hideo; Mori, Kazuo; Ozawa, Norimitsu; Akedo, Jun; Seimiya, Koichi; Chikamori, Kunio; Umezawa, Akihiko

    1998-01-01

    This study aims at development of technique to measure and estimate, at high precision, fine machining scratch, crack and so on formed on grinding tubular elements, especially inner faces of small diameter tube at an optical mirror grade, and at establishment of estimation technique on reliability and soundness of the tubular elements. In this fiscal year, on optical type non-contact monitoring technique, investigations on optical illumination condition and holding accuracy required for the non-contact holding mechanism were conducted by using a sensor head trially produced in 1995 fiscal year. And, in order to realize a high precision non-contact holding in a tube of optical detection system to upgrade static holding properties (holding stiffness, holding attitude, and so on) of pneumatic type inner tube non-contact holding mechanism, realization of increase in supplying air pressure and experiments using a holding mechanism to increase pore numbers of air injecting nozzle were conducted. And, on materials surface technique, effect of difference in pre-machining method (cutting and bright annealing) at inner face of small diameter stainless tube on their smooth machining property was examined. (G.K.)

  18. Atmospheric pollution in the Tula Industrial Corridor studied using a bio monitor and nuclear analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Beltran H, R. I. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo Km. 4.5, 42184 Pachuca, Hidalgo (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan s/n, esq. Jesus Carranza, 50120 Toluca, Estado de Mexico (Mexico); Lucho C, C. A. [Universidad Politecnica de Pachuca, Carretera Pachuca-Cd. Sahagun Km. 20, Hidalgo (Mexico); Lopez R, M. C.; Longoria, L. C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-02-15

    This study deals with the application of nuclear analytical techniques to analyze trace elements in the biological monitor Tillandsia usneoides. Biological monitors provides an alternative advantageous way of particulate matter sampling in air pollution studies, since there is no need of special sampling devices, accumulation time can be as long as desired. T. usneoides, which occurs naturally throughout Mexico, was used to monitor air quality of Tula-Vito-Apasco (TVA) industrial corridor at central Mexico. This area is considered one of the critical zones of the country because of atmospheric contaminants high concentration. Particulate matter is regulated by Mexican norms, but its chemical composition is not. Plants were transplanted from a clean environment to four sites at the TVA corridor, and exposed for 12 weeks from February to April 2008. Trace element accumulation of plants was determined by particle induced X-ray emission and neutron activation analysis. Results reveal differences in trace elements distribution among sites in the TVA corridor. Furthermore, anthropogenic elements (S, V) and crustal elements (Ca) in T. usneoides exhibit high levels. Highly toxic elements such as Hg, As and Cr although present at trace levels, showed un enrichment relative to the initial values, when transplanted to the TVA corridor. Results show that monitoring with T. usneoides allows a first approximation of air sources to provide insights of the atmospheric pollution in the TVA corridor. (Author)

  19. Atmospheric pollution in the Tula Industrial Corridor studied using a bio monitor and nuclear analytical techniques

    International Nuclear Information System (INIS)

    Martinez C, M. A.; Solis, C.; Andrade, E.; Beltran H, R. I.; Issac O, K.; Lucho C, C. A.; Lopez R, M. C.; Longoria, L. C.

    2011-01-01

    This study deals with the application of nuclear analytical techniques to analyze trace elements in the biological monitor Tillandsia usneoides. Biological monitors provides an alternative advantageous way of particulate matter sampling in air pollution studies, since there is no need of special sampling devices, accumulation time can be as long as desired. T. usneoides, which occurs naturally throughout Mexico, was used to monitor air quality of Tula-Vito-Apasco (TVA) industrial corridor at central Mexico. This area is considered one of the critical zones of the country because of atmospheric contaminants high concentration. Particulate matter is regulated by Mexican norms, but its chemical composition is not. Plants were transplanted from a clean environment to four sites at the TVA corridor, and exposed for 12 weeks from February to April 2008. Trace element accumulation of plants was determined by particle induced X-ray emission and neutron activation analysis. Results reveal differences in trace elements distribution among sites in the TVA corridor. Furthermore, anthropogenic elements (S, V) and crustal elements (Ca) in T. usneoides exhibit high levels. Highly toxic elements such as Hg, As and Cr although present at trace levels, showed un enrichment relative to the initial values, when transplanted to the TVA corridor. Results show that monitoring with T. usneoides allows a first approximation of air sources to provide insights of the atmospheric pollution in the TVA corridor. (Author)

  20. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  1. A noninvasive multimodal technique to monitor brain tumor vascularization

    Science.gov (United States)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  2. A noninvasive multimodal technique to monitor brain tumor vascularization

    International Nuclear Information System (INIS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E

    2007-01-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present

  3. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  4. Digital holographic microscopy as a technique to monitor macrophages infected by leishmania

    Science.gov (United States)

    Mendoza-Rodríguez, E.; Organista-Castelblanco, C.; Camacho, M.; Monroy-Ramírez, F.

    2017-06-01

    The Digital Holographic Microscopy in Transmission technique (DHM) is considered a useful tool in the noninvasive quantifying of transparent biological objects like living cells. In this work, we propose this technique to study and to monitor control macrophages infected by Leishmania (mouse lineJ774.A1). When the promastigotes enter in contact with healthy macrophages, they got phagocytosed and latterly confined in the formed parasitophorous vacuole. These processes change the morphology and density of the host macrophage. Both parameters can be measured in a label-free analysis of cells with the aid of the DHM technique. Our technique begins with the optical record of the holograms using a modified Mach-Zehnder interferometer and the reconstruction of the complex optical field transmitted by macrophages. In the latter point, we employ the angular spectrum algorithm. With the complex optical field reconstruction, we compute the field amplitude and the phase difference maps, which leads to describe one morphological characterization for the samples. Using phase difference maps is possible to measure internal variations for the integral refractive index, estimating the infection level of macrophages. Through the changes in the integral refractive index, it is also possible to describe and quantify in two different states the evolution of the infection. With these results some parameters of cells have been quantified, making the DHM technique a viable tool for diagnosis of biological samples under the presence of some pathogen.

  5. Techniques to assess biological variation in destructive data

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Schouten, R.E.; Jongbloed, G.; Konopacki, P.J.

    2018-01-01

    Variation is present in all measured data, due to variation between individuals (biological variation) and variation induced by the measuring system (technical variation). Biological variation present in experimental data is not the result of a random process but strictly subject to deterministic

  6. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    Science.gov (United States)

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  7. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  8. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  9. Development of sensing techniques for weaponry health monitoring

    Science.gov (United States)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  10. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    ejection and that the evaluated results were mostly in good agreement. We will discuss the technical difficulties encountered, e.g. the temporal synchronisation of the different techniques. Furthermore, the internal data management of the DR prevents at present a continuous recording and only a limited number of snapshots is stored. Nonetheless, in at least three experiments the onset of particle ejection was measured by all different techniques and gave coherent results of up to 100 m/s. This is a very encouraging result and of paramount importance as it proofs the applicability of these independent methods to volcano monitoring. Each method by itself may enhance our understanding of the pressurisation state of a volcano, an essential factor in ballistic hazard evaluation and eruption energy estimation. Technical adaptations of the DR will overcome the encountered problems and allow a more refined data analysis during the next campaign.

  11. Instrumentation techniques for monitoring shock and detonation waves

    Science.gov (United States)

    Dick, R. D.; Parrish, R. L.

    1985-09-01

    CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. Each technique, installation of the gauge, examples of the signals, and interpretation of the records are described.

  12. Laser and optical techniques employed in enviromental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sunesson, A

    1988-03-01

    Monitoring of trace gases in the atmosphere has been performed with differential absorption lidar and differential optical absorption spectroscopy. A new mobile differential absorption lidar system has been constructed it is described in detail and examples of SO/sub 2/ and NO/sub 2/ measurements are given. Studies of the NO/sub 2/ concentration distribution in an urban area during a temperature inversion were performed. Detection of CI/sub 2/ with DIAL was investigated. Using a narrow-bandwidth laser system range-resolved measurements of NO and Hg were investigated. Mapping of NO and Hg plumes was performed. The use of mercury as a tracer gas for geothermal energy exploration was investigated during a field test in Iceland. Contrary to expectations very low mercury concentrations were detected. A high-resolution differential optical absorption system has been constructed and applied in longh-path monitoring of SO/sub 2/ and NO/sub 2/. Detection of atmospheric atomic mercury was investigated. A multipass absorption cell (White cell) has been constructed and used for spectroscopic measurements. Weak oxygen absorption lines in the vicinity of the Hg line were studied both with laser and optical techniques. (With 176 refs.)

  13. Approaches to monitoring biological outcomes for HPV vaccination: challenges of early adopter countries

    DEFF Research Database (Denmark)

    Wong, Charlene A; Saraiya, Mona; Hariri, Susan

    2011-01-01

    In this review, we describe plans to monitor the impact of human papillomavirus (HPV) vaccine on biologic outcomes in selected international areas (Australia, Canada, Mexico, the Nordic countries, Scotland, and the United States) that have adopted this vaccine. This summary of monitoring plans...... provides a background for discussing the challenges of vaccine monitoring in settings where resources and capacity may vary. A variety of approaches that depend on existing infrastructure and resources are planned or underway for monitoring HPV vaccine impact. Monitoring HPV vaccine impact on biologic...

  14. A calculation technique to improve continuous monitoring of containment integrity

    International Nuclear Information System (INIS)

    Dick, J.E.

    1990-01-01

    The containment envelope of nuclear plants is a passive and extremely effective safety feature. World experience indicates, however, that inadvertent breaches of envelope integrity can go undetected for substantial time periods. Consequently, continuous monitoring of integrity is being closely examined by many containment designers and operators. The most promising approach is to use sensors and systems that automatically measure changes in the mass of air in containment, time integrate any known air mass flow rates across containment boundaries, and perform a mass balance to obtain the air mass leaked. As fluctuations in such measurements are typically too large to enable leakage to be calculated to the desired precision, filtering and statistical techniques must be used to filter out random and time-dependent fluctuations. Current approaches cannot easily deal with nonrandom or systematic fluctuations in the measurements, including pressure changes within the containment. As a result, sampling periods must be kept short, or data measured during periods of varying containment pressure must be discarded. The technique described allows for much longer sampling periods under conditions of fluctuating containment pressure and eliminates the invalidation of data when the containment pressure fluctuation is nonrandom. It should therefore yield a much more precise value for the containment leakage characteristic. It also promises to be able to distinguish the presence of systematic errors unrelated to systematic pressure changes and to establish whether the containment leakage characteristic is laminar or turbulent

  15. An overview of environmental pollution and monitoring techniques

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1997-01-01

    Environmental pollution has become a world-wide concern as it is likely to affect the ecological system and human health. The indiscriminate release of harmful chemicals and toxic heavy metals in the environment by industrial, agricultural and other activities of man may adversely affect the quality of our air, water and food resources. These toxic chemicals may find their way to living organisms and human body through food chain and may induce various metabolic disorders. It is, therefore, necessary to assess the quality of environment by measuring the concentration of pollutants in air, water, soil and food materials and to establish base-line level. Since the pollutants are present in extremely small amounts, sensitive and accurate analytical techniques have to be employed to obtain reliable data. Studies on the measurement of essential and toxic inorganic elements in various food items and other materials have been carried out at PINSTECH with a view to assess the safety of diet and to establish baseline values. These values will he helpful, in future, to monitor the degree of pollution and to suggest possible remedial and control measures. The estimation of some of the inorganic pollutants and the techniques used in our laboratories and briefly discussed. (author)

  16. Exposureassessmentof greenhouseworkerswithanti-cholinesterase pesticides by biological monitoring

    Directory of Open Access Journals (Sweden)

    Sh Bakand

    2012-12-01

    to organophosphate pesticides it can be stated that the use of electrometric method is a valuable tool for biological monitoring of exposed populations . As this method is simple, portable and not expensive and at the same time provides high precision , it has a potential to be applied for screeningandearlydiagnosisof organophosphate poisonings inlarge-scale studies.  

  17. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological

  18. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  19. Differential scanning calorimetry techniques: applications in biology and nanoscience.

    Science.gov (United States)

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-12-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

  20. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    OpenAIRE

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

  1. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    Science.gov (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  2. System health monitoring using multiple-model adaptive estimation techniques

    Science.gov (United States)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  3. Biological indicators for monitoring water quality of MTF canals system

    Science.gov (United States)

    Sethi, S. L.

    1975-01-01

    Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.

  4. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  5. Biological characteristics as a part of pollution monitoring studies

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Govindan, K.

    Ecosystem modifications can be considered as an integral part of any pollution monitoring studies and in such cases community structure/diversity is of prime importance. Considering this advantage of aquatic life, pelagic and benthic communities...

  6. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    Science.gov (United States)

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative

  7. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  8. Comparative Analysis of Some Techniques in the Biological ...

    African Journals Online (AJOL)

    The experiments involved the simulation of conditions of a major spill by pouring crude oil on the cells from perforated cans and the in-situ bioremediation of the polluted soils using the techniques that consisted in the manipulation of different variables within the soil environment. The analysis of soil characteristics after a ...

  9. An integrated strategy for biological effects monitoring in Scottish coastal waters

    International Nuclear Information System (INIS)

    Park, R.A.; Dobson, J.; Richardson, L.; Hill, A.

    1999-01-01

    The paper summarises SEPA's current programme of water quality and biological effects monitoring and, using recent examples, discusses the current environmental issues affecting the condition of our coastal waters. (author)

  10. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    Science.gov (United States)

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  11. Biologic Collagen Cylinder with Skate Flap Technique for Nipple Reconstruction

    Directory of Open Access Journals (Sweden)

    Brian P. Tierney

    2014-01-01

    Full Text Available A surgical technique using local tissue skate flaps combined with cylinders made from a naturally derived biomaterial has been used effectively for nipple reconstruction. A retrospective review of patients who underwent nipple reconstruction using this technique was performed. Comorbidities and type of breast reconstruction were collected. Outcome evaluation included complications, surgical revisions, and nipple projection. There were 115 skate flap reconstructions performed in 83 patients between July 2009 and January 2013. Patients ranged from 32 to 73 years old. Average body mass index was 28.0. The most common comorbidities were hypertension (39.8% and smoking (16.9%. After breast reconstruction, 68.7% of the patients underwent chemotherapy and 20.5% underwent radiation. Seventy-one patients had immediate breast reconstruction with expanders and 12 had delayed reconstruction. The only reported complications were extrusions (3.5%. Six nipples (5.2% in 5 patients required surgical revision due to loss of projection; two patients had minor loss of projection but did not require surgical revision. Nipple projection at time of surgery ranged from 6 to 7 mm and average projection at 6 months was 3–5 mm. A surgical technique for nipple reconstruction using a skate flap with a graft material is described. Complications are infrequent and short-term projection measurements are encouraging.

  12. Biologic collagen cylinder with skate flap technique for nipple reconstruction.

    Science.gov (United States)

    Tierney, Brian P; Hodde, Jason P; Changkuon, Daniela I

    2014-01-01

    A surgical technique using local tissue skate flaps combined with cylinders made from a naturally derived biomaterial has been used effectively for nipple reconstruction. A retrospective review of patients who underwent nipple reconstruction using this technique was performed. Comorbidities and type of breast reconstruction were collected. Outcome evaluation included complications, surgical revisions, and nipple projection. There were 115 skate flap reconstructions performed in 83 patients between July 2009 and January 2013. Patients ranged from 32 to 73 years old. Average body mass index was 28.0. The most common comorbidities were hypertension (39.8%) and smoking (16.9%). After breast reconstruction, 68.7% of the patients underwent chemotherapy and 20.5% underwent radiation. Seventy-one patients had immediate breast reconstruction with expanders and 12 had delayed reconstruction. The only reported complications were extrusions (3.5%). Six nipples (5.2%) in 5 patients required surgical revision due to loss of projection; two patients had minor loss of projection but did not require surgical revision. Nipple projection at time of surgery ranged from 6 to 7 mm and average projection at 6 months was 3-5 mm. A surgical technique for nipple reconstruction using a skate flap with a graft material is described. Complications are infrequent and short-term projection measurements are encouraging.

  13. [Etiologic diagnosis in meningitis and encephalitis molecular biology techniques].

    Science.gov (United States)

    Conca, Natalia; Santolaya, María Elena; Farfan, Mauricio J; Cofré, Fernanda; Vergara, Alejandra; Salazar, Liliana; Torres, Juan Pablo

    2016-01-01

    The aetiological study of infections of the central nervous system has traditionally been performed using bacterial cultures and, more recently, using polymerase chain reaction (PCR) for herpes simplex virus (HSV). Bacterial cultures may not have good performance, especially in the context of patients who have received antibiotics prior to sampling, and a request for HSV only by PCR reduces the information to only one aetiological agent. The aim of this study is to determine the infectious causes of meningitis and encephalitis, using traditional microbiology and molecular biology to improve the aetiological diagnosis of these diseases. A prospective study was conducted on 19 patients with suspected meningitis, admitted to the Luis Calvo Mackenna Hospital in Santiago, Chile, from March 1, 2011 to March 30, 2012. After obtaining informed consent, the CSF samples underwent cytochemical study, conventional culture, multiplex PCR for the major producing bacterial meningitis (N. meningitidis, S. pneumoniae, H. influenzae), real-time single PCR for HSV-1 and 2, VZV, EBV, CMV, HHV-6 and enterovirus. Clinical and epidemiological data were also collected from the clinical records. Of the 19 patients analysed, 2 were diagnosed by conventional methods and 7 by adding molecular biology (increase to 37%). Three patients had meningitis due to S. pneumoniae, one due to Enterobacter cloacae, 2 patients meningoencephalitis HSV-1, and one VZV meningitis. The addition of PCR to conventional diagnostic methods in CNS infections increases the probability of finding the causal agent. This allows a more adequate, timely and rational management of the disease. Copyright © 2014. Publicado por Elsevier España, S.L.U.

  14. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    Naish, C.C.; Buttle, D.; Wallace-Sims, R.; O'Brien, T.M.

    1991-01-01

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  15. Broadening participation in biological monitoring: handbook for scientists and managers.

    Science.gov (United States)

    David Pilz; Heidi L. Ballard; Eric T. Jones

    2006-01-01

    Participatory (collaborative, multiparty, citizen, volunteer) monitoring is a process that has been increasing in popularity and use in both developing and industrialized societies over the last several decades. It reflects the understanding that natural resource decisions are more effective and less controversial when stakeholders who have an interest in the results...

  16. Environmental DNA for wildlife biology and biodiversity monitoring

    DEFF Research Database (Denmark)

    Bohmann, Kristine; Evans, Alice; Gilbert, M. Thomas P.

    2014-01-01

    Extraction and identification of DNA from an environmental sample has proven noteworthy recently in detecting and monitoring not only common species, but also those that are endangered, invasive, or elusive. Particular attributes of so-called environmental DNA (eDNA) analysis render it a potent t...

  17. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  18. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Teacher's Guide.

    Science.gov (United States)

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  19. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Student Manual.

    Science.gov (United States)

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  20. Evaluation of plutonium analysis techniques for a continuous alpha monitor

    International Nuclear Information System (INIS)

    McDonald, F.N.; Fernandez, S.J.; Motes, B.G.

    1979-03-01

    Present methods for alpha particle monitoring are described according to their capabilities, advantages, and disadvantages. The methods, evaluated according to sensitivity and simplicity of operation, suggest that a Phoswich detector is the most promisng method of alpha monitoring. The proposed monitor would be applicable to fuel reprocessing and waste solidification facilities. A plan for development and on-line demonstration of the Phoswich detector is described

  1. Experience of molecular monitoring techniques in upstream oil and gas operations

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Anthony F.; Anfindsen, Hilde; Liengen, Turid; Molid, Solfrid [Statoil ASA (Denmark)

    2011-07-01

    For a numbers of years, molecular monitoring tools have been used in upstream oil and gas operations but the results have given only limited added value. This paper discusses the various techniques available for upstream molecular monitoring which provides scope for identification of microbial influenced problems. The methodology, which consists of analyzing solid samples using traditional as well as molecular techniques, is detailed. Two cases were studied with the objective of determining if microbial contamination was contributing to the problem. The first case was a study of amorphous deposits in production wells and mainly iron sulphide was found. The second study was of amorphous deposits in water injection wells and the analysis showed typical components of drilling and completion fluids with some organic material. Two more cases, corrosion of tubing in a water injection well and flow line corrosion, are discussed and the results are given. From the study, it can be concluded that failure can be due to several factors, chemical and biological.

  2. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  3. Innovative biological approaches for monitoring and improving water quality

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2015-08-01

    Full Text Available Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages.

  4. Innovative biological approaches for monitoring and improving water quality

    Science.gov (United States)

    Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.

    2015-01-01

    Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034

  5. Magnetic separation techniques in sample preparation for biological analysis: a review.

    Science.gov (United States)

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  7. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  8. A comparative study of sampling techniques for monitoring carcass contamination

    NARCIS (Netherlands)

    Snijders, J.M.A.; Janssen, M.H.W.; Gerats, G.E.; Corstiaensen, G.P.

    1984-01-01

    Four bacteriological sampling techniques i.e. the excision, double swab, agar contract and modified agar contact techniques were compared by sampling pig carcasses before and after chilling. As well as assessing the advantages and disadvantages of the techniques particular attention was paid to

  9. Biological monitoring and abatement program plan for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kszos, L.A.; Anderson, G.E.; Gregory, S.M.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R.; Phipps, T.L.

    1997-06-01

    The overall purpose of this plan is to evaluate the receiving streams' biological communities for the duration of the permit and meet the objectives for the ORNL BMAP as outlined in the NPDES permit (Appendix). The ORNL BMAP will focus on those streams in the WOC watershed that (1) receive NPDES discharges and (2) have been identified as ecologically impacted. In response to the newly issued NPDES permit, the tasks that are included in this BMAP plan include monitoring biological communities (fish and benthic invertebrates), monitoring mercury contamination in fish and water, monitoring polychlorinated biphenyl (PCB) contamination in fish, and evaluating temperature loading from ORNL outfalls. The ORNL BMAP will evaluate the effects of sediment and oil and grease, as well as the chlorine control strategy through the use of biological community data. Monitoring will be conducted at sites in WOC, First Creek, Fifth Creek, Melton Branch, and WOL

  10. Biological monitoring and abatement program plan for Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Anderson, G.E.; Gregory, S.M.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R. [Oak Ridge National Lab., TN (United States); Phipps, T.L. [CKY, Inc., Oak Ridge, TN (United States)

    1997-06-01

    The overall purpose of this plan is to evaluate the receiving streams` biological communities for the duration of the permit and meet the objectives for the ORNL BMAP as outlined in the NPDES permit (Appendix). The ORNL BMAP will focus on those streams in the WOC watershed that (1) receive NPDES discharges and (2) have been identified as ecologically impacted. In response to the newly issued NPDES permit, the tasks that are included in this BMAP plan include monitoring biological communities (fish and benthic invertebrates), monitoring mercury contamination in fish and water, monitoring polychlorinated biphenyl (PCB) contamination in fish, and evaluating temperature loading from ORNL outfalls. The ORNL BMAP will evaluate the effects of sediment and oil and grease, as well as the chlorine control strategy through the use of biological community data. Monitoring will be conducted at sites in WOC, First Creek, Fifth Creek, Melton Branch, and WOL.

  11. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  12. Linhchi mushrooms as biological monitors for 137Cs pollution

    International Nuclear Information System (INIS)

    Tran Van, L.; Le Duy, T.

    1991-01-01

    Radioactivity of Linhchi mushrooms (Ganoderma Lucidum) cultivated in laboratory and production conditions has been measured in the Environmental Laboratory of Nuclear Research Institute (NRI), Dalat, Vietnam. The results showed that Linhchi mushroom has a high radioactive concentration of 137 Cs, which is about 20 Bq kg -1 fresh weight. In addition, the radioactive contents of substrata before and after cultivation were insignificant. This suggested that Linhchi mushroom should only accumulate the 137 Cs radioisotope from the atmosphere, directly. Therefore, it should be considered as a bio-indicator for environmental monitoring. (author) 13 refs.; 3 figs.; 2 tabs

  13. System for monitoring an industrial or biological process

    Science.gov (United States)

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  14. A Review of Field Corrosion Control and Monitoring Techniques of ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... to make informed decision and timely respond to corrosion threat before failures. Keywords: cathodic protection, corrosion mechanism, control and monitoring, ...

  15. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  16. Biological monitoring of environmental contaminants (plants). Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Burton, M.A.S.

    1986-01-01

    Knowledge of contaminant concentrations does not necessarily indicate their significance to plant populations and communities within ecosystems. Accumulation within plants facilitates analysis of contaminants which may be present at very low levels in the environment and may show the spatial distribution and changes in the level of contamination with time. Effects on species distribution within plant communities and visible injury to foliage may also be related to contamination. Species can be selected appropriate to the area and the contaminant to be monitored. Species used to investigate the input of contaminants from atmospheric deposition, for example, may differ from those used to assess transfer through food webs. Mosses and lichens have been particularly widely used in many countries to show distribution of metals and radionuclides on local and regional scales and of pesticide contamination. Visible injury to foliage of higher plant species may reflect atmospheric concentrations of gaseous pollutants and monitoring networks of transplanted sensitive species can provide information on contaminant levels on a regional scale. Changes in species composition, especially of lichens, have also been related to the degree of contamination.

  17. Using image analysis to monitor biological changes in consume fish

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Frosch, Stina; Nielsen, Michael Engelbrecht

    2011-01-01

    The quality of fish products is largely defined by the visual appearance of the products. Visual appearance includes measurable parameters such as color and texture. Fat content and distribution as well as deposition of carotenoid pigments such as astaxanthin in muscular and fat tissue...... fishes is based on highly laborious chemical analysis. Trichromatic digital imaging and point-wise colorimetric or spectral measurement are also ways of estimating either the redness or the actual astaxanthin concentration of the fillet. These methods all have drawbacks of either cumbersome testing...... are biological parameters with a huge impact on the color and texture of the fish muscle. Consumerdriven quality demands call for rapid methods for quantification of quality parameters such as fat and astaxanthin in the industry. The spectral electromagnetic reflection properties of astaxanthin are well known...

  18. [Clinical and biological monitoring of nutritional status in severe burns].

    Science.gov (United States)

    Bargues, L; Cottez-Gacia, S; Jault, P; Renard, C; Vest, P

    2009-01-01

    Burn patients are subject to hypermetabolism and catabolic states. Aim was to evaluate our current practice in nutrition. Twenty-one severely burned patients were prospectively included during three months period. Body weight was measured at least two times in a week during all stay in burn ICU. Biological markers of inflammation (C-reactive protein, CRP) and nutrition (prealbumin) were performed weekly. Protocol included early nasogastric feeding, tolerated gastric stasis less than 250 mL at four hours nasogastric aspirations, caloric target value of 40 Kcal/kg per day and measurement of total daily calorie intakes. Patient demographics showed a mean percent total body surface burn of 51.1+/-27 % (range 20-90), age of 38.7+/-13.1 years (range 18-67) and 57.3 % of smoke inhalation. All patients were ventilated and 19 patients survived. Length of stay was 75.7+/-47 days (range 22-184). Patients received only 58.9+/-10 % of calorie intakes recommended by French burn society. Loss of body mass was 15.2+/-9 kg (range 3-31) or 19.1+/-10 % of admission weight (range 5-37). Erosion of body mass was not correlated with burned surface (p=0.08), calorie intakes (p=0.26), smoke inhalation (p=0.46), lengths of stay (p=0.53), lengths of ventilation (p=0.08) or nutrition (p=0.12), days of antibiotic (p=0.72), number of dressing changes (p=0.6) or surgery (p=0.64). Biological parameters showed CRP decreasing and prealbumin improving values. New strategies of nutrition are necessary to improve outcome and reduce body mass loss in burns.

  19. Biological monitoring of toxic metals - steel workers respiratory health survey

    International Nuclear Information System (INIS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M.C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-01-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated

  20. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  1. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  2. Suitable activated stable nuclide tracer technique and its applications in biology and medicine

    International Nuclear Information System (INIS)

    Zhang Weicheng

    1989-01-01

    Stable isotopes as tracers in biology and medicine have been more extensively used. Mass spectrometry has been a classic technique in the analysis of stable isotopes because it is very sensitive and precise. Activation analysis has recently been introduced as an analytical tool. Its fast speed and simplicity is a great advantage for handling large batches of samples in isotopic tracer experiments. The combination of enriched stable isotope tracer studies and activation analysis techniques has become an ideal and reliable technique, especially in the fields of biology and medicine. This paper presents a survey of the fundamental principle, the character and the applications in biology and medicine for the suitable activated stable isotope tracer techniques

  3. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    Science.gov (United States)

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  4. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    OpenAIRE

    Maldarelli, Grace A.; Hartmann, Erica M.; Cummings, Patrick J.; Horner, Robert D.; Obom, Kristina. M.; Shingles, Richard; Pearlman, Rebecca S.

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergradu...

  5. Utility of the molecular biology techniques to the analytical control of the microbiological quality of waters

    International Nuclear Information System (INIS)

    Codony, F.; Martin Perez, L.; Morato, J.; Dominguez Gual, M. C.

    2009-01-01

    The molecular biology techniques made accessible to the water industry the ability to detect and quantify, in a few hours, any organism known. given this scenario, it is important to realize the strengths and weaknesses of these techniques to get a better picture of the scope of its implementation and its most that probably usefulness. We must be familiar with these techniques to understand the results and properly evaluate its detection limit. (Author) 4 refs.

  6. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S. [and others

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  7. Oak Ridge Y-12 Plant biological monitoring and abatement program (BMAP) plan

    International Nuclear Information System (INIS)

    Adams, S.M.; Brandt, C.C.; Cicerone, D.S.

    1998-02-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y-12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided, but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas or a reduction in sampling intensity in others. By using the results of previous monitoring efforts to define the current program and to guide them in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions

  8. Statistical techniques for sampling and monitoring natural resources

    Science.gov (United States)

    Hans T. Schreuder; Richard Ernst; Hugo Ramirez-Maldonado

    2004-01-01

    We present the statistical theory of inventory and monitoring from a probabilistic point of view. We start with the basics and show the interrelationships between designs and estimators illustrating the methods with a small artificial population as well as with a mapped realistic population. For such applications, useful open source software is given in Appendix 4....

  9. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  10. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  12. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Bowen, M. [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake.

  13. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Bowen, M.

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ''Balanced Biological Community'' (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake

  14. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    Science.gov (United States)

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to

  15. Environmental monitoring with advanced data transfer and presentation techniques

    International Nuclear Information System (INIS)

    Toivonen, H.; Lahtinen, J.; Koivukoski, J.; Rantanen, H.; Haaslahti, J.

    1995-01-01

    In an emergency, the needs for information are overwhelming, as was shown during the Chernobyl accident in 1986. To improve environmental radiation monitoring and to make communication easy, the Finnish authorities launched an extensive development project in 1991. VTKK Group Ltd took over the software design. A brief description of system architecture, automatic data collection, manual input, mobile units, transfer of results and handling of alarms is given. 2 figs

  16. Future strategy and puzzles of heavy ion beam mediated technique in genetic improvement of biological bodies

    International Nuclear Information System (INIS)

    Huang Qunce

    2007-01-01

    The 7 research puzzles in the genetic improvement of biological bodies made by ion beam mediated technique, are worth noticed. The technical ideas, including one mediated technique in physics, 2 significant subjects, 3 effective changes, the mediated evidences of 4 aspects and 5 biological characteristics, were particularly put forward according to the existing states in the field. The 2 significant subjects consist of the mechanics of the allogenetic materials entering into the acceptor and they being to be recombined. The 3 effective changes include from studying morphology to genetic laws, from researching M1 generation to the next generations, from determining the single character to the synthetic traits. The mediated evidences of 4 aspects come from morphology, physiology and biochemistry, molecule biology. The 5 biological characteristics are mainly reproduction, development, photosynthesis, bad condition-resistant and quality. (authors)

  17. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.J.; GROVE, E.; SOO, P.

    2000-01-01

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented

  18. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  19. The use of environmental monitoring as a technique to identify isotopic enrichment activities

    International Nuclear Information System (INIS)

    Buchmann, Jose Henrique

    2000-01-01

    The use of environmental monitoring as a technique to identify activities related to the nuclear fuel cycle has been proposed, by international organizations, as an additional measure to the safeguards agreements in force. The elements specific for each kind of nuclear activity, or nuclear signatures, inserted in the ecosystem by several transfer paths, can be intercepted with better or worse ability by different live organisms. Depending on the kind of signature of interest, the anthropogenic material identification and quantification require the choice of adequate biologic indicators and, mainly, the use of sophisticated techniques associated with elaborate sample treatments. This work demonstrates the technical viability of using pine needles as bioindicators of nuclear signatures associated with uranium enrichment activities. Additionally, it proposes the use of a technique widely diffused nowadays in the scientific community, the High Resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICP-MS), to identify the signature corresponding to that kind of activities in the ecosystem. It can be also found a description of a methodology recently being applied in analytical chemistry,based on uncertainties estimates metrological concepts, used to calculate the uncertainties associated with the obtained measurement results. Nitric acid solutions with a concentration of 0.3 mol.kg -1 , used to wash pine needles sampled near facilities that manipulate enriched uranium and containing only 0.1 μg.kg -1 of uranium, exhibit a 235 U: 238 U isotopic abundance ratio of 0.0092±0.0002, while solutions originated from samples collected at places located more than 200 km far from activities related to the nuclear fuel cycle exhibit a value of 0.0074±0.0002 for this abundance ratio. Similar results were obtained for samples collected in different places permit to confirm the presence of anthropogenic uranium and demonstrate the viability of using this technique and the

  20. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  1. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  2. A comparative examination of several techniques for the routine determination of mercury in biological samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Faanhof, A.; Das, H.A.

    1978-01-01

    A comparative examination of the most important techniques for the separation of mercury from irradiated biological material was made. Procedures for routine analysis and results for standard materials are given. Activation was performed at a thermal neutron flux of approximately 5x10 12 nxcm -2 xs -1 during ( 3 ) 2 offers a convenient solution to this problem. The variation of the neutron flux with the irradiation position can be measured by the application of thin iron rings as flux monitors. Losses of mercury due to uptake in the wall of the irradiation containers are negligible. The most powerful destruction technique for large samples is that based on a stainless-steel bomb. (T. I.)

  3. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  4. Monitoring of the Syrian rift valley using radon technique

    International Nuclear Information System (INIS)

    Al-Hilal, M.; Al-Ali, A.; Jubeli, Y.

    1997-02-01

    Groundwater radon data were recorded once every two months from six monitoring sites of the Syrian rift valley during the year 1996. Radon samples were measured from deep artesian wells and from continuously-flowing springs that are distributed along this most active seismic zone in Syria. The available data were integrated with previously measured groundwater radon data from the same stations in order to estimate the range of normal radon fluctuations in the region. The estimation of such range may enable the separation between usual groundwater radon variations from other outliers which may indicate possible tectonic activities or earthquake hazards in the study area. Periodical radon measurements based on two months intervals and long distance between sampling stations does not enable us to trust with high level of confidence the connection between radon values and any possible earth dynamics. Therefore, shorter measuring time with closer monitoring sites are highly recommended to achieve the optimum advantage of such application. (Author). 8 Figs., 2 Tabs., 10 Refs

  5. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    Directory of Open Access Journals (Sweden)

    Paul A. Selvadurai

    2015-04-01

    Full Text Available A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA interface in the laboratory. The film has structural health monitoring (SHM applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa.

  6. Imaging monitoring techniques applications in the transient gratings detection

    Science.gov (United States)

    Zhao, Qing-ming

    2009-07-01

    Experimental studies of Degenerate four-wave mixing (DFWM) in iodine vapor at atmospheric pressure and 0℃ and 25℃ are reported. The Laser-induced grating (LIG) studies are carried out by generating the thermal grating using a pulsed, narrow bandwidth, dye laser .A new image processing system for detecting forward DFWM spectroscopy on iodine vapor is reported. This system is composed of CCD camera, imaging processing card and the related software. With the help of the detecting system, phase matching can be easily achieved in the optical arrangement by crossing the two pumps and the probe as diagonals linking opposite corners of a rectangular box ,and providing a way to position the PhotoMultiplier Tube (PMT) . Also it is practical to know the effect of the pointing stability on the optical path by monitoring facula changing with the laser beam pointing and disturbs of the environment. Finally the effects of Photostability of dye laser on the ration of signal to noise in DFWM using forward geometries have been investigated in iodine vapor. This system makes it feasible that the potential application of FG-DFWM is used as a diagnostic tool in combustion research and environment monitoring.

  7. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    Science.gov (United States)

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were polyurethane foam insulation (0.023 mg m(-3)). The most commonly detected isocyanate in the urine was hexamethylene diisocyanate, which was detected in 21 instances. The geometric mean total isocyanate metabolite concentration for the dataset was 0.29 micromol mol(-1) creatinine (range 0.05-12.64 micromol mol(-1

  8. National inventory of selected biological monitoring programs. Summary report of current or recently completed projects, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, H. T.

    1976-10-01

    The Inventory has resulted in establishment of a series of data bases containing biological monitoring information of varying types, namely, directory of investigators, record of projects received from mail questionnaire, detailed description of selected biomonitoring projects, and bibliographic citations supporting the projects received. This report contains detailed descriptions of selected biomonitoring projects organized on a state-by-state basis and with appropriate indices.

  9. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  10. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    OpenAIRE

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma; Abdel-Rehim, Mohamed

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from o...

  11. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  12. A simple air sampling technique for monitoring nitrous oxide pollution

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J C; Shaw, R; Moyes, D; Cleaton-Jones, P E

    1981-01-01

    A simple, inexpensive device for the continuous low-flow sampling of air was devised to permit monitoring of pollution by gaseous anaesthetics. The device consisted of a water-filled Perspex cylinder in which a double-walled flexible-film gas sample collection bag was suspended. Air samples could be aspirated into the collection bag at flow rates of as low as 1 ml min-1 by allowing the water to drain from the cylinder at a controlled rate. The maintenance of sample integrity with aspiration and storage of samples of nitrous oxide in air at concentrations of 1000, 100 and 30 p.p.m. v/v was examined using gas chromatography. The sample bags retained a mean 94% of the nitrous oxide in air samples containing nitrous oxide 25 p.p.m. over a 72-h storage period.

  13. Automatic measurement for monitoring crack growth with electric potential technique

    International Nuclear Information System (INIS)

    Nakajima, Nobuya; Kikuchi, Masaaki; Shima, Seishi

    1981-10-01

    In the study of fracture mechanics, it is one of the most important problems to monitor the crack growth phenomena. Recently, many experimental methods have been developed. In this report, the Direct Current (DC) potential method is employed for measuring the crack growth length in the pressuried high temperature water. The objective of the current investigation is to develop an experimental method to quantify the sensitivity of this method in the air environment using the Compact Tension (CT) specimen. The main results obtained are as follows: 1) It is ignored that the electrical potential changes with plastic deformation at the crack tip of the specimen. 2) Using the Reversible Direct Current (RDC) Method, the measurement system gives no effect on the electrical stability for a long time. 3) For the fatigue and statical crack growth length, good relation is observed between the crack length-to-specimen width ratio (a/W) and potential ratio (Va/Vo). (author)

  14. Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Brandt, C.C.; Christensen, S.W.; Greeley, M.S.JR.; Hill, W.R.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-09-01

    The revised Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted as required by the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995 and became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Science Division (ESD) at the Oak Ridge National Laboratory (ORNL) at the request of the Y-12 Plant. The revision to the BMAP plan is based on results of biological monitoring conducted during the period of 1985 to present. Details of the specific procedures used in the current routine monitoring program are provided; experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional bioaccumulation monitoring if results indicate unexpectedly high PCBs or Hg) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is still observed). The program scope will be re-evaluated annually. By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of Y-12 Plant operations (past and present) on the biota of EFPC and to document the ecological effects of remedial actions.

  15. Monitoring well design and sampling techniques at NAPL sites

    International Nuclear Information System (INIS)

    Collins, M.; Rohrman, W.R.; Drake, K.D.

    1992-01-01

    The existence of Non-Aqueous Phase Liquids (NAPLs) at many Superfund and RCRA hazardous waste sites has become a recognized problem in recent years. The large number of sites exhibiting this problem results from the fact that many of the most frequently used industrial solvents and petroleum products can exist as NAPLs. Hazardous waste constituents occurring as NAPLs possess a common characteristic that causes great concern during groundwater contamination evaluation: while solubility in water is generally very low, it is sufficient to cause groundwater to exceed Maximum Contamination Levels (MCLs). Thus, even a small quantity of NAPL within a groundwater regime can act as a point source with the ability to contaminate vast quantities of groundwater over time. This property makes it imperative that groundwater investigations focus heavily on characterizing the nature, extent, and migration pathways of NAPLs at sites where it exists. Two types of NAPLs may exist in a groundwater system. Water-immiscible liquid constituents having a specific gravity greater than one are termed Dense Non-Aqueous Phase Liquids, while those with a specific gravity less than one are considered Light Non-Aqueous Phase Liquids. For a groundwater investigation to properly characterize the two types of NAPLs, careful consideration must be given to the placement and sampling of groundwater monitoring wells. Unfortunately, technical reviewers at EPA Region VII and the Corps of Engineers find that many groundwater investigations fall short in characterizing NAPLs because several basic considerations were overlooked. Included among these are monitoring well location and screen placement with respect to the water table and significant confining units, and the ability of the well sampling method to obtain samples of NAPL. Depending on the specific gravity of the NAPL that occurs at a site, various considerations can substantially enhance adequate characterization of NAPL contaminants

  16. Proposal for a biological environmental monitoring approach to be used in libraries and archives.

    Science.gov (United States)

    Pasquarella, Cesira; Saccani, Elisa; Sansebastiano, Giuliano Ezio; Ugolotti, Manuela; Pasquariello, Giovanna; Albertini, Roberto

    2012-01-01

    In cultural-heritage-related indoor environments, biological particles represent a hazard not only for cultural property, but also for operators and visitors. Reliable environmental monitoring methods are essential for examining each situation and assessing the effectiveness of preventive measures. We propose an integrated approach to the study of biological pollution in indoor environments such as libraries and archives. This approach includes microbial air and surface sampling, as well as an investigation of allergens and pollens. Part of this monitoring plan has been applied at the Palatina Library in Parma, Italy. However, wider collections of data are needed to fully understand the phenomena related with biological contamination, define reliable contamination threshold values, and implement appropriate preventive measures.

  17. South Africa improves exclusive breastfeeding monitoring using nuclear technique

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2015-01-01

    Babies in South Africa that would once be at high risk of malnutrition, disease and even death, now have brighter futures as nuclear techniques help mothers become more diligent about exclusive breastfeeding for the baby’s first six months. Breastfed children are more resistant to disease and infection compared to formula-fed children, points out the World Health Organization, which recommends that from birth up to six months of age babies should drink only breast milk. Research indicates that breastfed babies are less likely to develop diabetes, cardiovascular disease and cancer later in life.

  18. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  19. WS-010: EPR-First Responders: Personal monitoring techniques and protective clothing

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this working session is that the participant can apply their knowledge in relation to the personal monitoring techniques and protective clothing. They have to know the use of the radiation measurement instrumentation available in each region

  20. Detection of Atmospheric Explosions at IMS Monitoring Stations using Infrasound Techniques

    National Research Council Canada - National Science Library

    Christie, Douglas R; Kennett, Brian L; Tarlowski, Chris

    2006-01-01

    Work is continuing on the development of infrasound techniques that can be used to improve detection, location and discrimination capability for atmospheric nuclear explosions at International Monitoring System (IMS...

  1. The role and future of in-vitro isotopic techniques in molecular biology

    International Nuclear Information System (INIS)

    Dar, L.; Khan, B.K.

    2004-01-01

    In this review we discuss isotopic in-vitro molecular biology techniques, and their advantages and applications. Isotopic methods have helped to shape molecular biology since its early days. Despite the availability of non-isotopic alternatives, isotopic methods continue to be used in molecular biology due to certain advantages, especially related to sensitivity and cost-effectiveness. Numerous techniques involving the use of isotopes help in the characterization of genes, including the detection of single nucleotide polymorphisms (SNPs) or mutations. Other isotopic molecular methods are utilized to study the phenotypic expression of gene sequences and their mutation. Emerging branches of molecular biology like functional genomics and proteomics are extremely important for exploiting the rapidly growing data derived from whole genomic sequencing of human and microbial genomes. Recent molecular biology applications like the high-throughput array techniques are relevant in the context of both structural and functional genomics. In proteomics, stable isotope based technology has found applications in the analysis of protein structure and interactions. (author)

  2. Benefits of a Biological Monitoring Program for Assessing Remediation Performance and Long-Term Stewardship - 12272

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-01

    The Biological Monitoring and Abatement Program (BMAP) is a long-running program that was designed to evaluate biological conditions and trends in waters downstream of Department of Energy (DOE) facilities in Oak Ridge, Tennessee. BMAP monitoring has focused on aquatic pathways from sources to biota, which is consistent with the sites' clean water regulatory focus and the overall cleanup strategy which divided remediation areas into watershed administrative units. Specific programmatic goals include evaluating operational and legacy impacts to nearby streams and the effectiveness of implemented remediation strategies at the sites. The program is characterized by consistent, long-term sampling and analysis methods in a multidisciplinary and quantitative framework. Quantitative sampling has shown conclusively that at most Oak Ridge stream sites, fish and aquatic macro-invertebrate communities have improved considerably since the 1980s. Monitoring of mercury and PCBs in fish has shown that remedial and abatement actions have also improved stream conditions, although in some cases biological monitoring suggests further actions are needed. Follow-up investigations have been implemented by BMAP to identify sources or causes, consistent with an adaptive management approach. Biological monitoring results to date have not only been used to assess regulatory compliance, but have provided additional benefits in helping address other components of the DOE's mission, including facility operations, natural resource, and scientific goals. As a result the program has become a key measure of long-term trends in environmental conditions and of high value to the Oak Ridge environmental management community, regulators, and the public. Some of the BMAP lessons learned may be of value in the design, implementation, and application of other long-term monitoring and stewardship programs, and assist environmental managers in the assessment and prediction of the effectiveness of

  3. Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles

    Science.gov (United States)

    2014-06-01

    Defence Research and Development Canada Recherche et développement pour la défense Canada Validation of new crack monitoring technique for Victoria ...Validation of new crack monitoring technique for Victoria class high-pressure air bottles Ian Thompson John R. MacKay Defence Research and Development...Canada Scientific Report DRDC-RDDC-2014-R81 June 2014 © Her Majesty the Queen in Right of Canada (Department of National Defence), 2014 © Sa Majesté

  4. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    OpenAIRE

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is propo...

  5. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments

    OpenAIRE

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M.; Alcamí, Antonio; Gutiérrez-Bustillo, A. Montserrat; Moreno, Diego A.

    2016-01-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entit...

  6. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  7. Evaluation of the uranium double spike technique for environmental monitoring

    International Nuclear Information System (INIS)

    Hemberger, P.H.; Rokop, D.J.; Efurd, D.W.; Roensch, F.R.; Smith, D.H.; Turner, M.L.; Barshick, C.M.; Bayne, C.K.

    1998-01-01

    Use of a uranium double spike in analysis of environmental samples showed that a 235 U enrichment of 1% ( 235 U/ 238 U = 0.00732) can be distinguished from natural ( 235 U/ 238 U = 0.00725). Experiments performed jointly at Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) used a carefully calibrated double spike of 233 U and 236 U to obtain much better precision than is possible using conventional analytical techniques. A variety of different sampling media (vegetation and swipes) showed that, provided sufficient care is exercised in choice of sample type, relative standard deviations of less than ± 0.5% can be routinely obtained. This ability, unavailable without use of the double spike, has enormous potential significance in the detection of undeclared nuclear facilities

  8. OAK RIDGE Y-12 PLANT BIOLOGICAL MONITORING AND ABATEMENT PROGRAM (BMAP) PLAN

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.; GREELEY, M.S.JR; HILL, W.R.; HUSTON, M.S.; KSZOS, L.A.; MCCARTHY, J.F.; PETERSON, M.J.; RYON, M.G.; SMITH, J.G.; SOUTHWORTH, G.R.; STEWART, A.J.

    1998-10-01

    The proposed Biological Monitoring and Abatement Program (BMAP) for East Fork Poplar Creek (EFPC) at the Oak Ridge Y-12 Plant, as described, will be conducted for the duration of the National Pollutant Discharge Elimination System permit issued for the Y-12 Plant on April 28, 1995, and which became effective July 1, 1995. The basic approach to biological monitoring used in this program was developed by the staff in the Environmental Sciences Division at the Oak Ridge National Laboratory at the request of Y- 12 Plant personnel. The proposed BMAP plan is based on results of biological monitoring conducted since 1985. Details of the specific procedures used in the current routine monitoring program are provided but experimental designs for future studies are described in less detail. The overall strategy used in developing this plan was, and continues to be, to use the results obtained from each task to define the scope of future monitoring efforts. Such efforts may require more intensive sampling than initially proposed in some areas (e.g., additional toxicity testing if initial results indicate low survival or reproduction) or a reduction in sampling intensity in others (e.g., reduction in the number of sampling sites when no impact is observed). By using the results of previous monitoring efforts to define the current program and to guide us in the development of future studies, an effective integrated monitoring program has been developed to assess the impacts of the Y-12 Plant operation on the biota of EFPC and to document the ecological effects of remedial actions.

  9. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    International Nuclear Information System (INIS)

    Unak, T.; Avcibasi, U.; Yildirim, Y.; Cetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 mg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131 I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131 I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  10. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  11. ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MELOXICAM IN PHARMACEUTICAL FORMULATIONS AND BIOLOGICAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Aisha Noreen

    2016-06-01

    Full Text Available Meloxicam (MX belongs to the family of oxicams which is the most important group of non steroidal anti-inflammatory drugs (NSAIDs and is widely used for their analgesics and antipyretic activities. It inhibits both COX-I and COX-II enzymes with less gastric and local tissues irritation. A number of analytical techniques have been used for the determination of MX in pharmaceutical as well as in biological fluids. These techniques include titrimetry, spectrometry, chromatography, flow injection spectrometry, fluorescence spectrometry, capillary zone electrophoresis and electrochemical techniques. Many of these techniques have also been used for the simultaneous determination of MX with other compounds. A comprehensive review of these analytical techniques has been done which could be useful for the analytical chemists and quality control pharmacists.

  12. Tennessee's East Fork Poplar Creek: A biological monitoring and abatement program

    International Nuclear Information System (INIS)

    Halbrook, R.S.; Loar, J.M.; Adams, S.M.; Black, M.C.; Boston, H.L.; Greeley, M.S. Jr.; Hill, W.R.; Hinzman, R.L.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Schilling, E.M.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Gatz, A.J.

    1991-01-01

    On May 1985, a Biological Monitoring Program was developed for East Fork Poplar Creek (EFPC) in eastern Tennessee, United States. This stream originates within the Oak Ridge Y-12 Plant that produces nuclear weapons components for the Department of Energy. Water and sediment in the stream contain metals, organic chemicals, and radionuclides from releases that have occurred over the past 45 years. The creek also receives urban and some agricultural runoff and effluent from the City of Oak Ridge's Wastewater Treatment Facility (WTF). The biological monitoring program includes four major tasks: (1) ambient toxicity testing: (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological monitoring of stream communities, including periphyton, benthic macroinvertebrates, and fish. Biological conditions are monitored at six sites on EFPC ranging from kilometer 24.4 near the headwaters to kilometer 6.3 near the month. A site on Brushy Fork, A stream just north of Oak Ridge, is used as reference. Ambient (instream) toxicity was monitored through the use of 7-day static-renewal tests that measured the survival and growth of fathead minnow (Pimephales promelas) larvae and the survival and reproduction of a microstrustacean (Ceriodaphnia dubia). Full-strength water from EFPC within the Y-12 Plant boundary was frequently toxic to Ceriodaphnia, but less frequently toxic to the minnow larvae. Chlorine has been identified as an important toxicant in upper EFPC. Water samples from six sites in EFPC downstream from the Y-12 Plant boundary were tested eight times with both species during a 2-year period (October, 1986 through October, 1988). These sites were ranked by the number of times they were ''best'' or ''worst'' for each species. Water samples collected for use in the ambient toxicity tests were routinely analyzed for conductivity, pH, alkalinity, hardness, total residual and free chlorine, and temperature

  13. Toward an optimisation technique for dynamically monitored environment

    Science.gov (United States)

    Shurrab, Orabi M.

    2016-10-01

    The data fusion community has introduced multiple procedures of situational assessments; this is to facilitate timely responses to emerging situations. More directly, the process refinement of the Joint Directors of Laboratories (JDL) is a meta-process to assess and improve the data fusion task during real-time operation. In other wording, it is an optimisation technique to verify the overall data fusion performance, and enhance it toward the top goals of the decision-making resources. This paper discusses the theoretical concept of prioritisation. Where the analysts team is required to keep an up to date with the dynamically changing environment, concerning different domains such as air, sea, land, space and cyberspace. Furthermore, it demonstrates an illustration example of how various tracking activities are ranked, simultaneously into a predetermined order. Specifically, it presents a modelling scheme for a case study based scenario, where the real-time system is reporting different classes of prioritised events. Followed by a performance metrics for evaluating the prioritisation process of situational awareness (SWA) domain. The proposed performance metrics has been designed and evaluated using an analytical approach. The modelling scheme represents the situational awareness system outputs mathematically, in the form of a list of activities. Such methods allowed the evaluation process to conduct a rigorous analysis of the prioritisation process, despite any constrained related to a domain-specific configuration. After conducted three levels of assessments over three separates scenario, The Prioritisation Capability Score (PCS) has provided an appropriate scoring scheme for different ranking instances, Indeed, from the data fusion perspectives, the proposed metric has assessed real-time system performance adequately, and it is capable of conducting a verification process, to direct the operator's attention to any issue, concerning the prioritisation capability

  14. Cutaneous respirometry as novel technique to monitor mitochondrial function: A feasibility study in healthy volunteers

    NARCIS (Netherlands)

    F.A. Harms (Floor A.); R.J. Stolker (Robert); E.G. Mik (Egbert)

    2016-01-01

    textabstractBackground: The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of

  15. Data Integration for Health and Stress Monitoring: Biological Metabolites, Wearables Data, and Self-Reporting

    Science.gov (United States)

    Dunn, Jocelyn T.

    Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and

  16. [Amanitine determination as an example of peptide analysis in the biological samples with HPLC-MS technique].

    Science.gov (United States)

    Janus, Tomasz; Jasionowicz, Ewa; Potocka-Banaś, Barbara; Borowiak, Krzysztof

    Routine toxicological analysis is mostly focused on the identification of non-organic and organic, chemically different compounds, but generally with low mass, usually not greater than 500–600 Da. Peptide compounds with atomic mass higher than 900 Da are a specific analytical group. Several dozen of them are highly-toxic substances well known in toxicological practice, for example mushroom toxin and animal venoms. In the paper the authors present an example of alpha-amanitin to explain the analytical problems and different original solutions in identifying peptides in urine samples with the use of the universal LC MS/MS procedure. The analyzed material was urine samples collected from patients with potential mushroom intoxication, routinely diagnosed for amanitin determination. Ultra filtration with centrifuge filter tubes (limited mass cutoff 3 kDa) was used. Filtrate fluid was directly injected on the chromatographic column and analyzed with a mass detector (MS/MS). The separation of peptides as organic, amphoteric compounds from biological material with the use of the SPE technique is well known but requires dedicated, specific columns. The presented paper proved that with the fast and simple ultra filtration technique amanitin can be effectively isolated from urine, and the procedure offers satisfactory sensitivity of detection and eliminates the influence of the biological matrix on analytical results. Another problem which had to be solved was the non-characteristic fragmentation of peptides in the MS/MS procedure providing non-selective chromatograms. It is possible to use higher collision energies in the analytical procedure, which results in more characteristic mass spectres, although it offers lower sensitivity. The ultra filtration technique as a procedure of sample preparation is effective for the isolation of amanitin from the biological matrix. The monitoring of selected mass corresponding to transition with the loss of water molecule offers

  17. Research on monitoring and management information integration technique in waste treatment and management

    International Nuclear Information System (INIS)

    Kong Jinsong; Yu Ren; Mao Wei

    2013-01-01

    The integration of the waste treatment process and the device status monitoring information and management information is a key problem required to be solved in the information integration of the waste treatment and management. The main content of the monitoring and management information integration is discussed in the paper. The data exchange techniques, which are based on the OPC, FTP and data push technology, are applied to the different monitoring system respectively, according to their development platform, to realize the integration of the waste treatment process and device status monitoring information and management information in a waste treatment center. (authors)

  18. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ''Balanced Biological Community'' (BBC) in at least 50% of the lake

  19. L-Lake fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01

    The L Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the re-start of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor effluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake.

  20. Description and implementation of acid/base titrimetric techniques for process monitoring; Descripcion e implementacion de tecnicas titrimetricas acido/base para la monitorizacion de procesos

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino Represa, M.; Guisasola i Canudas, A.; Casa Alvero, C.; Lafuente Sancho, F. J.

    2006-07-01

    The basis of titrimetric techniques is that the proton production (or consumption) rate can be indirectly measured with the amount of base (or acid) dosage necessary to maintain the pH at a certain setpoint value. Titrimetric measurements are very useful for the monitoring of any process that influences pH with simple equipment (an accurate pH control loop). This work describes the theoretical basis of titrimetric measurements and shows three examples of the application of titrimetric techniques for the process monitoring: CO{sub 2} absorption, nitrification and biological organic matter removal. (Author)

  1. Continuous monitoring of back-wall stress corrosion cracking propagation by means of potential drop techniques

    International Nuclear Information System (INIS)

    Sato, Yasumoto; Atsumi, Takeo; Shoji, Tetsuo

    2006-01-01

    In order to investigate the applicability of the potential drop techniques to the continuous monitoring of stress corrosion cracking (SCC) propagation, SCC tests were performed in a sodium thiosulfate solution at room temperature using plate specimens with weldments. The SCC propagation was monitored using the techniques of direct current potential drop (DCPD), alternating current potential drop (ACPD) and modified induced current potential drop (MICPD) on the reverse side that on which the SCC existed and effectiveness of each technique for the continuous monitoring from the reverse side of SCC was compared from the viewpoints of sensitivity to the crack propagation and measurement stability. The MICPD and DCPD techniques permit continuous monitoring of the back-wall SCC propagation, which initiates from a fatigue pre-crack at a depth of about 4 mm, from which it propagates through more than 80% of the specimen thickness. The MICPD technique can decrease the effect of the current flowing in the direction of the crack length by focusing the induced current into the local area of measurement using induction coils, so that the sensitivity of the continuous monitoring of the back wall SCC propagation is higher than that of the DCPD and ACPD techniques. (author)

  2. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    International Nuclear Information System (INIS)

    1965-01-01

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  3. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    Science.gov (United States)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  4. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  5. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  6. Recent advances in electronic nose techniques for monitoring of fermentation process.

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  7. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  8. Determination of trace metals in Cladophora glomerata: C. glomerata as a potential biological monitor

    Energy Technology Data Exchange (ETDEWEB)

    Keeny, W.L.; Breck, W.G.; Vanloon, G.W.; Page, J.A.

    1976-01-01

    A differential pulse anodic stripping voltammetry method has been developed for the determination of Zn, Cd, Pb and Cu in Cladophora glomerata. The method has been applied to samples taken in August from a remote island in Lake Ontario (Main Duck) and a shore site near Kingston, Ontario (Deadman Bay). It is postulated that C. glomerata can act as a biological monitor, concentrating the trace metals present in the aqueous environment with a reasonably constant CF for each element.

  9. Human Biological Monitoring of Diisononyl Phthalate and Diisodecyl Phthalate: A Review

    Directory of Open Access Journals (Sweden)

    Gurusankar Saravanabhavan

    2012-01-01

    Full Text Available High molecular-weight phthalates, such as diisononyl phthalate (DINP, and diisodecyl phthalate (DIDP, are widely used as plasticizers in the manufacturing of polymers and consumer products. Human biological monitoring studies have employed the metabolites of DINP and DIDP as biomarkers to assess human exposure. In this review, we summarize and analyze publicly available scientific data on chemistry, metabolism, and excretion kinetics, of DINP and DIDP, to identify specific and sensitive metabolites. Human biological monitoring data on DINP and DIDP are scrutinised to assess the suitability of these metabolites as biomarkers of exposure. Results from studies carried out in animals and humans indicate that phthalates are metabolised rapidly and do not bioaccmulate. During Phase-I metabolism, ester hydrolysis of DINP and DIDP leads to the formation of hydrolytic monoesters. These primary metabolites undergo further oxidation reactions to produce secondary metabolites. Hence, the levels of secondary metabolites of DINP and DIDP in urine are found to be always higher than the primary metabolites. Results from human biological monitoring studies have shown that the secondary metabolites of DINP and DIDP in urine were detected in almost all tested samples, while the primary metabolites were detected in only about 10% of the samples. This indicates that the secondary metabolites are very sensitive biomarkers of DINP/DIDP exposure while primary metabolites are not. The NHANES data indicate that the median concentrations of MCIOP and MCINP (secondary metabolites of DINP and DIDP, resp. at a population level are about 5.1 μg/L and 2.7 μg/L, respectively. Moreover, the available biological monitoring data suggest that infants/children are exposed to higher levels of phthalates than adults.

  10. Human Biological Monitoring of Diisononyl Phthalate and Diisodecyl Phthalate: A Review

    International Nuclear Information System (INIS)

    Saravanabhavan, G.; Murray, J.

    2012-01-01

    High molecular-weight phthalates, such as diisononyl phthalate (Din), and diisodecyl phthalate (DIDP), are widely used as plasticizers in the manufacturing of polymers and consumer products. Human biological monitoring studies have employed the metabolites of DINP and DIDP as bio markers to assess human exposure. In this review, we summarize and analyze publicly available scientific data on chemistry, metabolism, and excretion kinetics, of DINP and DIDP, to identify specific and sensitive metabolites. Human biological monitoring data on DINP and DIDP are scrutinised to assess the suitability of these metabolites as bio markers of exposure. Results from studies carried out in animals and humans indicate that phthalates are metabolised rapidly and do not bio accumulate. During Phase-I metabolism, ester hydrolysis of DINP and DIDP leads to the formation of hydrolytic monoesters. These primary metabolites undergo further oxidation reactions to produce secondary metabolites. Hence, the levels of secondary metabolites of DINP and DIDP in urine are found to be always higher than the primary metabolites. Results from human biological monitoring studies have shown that the secondary metabolites of DINP and DIDP in urine were detected in almost all tested samples, while the primary metabolites were detected in only about 10% of the samples. This indicates that the secondary metabolites are very sensitive bio markers of DINP/DIDP exposure while primary metabolites are not. The NHANES data indicate that the median concentrations of MCIOP and MCINP (secondary metabolites of DINP and DIDP, resp.) at a population level are about 5.1 μg/L and 2.7 μg/L, respectively. Moreover, the available biological monitoring data suggest that infants/children are exposed to higher levels of phthalates than adults.

  11. Monitoring techniques of the western corn rootworm are the precursor to effective IPM strategies.

    Science.gov (United States)

    Lemic, Darija; Mikac, Katarina M; Kozina, Antonela; Benitez, Hugo A; McLean, Christopher M; Bažok, Renata

    2016-02-01

    The western corn rootworm (WCR) is economically the most important pest of maize in Croatia. To predict WCR adult population abundance and variability, traditional, genetic and morphometric monitoring of populations was conducted over time through each phase of the WCR invasion process in Croatia. Through traditional monitoring it was shown that WCR established their current population and reached economic densities after 14 years persisting in the study area. Regression-tree-based modelling showed that the best predictor of WCR adult abundance was the total amount of rainfall. Genetic monitoring indicated that genetic differentiation increased over time at the intrapopulation level, and morphometric monitoring indicated that wing morphotypes varied according to edaphic landscape changes. Traditional population metric surveys are important in WCR integrated pest management (IPM), as such surveys can be effectively used to predict population abundances. Novel-use monitoring techniques such as genetics and geometric morphometrics can be used to provide valuable information on variation within and among populations. The monitoring techniques presented herein provide sound data to assist in the understanding of both WCR ecology and population genetics and may provide more information than that currently available using traditional techniques (e.g. sticky traps), and as such these additional techniques should be written into IPM for WCR. © 2015 Society of Chemical Industry.

  12. Results of the F/H Effluent Treatment Facility biological monitoring program, July 1987--July 1991

    International Nuclear Information System (INIS)

    Specht, W.L.

    1992-07-01

    As required by the South Carolina Department of Health and Environmental Control (SCDHEC) under NPDES Permit SCO000175, biological monitoring was conducted in Upper Three Runs Creek to determine if discharges from the F/H Effluent Treatment Facility have adversely impacted the biotic community of the receiving stream. Data included in this summary report encompass July 1987 through July 1991. As originally designed, the F/H ETF was not expected to remove all of the mercury from the wastewater; therefore, SCDHEC specified that studies be conducted to determine if mercury was bioaccumulating in aquatic biota. Subsequent to approval of the biological monitoring program, an ion exchange column was added to the F/H ETF specifically to remove mercury, which eliminated mercury from the F/H ETF effluent. The results of the biological monitoring program indicate that at the present rate of discharge, the F/H ETF effluent has not adversely affected the receiving stream with respect to any of the parameters that were measured. The effluent is not toxic at the in-stream waste concentration and there is no evidence of mercury bioaccumulation

  13. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    Science.gov (United States)

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    Science.gov (United States)

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  15. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples.

    Science.gov (United States)

    Feist, Peter; Hummon, Amanda B

    2015-02-05

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed.

  16. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    Directory of Open Access Journals (Sweden)

    Peter Feist

    2015-02-01

    Full Text Available Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed.

  17. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  18. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  19. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January-December 1997

    International Nuclear Information System (INIS)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997

  20. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  1. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  2. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  3. Yucca Mountain Biological Resources Monitoring Program. Progress report, October 1992--December 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  4. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992

  5. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    International Nuclear Information System (INIS)

    Kim, Hyewon; Kim, Yong Hoon; Kang, Seong-Gil; Park, Young-Gyu

    2016-01-01

    Offshore geologic storage of carbon dioxide (CO_2), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO_2 levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO_2 gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO_2 leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO_2 leakage (ocean acidification, hypercapnia) on marine

  6. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu [Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964 (United States); Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com [RPS ASA, 55 Village Square Drive, South Kingstown, RI 02879 (United States); Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr [Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering, 32 1312 Beon-gil, Yuseong-daero, Yuseong-gu, Deaejeon (Korea, Republic of); Park, Young-Gyu, E-mail: ypark@kiost.ac.kr [Ocean Circulation and Climate Change Research Center, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan (Korea, Republic of)

    2016-02-15

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification

  7. 1. Biologic monitoring at Barsebaeck nuclear power plant 1985-1997. 2. Biological monitoring at Swedish nuclear power plants in 1998. Annual report 1998

    International Nuclear Information System (INIS)

    Andersson, Jan; Mo, K.; Thoernqvist, S.

    1999-06-01

    This report gives an account for two studies on the ecological effects of effluents to the aquatic environment from the Swedish nuclear power plants: 1. The results of biological monitoring at the Barsebaeck nuclear power plant during the period 1985-1997 are summarised. Comparisons are made with a previous report from 1969-1983. The fish community was studied by fyke net test fishing in the cooling water effluent area along a gradient out to unaffected sites. The loss of young eels in the cooling water intake was estimated annually. Damage on female grey mullet oocyte development was analysed on samples of cooling water exposed fish. 2. The biological monitoring at the Swedish nuclear power plants during 1998 was with minor exceptions performed according to the established programmes. The monitoring at Forsmark is running in the enclosed Biotest basin at the cooling water outlet and in the surrounding archipelago. Reference data are collected at Finbo, NW Aaland, and in the nearby Graesoe archipelago. In 1998 as in previous years the benthic macro fauna abundance within the Biotest basin showed strong variations. In the beginning of the year abundance and biomass were low, in the autumn though, higher than average. Oskarshamn: The monitoring is performed in the small effluent bay, Hamnefjaerden bay, in the waters surrounding the cooling water plume and in a reference area, Kvaedoe-fjaerden, 100 km north of the power plant. Perch and roach catches have been high in the Hamnefjaerden bay since the late 1980's. In 1998 catches of perch were on a higher level than in 1997, both in spring and in summer. The changes for roach were small. A moderate decrease in eel catches took place in 1997 and 1998, indicating a reduced effect of stockings in the late 1980's. Ringhals: The monitoring is performed in the area close to the cooling water outlet, which is located at an open coast, and in a reference area. An attraction of yellow eel to the effluent area has been

  8. The integration of novel diagnostics techniques for multi-scale monitoring of large civil infrastructures

    Directory of Open Access Journals (Sweden)

    F. Soldovieri

    2008-11-01

    Full Text Available In the recent years, structural monitoring of large infrastructures (buildings, dams, bridges or more generally man-made structures has raised an increased attention due to the growing interest about safety and security issues and risk assessment through early detection. In this framework, aim of the paper is to introduce a new integrated approach which combines two sensing techniques acting on different spatial and temporal scales. The first one is a distributed optic fiber sensor based on the Brillouin scattering phenomenon, which allows a spatially and temporally continuous monitoring of the structure with a "low" spatial resolution (meter. The second technique is based on the use of Ground Penetrating Radar (GPR, which can provide detailed images of the inner status of the structure (with a spatial resolution less then tens centimetres, but does not allow a temporal continuous monitoring. The paper describes the features of these two techniques and provides experimental results concerning preliminary test cases.

  9. Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques

    Science.gov (United States)

    Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.

    2012-04-01

    Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.

  10. Cell biological and biomechanical evaluation of two different fixation techniques for rotator cuff repair.

    Science.gov (United States)

    Klinger, H-M; Koelling, S; Baums, M H; Kahl, E; Steckel, H; Smith, M M; Schultz, W; Miosge, N

    2009-06-01

    Our objective was to evaluate the cell biology and biomechanical aspects of the healing process after two different techniques in open rotator cuff surgery - double-loaded bio-absorbable suture anchors combined with so-called arthroscopic Mason-Allen stitches (AAMA) and a trans-osseous suture technique combined with traditional modified Mason-Allen stitches (SMMA). Thirty-six mature sheep were randomized into two repair groups. After 6, 12, or 26 weeks, evaluation of the reinsertion site of the infraspinatus tendon was performed. The mechanical load-to-failure and stiffness results did not indicate a significant difference between the two groups. After 26 weeks, fibrocartilage was sparse in the AAMA group, whereas the SMMA group showed the most pronounced amount of fibrocartilage. We found no ultrastructural differences in collagen fiber organization between the two groups. The relative expression of collagen type II mRNA in the normal group was 1.11. For the AAMA group, 6 weeks after surgery, the relative expression was 55.47, whereas for the SMMA group it was 1.90. This in vivo study showed that the AAMA group exhibited a tendon-to-bone healing process more favorable in its cell biology than that of the traditional SMMA technique. Therefore, the AAMA technique might also be more appropriate for arthroscopic repair.

  11. Development and evaluation of a technique for in vivo monitoring of 60Co in the lungs

    International Nuclear Information System (INIS)

    Mello, J.Q. de; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M.

    2015-01-01

    60 Co is a fission product of 235 U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60 Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60 Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes. (author)

  12. Development and evaluation of a technique for in vivo monitoring of 60Co in human liver

    Science.gov (United States)

    Gomes, GH; Silva, MC; Mello, JQ; Dantas, ALA; Dantas, BM

    2018-03-01

    60Co is an artificial radioactive metal produced by activation of iron with neutrons. It decays by beta particles and gamma radiation and represents a risk of internal exposure of workers involved in the maintenance of nuclear power reactors. Intakes can be quantified through in vivo monitoring. This work describes the development of a technique for the quantification of 60Co in human liver. The sensitivity of the method is evaluated based on the minimum detectable effective doses. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes.

  13. Comparison Of Several Metrology Techniques For In-line Process Monitoring Of Porous SiOCH

    International Nuclear Information System (INIS)

    Fossati, D.; Imbert, G.; Beitia, C.; Yu, L.; Plantier, L.; Volpi, F.; Royer, J.-C.

    2007-01-01

    As porous SiOCH is a widely used inter-metal dielectric for 65 nm nodes and below, the control of its elaboration process by in-line monitoring is necessary to guarantee successful integration of the material. In this paper, the sensitivities of several non-destructive metrology techniques towards the film elaboration process drifts are investigated. It appears that the two steps of the process should be monitored separately and that corona charge method is the most sensitive technique of the review for this application

  14. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhao

    2016-01-01

    Full Text Available In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.

  15. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    Directory of Open Access Journals (Sweden)

    Grace A. Maldarelli

    2009-12-01

    Full Text Available Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  16. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    2000-10-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and

  17. Review of techniques for on-line monitoring and inspection of laser welding

    International Nuclear Information System (INIS)

    Shao, J; Yan, Y

    2005-01-01

    Laser welding has been applied to various industries, in particular, automotive, aerospace and microelectronics. However, traditional off-line testing of the welds is costly and inefficient. Therefore, on-line inspection systems with low cost have being developed to increase productivity and maintain high welding quality. This paper presents the applications of acoustic, optical, visual, thermal and ultrasonic techniques and latest development of laser welding monitoring. The advantages and limitations of these techniques are also discussed

  18. Y-12 National Security Complex Biological Monitoring and Abatement Program 2007 Calendar Yeare Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.J.; Greeley, M. S. Jr.; Morris, G. W.; Roy, W. K.; Ryan, M. G.; Smith, J. G.; Southworth, G. R.

    2008-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located

  19. Biological monitoring to determine worker dose in a butadiene processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, W.E.; Hayes, R.B. [National Cancer Inst., Bethesda, MD (United States)

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to better assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.

  20. Y-12 National Security Complex Biological Monitoring And Abatement Program 2008 Calendar Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M. J.; Greeley Jr., M. S.; Mathews, T. J.; Morris, G. W.; Roy, W. K.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.

    2009-07-01

    The National Pollutant Discharge Elimination System (NPDES) permit issued for the Oak Ridge Y-12 National Security Complex (Y-12 Complex) which became effective May 1, 2006, continued a requirement for a Biological Monitoring and Abatement Program (BMAP). The BMAP was originally developed in 1985 to demonstrate that the effluent limitations established for the Y-12 Complex protected the classified uses of the receiving stream (East Fork Poplar Creek: EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). The objectives of the current BMAP are similar, specifically to assess stream ecological conditions relative to regulatory limits and criteria, to assess ecological impacts as well as recovery in response to Y-12 operations, and to investigate the causes of continuing impacts. The BMAP consists of three tasks that reflect complementary approaches to evaluating the effects of the Y-12 Complex discharges on the biotic integrity of EFPC. These tasks include: (1) bioaccumulation monitoring, (2) benthic macroinvertebrate community monitoring, and (3) fish community monitoring. As required by the NPDES permit, the BMAP benthic macroinvertebrate community monitoring task includes studies to annually evaluate the receiving stream's biological integrity in comparison to TN Water Quality Criteria. BMAP monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) appropriate habitat distribution, and (5) access. The primary sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18.2 and 19), located off

  1. Application of X-ray emission techniques for monitoring environmental pollution

    International Nuclear Information System (INIS)

    Bernasconi, G.; Danesi, P.R.; Dargie, M.; Haselberger, N.; Markowicz, A.; Tajani, A.

    1997-01-01

    X-ray emission techniques are versatile and powerful methods used for multielement non-destructive analysis. They include X-ray fluorescence (XRF), particle induced X-ray emission (PIXE), scanning electron microscopy combined with X-ray spectrometry and electron probe microanalysis (EPMA). Since many years the IAEA has utilised and promoted these techniques for the analysis of environmental, biological and geological samples. In this paper recent progress at our laboratory in selected aspects related to the application of X-ray emission techniques is briefly overviewed. (authors)

  2. Role of nuclear analytical probe techniques in biological trace element research

    International Nuclear Information System (INIS)

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab

  3. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  4. Clarification of the Use of Biological Data and Information in the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance

    Science.gov (United States)

    The memorandum modifies the 2002 Integrated Water Quality Monitoring and Assessment Report Guidance to provide clarity and promote consistency in the manner in which states use biological data and information in developing their 2002 submissions.

  5. Monitoring by Control Technique - Compliant (Low/No VOC/HAP) Inks and Coatings

    Science.gov (United States)

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Compliant (Low/No VOC/HAP) Inks and Coatings control techniques used to reduce pollutant emissions.

  6. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  7. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  8. Novel Damage Detection Techniques for Structural Health Monitoring Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-01-01

    Full Text Available This study presents a technique for detecting fatigue cracks based on a hybrid sensor monitoring system consisting of a combination of intelligent coating monitoring (ICM and piezoelectric transducer (PZT sensors. An experimental procedure using this hybrid sensor system was designed to monitor the cracks generated by fatigue testing in plate structures. A probability of detection (POD model that quantifies the reliability of damage detection for a specific sensor or the nondestructive testing (NDT method was used to evaluate the weight factor for the ICM and PZT sensors. To estimate the uncertainty of model parameters in this study, the Bayesian method was employed. Realistic data from fatigue testing was used to validate the overall method, and the results show that the novel damage detection technique using a hybrid sensor can quantify fatigue cracks more accurately than results obtained by conventional sensor methods.

  9. Environmental and biological monitoring of benzene during self-service automobile refueling.

    OpenAIRE

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (...

  10. A simple nondestructive technique for monitoring the bond gas in sealed fast reactor nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B B; Mehrotra, R S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    A simple nondestructive testing technique has been developed to identify bond gas inside a welded fuel pin. The technique is based on the accurate surface temperature measurement of fuel pins heated in a constant temperature water bath. This technique can be applied in Fast Breeder Test Reactor (FBTR) fuel pin production line due to simplicity of the set up, simple operation and quick response time. An attempt was made to develop a non destructive test method for monitoring the bond gas composition. Preliminary development work carried out in this connection, the test method adopted and the test results are presented. 1 ref., 5 figs., 1 tab.

  11. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, Marc

    2016-12-01

    An in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface, and to reduce its secondary emission yield. SNS SRF cavities have six accelerating cells and the plasma typically ignites in the cell where the electric field is the highest. This article details the technique to ignite and monitor the plasma in each cell of the SNS cavities.

  12. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  13. Biology, diversity and strategies for the monitoring and control of triatomines--Chagas disease vectors.

    Science.gov (United States)

    Costa, Jane; Lorenzo, Marcelo

    2009-07-01

    Despite the relevant achievements in the control of the main Chagas disease vectors Triatoma infestans and Rhodnius prolixus, several factors still promote the risk of infection. The disease is a real threat to the poor rural regions of several countries in Latin America. The current situation in Brazil requires renewed attention due to its high diversity of triatomine species and to the rapid and drastic environmental changes that are occurring. Using the biology, behaviour and diversity of triatomines as a basis for new strategies for monitoring and controlling the vectorial transmission are discussed here. The importance of ongoing long-term monitoring activities for house infestations by T. infestans, Triatoma brasiliensis, Panstrongylus megistus, Triatoma rubrovaria and R. prolixus is also stressed, as well as understanding the invasion by sylvatic species. Moreover, the insecticide resistance is analysed. Strong efforts to sustain and improve surveillance procedures are crucial, especially when the vectorial transmission is considered interrupted in many endemic areas.

  14. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    Science.gov (United States)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  15. Identification of a biomarker for propetamphos and development of a biological monitoring assay.

    Science.gov (United States)

    K Jones G Wang S J Garfitt J Cocker

    1999-01-01

    This paper describes the identification of a human metabolite of propetamphos ((E-O-2-isopropylcarbonyl-1-methylvinyl-O-methylethylphosphoramidothioate), formed by the hydrolytic cleavage of the enol-vinyl-phosphate bond, and the development of an analytical method suitable for biological monitoring of propetamphos exposure. The metabolite has been detected in the urine of exposed workers but not in that of control subjects. The analytical method involves azeotropic distillation of the urine with acetonitrile, followed by derivatization with pentafluorobenzyl bromide and analysis using gas chromatography with flame photometric detection.

  16. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. The use of a single technique for the separation and determination of actinides in biological materials

    International Nuclear Information System (INIS)

    Camera, V.; Giubileo.

    1975-01-01

    For the radiotoxicological survey of workers exposed to different types of alpha-emitting contaminants, a procedure was developed which permits the estimate of Th, Pa, U, Np, Pu, Am and Cm in biological samples with a single technique. The radionuclides are extracted on a column by tri-n-octylphosphine oxide and separated by elution at different pH values. Afterwards, the quantitative determinations are done by physical methods (alpha counting or spectrometry). In the case of an accident it is possible to use a simplification of the procedure (extraction in a beaker) for checks. A procedure for the rapid determination of actinides in faeces and in nasal secretions is described

  18. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  19. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques

    Directory of Open Access Journals (Sweden)

    Takashige Yamada

    2018-05-01

    Full Text Available An increasing number of patients require precise intraoperative hemodynamic monitoring due to aging and comorbidities. To prevent undesirable outcomes from intraoperative hypotension or hypoperfusion, appropriate threshold settings are required. These setting can vary widely from patient to patient. Goal-directed therapy techniques allow for flow monitoring as the standard for perioperative fluid management. Based on the concept of personalized medicine, individual assessment and treatment are more advantageous than conventional or uniform interventions. The recent development of minimally and noninvasive monitoring devices make it possible to apply detailed control, tracking, and observation of broad patient populations, all while reducing adverse complications. In this manuscript, we review the monitoring features of each device, together with possible advantages and disadvantages of their use in optimizing patient hemodynamic management.

  20. Application of remote debugging techniques in user-centric job monitoring

    International Nuclear Information System (INIS)

    Dos Santos, T; Mättig, P; Harenberg, T; Volkmer, F; Beermann, T; Kalinin, S; Ahrens, R; Wulff, N

    2012-01-01

    With the Job Execution Monitor, a user-centric job monitoring software developed at the University of Wuppertal and integrated into the job brokerage systems of the WLCG, job progress and grid worker node health can be supervised in real time. Imminent error conditions can thus be detected early by the submitter and countermeasures can be taken. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job misbehaviour. To remove the last 'blind spot' from this monitoring, a remote debugging technique based on the GNU C compiler suite was developed and integrated into the software; its design concept and architecture is described in this paper and its application discussed.

  1. Performance Monitoring Of A Computer Numerically Controlled (CNC) Lathe Using Pattern Recognition Techniques

    Science.gov (United States)

    Daneshmend, L. K.; Pak, H. A.

    1984-02-01

    On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.

  2. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  3. Novel all-optical dispersion monitoring technique for ultra-high-speed WDM networks

    Energy Technology Data Exchange (ETDEWEB)

    Cui Sheng; Li Li; Liu Deming, E-mail: cuisheng@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, No.1037, Luoyu Road, Wuhan, Hubei, 430074 (China)

    2011-02-01

    This paper represents a novel all-optical dispersion monitoring technique based on fiber parametric amplifiers (FOPAs). The monitoring method is truly bit-rate transparent because it is enabled by the exponential power transfer function (PTF) provided by the FOPA gain. The slope of the PTF is increased from 2 to 3 by choosing appropriate phase-matching conditions. Due to the steeper PTF the monitoring sensitivity is greatly improved compared to the other PTF-based methods proposed before. The PTF obtained by numerical simulations agrees very well with the experimental results. Numerical simulations are then used to demonstrate that our method can be used to monitor signals in various modulation formats.

  4. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  5. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, M. R.; Lee, J. H.; Kim, J. T.; Kim, J. S.; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Institute (INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degeneration and service aging so that maintenance/replacement could be preformed prior to loss safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation check valve failure and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  6. Contrast monitoring techniques in CT pulmonary angiography: An important and underappreciated contributor to breast dose

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.P., E-mail: dpmmitchell@gmail.com; Rowan, M., E-mail: mrowan@mater.ie; Loughman, E., E-mail: eloughman@mater.ie; Ridge, C.A., E-mail: cridge@mater.ie; MacMahon, P.J., E-mail: pmacmahon@mater.ie

    2017-01-15

    Objective: The aims of our study were to evaluate the contribution of contrast-monitoring techniques to breast dose in pregnant and non-pregnant women, and to investigate the effect of a reduced peak kilovoltage (kV) monitoring scan protocol on breast dose and Computed Tomography Pulmonary Angiography (CTPA) diagnostic quality. Materials and methods: Single center retrospective study of 221 female patients undergoing a reduced kV 80 kV contrast-monitoring CTPA protocol compared to 281 patients using the conventional 120 kV contrast-monitoring protocol (Siemens Somatom Definition AS + ). 99 pregnant patients analyzed separately. ImPACT dosimetry software was used to calculate dose. Group subsets were evaluated to assess CTPA diagnostic quality. Results: The contrast-monitoring component of a CTPA study constituted 27% of the overall breast dose when using a standard 120 kV protocol compared to only 7% of the overall breast dose in the 80 kV study group. The dose to the breast from the contrast-monitoring component alone was reduced by 79% in the non-pregnant patients (0.36mGy ± 0.37 versus 1.7mGy ± 1.02; p < 0.001), and by 88% in the pregnant population (0.25 mGy ± 0.67 versus 2.24mGy ± 1.61; p < 0.001). There was no statistical difference in CTPA diagnostic quality or timing. Conclusion: Despite a short scan length and relatively small DLP, contrast-monitoring techniques (test-bolus or bolus-tracked) set at 120 kV can account for 27% of the overall breast dose accrued from a CTPA study. By decreasing the kilovoltage of the contrast-monitoring component, a significant reduction in breast dose for pregnant and non-pregnant female patients can be achieved without affecting CTPA quality or timing.

  7. Assessment of ground-based monitoring techniques applied to landslide investigations

    Science.gov (United States)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  8. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  9. The practicalities and pitfalls of establishing a policy-relevant and cost-effective soil biological monitoring scheme

    NARCIS (Netherlands)

    Faber, J.H.; Creamer, R.E.; Mulder, C.; Römbke, J.; Rutgers, M.; Sousa, J.P.; Stone, D.; Griffiths, B.S.

    2013-01-01

    A large number of biological indicators have been proposed over the years for assessing soil quality. Although many of those have been applied in monitoring schemes across Europe, no consensus exists on the extent to which these indicators might perform best and how monitoring schemes can be further

  10. Application of data fusion techniques and technologies for wearable health monitoring.

    Science.gov (United States)

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market. Copyright © 2017. Published by Elsevier Ltd.

  11. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  12. Track Detection Technique Using CR-39 for Determining Depleted Uranium in Biological Specimens

    International Nuclear Information System (INIS)

    Murbat, S.M.

    2013-01-01

    Track detecting technique using CR-39 track detector has been implemented for determining depleted uranium concentration in biological specimens (tissues, bones, and blood) of patients infected with cancer diseases. Results were compared with specimens of patients infected with conventional diseases (noncancerous). Specimens were collected from middle and south of Iraq have been contaminated with depleted uranium in the Gulf war in 1991. Results show that this technique is efficient for determining depleted uranium concentration in biological specimens. It was found that all studies samples determine for patients infected with cancer diseases contain a high concentration of depleted uranium (more than the international standard) comparing with noncancerous diseases. Moreover, it was found that persons infected with Leukemia show more sensitive to uranium concentrations to induce the diseases (66-202 ppb), while (116- 1910 ppb) concentrations were needed for inducing cancer diseases in organs and tissues. Result confirmed the correlation between cancerous diseases and the munitions made of depleted uranium used in the Gulf war in 1991 leads to contaminate the Iraqi environment and causes a high risk against people in Iraq.

  13. Proceedings of the FNCA workshop on plant mutation breeding 2001. Molecular biological techniques

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu

    2002-02-01

    The FNCA (Forum for Nuclear Cooperation in Asia) Workshop on Plant Mutation Breeding was held on 20-24 August 2001 in Bangkok, Thailand. The Workshop was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Kasetsart University (KU), the Office of Atomic Energy for Peace (OAEP) and Department of Agriculture (DOA) acted as local host and the organizer with the cooperation of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). The Workshop was attended by two participants, a Project Leader and an expert on molecular biological techniques for plant mutation breeding, from each of the participating countries, i.e. China, Indonesia, Malaysia, the Philippines and Vietnam. One participant from the Republic of Korea, nine participants from Japan and thirteen participants from Thailand including three invited speakers attended the Workshop. Eleven papers including three invited papers on the current status of molecular biological techniques for plant mutation breeding were presented. Discussions were focused to further regional cooperation, to review and discuss results of past activities. The Medium-Term Plan of the project on the application of radiation and radioisotopes for agriculture in participating countries of Regional Nuclear Cooperation Activities (RNCA) was formulated and agreed. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  14. Biological and Physiochemical Techniques for the Removal of Zinc from Drinking Water: A Review

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2015-12-01

    Full Text Available Presence of Zinc (II in drinking water beyond permissible limits is considered unsafe for human health. Many different anthropogenic activities including mining, burning of petroleum, industrialization, and urbanization cause a release of considerably higher amounts of zinc into the waterbodies. A permissible limit of 5 mg/L is set by various environmental and pollution control authorities beyond which water may cause respiratory, liver, gonads, and brain disorders. Due to these health hazards, it is important to remove exceeding amounts of zinc from drinking water. Zinc enters drinking water from various sources such as corrosive pipelines, release of industrial effluents, and metal leaching. Different biological and physiochemical techniques are used to remove zinc involving chemical precipitation, ion exchange, adsorption, biosorbents, distillation, ozonation, and membrane filtration technology. Among these technologies, physical process of adsorption using low cost adsorbents is not only economical but abundant, efficient, and easily available. In present review different physiochemical and biological techniques are discussed for the removal of Zinc from drinking water.

  15. Biological variation of the natriuretic peptides and their role in monitoring patients with heart failure.

    Science.gov (United States)

    Wu, Alan H B; Smith, Andrew

    2004-03-15

    B-type natriuretic peptide (BNP) and the inactive metabolite NT-proBNP are proven tests for diagnosis and staging of severity for patients with heart failure. However, the utility of these biomarkers for monitoring the success of drug therapy remains to be determined. Results of longitudinal studies on serial blood testing must be linked to overall patient morbidity and mortality outcomes. We previously determined the 8-week biological variability (BV) of BNP and NT-proBNP assays in healthy subjects and the 1-day BV for BNP alone in patients with compensated and stable heart failure. From these studies, the percent statistical change in serial samples of approximately 100% difference was estimated (95% confidence). We applied the biological variability concepts to the serial results of BNP and NT-proBNP collected from patients with heart failure and compared the performance of these two markers. While there are minor differences in the results between the assays from one time period to another, the overall interpretation of results are essentially identical. Moreover, the majority of individual serial time points are not significantly different from the previous value. Frequent testing (e.g. daily) for BNP and NT-proBNP to monitor therapy for patients with CHF is not indicated, as overall changes require several days to become evident.

  16. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    International Nuclear Information System (INIS)

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems

  17. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments.

    Science.gov (United States)

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-06-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological particles present in the air of urban environments. [Int Microbiol 19(2):69-80(2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  19. On-line Monitoring and Calibration Techniques in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Years of research, testing and experience in the field of sensor diagnostics have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. Among these technologies are On-Line Monitoring (OLM) and On-Line Calibration of critical process monitoring sensors such as resistance temperature detectors (RTD), thermocouples, and pressure transmitters to name a few. The remote access and verification of these sensors have been shown to limit the exposure of maintenance personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and performance of these sensors. In addition to sensors, technologies exist in determining not only the health of instrumentation and control (I and C) cabling that carries the signals from these sensors, but also these same cable testing techniques can be used in the remote evaluation of many end devices used in safety related operations as well. Given these advances in sensor system monitoring techniques it would seem to follow that nuclear utilities from around the world would be applying these tried and true techniques to optimize up time and to provide additional confidence in the output of processing sensors. However, although several of the world's regulatory bodies have approved of the concept of these techniques, few utilities have undertaken to fully embrace on-line monitoring and on-line calibration of nuclear process sensors. In the United States efforts are now underway, with representatives of the U.S. nuclear industry and nuclear power plant vendors to obtain generic NRC licensing for the use of OLM in nuclear power plants. If approved, generic licensing will help pave the way toward greater implementation of OLM and its related calibration techniques. (author)

  20. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  1. Exploration of the speleotherapeutic potential through the cellular and molecular biology techniques

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-02-01

    Full Text Available Objective: Exploring the speleotherapy effects on morphology and physiology of dermal and pulmonary fibroblast obtained from Wistar rats tissue in normal conditions and after induction of experimental “astma” awareness with ovalbumin. Materials and methods: Before initiation of dermal and pulmonary fibroblast cultures, 60 of Wistar rats 75-100 g were divided into two groups: control and sensitized with ovalalbumin. 10 animals of each group were sent to Cacica and Dej salt mines and maintained in a speleotherapy regime. Another 10 animals in each group were monitored separately in INRMFB Biobase . Dermal and pulmonary fibroblast cultures were initiated by enzymatic techniques from appropriate tissue taken of each group Wistar rats. Morphological monitoring was done by phase contast microscopy; biochemical and molecular changes of cultures obtained from animals treated speleothropic compared to control, was experimental establised by electrophoresis and Western Blotting techniques.Results: Experimental data revealed the expression of several proteins after the speleotherapeutic treatment. These data were analysed compared with control, using a specific software.Conclusions: Speleotherapeutic treatment of Wistar rats caused significant differences in morphology and protein expression of dermal and pulmonary fibroblatst grown in the laboratory. These differences support the protective effects of speleotherapy compared with data obtained from animals untreated and sensitized with ovalbumin, having induced experimental asthma status.

  2. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Science.gov (United States)

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Free Flap Reconstruction Monitoring Techniques and Frequency in the Era of Restricted Resident Work Hours.

    Science.gov (United States)

    Patel, Urjeet A; Hernandez, David; Shnayder, Yelizaveta; Wax, Mark K; Hanasono, Matthew M; Hornig, Joshua; Ghanem, Tamer A; Old, Matthew; Jackson, Ryan S; Ledgerwood, Levi G; Pipkorn, Patrik; Lin, Lawrence; Ong, Adrian; Greene, Joshua B; Bekeny, James; Yiu, Yin; Noureldine, Salem; Li, David X; Fontanarosa, Joel; Greenbaum, Evan; Richmon, Jeremy D

    2017-08-01

    Free flap reconstruction of the head and neck is routinely performed with success rates around 94% to 99% at most institutions. Despite experience and meticulous technique, there is a small but recognized risk of partial or total flap loss in the postoperative setting. Historically, most microvascular surgeons involve resident house staff in flap monitoring protocols, and programs relied heavily on in-house resident physicians to assure timely intervention for compromised flaps. In 2003, the Accreditation Council for Graduate Medical Education mandated the reduction in the hours a resident could work within a given week. At many institutions this new era of restricted resident duty hours reshaped the protocols used for flap monitoring to adapt to a system with reduced resident labor. To characterize various techniques and frequencies of free flap monitoring by nurses and resident physicians; and to determine if adapted resident monitoring frequency is associated with flap compromise and outcome. This multi-institutional retrospective review included patients undergoing free flap reconstruction to the head and/or neck between January 2005 and January 2015. Consecutive patients were included from different academic institutions or tertiary referral centers to reflect evolving practices. Technique, frequency, and personnel for flap monitoring; flap complications; and flap success. Overall, 1085 patients (343 women [32%] and 742 men [78%]) from 9 institutions were included. Most patients were placed in the intensive care unit postoperatively (n = 790 [73%]), while the remaining were placed in intermediate care (n = 201 [19%]) or in the surgical ward (n = 94 [7%]). Nurses monitored flaps every hour (q1h) for all patients. Frequency of resident monitoring varied, with 635 patients monitored every 4 hours (q4h), 146 monitored every 8 hours (q8h), and 304 monitored every 12 hours (q12h). Monitoring techniques included physical examination (n = 949 [87

  4. Development of in vitro techniques for individual monitoring of {sup 32}P; Desenvolvimento de tecnicas in vitro para monitoracao individual de {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.P.F.; Sousa, W.O.; Dantas, A.L.A.; Dantas, B.M., E-mail: adantas@ird.gov.br, E-mail: wander@ird.gov.br, E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Dosimetria

    2016-07-01

    The {sup 32}P is used in the form of liquid unsealed sources in medical facilities, research and teaching, representing a risk of internal exposure in routine activities and in case of accidental incorporation. The evaluation of {sup 32}P incorporation can be accomplished through in vitro bioanalysis of urine. This paper aims to provide a methodology to analyze {sup 32}P in biological samples, applicable to internal individual monitoring using liquid scintillation technique. The minimum detectable activity of the system was determined and the sensitivity of the technique was evaluated, based on the detected minimum effective dose. (author)

  5. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Science.gov (United States)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  6. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    International Nuclear Information System (INIS)

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  7. Monitoring techniques for the impact assessment during nuclear and radiological emergencies: current status and the challenges

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.

    2003-01-01

    Preparedness and response capability for Nuclear and Radiological emergencies, existing world over, are mainly based on the requirement of responding to radiation emergency caused by nuclear or radiological accidents. Cosmos satellite accident, plutonium contamination at Polaris, nuclear accidents like Kystium, Windscale, TMI and Chernobyl, radiological accidents at Goiania etc have demonstrated the requirement of improved radiation monitoring techniques. For quick decision making, state of the art monitoring methodology which can support quantitative and qualitative impact assessment is essential. Evaluation of radiological mapping of the area suspected to be contaminated needs ground based as well as aerial based monitoring systems to predict the level of radioactive contamination on ground. This will help in delineating the area and deciding the required countermeasures, based on the quantity and type of radionuclides responsible for it. The response can be successful with the effective use of i) Early Warning System ii) Mobile Monitoring System and iii) Aerial Gamma Spectrometric System. Selection of the monitoring methodology and survey parameters and assessment of situation using available resources etc. are to be optimized depending on the accident scenario. Recently, many countries and agencies like IAEA have expressed the requirement for responding to other types of nuclear/radiological emergencies i.e, man made radiation emergency situations aimed at harming public at large that can also lead to environmental contamination and significant exposure to public. Reports of lost / misplaced / stolen radioactive sources from many countries are alarming as safety and security of these radioactive sources are under challenge. The monitoring methodology has to take into account of the increase in such demands and more periodic monitoring in suspected locations is to be carried out. Detection of orphan sources possible amidst large heap of metallic scraps may pose

  8. Utilisation of acoustic emission technique to monitor lubrication condition in a low speed bearing

    International Nuclear Information System (INIS)

    Nordin Jamaludin; Mohd Jailani Mohd Nor

    2003-01-01

    Monitoring of lubrication condition in rolling element bearings through the use of vibration analysis is an established technique. However, this success has not mirrored at low rotational speeds. At low speeds the energy generated from the poor lubricated bearing lubrication might not show as an obvious change in signature and thus become undetectable using conventional vibration measuring equipment. This paper presents an investigation into the applicability of acoustic emission technique and analysis for detecting poorly lubricated bearing rotating at a speed of 1.12 rpm. Investigations were centered on a test-rig designed to simulate the real bearing used in the field. The variation of lubricant amount in the low-speed bearing was successfully monitored using a new developed method known as pulse injection technique (PIT). The PIT technique was based on acoustic emission method. The technique involved transmitting a Dirac pulse to the test bearing via a transmitting acoustic emission sensor while the bearing was in operation. Analysing the captured acoustic emission signatures using established statistical method could differentiate between properly and poorly lubricated bearing. (Author)

  9. Environmental Monitoring Techniques and Equipment related to the installation and operation of Marine Energy Conversion Systems

    International Nuclear Information System (INIS)

    Scanu, Sergio; Carli, Filippo Maria; Piermattei, Viviana; Bonamano, Simone; Paladini de Mendoza, Francesco; Marcelli, Marco; Peviani, Maximo Aurelio; Dampney, Keith; Norris, Jennifer

    2015-01-01

    Results of activities under project Marine Renewables Infrastructure Network for Emerging Energy Technologies (MaRINET) are reported, which led to DEMTE, a database, created on the basis of standardized monitoring of the marine environment during installation, operation and decommissioning of Marine Energy Conversion Systems. Obtained with the consortium partners’ available techniques and equipment, the database shows that such instruments cover all identified marine environmental compartments, despite the lack of underwater vehicles and the reduced skills in using satellite technologies. These weaknesses could be overcome by an accurate planning of equipment, techniques and knowledge sharing. The approach here presented also leads to an effective analysis even in non-marine contexts

  10. Using acoustic emission technique to monitor fractures on the analogous pressure pipes

    International Nuclear Information System (INIS)

    Zhang Lichen

    1989-01-01

    By using the acoustic emission technique to monitor the fractures on analogous pressure pipes of the primary circuit which has had cracks and loading with pressure was investigated. The dynamical process, from cracking to fracturing, was recorded by the acoustic emission technique. Comparing with the conventional method, this method gives more informations, such as pre-cracking, cracking growing, fast fracturing and the pressure values at different phases. During testing time a microcomputer was used for real-time data processing and locating the fracturing position. These data are useful for the mechanical analysis of the reactor components

  11. Development of tools for integrated monitoring and assessment of hazardous substances and their biological effects in the Baltic Sea.

    Science.gov (United States)

    Lehtonen, Kari K; Sundelin, Brita; Lang, Thomas; Strand, Jakob

    2014-02-01

    The need to develop biological effects monitoring to facilitate a reliable assessment of hazardous substances has been emphasized in the Baltic Sea Action Plan of the Helsinki Commission. An integrated chemical-biological approach is vitally important for the understanding and proper assessment of anthropogenic pressures and their effects on the Baltic Sea. Such an approach is also necessary for prudent management aiming at safeguarding the sustainable use of ecosystem goods and Services. The BEAST project (Biological Effects of Anthropogenic Chemical Stress: Tools for the Assessment of Ecosystem Health) set out to address this topic within the BONUS Programme. BEAST generated a large amount of quality-assured data on several biological effects parameters (biomarkers) in various marine species in different sub-regions of the Baltic Sea. New indicators (biological response measurement methods) and management tools (integrated indices) with regard to the integrated monitoring approach were suggested.

  12. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  13. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Vishal [Department of Radiology, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Marcu, Laura [Department of Bioengineering, University of California at Davis, Davis, CA 95616 (United States); Karunasiri, Gamani [Department of Physics, Naval Postgraduate School, Monterey, California 93943 (United States)], E-mail: Vsaxena@usc.edu

    2008-11-07

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 {mu}m. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  14. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    Directory of Open Access Journals (Sweden)

    Dengjiang Wang

    2016-11-01

    Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.

  15. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    International Nuclear Information System (INIS)

    Saxena, Vishal; Marcu, Laura; Karunasiri, Gamani

    2008-01-01

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 μm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  16. Tools and techniques for ageing predictions in nuclear reactors through condition monitoring

    International Nuclear Information System (INIS)

    Verma, R.M.P.

    1994-01-01

    To operate the nuclear reactors beyond their design predicted life is gaining importance because of huge replacement and decommissioning costs. But experience shows that nuclear plant safety and reliability may decline in the later years of plant life due to ageing degradation. Ageing of nuclear plant components, structures and systems, if unmitigated reduces their safety margins provided in the design and thus increases risks to public health and safety. These safety margins must be monitored throughout plant service life including any extended life. Condition monitoring of nuclear reactor components/equipment and systems can be done to study the effect of ageing, status of safety margins and effect of corrective and mitigating actions taken. The tools and techniques of condition monitoring are also important in failure trending, predictive maintenance, evaluation of scheduled maintenance, in mitigation of ageing, life extension and reliability studies. (author). 1 fig., 1 annexure

  17. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants

    International Nuclear Information System (INIS)

    Sohn, Wook; Chi, Jun Hwa; Kang, Duck Won; Tae, Jeong Woo

    2006-01-01

    Historically, corrosion and mechanical damage have made steam generator tubes in PWR plants see various types of degradation from both the primary and secondary sides of the tubes. Since the tube degradation can lead to through-wall failure, the plant personnel should make efforts to prevent the failure. One of such preventive efforts is to monitor primary-to-secondary leakage (PSL) that usually precedes the tube rupture. Thus the objective of PSL monitoring is to make operators to determine when to shutdown the plant in order to minimize the likelihood of propagation of leaks to tube rupture under normal and faulted conditions This paper addresses briefly the status of techniques for PSL monitoring used in PWR plants

  18. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2014-01-01

    Full Text Available In this paper, a portable PZT interface for tension force monitoring in the cable-anchorage subsystem is developed. Firstly, the theoretical background of the impedance-based method is presented. A few damage evaluation approaches are outlined to quantify the variation of impedance signatures. Secondly, a portable PZT interface is designed to monitor impedance signatures from the cable-anchorage subsystem. One degree-of-freedom analytical model of the PZT interface is established to explain how to represent the loss of cable force from the change in the electromechanical impedance of the PZT interface as well as reducing the sensitive frequency band by implementing the interface device. Finally, the applicability of the proposed PZT-interface technique is experimentally evaluated for cable force-loss monitoring in a lab-scaled test structure.

  19. Quarterly Progress Report - Biological Monitoring Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S. M.; Christensen, S. W.; Greeley, M.S. jr; McCracken, M.K.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth G. R.; Stewart, A. J.

    2001-01-19

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant). As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Complex protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Loar et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Complex on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Complex discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities. Monitoring is currently being conducted at five primary EFPC sites, although sites may be excluded or added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the

  20. Precision and costs of techniques for self-monitoring of serum glucose levels.

    OpenAIRE

    Chiasson, J. L.; Morrisset, R.; Hamet, P.

    1984-01-01

    The poor correlation between serum and urine glucose measurements has led to the development of new techniques for monitoring the blood glucose level in diabetic patients. Either a nurse or the patient can perform these tests, which involve spreading a single drop of blood onto a reagent strip. A colour change that is proportional to the serum glucose level can be read visually or with a reflectance meter. Evaluated against simultaneous serum glucose levels determined by the hospital biochemi...

  1. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  2. Pipe Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Technique

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Kim, Ha Nam; Kim, Hong Pyo

    2012-01-01

    In order to monitor a corrosion or FAC (Flow Accelerated Corrosion) in a pipe, there is a need to measure pipe wall thickness at high temperature. Ultrasonic thickness gauging is the most commonly used non-destructive testing technique for wall thickness measurement. However, current commonly available ultrasonic transducers cannot withstand high temperatures, such as above 200 .deg. C. It is therefore necessary to carry out manual measurements during plant shutdowns. The current method thus reveals several disadvantages: inspection have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for interventions. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. The main reasons why conventional piezoelectric ultrasonic transducers cannot be used at high temperatures are that the piezo-ceramic becomes depolarized at temperature above the Curie temperature and because differential thermal expansion of the substrate, couplant, and piezoelectric materials cause failure. In this paper, a shear horizontal waveguide technique for wall thickness monitoring at high temperature is investigated. Two different designs for contact to strip waveguide are shown and the quality of output signal is compared and reviewed. After a success of acquiring high quality ultrasonic signal, experiment on the wall thickness monitoring at high temperature is planned

  3. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  4. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Mark Woike

    2013-01-01

    Full Text Available The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA, through the Aviation Safety Program (AVSP, has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  5. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    Patuzzi, Robert; Cook, Alison

    2014-01-01

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  6. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    Science.gov (United States)

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas

    2014-05-01

    In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for

  7. Use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: A review

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available Soil biological activities are vital for the restoration of soil contaminated with hydrocarbons. Their role includes the biotransformation of petroleum compounds into harmless compounds. In this paper, the use of biological activities as potential...

  8. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  9. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    International Nuclear Information System (INIS)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author)

  10. A study of the biological effects of rare earth elements at cellular level using nuclear techniques

    International Nuclear Information System (INIS)

    Feng Zhihui; Wang Xi; Zhang Sunxi; An Lizhi; Zhang Jingxia; Yao Huiying

    2001-01-01

    Objective: To investigate the biological effects and the effecting mechanisms of rare earth elements La, Gd and Ce on cultured rat cells. Methods: The biological effects of La 3+ on cultured rat cells and the subcellular distribution of La and Gd and Ce, and the inflow of 45 Ca 2+ into the cells and total cellular calcium were measured by isotopic tracing, Proton Induced X Ray Emission Analysis (PIXE) and the techniques of biochemistry and cellular biology. Results: La 3+ at the concentration of 10- 10( or 10 -9 ) - 10 -6 mol/L significantly increased quantity of incorporation of 3 H-TdR into DNA, total cellular protein and the activity of succinic dehydrogenase of mitochondria. The cell cycle analysis showed that the proportions of cells in S phase were accordingly increased acted by La 3+ at above range of concentration. But these values were significantly decreased when concentration of La 3+ raised to 10 -4 - 10 -3 mol/L. It was further discovered that La, Gd and Ce distributed mostly in the nuclei, and then in membranes. Gd and Ce also promoted the inflow of 45 Ca 2+ into the cells and increased the total calcium content in cells. Conclusions: 1) La 3+ at a wide concentration range of 10 -10 ( or 10 -9 ) - 10 -6 mol/L promotes proliferation of cultured rat cells, but at even higher concentration (10 -4 - 10 -3 mol/L) shows cellular toxicity, and there is a striking dose-effect relationship. 2) La, Gd and Ce can enter the cells and mainly distribute in the nuclei. 3) Gd and Ce can promote the inflow of extracellular Ca 2+ into the cells and increase total cellular calcium

  11. General principles governing sampling and measurement techniques for monitoring radioactive effluents from nuclear facilities

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    An explanation is given of the need to monitor the release of radioactive gases and liquid effluents from nuclear facilities, with particular emphasis on the ICRP recommendations and on the interest in this problem shown by the larger international organizations. This is followed by a description of the classes of radionuclides that are normally monitored in this way. The characteristics of monitoring 'in line' and 'by sample taking' are described; the disadvantages of in line monitoring and the problem of sample representativity are discussed. There follows an account of the general principles for measuring gaseous and liquid effluents that are applied in the techniques normally employed at nuclear facilities. Standards relating to the specifications for monitoring instruments are at present being devised by the International Electrotechnical Commission, and there are still major differences in national practices, at least as far as measurement thresholds are concerned. In conclusion, it is shown that harmonization of practices and standardization of equipment would probably help to make international relations in the field more productive. (author)

  12. Striped bass (Morone saxatilis) monitoring techniques in the Sacramento--San Joaquin Estuary

    International Nuclear Information System (INIS)

    Stevens, D.E.

    1977-01-01

    Various methods have been used to monitor the striped bass population in the Sacramento--San Joaquin Estuary. Sampling in the spring with towed plankton nets has provided an adequate description of spawning time and area, but this sampling has not adequately measured egg standing crops and larva and post-larva mortality rates. Tow-net sampling effectively measures the abundance of young in midsummer. A midwater-trawl survey is satisfactory for measuring the abundance of young in the fall but not in the winter. Techniques have not been fully evaluated for monitoring one-year-old bass. Catch-per-unit-effort data from sportfishing party boats were useful for monitoring two-year-olds, until a change in angling regulations increased recruitment age. The Petersen method and indices developed from party-boat catches are the best methods for monitoring bass that are three years old and older. Long-term trends in catch can be monitored through postcard surveys and party-boat catches

  13. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    Science.gov (United States)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  14. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  15. Crack monitoring method based on Cu coating sensor and electrical potential technique for metal structure

    Directory of Open Access Journals (Sweden)

    Hou Bo

    2015-06-01

    Full Text Available Advanced crack monitoring technique is the cornerstone of aircraft structural health monitoring. To achieve real-time crack monitoring of aircraft metal structures in the course of service, a new crack monitoring method is proposed based on Cu coating sensor and electrical potential difference principle. Firstly, insulation treatment process was used to prepare a dielectric layer on structural substrate, such as an anodizing layer on 2A12-T4 aluminum alloy substrate, and then a Cu coating crack monitoring sensor was deposited on the structure fatigue critical parts by pulsed bias arc ion plating technology. Secondly, the damage consistency of the Cu coating sensor and 2A12-T4 aluminum alloy substrate was investigated by static tensile experiment and fatigue test. The results show that strain values of the coating sensor and the 2A12-T4 aluminum alloy substrate measured by strain gauges are highly coincident in static tensile experiment and the sensor has excellent fatigue damage consistency with the substrate. Thirdly, the fatigue performance discrepancy between samples with the coating sensor and original samples was investigated. The result shows that there is no obvious negative influence on the fatigue performance of the 2A12-T4 aluminum alloy after preparing the Cu coating sensor on its surface. Finally, crack monitoring experiment was carried out with the Cu coating sensor. The experimental results indicate that the sensor is sensitive to crack, and crack origination and propagation can be monitored effectively through analyzing the change of electrical potential values of the coating sensor.

  16. Cross-continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring

    Czech Academy of Sciences Publication Activity Database

    Basset, Y.; Eastwood, R.; Sam, L.; Lohman, D. J.; Novotný, Vojtěch; Treuer, T.; Miller, S. E.; Weiblen, G. D.; Pierce, N. E.; Bunyavejchewin, S.; Sakchoowong, W.; Kongnoo, P.; Osorio-Arenas, M. A.

    2013-01-01

    Roč. 6, č. 3 (2013), s. 223-233 ISSN 1752-458X R&D Projects: GA ČR GA206/09/0115; GA ČR GAP505/10/0673; GA MŠk ME09082; GA MŠk LC06073 Grant - others:US National Science Foundarion(US) DEB 0816749; International Foundarion for Science Grant(CZ) D/4986-1 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : Barro Colorado Island * biological monitoring * Center for Tropical Forest Science Subject RIV: EH - Ecology, Behaviour Impact factor: 1.937, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/j.1752-4598.2012.00205.x/pdf

  17. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    Science.gov (United States)

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Sources of uncertainty in individual monitoring for photographic,TL and OSL dosimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Max S.; Silva, Everton R.; Mauricio, Claudia L.P., E-mail: max.das.ferreira@gmail.com, E-mail: everton@ird.gov.br, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The identification of the uncertainty sources and their quantification is essential to the quality of any dosimetric results. If uncertainties are not stated for all dose measurements informed in the monthly dose report to the monitored radiation facilities, they need to be known. This study aims to analyze the influence of different sources of uncertainties associated with photographic, TL and OSL dosimetric techniques, considering the evaluation of occupational doses of whole-body exposure for photons. To identify the sources of uncertainty it was conducted a bibliographic review in specific documents that deal with operational aspects of each technique and the uncertainties associated to each of them. Withal, technical visits to individual monitoring services were conducted to assist in this identification. The sources of uncertainty were categorized and their contributions were expressed in a qualitative way. The process of calibration and traceability are the most important sources of uncertainties, regardless the technique used. For photographic dosimetry, the remaining important uncertainty sources are due to: energy and angular dependence; linearity of response; variations in the films processing. For TL and OSL, the key process for a good performance is respectively the reproducibility of the thermal and optical cycles. For the three techniques, all procedures of the measurement process must be standardized, controlled and reproducible. Further studies can be performed to quantify the contribution of the sources of uncertainty. (author)

  19. Identification of microorganisms involved in nitrogen removal from wastewater treatment systems by means of molecular biology techniques

    International Nuclear Information System (INIS)

    Figueroa, M.; Alonso-Gutierrez, J.; Campos, J. L.; Mendez, R.; Mosquera-Corral, A.

    2010-01-01

    The identification of the main bacteria populations present in the granular biomass from a biological reactor treating wastewater has been performed by applying two different molecular biology techniques. By means of the DGGE technique five different genera of heterotrophic bacteria (Thiothrix, Thauera, Cloroflexi, Comamonas y Zoogloea) and one of ammonia oxidizing bacteria (Nitrosomanas) were identified. The FISH technique, based on microscopy, allowed the in situ visualization and quantification of those microorganisms. Special attention was paid to filamentous bacteria distribution (Thiothrix and Cloroflexi) which could exert a structural function in aerobic granular sludge. (Author) 26 refs.

  20. Cytogenetic techniques for biological indications and dosimetry of of radiation damages in humans

    International Nuclear Information System (INIS)

    Hadjidekova, V.

    2003-01-01

    The cytogenetic methods present a proved way for bio-monitoring and bio-dosimetry for persons, submitted to ionising radiation in occupational and emergency conditions. Their application complement and assist the evaluation of the physical dosimetry and takes in account the individual radiosensitivity of the organism. A comparative assessment is made of the cytogenetic markers for radiation damage of humans applied in Bulgaria. It is discussed the sensitivity of the methods and their development in the last years, as well as the basic concept for their application - the causal relationship between the frequency of the observation of cytogenetic markers in peripheral blood lymphocytes and the risk of oncological disease. The conventional analysis of dicentrics is recognised as a 'golden standard' for the quantitative assessment of the radiation damage. The long term persisting translocations reflect properly the cumulative dose burden from chronic exposure. The micronucleus test allows a quick screening of large groups of persons, working in ionising radiation environment. The combined application with centromeric DNA probe improves the sensitivity and presents a modern alternative of the bio-monitoring and bio-dosimetry. It is discussed the advantages of the different cytogenetic techniques and their optimised application for the assessment of the radiation impact on humans

  1. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures

    Directory of Open Access Journals (Sweden)

    Wongi S. Na

    2018-04-01

    Full Text Available The birth of smart materials such as piezoelectric (PZT transducers has aided in revolutionizing the field of structural health monitoring (SHM based on non-destructive testing (NDT methods. While a relatively new NDT method known as the electromechanical (EMI technique has been investigated for more than two decades, there are still various problems that must be solved before it is applied to real structures. The technique, which has a significant potential to contribute to the creation of one of the most effective SHM systems, involves the use of a single PZT for exciting and sensing of the host structure. In this paper, studies applied for the past decade related to the EMI technique have been reviewed to understand its trend. In addition, new concepts and ideas proposed by various authors are also surveyed, and the paper concludes with a discussion of the potential directions for future works.

  2. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  3. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    Science.gov (United States)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  4. Techniques of monitoring blood glucose during pregnancy for women with pre-existing diabetes.

    Science.gov (United States)

    Moy, Foong Ming; Ray, Amita; Buckley, Brian S; West, Helen M

    2017-06-11

    Self-monitoring of blood glucose (SMBG) is recommended as a key component of the management plan for diabetes therapy during pregnancy. No existing systematic reviews consider the benefits/effectiveness of various techniques of blood glucose monitoring on maternal and infant outcomes among pregnant women with pre-existing diabetes. The effectiveness of the various monitoring techniques is unclear. To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors. Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified. Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach. This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small

  5. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  6. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    Science.gov (United States)

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  7. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  8. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    International Nuclear Information System (INIS)

    Bourgeault, A.; Gourlay-Francé, C.

    2013-01-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g dry wt −1 , reached 2654, 3972 and 3727 ng g −1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L −1 . Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain the bioaccumulation

  9. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, A., E-mail: bourgeault@ensil.unilim.fr; Gourlay-Francé, C.

    2013-06-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g{sub dry} {sub wt}{sup −1}, reached 2654, 3972 and 3727 ng g{sup −1} at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L{sup −1}. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain

  10. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [ed.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  12. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    International Nuclear Information System (INIS)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate

  13. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January - December 1996

    International Nuclear Information System (INIS)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate

  14. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    Science.gov (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  15. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  16. Assessment of beta-emitter radionuclides in biological samples using liquid scintillation counting. Application to the study of internal doses in molecular and cellular biology techniques; Evaluacion en muestras biologicas de radionucleidos emisores beta mediante espectrometria de centelleo en fase liquida. Aplicaciones al estudio de dosis internas en tecnicas de investigacion de biologia molecular y celular

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, I.; Delgado, A.; Navarro, T.; Macias, M. T.

    2007-07-01

    The radioisotopic techniques used in Molecular and Cellular Biology involve external and internal irradiation risk. It is necessary to control the possible internal contamination associated to the development of these techniques. The internal contamination risk can be due to physical and chemical properties of the labelled compounds, aerosols generated during the performance technique. The aim of this work was to estimate the possible intake of specific beta emitters during the technique development and to propose the required criterions to perform Individual Monitoring. The most representative radioisotopic techniques were selected attending their potential risk of internal contamination. Techniques were analysed applying IAEA methodology according to the used activity in each technique. It was necessary to identify the worker groups that would require individual monitoring on the base of their specific risk. Different measurement procedures were applied to study the possible intake in group risk and more than 160 persons were measured by in vitro bioassay. (Author) 96 refs.

  17. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    Science.gov (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  18. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Greer, C.; Hawar, J.; Samson, R.

    1994-01-01

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  19. Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.

    Science.gov (United States)

    Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso

    2007-07-01

    A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.

  20. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  1. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs

  2. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    International Nuclear Information System (INIS)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques

  3. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J. (comps.)

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.

  4. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, Min Rae; Leee, Jun Hyun; Kim, Jung Tack; Kim, Jung Soo; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Initiative(INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). The primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degradation and service aging so that maintenance/replacement could be preformed prior to loss of safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation, check valve failures and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  5. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    Science.gov (United States)

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  6. Remote sensing techniques for monitoring the Rio Grande Valley cotton stalk destruction program

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A.J.; Gerbermann, A.H.; Summy, K.R.; Anderson, G.L. (Department of Agriculture, Weslaco, TX (United States))

    1993-09-01

    Post harvest cotton (Gossypium hirsutum L.) stalk destruction is a cultural practice used in the Rio Grande Valley to suppress over wintering populations of boll weevils (Anthonomus grandis Boheman) without using chemicals. Consistent application of this practice could substantially reduce insecticide usage, thereby minimizing environmental hazards and increasing cotton production profits. Satellite imagery registered within a geographic information system was used to monitor the cotton stalk destruction program in the Rio Grande Valley. We found that cotton stalk screening procedures based on standard multispectral classification techniques could not reliably distinguish cotton from sorghum. Greenness screening for cotton plant stalks after the stalk destruction deadline was possible only where ground observations locating cotton fields were available. These findings indicate that a successful cotton stalk destruction monitoring program will require satellite images and earth referenced data bases showing cotton field locations.

  7. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  8. Review of the OECD specialist meeting on continuous monitoring techniques for assuring coolant circuit integrity

    International Nuclear Information System (INIS)

    Thie, J.A.

    1986-01-01

    This article summarizes the OECD Specialist Meeting on Continuous Monitoring Techniques for Assuring Coolant Circuit Integrity held August 12-14, 1985, in London. The conference was organized by the Organization for Economic Cooperation and Development's (OECD's) Committee on the Safety for Nuclear Installations and hosted by Her Majesty's Nuclear Installation Inspectorate at King's College. Many other conferences have addressed analysis and inspection approaches to ensuring primary-system integrity, but the OECD meeting was structured to pay attention to the continuous monitoring approach - possibly the first conference to be so designed. The specific technologies represented were vibrations, noise (i.e., random fluctuations in signals), leaks, acoustic emission, and cyclic fatigue. Although water reactors dominate the papers, all reactor types were included. A diverse group of about 50 attendees from 11 countries participated, including representatives from utilities, suppliers, regulators, and researchers

  9. Nuclear power plant monitoring and fault diagnosis methods based on the artificial intelligence technique

    International Nuclear Information System (INIS)

    Yoshikawa, S.; Saiki, A.; Ugolini, D.; Ozawa, K.

    1996-01-01

    The main objective of this paper is to develop an advanced diagnosis system based on the artificial intelligence technique to monitor the operation and to improve the operational safety of nuclear power plants. Three different methods have been elaborated in this study: an artificial neural network local diagnosis (NN ds ) scheme that acting at the component level discriminates between normal and abnormal transients, a model-based diagnostic reasoning mechanism that combines a physical causal network model-based knowledge compiler (KC) that generates applicable diagnostic rules from widely accepted physical knowledge compiler (KC) that generates applicable diagnostic rules from widely accepted physical knowledge. Although the three methods have been developed and verified independently, they are highly correlated and, when connected together, form a effective and robust diagnosis and monitoring tool. (authors)

  10. Development on high precision monitoring technique of radon and thoron in environment

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Hamada, Hiromasa; Goto, Masahiro; Nakazato, Hiroomi; Mori, Mitsuhiro

    1999-01-01

    In a field of the environmental management, many technical research and developments such as monitoring on drainage section and flowing speed change of groundwater, analysis on alternating flow phenomenon between surface water and groundwater, analysis on water leakage at a dam, forecasting of landslide, safety evaluation on ground due to detection of faults, have conducted. And, an application to analysis on gas flowing phenomenon from underground to atmosphere as a part of study on evaluation of effect of gas emitted from earth surface on the earth environment was investigated. This study aimed to elucidate behaviors of radon and thoron at environment and to develop a high precision monitoring technique on radon and thoron required to conduct an advanced application to a tracer in hydrology, applied geology, and environment engineering. (G.K.)

  11. Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Adams, S.M.; Ashwood, T.L. [Oak Ridge National Lab., TN (United States)] [and others

    1995-08-01

    As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate.

  12. Third report on the Oak Ridge K-25 Site Biological Monitoring and Abatement Program for Mitchell Branch

    International Nuclear Information System (INIS)

    Hinzman, R.L.

    1995-08-01

    As a condition of the modified National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Gaseous Diffusion Plant (ORGDP; now referred to as the Oak Ridge K-25 Site) on September 11, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream (Mitchell Branch or K-1700 stream). On October 1, 1992, a renewed NPDES permit was issued for the K-25 Site. A biological monitoring plan was submitted for Mitchell Branch, Poplar Creek, Poplar Creek Embayment of the Clinch River and any unnamed tributaries of these streams. The objectives of BMAP are to (1) demonstrate that the effluent limitations established for the Oak Ridge K-25 Site protect and maintain the use of Mitchell Branch for growth and propagation of fish and other aquatic life and (2) document the effects on stream biota resulting from operation of major new pollution abatement facilities, including the Central Neutralization Facility (CNF) and the Toxic Substances Control Act (TSCA) incinerator. The BMAP consists of four tasks: (1) toxicity monitoring; (2) bioaccumulation monitoring; (3) assessment of fish health; and (4) instream monitoring of biological communities, including benthic macroinvertebrates and fish. This document, the third in a series, reports on the results of the Oak Ridge K-25 Site BMAP; it describes studies that were conducted over various periods of time between June 1990 and December 1993, although monitoring conducted outside this time period is included, as appropriate

  13. Awake Craniotomy Anesthesia: A Comparison of the Monitored Anesthesia Care and Asleep-Awake-Asleep Techniques.

    Science.gov (United States)

    Eseonu, Chikezie I; ReFaey, Karim; Garcia, Oscar; John, Amballur; Quiñones-Hinojosa, Alfredo; Tripathi, Punita

    2017-08-01

    Commonly used sedation techniques for an awake craniotomy include monitored anesthesia care (MAC), using an unprotected airway, and the asleep-awake-asleep (AAA) technique, using a partially or totally protected airway. We present a comparative analysis of the MAC and AAA techniques, evaluating anesthetic management, perioperative outcomes, and complications in a consecutive series of patients undergoing the removal of an eloquent brain lesion. Eighty-one patients underwent awake craniotomy for an intracranial lesion over a 9-year period performed by a single-surgeon and a team of anesthesiologists. Fifty patients were treated using the MAC technique, and 31 were treated using the AAA technique. A retrospective analysis evaluated anesthetic management, intraoperative complications, postoperative outcomes, pain management, and complications. The MAC and AAA groups had similar preoperative patient and tumor characteristics. Mean operative time was shorter in the MAC group (283.5 minutes vs. 313.3 minutes; P = 0.038). Hypertension was the most common intraoperative complication seen (8% in the MAC group vs. 9.7% in the AAA group; P = 0.794). Intraoperative seizure occurred at a rate of 4% in the MAC group and 3.2% in the AAA group (P = 0.858). Awake cases were converted to general anesthesia in no patients in the MAC group and in 1 patient (3.2%) in the AAA group (P = 0.201). No cases were aborted in either group. The mean hospital length of stay was 3.98 days in the MAC group and 3.84 days in the AAA group (P = 0.833). Both the MAC and AAA sedation techniques provide an efficacious and safe method for managing awake craniotomy cases and produce similar perioperative outcomes, with the MAC technique associated with shorter operative time. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Perioperative Intravascular Fluid Assessment and Monitoring: A Narrative Review of Established and Emerging Techniques

    Directory of Open Access Journals (Sweden)

    Sumit Singh

    2011-01-01

    Full Text Available Accurate assessments of intravascular fluid status are an essential part of perioperative care and necessary in the management of the hemodynamically unstable patient. Goal-directed fluid management can facilitate resuscitation of the hypovolemic patient, reduce the risk of fluid overload, reduce the risk of the injudicious use of vasopressors and inotropes, and improve clinical outcomes. In this paper, we discuss the strengths and limitations of a spectrum of noninvasive and invasive techniques for assessing and monitoring intravascular volume status and fluid responsiveness in the perioperative and critically ill patient.

  15. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    Science.gov (United States)

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  17. Design of on-line steam generator leak monitoring system based on Cherenkov counting technique

    International Nuclear Information System (INIS)

    Dileep, B.N.; D'Cruz, S.J.; Biju, P.; Jashi, K.B.; Prabhakaran, V.; Venkataramana, K.; Managanvi, S.S.

    2006-01-01

    The methodology developed by Nuclear Power Corporation of India Ltd. for identification of leaky Steam Generator (SG) by monitoring 134 I activity in the blow down water is a very high sensitive method. However, this technique can not be put into use as an on-line system. A new method of on-line detection of SG leak and identify the offending SG based on Cherenkov counting technique is explained in this paper. It identifies the leak by detecting Cherenkov radiation produced by the hard beta emitting radio nuclides escaped into feed water during leak in an operating reactor. A simulated system shows that a leak rate of 2 kg/h can be detected by the proposed system, while coolant 134 I activity is 3.7 MBq/l (100μCi/l). (author)

  18. Induced modifications on algae photosynthetic activity monitored by pump-and-probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R; Colao, F; Fantoni, R; Palucci, A; Ribezzo, S [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Tarzillo, G; Carlozzi, P; Pelosi, E [CNR, Florence (Italy). Centro Studi Microorganismi Autotrofi

    1995-12-01

    The lidar fluorosensor system available at ENEA Frascati has been used for a series of laboratory measurements on brackish-water and marine phytoplankton grown in laboratory with the proper saline solution. The system, already used to measure the laser induced fluorescence spectra of different algae species and their detection limits, has been upgraded with a short pulse Nd:YAG laser and rearranged to test a new technique based on laser pump and probe excitation. Results of this new technique for remote monitoring of the in-vivo photosynthetic activity will be presented, as measured during a field campaign carried out in Florence during the Autumn 1993, where the effects of an actinic saturating light and different chemicals have also been checked.

  19. Purification and concentration of lead samples in biological monitoring of occupational exposures

    Directory of Open Access Journals (Sweden)

    A Rahimi-Froushani

    2006-04-01

    Full Text Available Background and Aims:Lead is an important environmental constituent widely used in industrialprocesses for production of synthetic materials and therefore can be released in the environmentcausing public exposure especially around the industrial residence area. For evaluation of humanexposure to trace toxic metal of Pb (II, environmental and biological monitoring are essentialprocesses, in which, preparation of such samples is one of the most time-consuming and errorproneaspects prior to analysis. The use of solid-phase extraction (SPE has grown and is a fertiletechnique of sample preparation as it provides better results than those produced by liquid-liquidextraction (LLE. The aim of this study was to investigate factors influencing sample pretreatmentfor trace analysis of lead in biological samples for evaluation of occupational exposure.Method :To evaluate factors influencing quantitative analysis scheme of lead, solid phaseextraction using mini columns filled with XAD-4 resin was optimized with regard to sample pH,ligand concentration, loading flow rate, elution solvent, sample volume (up to 500 ml, elutionvolume, amount of resins, and sample matrix interferences.Results :Lead was retained on solid sorbent and eluted followed by simple determination ofanalytes by using flame atomic absorption spectrometery. Obtained recoveries of the metal ionwere more than 92%. The amount of the analyte detected after simultaneous pre-concentrationwas basically in agreement with the added amounts. The optimized procedure was also validatedwith three different pools of spiked urine samples and showed a good reproducibility over sixconsecutive days as well as six within-day experiments. The developed method promised to beapplicable for evaluation of other metal ions present in different environmental and occupationalsamples as suitable results were obtained for relative standard deviation (less than 10%.Conclusion:This optimized method can be considered to be

  20. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    International Nuclear Information System (INIS)

    Livesay, Jake

    2012-01-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  1. Limitations of the scalp-hair biologic monitor in assessing selenium status in epidemiological investigations

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Crane, S.B.; Alejandra Gudino

    2012-01-01

    Scalp hair is routinely used to assess exposure to toxic trace elements and nutritional status of some required trace elements. The advantages and disadvantages of hair as a biologic monitor have been comprehensively discussed in the literature for many years. Among the concerns is distinguishing between exogenous and endogenous contributions. Nested in this issue is the longitudinal distribution of a trace element along the hair strand. The typical observation for many elements of interest is that the element concentration increases from the root end to the distal end; and this is attributed to continuing contamination from exogenous sources. In this study we used neutron activation analysis to measure 14 trace elements in 6 mm segments of full-length scalp hair from three healthy members of the same household having light-urban environmental exposure. To extend the data set for selenium, we included three adult female subjects with longer than average scalp hair. From these trace-element concentrations we calculated the root-to-distal end ratios as a profile diagnostic of trace-element distributions. Ratios fall into three diagnostic categories, >1, ∼1, and 1, Zn and S have R ∼ 1, and the remaining 11 elements all have R I > Hg ∼ Au ∼ Mg ∼ Mn ∼ Sb ∼ Ca > Cu > Al ∼ Ag. R Se is greater than 1 and increases with hair length (P 0.02) corresponding to a continuous longitudinal loss of Se in stark and puzzling contrast to the other elements measured. An analogous loss of Se in the nail monitor was not observed leading us to conclude that the nail is less prone to misclassification of selenium status in epidemiological studies. (author)

  2. Development of novel separation techniques for biological samples in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huan -Tsung [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  3. Comparison of process estimation techniques for on-line calibration monitoring

    International Nuclear Information System (INIS)

    Shumaker, B. D.; Hashemian, H. M.; Morton, G. W.

    2006-01-01

    The goal of on-line calibration monitoring is to reduce the number of unnecessary calibrations performed each refueling cycle on pressure, level, and flow transmitters in nuclear power plants. The effort requires a baseline for determining calibration drift and thereby the need for a calibration. There are two ways to establish the baseline: averaging and modeling. Averaging techniques have proven to be highly successful in the applications when there are a large number of redundant transmitters; but, for systems with little or no redundancy, averaging methods are not always reliable. That is, for non-redundant transmitters, more sophisticated process estimation techniques are needed to augment or replace the averaging techniques. This paper explores three well-known process estimation techniques; namely Independent Component Analysis (ICA), Auto-Associative Neural Networks (AANN), and Auto-Associative Kernel Regression (AAKR). Using experience and data from an operating nuclear plant, the paper will present an evaluation of the effectiveness of these methods in detecting transmitter drift in actual plant conditions. (authors)

  4. Innovative Ultrasonic Techniques for Inspection and Monitoring of Large Concrete Structures

    Directory of Open Access Journals (Sweden)

    Niederleithinger E.

    2013-07-01

    Full Text Available Ultrasonic echo and transmission techniques are used in civil engineering on a regular basis. New sensors and data processing techniques have lead to many new applications in the structural investigation as well as quality control. But concrete structures in the nuclear sector have special features and parameters, which pose problems for the methods and instrumentation currently available, e.g. extreme thickness, dense reinforcement, steel liners or special materials. Several innovative ultrasonic techniques have been developed to deal with these issues at least partly in lab experiments and pilot studies. Modern imaging techniques as multi-offset SAFT have been used e. g. to map delaminations. Thick concrete walls have successfully been inspected, partly through a steel liner. Embedded ultrasonic sensors have been designed which will be used in monitoring networks of large concrete structures above and below ground. In addition, sensitive mathematical methods as coda wave interferometry have been successfully evaluated to detect subtle changes in material properties. Examples of measurements and data evaluation are presented.

  5. Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow

    Science.gov (United States)

    Diop, Mamadou; Tichauer, Kenneth M.; Elliott, Jonathan T.; Migueis, Mark; Lee, Ting-Yim; St. Lawrence, Keith

    2010-02-01

    A primary focus of neurointensive care is monitoring the injured brain to detect harmful events that can impair cerebral blood flow (CBF). Since current non-invasive bedside methods can only indirectly assess blood flow, the goal of this research was to develop an optical technique for measuring absolute CBF. A time-resolved near-infrared (NIR) apparatus was built and its ability to accurately measure changes in optical properties was demonstrated in tissue-mimicking phantoms. The time-resolved system was combined with a bolus-tracking method for measuring CBF using the dye indocyanine green (ICG) as an intravascular flow tracer. Cerebral blood flow was measured in newborn piglets and for comparison, CBF was concurrently measured using a previously developed continuous-wave NIR method. Measurements were acquired with both techniques under three conditions: normocapnia, hypercapnia and following occlusion of the carotid arteries. Mean CBF values (N = 3) acquired with the TR-NIR system were 31.9 +/- 11.7 ml/100g/min during occlusion, 39.7 +/- 1.6 ml/100g/min at normocapnia, and 58.8 +/- 9.9 ml/100g/min at hypercapnia. Results demonstrate that the developed TR-NIR technique has the sensitivity to measure changes in CBF; however, the CBF measurements were approximately 25% lower than the values obtained with the CW-NIRS technique.

  6. Short-term biological variation of clinical chemical values in dumeril's monitors (Varanus dumerili)

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Kjelgaard-Hansen, Mads Jens; Howell, Jennifer R.

    2007-01-01

    Plasma biochemical values are routinely used in the medical management of ill reptiles, and for monitoring the health of clinically normal animals. Laboratory tests, including clinical biochemical values, are subject to biological and analytical variation, the magnitude of which determines the ut...

  7. Impact of Tactile-Cued Self-Monitoring on Independent Biology Work for Secondary Students with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Morrison, Catherine; McDougall, Dennis; Black, Rhonda S.; King-Sears, Margaret E.

    2014-01-01

    Results from a multiple baseline with changing conditions design across high school students with Attention Deficit Hyperactivity Disorder (ADHD) indicated that the students increased the percentage of independent work they completed in their general education biology class after learning tactile-cued self-monitoring. Students maintained high…

  8. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    Directory of Open Access Journals (Sweden)

    Shi Bai

    2014-03-01

    Full Text Available Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  9. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  10. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    Science.gov (United States)

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  11. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  12. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  13. Respiration monitoring by Electrical Bioimpedance (EBI) Technique in a group of healthy males. Calibration equations

    International Nuclear Information System (INIS)

    Balleza, M; Vargas, M; Delgadillo, I; Kashina, S; Huerta, M R; Moreno, G

    2017-01-01

    Several research groups have proposed the electrical impedance tomography (EIT) in order to analyse lung ventilation. With the use of 16 electrodes, the EIT is capable to obtain a set of transversal section images of thorax. In previous works, we have obtained an alternating signal in terms of impedance corresponding to respiration from EIT images. Then, in order to transform those impedance changes into a measurable volume signal a set of calibration equations has been obtained. However, EIT technique is still expensive to attend outpatients in basics hospitals. For that reason, we propose the use of electrical bioimpedance (EBI) technique to monitor respiration behaviour. The aim of this study was to obtain a set of calibration equations to transform EBI impedance changes determined at 4 different frequencies into a measurable volume signal. In this study a group of 8 healthy males was assessed. From obtained results, a high mathematical adjustment in the group calibrations equations was evidenced. Then, the volume determinations obtained by EBI were compared with those obtained by our gold standard. Therefore, despite EBI does not provide a complete information about impedance vectors of lung compared with EIT, it is possible to monitor the respiration. (paper)

  14. Multisensor remote sensing data and GIS techniques for monitoring preservation areas - A case study

    International Nuclear Information System (INIS)

    Shimabukuro, Y.E.; Lee, D.C.L.; Dos Santos, J.R.

    1992-01-01

    The capability of remote sensing and Geographic Information System techniques for detecting and monitoring the anthropic alterations which sometimes occur in preservation areas is discussed. Attention is given to the Emas National Park in the southwest Goias State, Brazil. TM/Landsat data from July 29, 1988 (before a fire that occurred there) and August 14, 1988, (after the fire) and AVHRR/NOAA data obtained in this period covered by TM images were used to monitor the biomass burning. The TM images were registered to a topographic map in order to compile a data base including information such as drainage, roads, elevation, and vegetation type for this park. Pixels classified as burned areas using band 3 of AVHRR images were overlayed on the map derived from the data base. The integration of elevation, TM multitemporal data, and information derived from AVHRR images is found to be a valuable tool for managers in detecting and evaluating damage and in monitoring the regeneration process of land cover. 15 refs

  15. Principles of the NATM and other uses of the geologic monitoring techniques

    International Nuclear Information System (INIS)

    Jenkins, J.D.; Sander, H.J.

    1991-01-01

    The NATM (New Austrian Tunneling Method) differs in several respects from other construction methods. Also referred to as the open-quotes sequential method,close quotes or the open-quotes observational tunneling method,close quotes NATM offers outstanding flexibility by extending the design into the construction phase. Geologic monitoring of the underground opening (tunnel, shaft or cavern) on an on-going basis provides the means by which the precise support measures and tunnel advance sequence may be matched to varying rock conditions. The pragmatic principles, developed and perfected by NATM Engineers, depend upon sophisticated in situ monitoring of rock conditions on an ongoing basis. These same monitoring techniques, born of the need to determine safe, efficient ground support, are also utilized in the long term checking of existing tunnels. In addition, the instrumentation and program systems of NATM can provide accurate measurements to meet many of the site characterization requirements of underground nuclear repositories even when employed in combination with mechanical excavation

  16. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  17. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...

  18. Remote Sensing Dynamic Monitoring of Biological Invasive Species Based on Adaptive PCNN and Improved C-V Model

    Directory of Open Access Journals (Sweden)

    PENG Gang

    2014-12-01

    Full Text Available Biological species invasion problem bring serious damage to the ecosystem, and have become one of the six major enviromental problems that affect the future economic development, also have become one of the hot topic in domestic and foreign scholars. Remote sensing technology has been successfully used in the investigation of coastal zone resources, dynamic monitoring of the resources and environment, and other fields. It will cite a new remote sensing image change detection algorithm based on adaptive pulse coupled neural network (PCNN and improved C-V model, for remote sensing dynamic monitoring of biological species invasion. The experimental results show that the algorithm is effective in the test results of biological species invasions.

  19. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  20. On the possibility of using biological toxicity tests to monitor the work of wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Zorić Jelena

    2008-01-01

    Full Text Available The aim of this study was to ascertain the possibility of using biological toxicity tests to monitor influent and effluent wastewaters of wastewater treatment plants. The information obtained through these tests is used to prevent toxic pollutants from entering wastewater treatment plants and discharge of toxic pollutants into the recipient. Samples of wastewaters from the wastewater treatment plants of Kragujevac and Gornji Milanovac, as well as from the Lepenica and Despotovica Rivers immediately before and after the influx of wastewaters from the plants, were collected between October 2004 and June 2005. Used as the test organism in these tests was the zebrafish Brachydanio rerio Hamilton - Buchanon (Cyprinidae. The acute toxicity test of 96/h duration showed that the tested samples had a slight acutely toxic effect on B. rerio, except for the sample of influent wastewater into the Cvetojevac wastewater treatment plant, which had moderately acute toxicity, indicating that such water should be prevented from entering the system in order to eliminate its detrimental effect on the purification process.

  1. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  2. Biological Monitoring of Human Exposure to Neonicotinoids Using Urine Samples, and Neonicotinoid Excretion Kinetics

    Science.gov (United States)

    Harada, Kouji H.; Tanaka, Keiko; Sakamoto, Hiroko; Imanaka, Mie; Niisoe, Tamon; Hitomi, Toshiaki; Kobayashi, Hatasu; Okuda, Hiroko; Inoue, Sumiko; Kusakawa, Koichi; Oshima, Masayo; Watanabe, Kiyohiko; Yasojima, Makoto; Takasuga, Takumi; Koizumi, Akio

    2016-01-01

    Background Neonicotinoids, which are novel pesticides, have entered into usage around the world because they are selectively toxic to arthropods and relatively non-toxic to vertebrates. It has been suggested that several neonicotinoids cause neurodevelopmental toxicity in mammals. The aim was to establish the relationship between oral intake and urinary excretion of neonicotinoids by humans to facilitate biological monitoring, and to estimate dietary neonicotinoid intakes by Japanese adults. Methodology/Principal Findings Deuterium-labeled neonicotinoid (acetamiprid, clothianidin, dinotefuran, and imidacloprid) microdoses were orally ingested by nine healthy adults, and 24 h pooled urine samples were collected for 4 consecutive days after dosing. The excretion kinetics were modeled using one- and two-compartment models, then validated in a non-deuterium-labeled neonicotinoid microdose study involving 12 healthy adults. Increased urinary concentrations of labeled neonicotinoids were observed after dosing. Clothianidin was recovered unchanged within 3 days, and most dinotefuran was recovered unchanged within 1 day. Around 10% of the imidacloprid dose was excreted unchanged. Most of the acetamiprid was metabolized to desmethyl-acetamiprid. Spot urine samples from 373 Japanese adults were analyzed for neonicotinoids, and daily intakes were estimated. The estimated average daily intake of these neonicotinoids was 0.53–3.66 μg/day. The highest intake of any of the neonicotinoids in the study population was 64.5 μg/day for dinotefuran, and this was <1% of the acceptable daily intake. PMID:26731104

  3. Biological Monitoring of Human Exposure to Neonicotinoids Using Urine Samples, and Neonicotinoid Excretion Kinetics.

    Directory of Open Access Journals (Sweden)

    Kouji H Harada

    Full Text Available Neonicotinoids, which are novel pesticides, have entered into usage around the world because they are selectively toxic to arthropods and relatively non-toxic to vertebrates. It has been suggested that several neonicotinoids cause neurodevelopmental toxicity in mammals. The aim was to establish the relationship between oral intake and urinary excretion of neonicotinoids by humans to facilitate biological monitoring, and to estimate dietary neonicotinoid intakes by Japanese adults.Deuterium-labeled neonicotinoid (acetamiprid, clothianidin, dinotefuran, and imidacloprid microdoses were orally ingested by nine healthy adults, and 24 h pooled urine samples were collected for 4 consecutive days after dosing. The excretion kinetics were modeled using one- and two-compartment models, then validated in a non-deuterium-labeled neonicotinoid microdose study involving 12 healthy adults. Increased urinary concentrations of labeled neonicotinoids were observed after dosing. Clothianidin was recovered unchanged within 3 days, and most dinotefuran was recovered unchanged within 1 day. Around 10% of the imidacloprid dose was excreted unchanged. Most of the acetamiprid was metabolized to desmethyl-acetamiprid. Spot urine samples from 373 Japanese adults were analyzed for neonicotinoids, and daily intakes were estimated. The estimated average daily intake of these neonicotinoids was 0.53-3.66 μg/day. The highest intake of any of the neonicotinoids in the study population was 64.5 μg/day for dinotefuran, and this was <1% of the acceptable daily intake.

  4. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique.

    Science.gov (United States)

    Huang, Eric L; Orsat, Valérie; Shah, Manesh B; Hettich, Robert L; VerBerkmoes, Nathan C; Lefsrud, Mark G

    2012-09-18

    System biology and bioprocess technology can be better understood using shotgun proteomics as a monitoring system during the fermentation. We demonstrated a shotgun proteomic method to monitor the temporal yeast proteome in early, middle and late exponential phases. Our study identified a total of 1389 proteins combining all 2D-LC-MS/MS runs. The temporal Saccharomyces cerevisiae proteome was enriched with proteolysis, radical detoxification, translation, one-carbon metabolism, glycolysis and TCA cycle. Heat shock proteins and proteins associated with oxidative stress response were found throughout the exponential phase. The most abundant proteins observed were translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes. The high abundance of the H-protein of the glycine decarboxylase complex (Gcv3p) indicated the availability of glycine in the environment. We observed differentially expressed proteins and the induced proteins at mid-exponential phase were involved in ribosome biogenesis, mitochondria DNA binding/replication and transcriptional activator. Induction of tryptophan synthase (Trp5p) indicated the abundance of tryptophan during the fermentation. As fermentation progressed toward late exponential phase, a decrease in cell proliferation was implied from the repression of ribosomal proteins, transcription coactivators, methionine aminopeptidase and translation-associated proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  6. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    International Nuclear Information System (INIS)

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs

  7. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  8. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  9. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  10. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    Science.gov (United States)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  11. Monitoring alloy formation during mechanical alloying process by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom; Noraizam Md Diah; Mazli Mustapha

    2002-01-01

    Monitoring alloying (MA) is a novel processing technique that use high energy impact ball mill to produce alloys with enhanced properties and microscopically homogeneous materials starting from various powder mixtures. Mechanical alloying process was originally developed to produce oxide dispersion strengthened nickel superalloys. In principal, in high-energy ball milling process, alloy is formed by the result of repeated welding, fracturing and rewelding of powder particles in a high energy ball mill. In this process a powder mixture in a ball mill is subjected to high-energy collisions among balls. MA has been shown to be capable of synthesizing a variety of materials. It is known to be capable to prepare equilibrium and non-equilibrium phases starting from blended elemental or prealloyed powders. The process ability to produce highly metastable materials such as amorphous alloys and nanostructured materials has made this process attractive and it has been considered as a promising material processing technique that could be used to produce many advanced materials at low cost. The present study explores the conditions under which aluminum alloys formation occurs by ball milling of blended aluminum and its alloying elements powders. In this work, attempt was made in producing aluminum 2024 alloys by milling of blended elemental aluminum powder of 2024 composition in a stainless steel container under argon atmosphere for up to 210 minutes. X-ray diffraction together with thermal analysis techniques has been used to monitor phase changes in the milled powder. Results indicate that, using our predetermined milling parameters, alloys were formed after 120 minutes milling. The thermal analysis data was also presented in this report. (Author)

  12. Monitoring Nuclear Facilities Using Satellite Imagery and Associated Remote Sensing Techniques

    International Nuclear Information System (INIS)

    Lafitte, Marc; Robin, Jean‑Philippe

    2015-01-01

    The mission of the European Union Satellite Centre (SatCen) is “to support the decision making and actions of the European Union in the field of the CFSP and in particular the CSDP, including European Union crisis management missions and operations, by providing, at the request of the Council or the European Union High Representative, products and services resulting from the exploitation of relevant space assets and collateral data, including satellite and aerial imagery, and related services”. The SatCen Non‑Proliferation Team, part of the SatCen Operations Division, is responsible for the analysis of installations that are involved, or could be involved, in the preparation or acquisition of capabilities intended to divert the production of nuclear material for military purposes and, in particular, regarding the spread of Weapons of Mass destruction and their means of delivery. For the last four decades, satellite imagery and associated remote sensing and geospatial techniques have increasingly expanded their capabilities. The unprecedented Very High Resolution (VHR) data currently available, the improved spectral capabilities, the increasing number of sensors and ever increasing computing capacity, has opened up a wide range of new perspectives for remote sensing applications. Concurrently, the availability of open source information (OSINF), has increased exponentially through the medium of the internet. This range of new capabilities for sensors and associated remote sensing techniques have strengthened the SatCen analysis capabilities for the monitoring of suspected proliferation installations for the detection of undeclared nuclear facilities, processes and activities. The combination of these remote sensing techniques, imagery analysis, open source investigation and their integration into Geographic Information Systems (GIS), undoubtedly improve the efficiency and comprehensive analysis capability provided by the SatCen to the EU stake‑holders. The

  13. Experience and improved techniques in radiological environmental monitoring at major DOE low-level waste disposal sites

    International Nuclear Information System (INIS)

    1986-09-01

    A summary of routine radiological environmental surveillance programs conducted at major active US Department of Energy (DOE) solid low-level waste (LLW) disposal sites is provided. The DOE disposal sites at which monitoring programs were reviewed include those located at Hanford, Idaho National Engineering Laboratory (INEL), Nevada Test Site (NTS), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savannah River Plant (SRP). The review is limited to activities conducted for the purpose of monitoring disposal site performance. Areas of environmental monitoring reviewed include air monitoring for particulates and gases, monitoring of surface water runoff, surface water bodies, ground water, monitoring of surface soils and the vadose zone, and monitoring of ambient penetrating radiation. Routine environmental surveillance is conducted at major LLW disposal sites at various levels of effort for specific environmental media. In summary, all sites implement a routine monitoring program for penetrating radiation. Four sites (INEL, NTS, LANL, and SRP) monitor particulates in air specifically at LLW disposal sites. Hanford monitors particulates at LLW sites in conjunction with monitoring of other site operations. Particulates are monitored on a reservationwide network at ORNL. Gases are monitored specifically at active LLW sites operated at NTS, LANL, and SRP. Ground water is monitored specifically at LLW sites at INEL, LANL, and SRP, in conjunction with other operations at Hanford, and as part of a reservationwide program at NTS and ORNL. Surface water is monitored at INEL, LANL, and SRP LLW sites. Surface soil is sampled and analyzed on a routine basis at INEL and LANL. Routine monitoring of the vadose zone is conducted at the INEL and SRP. Techniques and equipment in use are described and other aspects of environmental monitoring programs, such as quality assurance and data base management, are reviewed

  14. Comparative study of electromechanical impedance and Lamb wave techniques for fatigue crack detection and monitoring in metallic structures

    Science.gov (United States)

    Lim, Say Ian; Liu, Yu; Soh, Chee Kiong

    2012-04-01

    Fatigue cracks often initiate at the weld toes of welded steel connections. Usually, these cracks cannot be identified by the naked eyes. Existing identification methods like dye-penetration test and alternating current potential drop (ACPD) may be useful for detecting fatigue cracks at the weld toes. To apply these non-destructive evaluation (NDE) techniques, the potential sites have to be accessible during inspection. Therefore, there is a need to explore other detection and monitoring techniques for fatigue cracks especially when their locations are inaccessible or cost of access is uneconomical. Electro-mechanical Impedance (EMI) and Lamb wave techniques are two fast growing techniques in the Structural Health Monitoring (SHM) community. These techniques use piezoelectric ceramics (PZT) for actuation and sensing. Since the monitoring site is only needed to be accessed once for the instrumentation of the transducers, remote monitoring is made possible. The permanent locations of these transducers also translate to having consistent measurement for monitoring. The main focus of this study is to conduct a comparative investigation on the effectiveness and efficiency of the EMI technique and the Lamb wave technique for successful fatigue crack identification and monitoring of welded steel connections using piezoelectric transducers. A laboratory-sized non-load carrying fillet weld specimen is used in this study. The specimen is subjected to cyclic tensile load and data for both techniques are acquired at stipulated intervals. It can be concluded that the EMI technique is sensitive to the crack initiation phase while the Lamb wave technique correlates well with the crack propagation phase.

  15. Monitoring biodiversity loss with primary species-occurrence data: toward national-level indicators for the 2010 target of the convention on biological diversity.

    Science.gov (United States)

    Soberón, Jorge; Peterson, A Townsend

    2009-02-01

    Development of effective indicators is indispensable for countries and societies to monitor effects of their actions on biodiversity, as is recognized in decision VI/26 of the Convention on Biological Diversity. Good indicators would ideally be scalable, at least for the different scales that characterize biodiversity patterns and process. Existing indicators are mostly global in scope, and often based on secondary information, such as classifications of endangered species, rather than on primary data. We propose a complementary approach, based on the increased availability of raw data about occurrences of species, cutting-edge modeling techniques for estimating distributional areas, and land-use information based on remotely sensed data to allow estimation of rates of range loss for species affected by land-use conversion. This method can be implemented by developing countries, given increasing availability of data and the open and well-documented nature of the techniques required.

  16. The Effective Ransomware Prevention Technique Using Process Monitoring on Android Platform

    Directory of Open Access Journals (Sweden)

    Sanggeun Song

    2016-01-01

    Full Text Available Due to recent indiscriminate attacks of ransomware, damage cases including encryption of users’ important files are constantly increasing. The existing vaccine systems are vulnerable to attacks of new pattern ransomware because they can only detect the ransomware of existing patterns. More effective technique is required to prevent modified ransomware. In this paper, an effective method is proposed to prevent the attacks of modified ransomware on Android platform. The proposed technique specifies and intensively monitors processes and specific file directories using statistical methods based on Processor usage, Memory usage, and I/O rates so that the process with abnormal behaviors can be detected. If the process running a suspicious ransomware is detected, the proposed system will stop the process and take steps to confirm the deletion of programs associated with the process from users. The information of suspected and exceptional processes confirmed by users is stored in a database. The proposed technique can detect ransomware even if you do not save its patterns. Its speed of detection is very fast because it can be implemented in Android source code instead of mobile application. In addition, it can effectively determine modified patterns of ransomware and provide protection with minimum damage.

  17. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    Science.gov (United States)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour

  18. Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring

    Science.gov (United States)

    Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.

    2017-12-01

    Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying

  19. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    Science.gov (United States)

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants

  20. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    International Nuclear Information System (INIS)

    Furuta, H.; Tadokoro, H.; Imura, A.; Furuta, Y.; Suekane, F.

    2010-01-01

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  1. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    Science.gov (United States)

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  2. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  3. The biological response of plucked human hair to low-dose radiation: a measure of individual radiosensitivity and a technique for biological dosimetry

    International Nuclear Information System (INIS)

    Swain, D.

    1997-01-01

    It is often assumed that the effects of radiation are linear with dose and that high dose effects can be extrapolated to low dose levels. However, there are a variety of mechanisms which can alter the response at low doses. The most important of these relate to induced sensitivity or induced repair mechanisms. It is therefore important that this area is studied in more depth by looking at the molecular effects and damage to cells at low doses. It is well known that there are certain rare genetic syndromes which predispose individuals to cancer, e.g. ataxia telangiectasia. It is also probable that there is a large range of sensitivity in the natural variation of individuals to the risk of radiation-induced cancer. It is proposed that radiosensitivity is studied using stimulated lymphocytes from whole blood and the technique extended to look at the effects in cell cultures established from human hair. Radiation treatment of cell cultures established from plucked human hair has been previously advocated as a non-invasive technique for non-uniform biological dosimetry and it is proposed that these techniques are adapted to the use of hair to estimate individual radiosensitivity. The aim is to establish and optimize these techniques for culturing keratinocytes from plucked human hair follicles with a view to study biological markers for the subsequent assessment of radiosensitivity. Preliminary results are promising and suggest that the technique for culturing keratinocytes from hair presents a feasible approach. Results from this primary cell culture technique and results from the comparison of the micronuclei data obtained from the cell cultures and stimulated lymphocytes will be presented. (author)

  4. Long-Term Land Subsidence Monitoring of Beijing (China Using the Small Baseline Subset (SBAS Technique

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2014-04-01

    Full Text Available Advanced techniques of multi-temporal InSAR (MT-InSAR represent a valuable tool in ground subsidence studies allowing remote investigation of the behavior of mass movements in long time intervals by using large datasets of SAR images covering the same area and acquired at different epochs. Beijing is susceptible to subsidence, producing undesirable environmental impacts and affecting dense population. Excessive groundwater withdrawal is thought to be the primary cause of land subsidence, and rapid urbanization and economic development, mass construction of skyscrapers, highways and underground engineering facilities (e.g., subway are also contributing factors. In this paper, a spatial–temporal analysis of the land subsidence in Beijing was performed using one of the MT-InSAR techniques, referred to as Small Baseline Subset (SBAS. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. 52 C-band ENVISAT ASAR images acquired from June 2003 to August 2010 were used to produce a linear deformation rate map and to derive time series of ground deformation. The results show that there are three large subsidence funnels within this study area, which separately located in Balizhuang-Dajiaoting in Chaoyang district, Wangjing-Laiguangying Chaoyang district, Gaoliying Shunyi district. The maximum settlement center is Wangsiying-Tongzhou along the Beijing express; the subsidence velocity exceeds 110 mm/y in the LOS direction. In particular, we compared the achieved results with leveling measurements that are assumed as reference. The estimated long-term subsidence results obtained by SBAS approach agree well with the development of the over-exploitation of ground water, indicating that SBAS techniques is adequate for the retrieval of land subsidence in Beijing from multi-temporal SAR data.

  5. The Thoron Issue: Monitoring Activities, Measuring Techniques and Dose Conversion Factors (invited paper)

    International Nuclear Information System (INIS)

    Nuccetelli, C.; Bochicchio, F.

    1998-01-01

    The health risk due to the presence of thoron indoors is usually neglected because of its generally low concentration in indoor environments, which is essentially caused by its short half-life. However, in certain not uncommon situations, such as when thorium-rich building materials are used, thoron ( 220 Rn) may represent a significant source of radioactive exposure. In recent years, renewed interest has led to more intensive monitoring of thoron gas and its decay products. A tentatively comprehensive summary of these measurement results and a review of the most innovative measurement techniques for 220 Rn are here presented. Finally, dose-exposure conversion factors currently used for thoron decay products are analysed, highlighting the poorer basis of such factors, when compared to those for radon. (author)

  6. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  7. Environmental monitoring using autonomous vehicles: a survey of recent searching techniques.

    Science.gov (United States)

    Bayat, Behzad; Crasta, Naveena; Crespi, Alessandro; Pascoal, António M; Ijspeert, Auke

    2017-06-01

    Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of operating in harsh environments without human supervision. The aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    International Nuclear Information System (INIS)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives

  9. Application of the photomodulated reflectance technique to the monitoring of metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Gabor; Lenk, Sandor; Ujhelyi, Ferenc; Szita, Zsofia; Kocsanyi, Laszlo [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest (Hungary); Somogyi, Andras [Semilab Corporation, Prielle Kornelia ut 2, 1117 Budapest (Hungary)

    2011-09-15

    Photomodulated reflectance (PMR) measurement techniques are currently used for the monitoring of ultra-shallow junctions. This paper discusses the possibility of applying them to the characterisation of metal layers. A finite element method based computer model has been created to study the dependence of the PMR signal on different sample parameters. We present the results of these simulations and show that the method can be used to establish the thickness of a metal layer (if the material is known) and it can also provide information about the metal/semiconductor interface. This information might be used to characterise the barrier seed layer beneath the metal, by a non-contact and non-destructive way. Simulation results are also supported by actual measurements on test samples. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Feasibility of Biological Effective Monitoring of Chrome Electroplaters to Chromium through Analysis of Serum Malondialdehyde.

    Science.gov (United States)

    Mozafari, P; Rezazadeh Azari, M; Shokoohi, Y; Sayadi, M

    2016-10-01

    Great concern about occupational exposure to chromium (Cr [VI]) has been reported due to escalated risk of lung cancer in exposed workers. Consequences of occupational exposure to Cr (VI) have been reported as oxidative stress and lung tissue damage. To investigate the feasibility of biological effect monitoring of chrome electroplaters through analysis of serum malondialdehyde (MDA). 90 workers directly involved in chrome electroplating---categorized into three equal groups based on their job as near bath workers, degreaser, and washers---and 30 workers without exposure to Cr (VI), served as the control group, were studied. Personal samples were collected and analyzed according to NIOSH method 7600. Serum MDA level was measured by HPLC using a UV detector. Median Cr (VI) exposure level was 0.38 mg/m(3) in near bath workers, 0.20 mg/m(3) in degreasers, and 0.05 mg/m(3) in washers. The median serum MDA level of three exposed groups (2.76 μmol/L) was significantly (p<0.001) higher than that in the control group (2.00 μmol/L). There was a positive correlation between electroplaters' level of exposure to Cr (VI) and their serum MDA level (Spearman's ρ 0.806, p<0.001). Serum MDA level is a good biomarker for the level of occupational exposure to Cr (VI) in electroplaters.

  11. Feasibility of Biological Effective Monitoring of Chrome Electroplaters to Chromium through Analysis of Serum Malondialdehyde

    Directory of Open Access Journals (Sweden)

    P Mozafari

    2016-10-01

    Full Text Available Background: Great concern about occupational exposure to chromium (Cr [VI] has been reported due to escalated risk of lung cancer in exposed workers. Consequences of occupational exposure to Cr (VI have been reported as oxidative stress and lung tissue damage. Objective: To investigate the feasibility of biological effect monitoring of chrome electroplaters through analysis of serum malondialdehyde (MDA. Methods: 90 workers directly involved in chrome electroplating—categorized into three equal groups based on their job as near bath workers, degreaser, and washers—and 30 workers without exposure to Cr (VI, served as the control group, were studied. Personal samples were collected and analyzed according to NIOSH method 7600. Serum MDA level was measured by HPLC using a UV detector. Results: Median Cr (VI exposure level was 0.38 mg/m3 in near bath workers, 0.20 mg/m3 in degreasers, and 0.05 mg/m3 in washers. The median serum MDA level of three exposed groups (2.76 μmol/L was significantly (p<0.001 higher than that in the control group (2.00 μmol/L. There was a positive correlation between electroplaters' level of exposure to Cr (VI and their serum MDA level (Spearman's ρ 0.806, p<0.001. Conclusion: Serum MDA level is a good biomarker for the level of occupational exposure to Cr (VI in electroplaters.

  12. Determination of selenium status using the nail biologic monitor in a canine model

    International Nuclear Information System (INIS)

    Steven Morris, J.; Spate, V.L.; Ruth Ann Ngwenyama; Waters, D.J.

    2012-01-01

    Toenails and fingernails are routinely used to estimate selenium status in epidemiological studies; however, literature validating nail selenium concentration as a surrogate for critical organs is limited. In this study diets of intact male dogs were selenium supplemented at two physiological levels (3 and 6 μg/kg/day) in two different forms, selenomethionine and selenium-enriched bioformed yeast. The selenium-adequate basal diet consumed by the treatment and control groups during the 4-week run-in period and throughout the trial contained 0.3 ppm selenium. After 7 months the dogs in the two treatment groups and the control group were euthanized. Representative tissue samples from prostate, brain, liver, heart and skeletal muscle were collected, rinsed and frozen. Toenail clippings from multiple toes were also collected. Selenium was determined by neutron activation analysis using Se77m (half life = 17.4 s) at the University of Missouri Research Reactor Center. NIST SRM 1577, Bovine Liver was analyzed as a quality control. The analysts were blinded to control and treatment group assignments. As expected, tissue selenium levels increased proportionally with supplementation. A slightly greater increase in tissue selenium was observed for the purified selenomethionine compared to the bioformed yeast; however this trend was significant only for brain tissue. Toenail selenium concentrations and tissue selenium were highly correlated (p < 0.003) with Pearson coefficients of 0.759 (skeletal muscle), 0.745 (heart), 0.729 (brain), 0.723 (prostate), and 0.632 (liver). The toenail biologic monitor accurately assesses selenium status in skeletal muscle, heart, brain, prostate, and liver in the canine model. (author)

  13. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    Science.gov (United States)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  14. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    Science.gov (United States)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  15. Technique of ICP monitored stepwise intracranial decompression effectively reduces postoperative complications of severe bifrontal contusion

    Directory of Open Access Journals (Sweden)

    Guan eSun

    2016-04-01

    Full Text Available Background Bifrontal contusion is a common clinical brain injury. In the early stage, it is often mild, but it progresses rapidly and frequently worsens suddenly. This condition can become life threatening and therefore requires surgery. Conventional decompression craniectomy is the commonly used treatment method. In this study, the effect of ICP monitored stepwise intracranial decompression surgery on the prognosis of patients with acute severe bifrontal contusion was investigated. Method A total of 136 patients with severe bifrontal contusion combined with deteriorated intracranial hypertension admitted from March 2001 to March 2014 in our hospital were selected and randomly divided into two groups, i.e., a conventional decompression group and an intracranial pressure (ICP monitored stepwise intracranial decompression group (68 patients each, to conduct a retrospective study. The incidence rates of acute intraoperative encephalocele, delayed hematomas, and postoperative cerebral infarctions and the Glasgow outcome scores (GOSs 6 months after the surgery were compared between the two groups.Results (1 The incidence rates of acute encephalocele and contralateral delayed epidural hematoma in the stepwise decompression surgery group were significantly lower than those in the conventional decompression group; the differences were statistically significant (P < 0.05; (2 6 months after the surgery, the incidence of vegetative state and mortality in the stepwise decompression group were significantly lower than those in the conventional decompression group (P < 0.05; the rate of favorable prognosis in the stepwise decompression group was also significantly higher than that in the conventional decompression group (P < 0.05.Conclusions The ICP monitored stepwise intracranial decompression technique reduced the perioperative complications of traumatic brain injury through the gradual release of intracranial pressure and was beneficial to the prognosis of

  16. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading.

    Science.gov (United States)

    Kim, Gun; Loreto, Giovanni; Kim, Jin-Yeon; Kurtis, Kimberly E; Wall, James J; Jacobs, Laurence J

    2018-08-01

    This research conducts in situ nonlinear ultrasonic (NLU) measurements for real time monitoring of load-induced damage in concrete. For the in situ measurements on a cylindrical specimen under sustained load, a previously developed second harmonic generation (SHG) technique with non-contact detection is adapted to a cylindrical specimen geometry. This new setup is validated by demonstrating that the measured nonlinear Rayleigh wave signals are equivalent to those in a flat half space, and thus the acoustic nonlinearity parameter, β can be defined and interpreted in the same way. Both the acoustic nonlinearity parameter and strain are measured to quantitatively assess the early-age damage in a set of concrete specimens subjected to either 25 days of creep, or 11 cycles of cyclic loading at room temperature. The experimental results show that the acoustic nonlinearity parameter is sensitive to early-stage microcrack formation under both loading conditions - the measured β can be directly linked to the accumulated microscale damage. This paper demonstrates the potential of NLU for the in situ monitoring of mechanical load-induced microscale damage in concrete components. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  18. Monitoring receding of glaciers and in north-eastern pakistan through geo-informatics techniques

    International Nuclear Information System (INIS)

    Zamir, U.B.

    2012-01-01

    Pakistan is amongst those countries which are blessed from the wide range of natural features. Pakistan is a land of varied topography, ranging from deep sea to top mountains of the world. Northern area of Pakistan carries the most fascinating mountainous series with snow-clad peaks of varying height. Apart from North and South Pole, Northern Pakistan hosts the greatest masses of glaciated ice in the world. The glaciers are of extreme worth in providing fresh water resources; this important resource is a vital source of water but it has been diminished due to anthropogenic interventions which, as a result, have unbalanced the indigenous eco-system. Monitoring of these glaciers is important to cater the water and power need of a country like Pakistan. By using remote sensing and Geographical Information System (GIS) techniques, this paper is an attempt to address the receding of glaciers and snow cover in the extreme north-eastern districts of Pakistan. Monitoring of melting of glaciers due to climate change in the recent decades has been attempted in this study for Ghanche District. This study is also concerned with observing the spatial change in the snow cover and glaciers of Ghanche District. (author)

  19. Web based concept project for information and communication of monitoring policy and techniques

    International Nuclear Information System (INIS)

    Levy, D. S.; Sordi, G. M. A. A.

    2014-08-01

    Information and Communication Technology (ICT) is growing in Brazil and worldwide. The servers processing power added to the technology of relational databases allow to integrate information from different sources, enabling complex queries with reduced response time. We believe that the use of information technology for the radiological protection programs for human activities shall help greatly the radioactive facility that requires such use. Therefore, this project aims the informatization of the monitoring policy and techniques in Portuguese, providing Brazilian radioactive facilities a complete repository for research, consultation and information in a quick, integrated and efficient way. In order to meet national and international standards, the development of this project includes concepts, definitions and theory about monitoring procedures in order to interrelate information, currently scattered in several publications and documents, in a consistent and appropriate manner. The Web platform tools and functionalities were developed according to our target public needs, regarding new possibilities of media, like mobile access, feeds of content and information sharing. Moreover, taking into account this is a pioneer project with the prospect of long-term use, our challenge involves the combination of multiple computer technologies that allows a robust, effective, and flexible system, which can be easily adapted according to future technological innovations. This pioneer project shell help greatly both radioactive facilities and researchers, and it is our target to make it an international reference for Portuguese Spoken countries. (Author)

  20. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    Science.gov (United States)

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.