WorldWideScience

Sample records for biological molecules purified

  1. Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

    International Nuclear Information System (INIS)

    Needleman, Daniel J; Jones, Jayna B; Raviv, Uri; Ojeda-Lopez, Miguel A; Miller, H P; Li, Y; Wilson, L; Safinya, C R

    2005-01-01

    With the completion of the human genome project, the biosciences community is beginning the daunting task of understanding the structures and functions of a large number of interacting biological macromolecules. Examples include the interacting molecules involved in the process of DNA condensation during the cell cycle, and in the formation of bundles and networks of filamentous actin proteins in cell attachment, motility and cytokinesis. In this proceedings paper we present examples of supramolecular assembly based on proteins derived from the vertebrate nerve cell cytoskeleton. The axonal cytoskeleton in vertebrate neurons provides a rich example of bundles and networks of neurofilaments, microtubules (MTs) and filamentous actin, where the nature of the interactions, structures, and structure-function correlations remains poorly understood. We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data, in reconstituted protein systems purified from bovine central nervous system, which reveal unexpected structures not predicted by current electrostatic theories of polyelectrolyte bundling, including three-dimensional MT bundles and two-dimensional MT necklaces

  2. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  3. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  4. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  5. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  6. Coinhibitory molecules in cancer biology and therapy.

    Science.gov (United States)

    Mocellin, Simone; Benna, Clara; Pilati, Pierluigi

    2013-04-01

    The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  8. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against α-transforming growth factor

    International Nuclear Information System (INIS)

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-01-01

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human α-transforming growth factor (α-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting α-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native α-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of α-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of α-TGF has a cellular role beyond that of an autocrine growth factor

  9. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against. cap alpha. -transforming growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-04-07

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human ..cap alpha..-transforming growth factor (..cap alpha..-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting ..cap alpha..-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native ..cap alpha..-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of ..cap alpha..-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of ..cap alpha..-TGF has a cellular role beyond that of an autocrine growth factor.

  10. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  11. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  12. Radical inactivation of a biological sulphydryl molecule

    International Nuclear Information System (INIS)

    Lin, W.S.; Lal, M.; Gaucher, G.M.; Armstrong, D.A.

    1977-01-01

    Reactive species produced from the free radical-induced chain oxidation of low molecular weight sulphydryl-containing molecules in aerated solutions deactivate the sulphydryl-containing enzyme papain, forming both reparable mixed disulphides and non-reparable products. This inactivation is highly efficient for penicillamine and glutathione, but almost negligible with cysteine, which is a protector of papain for [cysteine] / [papain] >= 5 under all conditions used. In the case of glutathione, superoxide dismutase caused only a small reduction in the inactivation and peroxide yields were small, implying that the deactivating species are not .O 2 - but RSOO. radicals or products from them. For penicillamine, however, dimutase was highly effective and the peroxide yields were relatively large, demonstrating that .O 2 - or a radical with similar capabilities for forming H 2 O 2 and being deactivated by dismutase was involved. Although in the presence of dismutase penicillamine is a better protector of non-reparable papain inactivation than glutathione, it suffers from a deficiency in that the papain-penicillamine mixed disulphide, which is always formed, cannot be repaired by spontaneous reaction with RSH molecules. (author)

  13. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  14. Perspective: Mechanochemistry of biological and synthetic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Dmitrii E., E-mail: makarov@cm.utexas.edu [Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-21

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.

  15. Perspective: Mechanochemistry of biological and synthetic molecules

    International Nuclear Information System (INIS)

    Makarov, Dmitrii E.

    2016-01-01

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field

  16. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  17. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  18. The "adjuvant effect" of the polymorphic B-G antigens of the chicken major histocompatibility complex analyzed using purified molecules incorporated in liposomes

    DEFF Research Database (Denmark)

    Salomonsen, J; Eriksson, H; Skjødt, K

    1991-01-01

    The polymorphic B-G region of the chicken major histocompatibility complex has previously been shown to mediate an "adjuvant effect" on the humoral response to other erythrocyte alloantigens. We demonstrate here that B-G molecules purified with monoclonal antibodies exert this adjuvant effect...... on the production of alloantibodies to chicken class I (B-F) molecules, when the two are in the same liposome. The adjuvant effect may in part be mediated by antibodies, since the antibody response to B-G molecules occurs much faster than the response to B-F molecules, and conditions in which antibodies to B......-G are present increase the speed of the response to B-F molecules. We also found that the presence of B-G molecules in separate liposomes results in a lack of response to B-F molecules. In the light of this and other data, we consider the possible roles for the polymorphic B-G molecules, particularly...

  19. Electro-induced reactions of biologically important molecules

    International Nuclear Information System (INIS)

    Kocisek, J.

    2010-01-01

    The thesis presents the results of research activities in the field of electron interactions with biologically relevant molecules which was carried out during my PhD studies at the Department of Experimental Physics, Comenius University in Bratislava. Electron induced interactions with biologically relevant molecules were experimentally studied using crossed electron-molecule beams experiment. The obtained results, were presented in four publications in international scientific journals. First study of deals with electron impact ionisation of furanose alcohols [see 1. in list of author publications on page 22]. It has been motivated by most important works in the field of electron induced damages of DNA bases [4]. Studied 3-hydroxytetrahydrofuran and tetrahydrofurfuryl alcohol, are important model molecules for more complex biological systems (e.g. deoxyribose).The influence of hydroxyl group on stabilisation of the positive ions of the molecules, together with the stability of furan ring in ionized form are main themes of the study. The studies of small amides and aminoacids are connected to scientific studies in the field of formation of the aminoacids and other biologically relevant molecules in space and works trying to explain electron induced processes in more complex molecules[12, 13, 24]. The most important results were obtained for aminoacid Serine [see 2. in list of author publications on page 22]. We have showed that additional OH group of Serine considerably lower the reaction enthalpy limit of reactions resulting to formation of neutral water molecules, in comparison to other amino acids. Also the study of (M-H)- reaction channel using the electron beam with FWHM under 100 meV is of high importance in the field. The last part of the thesis is focused on the electron interactions with organosilane compounds. Materials prepared from organosilane molecules in plasmas have wide range of applications in both biology and medicine. We have studied electron

  20. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  1. In vitro gamma irradiation of some purified polypeptide hormones and their biological and radioimmunological activity

    International Nuclear Information System (INIS)

    Hromadova, M.; Macho, L.; Strbak, V.; Vigas, M.; Mikulaj, L.

    1979-01-01

    Some polypeptide hormones (adrenocorticotropin - ACTH, human and bovine growth hormone - GH, human menopausal gonadotropin - HMG, human luteinizing hormone - LH, and bovine thyrotropin - TSH) were irradiated either with 2.5 or 12.5 Mrad (1.1 Mrad/h) or both and their biological activity or immunoreactivity was tested within few days or 3 to 5 months after irradiation. Biological activity of irradiated ACTH (estimation of corticosterone released into medium by incubated adrenals - Saffran and Schally 1955) was not decreased in both time intervals tested. Ten days after irradiation of bovine GH no changes in biological activity (tibia test - Wilhelmi 1973) were found. No decrease of biological activity of irradiated HMG (augmentation of ovarian and uterine weight - Butt 1973) was found 4 months after irradiation and, finaly, no decrease of bovine TSH activity (radioiodine release from prelabelled thyroid in mice - McKenzie 1958) was found 2 to 30 days after irradiation with 2.5 Mrad, while a decrease was observed after 12.5 Mrad. Three to five months after irradiation, however, there was a decrease of biological activity after both doses. The immunological reactivity of irradiated HMG and LH did not differ from that of nonirradiated samples. The same was found with human GH after 2.5 Mrad, while a decrease of reactivity after 12.5 Mrad was detected. It was concluded that, in most of cases, the sterilizing dose of gamma radiation (2.5 Mrad) did not affect the biological activity of polypeptide hormones and that their sensitivity to irradiation appears to differ. (author)

  2. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    OpenAIRE

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but also in single molecule research confocal fluorescence microscopy became a popular technique. In this thesis the possibilities are shown to study a complicated biological process, which is Nucleotide ...

  3. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules

    DEFF Research Database (Denmark)

    Joosten, I; Wauben, M H; Holewijn, M C

    1994-01-01

    New strategies applied in the treatment of experimental autoimmune disease models involve blocking or modulation of MHC-peptide-TCR interactions either at the level of peptide-MHC interaction or, alternatively, at the level of T cell recognition. In order to identify useful competitor peptides one...... characteristics of the Lewis rat MHC class II RT1.B1 molecule. We have now developed a biochemical binding assay which enables competition studies in which the relative MHC binding affinity of a set of non-labelled peptides can be assessed while employing detection of biotinylated marker peptides...

  4. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  5. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  6. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  7. Single-molecule experiments in biological physics: methods and applications

    International Nuclear Information System (INIS)

    Ritort, F

    2006-01-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives. (topical review)

  8. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  9. A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility.

    Science.gov (United States)

    Misiewicz-Krzeminska, Irena; Corchete, Luis Antonio; Rojas, Elizabeta A; Martínez-López, Joaquín; García-Sanz, Ramón; Oriol, Albert; Bladé, Joan; Lahuerta, Juan-José; Miguel, Jesús San; Mateos, María-Victoria; Gutiérrez, Norma C

    2018-05-01

    Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138 + cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN /Cereblon and IKZF1 /Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138 + primary multiple myeloma samples. Copyright © 2018 Ferrata Storti Foundation.

  10. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  11. A small molecule (pluripotin as a tool for studying cancer stem cell biology: proof of concept.

    Directory of Open Access Journals (Sweden)

    Susan D Mertins

    Full Text Available BACKGROUND: Cancer stem cells (CSC are thought to be responsible for tumor maintenance and heterogeneity. Bona fide CSC purified from tumor biopsies are limited in supply and this hampers study of CSC biology. Furthermore, purified stem-like CSC subpopulations from existing tumor lines are unstable in culture. Finding a means to overcome these technical challenges would be a useful goal. In a first effort towards this, we examined whether a chemical probe that promotes survival of murine embryonic stem cells without added exogenous factors can alter functional characteristics in extant tumor lines in a fashion consistent with a CSC phenotype. METHODOLOGY/PRINCIPAL FINDINGS: The seven tumor lines of the NCI60 colon subpanel were exposed to SC-1 (pluripotin, a dual kinase and GTPase inhibitor that promotes self-renewal, and then examined for tumorigenicity under limiting dilution conditions and clonogenic activity in soft agar. A statistically significant increase in tumor formation following SC-1 treatment was observed (p<0.04. Cloning efficiencies and expression of putative CSC surface antigens (CD133 and CD44 were also increased. SC-1 treatment led to sphere formation in some colon tumor lines. Finally, SC-1 inhibited in vitro kinase activity of RSK2, and another RSK2 inhibitor increased colony formation implicating a role for this kinase in eliciting a CSC phenotype. CONCLUSIONS/SIGNIFICANCE: These findings validate a proof of concept study exposure of extant tumor lines to a small molecule may provide a tractable in vitro model for understanding CSC biology.

  12. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.

    Science.gov (United States)

    Lazo, Fanny; Vivas-Ruiz, Dan E; Sandoval, Gustavo A; Rodríguez, Edith F; Kozlova, Edgar E G; Costal-Oliveira, F; Chávez-Olórtegui, Carlos; Severino, Ruperto; Yarlequé, Armando; Sanchez, Eladio F

    2017-12-01

    An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is a homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca 2+ , Mg 2+ and Mn 2+ did not alter Bpic-LAAO activity; however, Zn 2+ is an inhibitor. Some reagents such as β-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 μg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  14. Myricetin: A Dietary Molecule with Diverse Biological Activities

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Semwal

    2016-02-01

    Full Text Available Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities.

  15. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  16. Voltammetric detection of biological molecules using chopped carbon fiber.

    Science.gov (United States)

    Sugawara, Kazuharu; Yugami, Asako; Kojima, Akira

    2010-01-01

    Voltammetric detection of biological molecules was carried out using chopped carbon fibers produced from carbon fiber reinforced plastics that are biocompatible and inexpensive. Because chopped carbon fibers normally are covered with a sizing agent, they are difficult to use as an electrode. However, when the surface of a chopped carbon fiber was treated with ethanol and hydrochloric acid, it became conductive. To evaluate the functioning of chopped carbon fibers, voltammetric measurements of [Fe(CN)(6)](3-) were carried out. Redoxes of FAD, ascorbic acid and NADH as biomolecules were recorded using cyclic voltammetry. The sizing agents used to bundle the fibers were epoxy, polyamide and polyurethane resins. The peak currents were the greatest when using the chopped carbon fibers that were created with epoxy resins. When the electrode response of the chopped carbon fibers was compared with that of a glassy carbon electrode, the peak currents and the reversibility of the electrode reaction were sufficient. Therefore, the chopped carbon fibers will be useful as disposable electrodes for the sensing of biomolecules.

  17. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  18. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  19. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  1. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  2. Purifying oils

    Energy Technology Data Exchange (ETDEWEB)

    1930-04-15

    Gasoline, lamp oils, and lubricating or other mineral or shale oils are refined by contacting the vapor with a hot aqueous solution of salts of zinc, cadmium, or mercury, or mixtures thereof which may contain 0-5-3-0 percent of oxide or hydroxide in solution or suspension. Chlorides, bromides, iodides, sulfates, nitrates, and sulfonates of benzol, toluol, xylol, and petroleum are specified. Washing with a solution of sodium or potassium hydroxide or carbonate of calcium hydroxide may follow. The oil may first be purified by sulfuric acid or other known agent, or afterwards caustic alkali and sulfuric acid. The Specification as open to inspection under Sect. 91 (3) (a) describes also the use of salts of copper, iron, chromium, manganese, aluminum, nickel, or cobalt, with or without their oxides or hydroxides. This subject-matter does not appear in the Specification as accepted.

  3. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  5. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  6. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  8. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  9. Nano- and micro-fabrication for single-molecule biological studies

    NARCIS (Netherlands)

    Huang, Z.

    2012-01-01

    Heterogeneity is a general feature in biological system. In order to avoid possible misleading effects of ensemble averaging, and to ensure a correct understanding of the biological system, it is very important to look into individuals, such as a single bio-molecule or a single cell, for details.

  10. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  11. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  12. Use of various ionization modes for the study of molecules of biological interest

    International Nuclear Information System (INIS)

    Forest, E.

    1987-01-01

    For the last ten years a revolutionary advance in mass spectrometry applied to molecules of biological interest occurred, chiefly concerning ionization with the emergence of many new modes allowing non volatile, polar or thermally labile sample analysis. Some examples of spectra obtained on high mass molecules such as vitamins, protein fragments, porphyrins (chlorophyll or hemoglobin active site), polysaccharides, are presented using some of the new modes [fr

  13. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  14. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  15. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  16. Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon J. L. [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics; Brookhaven National Lab. (BNL), Upton, NY (United States). X-ray Scattering Group; Duxbury, Phillip M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Gonçalves, Douglas S. [Univ. Federal de Santa Catarina,; Lavor, Carlile [Univ. of Campinas (UNICAMP), Sao Paulo (Brazil). Dept. of Applied Mathematics (IMECC-UNICAMP); Mucherino, Antonio [Univ. de Rennes, Rennes (France). Institut de Recherche en Informatique et Systemes Aleatoires

    2016-04-04

    Here, considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

  17. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules.

    Science.gov (United States)

    Venepally, Vijayendar; Reddy Jala, Ram Chandra

    2017-12-01

    Heterocyclic compounds are the interesting core structures for the development of new bioactive compounds. Fatty acids are derived from renewable raw materials and exhibit various biological activities. Several researchers are amalgamating these two bioactive components to yield bioactive hybrid molecules with some desirable features. Heterocyclic-fatty acid hybrid derivatives are a new class of heterocyclic compounds with a broad range of biological activities and significance in the field of medicinal chemistry. Over the last few years, many research articles emphasized the significance of heterocyclic-fatty acid hybrid derivatives. The present review article focuses the developments in designing and biological evaluation of heterocyclic-fatty acid hybrid molecules. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Suppression and enhancement of non-native molecules within biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.A. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: e.jones@postgrad.manchester.ac.uk; Lockyer, N.P. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, J.C. [Surface Analysis Research Centre, CEAS, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    With the aim of evaluating the potential of SIMS to provide molecular information from small molecules within biological systems, here we investigate the effect of different biological compounds as they act as matrices. The results highlight the fact that the chemical environment of a molecule can have a significant effect on its limit of detection. This has implications for the imaging of drugs and xenobiotics in tissue sections and other biological matrices. A 1:1 mixture of the organic acid 2,4,6-trihydroxyacetophenone and the dipeptide valine-valine demonstrates that almost complete suppression of the [M + H]{sup +} ion of one compound can be caused by the presence of a compound of higher proton affinity. The significance of this is highlighted when two similar drug molecules, atropine (a neutral molecule) and ipratropium bromide (a quaternary nitrogen containing salt) are mixed with brain homogenate. The atropine [M + H]{sup +} ion shows significant suppression whilst the [M - Br]{sup +} of ipratopium bromide is detected at an intensity that can be rationalised by its decreased surface concentration. By investigating the effect of two abundant tissue lipids, cholesterol and dipalmitoylphosphatidyl choline (DPPC), on the atropine [M + H]{sup +} signal detected in mixtures with these lipids we see that the DPPC has a strong suppressing effect, which may be attributed to gas phase proton transfer.

  20. Synthesis of molecules of biological interest labelled with high specific activity tritium

    International Nuclear Information System (INIS)

    Petillot, Yves

    1975-01-01

    Labelled molecules are artificial organic compounds possessing one or several radioactive or steady isotopic atoms. Using tritium to label molecules presents several benefits: a raw material easy to obtain with a high purity and at reasonable cost; synthesised labelled molecules displaying high specific activities very interesting in molecular biology; high resolution of radiographies; relatively simple and quick introduction of tritium atoms in complex molecules. Thus, this report for graduation in organic chemistry addresses the synthesis and study of new labelled molecules which belong to families of organic compounds which have fundamental activities in biology: uridine 3 H-5,6 and thymidine 3 H-methyl which are nucleotides which intervene under the form of phosphates in the synthesis of nucleic acids, oestradiol 3 H-2,4,6,7 which is a powerful estrogenic hormone which naturally secreted by the ovary; and noradrenaline 3 H-1,1' and dopamine 3 H-1,2 which are usually secreted by adrenal medulla and have multiple actions on the nervous system

  1. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    detection of small molecules by means of FA in complex biological samples.

  2. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    International Nuclear Information System (INIS)

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-01-01

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  3. Pragmatic turn in biology: From biological molecules to genetic content operators.

    Science.gov (United States)

    Witzany, Guenther

    2014-08-26

    Erwin Schrödinger's question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.

  4. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Science.gov (United States)

    Tien, Shin-Ming; Hsu, Chih-Yuan; Chen, Bor-Sen

    2016-01-01

    Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  5. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Directory of Open Access Journals (Sweden)

    Shin-Ming Tien

    Full Text Available Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  6. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  7. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  8. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of europium (analogue of trivalent actinides) and uranium (VI) (actinide) with biological molecules of interest: phyto-chelatins. Their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better understand their reactivity, we extended our studies to lower entities which constitute them (amino acids and glutathione). We determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation of these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 < 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. In addition to studies undertaken on synthetic solutions reproducing the 'biological' conditions (pH close to neutrality, ionic strength 0.1 mol/L, etc), tests of cellular contamination were realized. The quantification of integrated europium showed that those are able to

  9. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 ≤ 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary, lower than

  10. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  11. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  12. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  13. Application of Fourier transform infrared ellipsometry to assess the concentration of biological molecules

    Science.gov (United States)

    Garcia-Caurel, Enric; Drevillon, Bernard; De Martino, Antonello; Schwartz, Laurent

    2002-12-01

    Spectroscopic ellipsometry is a noninvasive optical characterization technique mainly used in the semiconductor field to characterize bare substrates and thin films. In particular, it allows the gathering of information concerning the physical structure of the sample, such as roughness and film thickness, as well as its optical response. In the mid-infrared (IR) range each molecule exhibits a characteristic absorption fingerprint, which makes this technique chemically selective. Phase-modulated IR ellipsometry does not require a baseline correction procedure or suppression of atmospheric CO2 and water-vapor absorption bands, thus greatly reducing the subjectivity in data analysis. We have found that ellipsometric measurements of thin films, such as the solid residuals left on a plane surface after evaporation of a liquid drop containing a given compound in solution, are particularly favorable for dosing purposes because the intensity of IR absorptions shows a linear behavior along a wide range of solution concentrations of the given compound. Our aim is to illustrate with a concrete example and to justify theoretically the linearity experimentally found between radiation absorption and molecule concentration. For the example, we prepared aqueous solutions of glycogen, a molecule of huge biological importance currently tested in biochemical analyses, at concentrations ranging from 1 mg/l to 1 g/l, which correspond to those found in physiological conditions. The results of this example are promising for the application of ellipsometry for dosing purposes in biochemistry and biomedicine.

  14. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions.

    Science.gov (United States)

    Firman, Keith; Evans, Luke; Youell, James

    2012-07-16

    This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications

    Science.gov (United States)

    Ritort, F.

    2006-08-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  16. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  17. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  18. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2008-01-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2 + ) revealed local secondary ion signal enhancements correlated with the water image signals of 19 (H 3 O) + . A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  19. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  20. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  1. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  2. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.

    Science.gov (United States)

    Penocchio, Emanuele; Piccardo, Matteo; Barone, Vincenzo

    2015-10-13

    The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.

  3. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  5. X-ray structure analyses of biological molecules and particles in Japan. A brief history and future prospect

    International Nuclear Information System (INIS)

    Nakasako, Masayoshi; Yamamoto, Masaki

    2015-01-01

    In Japan, X-ray structure analyses of molecules and particles from biology started in the 1970s. The structure analysis methods have been developed through the innovation of various techniques in advance, and have contributed for understanding the elementary and microscopic processes in life. Here we summarize briefly the history of X-ray structure analyses for structural biology in Japan and think about the prospect. (author)

  6. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  7. High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula

    Science.gov (United States)

    Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard

    2018-06-01

    Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

  8. From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe.

    Science.gov (United States)

    Böttcher, Thomas

    2018-01-01

    Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.

  9. From Molecules to Living Organisms : an Interplay between Biology and Physics : Lecture Notes of the Les Houches School of Physics

    CERN Document Server

    Nury, Hughes; Parcy, François; Ruigrok, Rob W H; Ziegler, Christine; Cugliandolo, Leticia F; Session CII

    2016-01-01

    The aim of this book is to provide new ideas for studying living matter by a simultaneous understanding of behavior from molecules to the cell, to the whole organism in the light of physical concepts. Indeed, forces guide most biological phenomena. In some cases these forces can be well-described and thus used to model a particular biological phenomenon. This is exemplified here by the study of membranes, where their shapes and curvatures can be modeled using a limited number of parameters that are measured experimentally. The growth of plants is another example where the combination of physics, biology and mathematics leads to a predictive model. The laws of thermodynamics are essential, as they dictate the behavior of proteins, or more generally biological molecules, in an aqueous environment. Integrated studies from the molecule to a larger scale need a combination of cutting-edge approaches, such as the use of new X-ray sources, in-cell NMR, cryo-electron microscopy or single-molecule microscopy. Some are...

  10. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  11. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  12. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  13. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  14. Surface plasmon resonance sensing: from purified biomolecules to intact cells.

    Science.gov (United States)

    Su, Yu-Wen; Wang, Wei

    2018-04-12

    Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.

  15. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  16. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  17. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  18. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  19. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  20. SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints

    Science.gov (United States)

    Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan

    2012-02-01

    A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summaryProgram title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input

  1. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    Science.gov (United States)

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  2. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    Science.gov (United States)

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  3. New basis set for the prediction of the specific rotation in flexible biological molecules

    DEFF Research Database (Denmark)

    Baranowska-Łaczkowska, Angelika; Z. Łaczkowski, Krzysztof Z. Łaczkowski; Henriksen, Christian

    2016-01-01

    are compared to those obtained with the (d-)aug-cc-pVXZ (X = D, T and Q) basis sets of Dunning et al. The ORP values are in good overall agreement with the aug-cc-pVTZ results making the ORP a good basis set for routine TD-DFT optical rotation calculations of conformationally flexible molecules. The results...

  4. Unequal Activities of Enantiomers via Biological Receptors: Examples of Chiral Drug, Pesticide, and Fragrance Molecules

    Science.gov (United States)

    Mannschreck, Albrecht; Kiesswetter, Roland; von Angerer, Erwin

    2007-01-01

    A molecule coming from outside an organism can form a ligand-receptor complex. Upon its formation, a message is transmitted, for example, to certain cells. In this way, two enantiomers can emit messages that differ, either quantitatively or qualitatively. In the present article, these facts are taken as a common basis for the actions of chiral…

  5. Solid-state nanopores for scanning single molecules and mimicking biology

    NARCIS (Netherlands)

    Kowalczyk, S.W.

    2011-01-01

    Solid-state nanopores, nanometer-size holes in a thin synthetic membrane, are a versatile tool for the detection and manipulation of charged biomolecules. This thesis describes mostly experimental work on DNA translocation through solid-state nanopores, which we study at the single-molecule level.

  6. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  7. Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

    International Nuclear Information System (INIS)

    Hindie, E.; Escaig, F.; Coulomb, B.; Lebreton, C.; Galle, P.

    1989-01-01

    We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14 C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [ 14 C]-thymidine and [ 14 C]-uridine, incorporated by human fibroblasts in culture. As expected, 14 C ion images showed the presence of [ 14 C]-thymidine in the nucleus of dividing cells, whereas [ 14 C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14 C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14

  8. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  9. Single molecule optical measurements of orientation and rotations of biological macromolecules

    OpenAIRE

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-01-01

    The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here...

  10. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  11. Detection of biological molecules using boronate-based chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph; Lane, Stephen M.; Satcher, Jr., Joe H.; Darrow, Christopher B.; Peyser, Thomas A.; Harder, Jennifer

    1999-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  12. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...... electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...

  13. An introduction to radiation induced degradation of biological molecules in aqueous solutions

    International Nuclear Information System (INIS)

    Lal, Manohar

    1991-01-01

    Radiation chemistry of aqueous systems is the chemistry of H, OH, e aq - , H 3 O + and H 2 O * formed when a solute in aqueous solutions is exposed to ionising radiation. The pulse radiolysis technique has helped in the production, the detection and understanding of the reactions of primary species with solutes. A great deal of data on radiation biochemical studies e.g. degradation of DNA, its constituents and their protection, radiation protection and sensitisation, generation of superoxide ion and their reactions has already been reported but a great deal still needs to be done for the understanding of radiation biology. (author). 12 refs

  14. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    parenthesis in figure 1.8 is a bi-stable toggle switch. Introduction: Molecular assembly lines O=P-O- O O HOH H0P-0- O -O- 4 Polymerase HO H--- O HHO ...sample. Therefore, the samples are self-consistent. From here on, the calculated temperature based on FAM emission MNSowmm" RF Biology: Results and...irradiation for one hour. Figure 2.11 shows the fluorescence spectra of FAM emission (4 scans averaged over 200 seconds) in a 300MHz field. The increased

  15. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  16. Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule.

    Science.gov (United States)

    Campbell, Matthew T; Chen, Dazhe; Wallbillich, Nicholas J; Glish, Gary L

    2017-10-03

    A method to distinguish the four most common biologically relevant underivatized hexoses, d-glucose, d-galactose, d-mannose, and d-fructose, using only mass spectrometry with no prior separation/derivatization step has been developed. Electrospray of a solution containing hexose and a lithium salt generates [Hexose+Li] + . The lithium-cationized hexoses adduct water in a quadrupole ion trap. The rate of this water adduction reaction can be used to distinguish the four hexoses. Additionally, for each hexose, multiple lithiation sites are possible, allowing for multiple structures of [Hexose+Li] + . Electrospray produces at least one structure that reacts with water and at least one that does not. The ratio of unreactive lithium-cationized hexose to total lithium-cationized hexose is unique for the four hexoses studied, providing a second method for distinguishing the isomers. Use of the water adduction reaction rate or the unreactive ratio provides two separate methods for confidently (p ≤ 0.02) distinguishing the most common biologically relevant hexoses using only femtomoles of hexose. Additionally, binary mixtures of glucose and fructose were studied. A calibration curve was created by measuring the reaction rate of various samples with different ratios of fructose and glucose. The calibration curve was used to accurately measure the percentage of fructose in three samples of high fructose corn syrup (<4% error).

  17. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.

    Science.gov (United States)

    Paciaroni, Nicholas G; Ratnayake, Ranjala; Matthews, James H; Norwood, Verrill M; Arnold, Austin C; Dang, Long H; Luesch, Hendrik; Huigens, Robert W

    2017-03-28

    High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp 3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phytohormones as Important Biologically Active Molecules – Their Simple Simultaneous Detection

    Directory of Open Access Journals (Sweden)

    Ladislav Havel

    2009-05-01

    Full Text Available Phytohormones, their functions, synthesis and effects, are of great interest. To study them in plant tissues accurate and sensitive methods are required. In the present study we aimed at optimizing experimental conditions to separate and determine not only plant hormones but also their metabolites, by liquid chromatography coupled with a UV-VIS detector. The mixture we analyzed was composed of benzyladenine, kinetin, trans-zeatin, cis-zeatin, dihydrozeatin, meta-topolin, ortho-topolin, α-naphthalene acetic acid, indole-3-acetic acid, trans-zeatin-7-glucoside, trans-zeatin-O-glucoside, trans-zeatin-9-riboside, meta-topolin-9-riboside and ortho-topolin-9-riboside. We measured the calibration dependences and estimated limits of detection and quantification under the optimal chromatographic conditions (column: Polaris C18; mobile phase: gradient starting at 2:98 (methanol:0.001% TFA and was increasing to 55:45 during twenty minutes, and then decreasing for 10 min to 35:65, flow rate: 200 µL·min-1, temperature: 50 °C, wavelength: 210 nm. The detection limits for the target molecules were estimated as tens of ng per mL. We also studied the effect of flax extracts on the phytohormones’ signals. Recovery of aliphatic and aromatic cytokinins, metabolites of cytokinins and auxinswere within the range from 87 to 105 %. The experimental conditions were tested on a mass selective detector. In addition we analysed a commercial product used for stimulation of roots formation in cuttings of poorly rooting plants. The determined content of α-naphthalene acetic acid was in good agreement with that declared by the manufacturer.

  19. Biological functions of hCG and hCG-related molecules

    Directory of Open Access Journals (Sweden)

    Cole Laurence A

    2010-08-01

    Full Text Available Abstract Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle.

  20. "Life-bearing molecules" versus "life-embodying systems": Two contrasting views on the what-is-life (WIL) problem persisting from the early days of molecular biology to the post-genomic cell- and organism-level biology.

    Science.gov (United States)

    Sato, Naoki

    2018-05-01

    "What is life?" is an ultimate biological quest for the principle that makes organisms alive. This 'WIL problem' is not, however, a simple one that we have a straightforward strategy to attack. From the beginning, molecular biology tried to identify molecules that bear the essence of life: the double helical DNA represented replication, and enzymes were micro-actuators of biological activities. A dominating idea behind these mainstream biological studies relies on the identification of life-bearing molecules, which themselves are models of life. Another, prevalent idea emphasizes that life resides in the whole system of an organism, but not in some particular molecules. The behavior of a complex system may be considered to embody the essence of life. The thermodynamic view of life system in the early 20th century was remodeled as physics of complex systems and systems biology. The two views contrast with each other, but they are no longer heritage of the historical dualism in biology, such as mechanism/materialism versus vitalism, or reductionism versus holism. These two views are both materialistic and mechanistic, and act as driving forces of modern biology. In reality, molecules function in a context of systems, whereas systems presuppose functional molecules. A key notion to reconcile this conflict is that subjects of biological studies are given before we start to study them. Cell- or organism-level biology is destined to the dialectic of molecules and systems, but this antagonism can be resolved by dynamic thinking involving biological evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  2. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  3. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  4. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc; Poater, Jordi; Chauvin, Remi; Poater, Albert

    2015-01-01

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  5. Life at extreme conditions: neutron scattering studies of biological molecules suggest that evolution selected dynamics

    International Nuclear Information System (INIS)

    Zaccai, Joseph Giuseppe

    2008-01-01

    The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme conditions of temperature, pressure or solvent environment for survival. The existence of such organisms poses a significant challenge in understanding the physical chemistry of their proteins, in view of the great sensitivity of protein structure and stability to the aqueous environment and to external conditions in general. Results of neutron scattering measurements on the dynamics of proteins from extremophile organisms, in vitro as well as in vivo, indicated remarkably how adaptation to extreme conditions involves forces and fluctuation amplitudes that have been selected specifically, suggesting that evolutionary macromolecular selection proceeded via dynamics. The experiments were performed on a halophilic protein, and membrane adapted to high salt, a thermophilic enzyme adapted to high temperature and its mesophilic (adapted to 37 degC) homologue; and in vivo for psychrophilic, mesophilic, thermophilic and hyperthermophilic bacteria, adapted respectively to temperatures of 4 degC, 37 degC, 75 degC and 85 degC. Further work demonstrated the existence of a water component of exceptionally low mobility in an extreme halophile from the Dead Sea, which is not present in mesophile bacterial cells. (author)

  6. Methods for purifying carbon materials

    Science.gov (United States)

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  7. Leaf-specific pathogenesis-related 10 homolog, PgPR-10.3, shows in silico binding affinity with several biologically important molecules

    Directory of Open Access Journals (Sweden)

    Jin Haeng Han

    2015-10-01

    Conclusion: Although ginseng PR-10.3 gene is expressed in all organs of 3-wk-old plantlets, its expression is restricted to leaves in mature 2-yr-old ginseng plants. The putative binding property of PgPR-10.3 with Re is intriguing. Further verification of binding affinity with other biologically important molecules in the large hydrophobic cavity of PgPR-10.3 may provide an insight into the biological features of PR-10 proteins.

  8. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  9. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  10. Periradicular Tissue Responses to Biologically Active Molecules or MTA When Applied in Furcal Perforation of Dogs' Teeth

    Directory of Open Access Journals (Sweden)

    Anna Zairi

    2012-01-01

    Full Text Available The aim of this study was the comparative evaluation of inflammatory reactions and tissue responses to four growth factors, or mineral trioxide aggregate (MTA, or a zinc-oxide-eugenol-based cement (IRM as controls, when used for the repair of furcal perforations in dogs’ teeth. Results showed significantly higher inflammatory cell response in the transforming growth factorβ1 (TGFβ1 and zinc-oxide-eugenol-based cement (IRM groups and higher rates of epithelial proliferation in the TGFβ1, basic fibroblast growth factor (bFGF, and insulin growth factor-I (IGF-I groups compared to the MTA. Significantly higher rates of bone formation were found in the control groups compared to the osteogenic protein-1 (OP-1. Significantly higher rates of cementum formation were observed in the IGF-I and bFGF groups compared to the IRM. None of the biologically active molecules can be suggested for repairing furcal perforations, despite the fact that growth factors exerted a clear stimulatory effect on cementum formation and inhibited collagen capsule formation. MTA exhibited better results than the growth factors.

  11. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation

    NARCIS (Netherlands)

    Stamellou, E.; Storz, D.; Botov, S.; Ntasis, E.; Wedel, J.; Sollazzo, S.; Kraemer, B. K.; van Son, W.; Seelen, M.; Schmalz, H. G.; Schmidt, A.; Hafner, M.; Yard, B. A.

    2014-01-01

    Acyloxydiene-Fe(CO)(3) complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e, cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The

  12. Mine water purify from radium

    International Nuclear Information System (INIS)

    Lebecka, J.

    1996-01-01

    The article describes purification of radium containing water in coal mines. Author concludes that water purification is relatively simple and effective way to decrease environmental pollution caused by coal mining. The amount of radium disposed with type A radium water has been significantly decreased. The results of investigations show that it will be soon possible to purify also type B radium water. Article compares the amounts of radium disposed by coal mines in 1990, 1995 and forecast for 2000

  13. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  14. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  15. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  16. Purified deoxynivalenol or feed restriction reduces mortality in rainbow trout, Oncorhynchus mykiss (Walbaum), with experimental bacterial coldwater disease but biologically relevant concentrations of deoxynivalenol do not impair the growth of Flavobacterium psychrophilum.

    Science.gov (United States)

    Ryerse, I A; Hooft, J M; Bureau, D P; Hayes, M A; Lumsden, J S

    2015-09-01

    Diets containing deoxynivalenol (DON) were fed to rainbow trout Oncorhynchus mykiss (Walbaum) for 4 weeks followed by experimental infection (intraperitoneal) with Flavobacterium psychrophilum (4.1 × 10(6) colony-forming units [CFU] mL(-1) ). Mortality of rainbow trout fed either 6.4 mg kg(-1) DON or trout pair-fed the control diet was significantly reduced (P trout fed the control diet to apparent satiation (trout were fed one of three experimental diets; a control diet, a diet produced with corn naturally contaminated with DON (3.3 mg kg(-1) DON) or a diet containing purified DON (3.8 mg kg(-1) ); however, these fish were not experimentally infected. The presence of DON resulted in significant reduction (P trout fed diets containing purified DON (3.8 mg kg(-1) ) was significantly higher (P < 0.05) at 35 day post-exposure compared with controls. The antimicrobial activity of DON was examined by subjecting F. psychrophilum in vitro to serial dilutions of the chemical. Complete inhibition occurred at a concentration of 75 mg L(-1) DON, but no effect was observed below this concentration (0-30 mg L(-1) ). © 2014 John Wiley & Sons Ltd.

  17. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  18. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bakhtiar, Ray; Majumdar, Tapan K

    2007-01-01

    During the last decade, quantification of low molecular weight molecules using liquid chromatography-tandem mass spectrometry in biological fluids has become a common procedure in many preclinical and clinical laboratories. This overview highlights a number of issues involving "small molecule drugs", bioanalytical liquid chromatography-tandem mass spectrometry, which are frequently encountered during assay development. In addition, possible solutions to these issues are proposed with examples in some of the case studies. Topics such as chromatographic peak shape, carry-over, cross-talk, standard curve non-linearity, internal standard selection, matrix effect, and metabolite interference are presented. Since plasma is one of the most widely adopted biological fluid in drug discovery and development, the focus of this discussion will be limited to plasma analysis. This article is not intended to be a comprehensive overview and readers are encouraged to refer to the citations herein.

  19. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    Tabet, J.

    2007-11-01

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  20. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  1. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques; Etude de la speciation des radionucleides avec les molecules d'interet biologique par approche spectrometrique

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, V

    2007-07-15

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log{sub 10}K{sub 1} {<=} 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary

  2. Methods for Purifying Enzymes for Mycoremediation

    Science.gov (United States)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  3. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  4. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  5. Dynamics of initial ionization events in biological molecules: Formation and fate of free radicals. Final technical report, May 1, 1994--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Castleman, A.W. Jr.

    1997-08-01

    Study of early time events following the absorption of electromagnetic radiation in biological systems has potentially significant impact on several areas of importance. In this context, the studies being conducted under this program provided insight into the conformational changes as well as the reactions leading to a variety of transformations that culminate from hydrogen atom and proton transfer events. These studies enabled an investigation of molecular details of structure-function relationships. In a second aspect of the program, investigations were conducted to provide basic underpinning research that contributed to a quantification of the behavior of radionuclides and pollutants associated with advanced energy activities after these materials emanate from their source and become transferred through the environment to the biota and human receptor. The approach to elucidating factors governing the difference between reactions in the gas and condensed phase was to study the initiating steps at progressively higher degrees of cluster aggregation. The author employed ultrafast laser techniques, in combination with selected molecules, carefully prepared in tailored compositions, to investigation the primary mechanisms involved in various molecular functional groups following the absorption of electromagnetic radiation. He also studied various molecules representing chromophores in such biologically important molecules as tyrosine and amines.

  6. Functional analysis of biological matter across dimensions by atomic force microscopy (AFM): from tissues to molecules and, ultimately, atoms

    OpenAIRE

    Stolz, Martin

    2004-01-01

    For a detailed understanding of biological tissues and proteins and their dynamical processes the 3D structures of the components involved must be known. Most of the structural data have been obtained through the combination of three major techniques: X-ray crystallography, NMR and TEM. These three methods enable the determination of the structure of biological macromolecules at near atomic resolution and each of those was developed over many years to perfection. Nevertheless each one has its...

  7. 1H NMR analysis of complexation of hydrotropic agents nicotinamide and caffeine with aromatic biologically active molecules in aqueous solution

    Science.gov (United States)

    Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.

    2004-07-01

    NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.

  8. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology.

    Science.gov (United States)

    Casini, Arturo; Chang, Fang-Yuan; Eluere, Raissa; King, Andrew M; Young, Eric M; Dudley, Quentin M; Karim, Ashty; Pratt, Katelin; Bristol, Cassandra; Forget, Anthony; Ghodasara, Amar; Warden-Rothman, Robert; Gan, Rui; Cristofaro, Alexander; Borujeni, Amin Espah; Ryu, Min-Hyung; Li, Jian; Kwon, Yong-Chan; Wang, He; Tatsis, Evangelos; Rodriguez-Lopez, Carlos; O'Connor, Sarah; Medema, Marnix H; Fischbach, Michael A; Jewett, Michael C; Voigt, Christopher; Gordon, D Benjamin

    2018-03-28

    Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.

  9. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  10. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein.

    Directory of Open Access Journals (Sweden)

    Gabriele Giachin

    Full Text Available Humic substances (HS are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of "salting-out" whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of "prion ecology". These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment.

  11. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  12. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  13. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  14. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  15. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    Science.gov (United States)

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  16. The use of semiempirical quantum chemical methods in studying the properties of large series of biologically active molecules

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    In this work, the productivity (temporal characteristics) of the so-called Electron Topological Method (ETM) proposed for the structure-activity relationships (SAR) investigation is studied. The method is standing aside the methods proposed for quantitative SAR (QSAR) studies because of the essential difference in the languages chosen for the compound structures description. ETM uses Electron Topological Matrices of Contiguity (ETMC) that include the most comprehensive data on the electronic structure of compounds and their topology. The flexibility of real molecules is taken into account in terms of two parameters, Δ 1 and Δ 2 , that characterise the accuracy allowed for atomic properties (diagonal matrix elements) and for bonds (non-diagonal ones). The dependence of the feature realisation on different values of Δ 1 and Δ 2 is studied and its graphical representation is given

  17. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.; Villani, M.; Coluccio, M. L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé , N.; Cesarelli, M.; Amato, F.; Di Fabrizio, Enzo M.; Gentile, F.

    2018-01-01

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  18. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  19. A mechanistic approach to link biological effects of radioactive substances from molecules to populations in wildlife species - A mechanistic approach to link biological effects of radionuclides from molecules to populations in wildlife species

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, Frederic; Parisot, Florian; Plaire, Delphine; Adam-Guillermin, Christelle; Garnier- Laplace, Jacqueline [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul- Lez-Durance, 13115 (France)

    2014-07-01

    Understanding how toxic contaminants affect wildlife species at various levels of biological organisation (sub-cellular, histological, physiological, organism, population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between the different observed perturbations is necessary to predict consequences for survival, growth and reproduction which are critical for population dynamics. However, time scales at which such links are established in the laboratory are rarely relevant for natural populations. With a small size and short life cycle, the cladoceran micro-crustacean Daphnia magna is a particularly suitable biological model for studying effects of radioactive contaminants over several generations. Multi-generational exposures are much more representative of the environmental context of field populations for which contaminations can last for durations which largely exceed individual longevity and involve exposure of many successive generations. Over the last decade, multi-generational investigations of toxic effects were conducted under controlled conditions in D. magna exposed to various radionuclides including depleted uranium, americium-241 and cesium-137, representing respectively a dominantly chemo-toxic metal, an alpha internal contamination and a gamma external radiation. Results showed in all cases that toxic effects on physiology and life history (survival, body size, fecundity) increased in severity across generations. These observations demonstrated that measured effects in one generation might not be representative of toxicity in the following offspring generations, and ultimately of the population response. Reduction in somatic growth and reproduction induced by uranium were analysed using the mechanistic modelling approach known as DEBtox (model of dynamic energy budget applied to toxicology). Modelling results suggested that uranium primarily affects assimilation. This metabolic mode

  20. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  1. Search for biochemical fossils on earth and non-biological organic molecules on Jupiter, Saturn and Titan

    Science.gov (United States)

    Nagy, Bartholomew

    1982-07-01

    Recognizable remnants of ancient biochemicals may survive under mild/moderate geological environments. Acyclic isoprenoid hydrocarbons, cyclic hydrocarbons with terpenoid carbon skeletons (e.g. hopanes) and vanadyl and nickel porphyrins have been isolated from organic matter, including petroleum, in Phanerozoic sedimentary rocks. Remnants of lignin have also been found. Usually, carbohydrates do not survive long; they degrade and/or react with other organic substances to form macromolecular matter. Proteins, e.g. apparently those in dinosaur bone collagen, break down relatively rapidly. Life arose during the Precambrian and potential biochemical fossils, e.g. n-alkanes, 2,5-dimethylfuran have been isolated from Precambrian kerogens. Traces of hydrocarbons, NH3, PH3 occur on Jupiter and Saturn. Hydrocarbons, N2 and HCN, the latter a key intermediary in the laboratory abiological syntheses of amino acids and nucleic acid bases, are present on Titan where life could not have evolved. Precursor abiological organic molecules of some complexity may have been synthesized on Titan and the Jovian planets.

  2. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites.

    Science.gov (United States)

    Kevin Ii, Dion A; Meujo, Damaris Af; Hamann, Mark T

    2009-02-01

    As multidrug-resistant (MDR) pathogens continue to emerge, there is a substantial amount of pressure to identify new drug candidates. Carboxyl polyethers, also referred to as polyether antibiotics, are a unique class of compounds with outstanding potency against a variety of critical infectious disease targets including protozoa, bacteria and viruses. The characteristics of these molecules that are of key interest are their selectivity and high potency against several MDR etiological agents. Although many studies have been published about carboxyl polyether antibiotics, there are no recent reviews of this class of drugs. The purpose of this review is to provide the reader with an overview of the spectrum of activity of polyether antibiotics, their mechanism of action, toxicity and potential as drug candidates to combat drug-resistant infectious diseases. Polyether ionophores show a high degree of promise for the potential control of drug-resistant bacterial and parasitic infections. Despite the long history of use of this class of drugs, very limited medicinal chemistry and drug optimization studies have been reported, thus leaving the door open to these opportunities in the future. Scifinder and PubMed were the main search engines used to locate articles relevant to the topic presented in the present review. Keywords used in our search were specific names of each of the 88 compounds presented in the review as well as more general terms such as polyethers, ionophores, carboxylic polyethers and polyether antibiotics.

  3. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets.

    Science.gov (United States)

    Periwal, Vinita; Rajappan, Jinuraj K; Jaleel, Abdul Uc; Scaria, Vinod

    2011-11-18

    Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO) on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  4. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets

    Directory of Open Access Journals (Sweden)

    Periwal Vinita

    2011-11-01

    Full Text Available Abstract Background Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb, affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR and extensively drug-resistant (XDR strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. Results We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. Conclusions This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  5. Deciphering the perturbation effect of urea on the supramolecular host-guest interaction of biologically active hydrophobic molecule inside the nanocavity of cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Maity, Banibrata; Chatterjee, Aninda; Ahmed, Sayeed Ashique; Seth, Debabrata, E-mail: debabrata@iitp.ac.in

    2017-03-15

    The present work articulates the supramolecular interaction and the formation of host-guest complex between the biologically active hydrophobic coumarin derivative and cyclodextrins by using several spectroscopic, calorimetric and microscopic techniques. All the studies clearly revealed that in presence of cyclodextrins (CDs), coumarin forms 1:1 stoichiometric complex. From all the study, we have found that with gradual increasing the cavity diameter of the hosts, the binding efficiency of the complexes gradually increases. The small population of the non emissive twisted intramolecular charge transfer (TICT) state of coumarin molecule turns into highly emissive in presence of γ-CD owing to its greater cavity diameter. The emissive TICT band is not found in β-CD complex due to its comparative small hydrophilic exterior and less polar environment. The present finding also interpret the perturbation effect of urea on host-guest complexes. In the presence of urea, the TICT emissive band of γ-CD is completely diminished. From, {sup 1}H NMR study it was observed that –NEt{sub 2} moiety of 7-DCCAE molecule is deeply buried inside the hydrophobic cavity of the CDs and forms host-guest complexes. Isothermal titration calorimetry measurement also indicates the formation of 1:1 host-guest complexes.

  6. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  7. Method for purifying bidentate organophosphorus compounds

    International Nuclear Information System (INIS)

    Schulz, W.W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds

  8. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  9. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  10. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic......, linolenic, arachidonic, and arachidic acids), nucleotide bases (adenine, guanine, cytosine, uracil, and thymine), and carbohydrates (glucose, sucrose, raffinose, and starch). The Z(PEA, eff) and Z(PI, eff) values have been found to change with energy and composition of the biological molecules. The energy...

  11. Enantio-specific C(sp3)-H activation catalyzed by ruthenium nanoparticles: application to isotopic labeling of molecules of biological interest

    International Nuclear Information System (INIS)

    Taglang, Celine

    2015-01-01

    Isotopic labeling with deuterium and tritium is extensively used in chemistry, biology and pharmaceutical research. Numerous methods of labeling by isotopic exchange allow high isotopic enrichments but generally require harsh conditions (high temperatures, acidity). As a consequence, a general, regioselective and smooth labeling method that might be applicable to a wide diversity of substrates remains to develop. In the first part of this thesis, we demonstrated that the use of ruthenium nanoparticles, synthesized by Pr. Bruno Chaudret's team (INSA Toulouse), allowed the mild (2 bar of deuterium gas at 55 C), effective and selective H/D exchange reaction of a large variety of nitrogen-containing compounds, such as pyridines, indoles and primary, secondary and tertiary alkyl amines. The usefulness and the efficiency of this novel methodology was demonstrated by the deuteration of eight nitrogen-containing molecules of biological interest without altering their chemical and stereochemical properties. However, the conservation of the original stereochemistry of an activated chiral C-H center remains a major issue. We studied the reactivity of RuNP(at)PVP on different categories of nitrogen-containing substrates (amines, aminoacids and peptides) in water or in organic solvents. Our results showed that C-H activation of chiral carbons C(sp3) took place efficiently, selectively and, in all cases, with total retention of configuration. The wide range of applications of this procedure was demonstrated by the labeling of three chiral amines, fourteen aminoacids, three aromatic amino esters and four peptides. Moreover, our collaboration with Pr. Romuald Poteau's team (INSA Toulouse) led to the identification of two mechanisms by ab initio simulation in agreement with our experimental results: the σ-bond metathesis mechanism and the oxidative addition mechanism. These two mechanisms imply two vicinal ruthenium atoms leading to the formation an original

  12. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  13. Home Air Purifiers Eradicate Harmful Pathogens

    Science.gov (United States)

    2014-01-01

    Marshall Space Flight Center funded the University of Madison-Wisconsin to develop ethylene scrubbers to keep produce fresh in space. Akida Holdings of Jacksonville, Florida, licensed the technology and developed Airocide, an air purifier that can kill airborne pathogens. Previously designed for industrial spaces, there is now a specially designed unit for home use.

  14. Steroidogenesis in amlodipine treated purified Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  15. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  16. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  17. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Energy Technology Data Exchange (ETDEWEB)

    Öztekin, Aykut, E-mail: aoztekin@agri.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Agri Ibrahim Cecen University Faculty of Arts and Sciences, Department of Chemistry, 04100-Agri (Turkey); Almaz, Züleyha, E-mail: zturkoglu-2344@hotmail.com [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey); Mus Alparslan University Faculty of Sciences, Department of Moleculer Biology, 49250-Mus (Turkey); Özdemir, Hasan, E-mail: hozdemir@atauni.edu.tr [Ataturk University, Science Faculty, Department of Chemistry, 25240-Erzurum (Turkey)

    2016-04-18

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC{sub 50} values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  18. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    Science.gov (United States)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-04-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC50 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  19. Determining inhibition effects of some aromatic compounds on peroxidase enzyme purified from white and red cabbage

    International Nuclear Information System (INIS)

    Öztekin, Aykut; Almaz, Züleyha; Özdemir, Hasan

    2016-01-01

    Peroxidases (E.C.1.11.1.7) catalyze the one electron oxidation of wide range of substrates. They are used in synthesis reaction, removal of peroxide from industrial wastes, clinical biochemistry and immunoassays. In this study, the white cabbage (Brassica Oleracea var. capitata f. alba) and red cabbage (Brassica oleracea L. var. capitata f. rubra) peroxidase enzymes were purified for investigation of inhibitory effect of some aromatic compounds on these enzymes. IC_5_0 values and Ki constants were calculated for the molecules of 6-Amino nicotinic hydrazide, 6-Amino-5-bromo nicotinic hydrazide, 2-Amino-5-hydroxy benzohydrazide, 4-Amino-3-hydroxy benzohydrazide on purified enzymes and inhibition type of these molecules were determined. (This research was supported by Ataturk University. Project Number: BAP-2015/98).

  20. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  1. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  2. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam

    2017-05-01

    A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.

  3. Subpopulations in purified platelets adhering on glass.

    Science.gov (United States)

    Donati, Alessia; Gupta, Swati; Reviakine, Ilya

    2016-06-22

    Understanding how platelet activation is regulated is important in the context of cardiovascular disorders and their management with antiplatelet therapy. Recent evidence points to different platelet subpopulations performing different functions. In particular, procoagulant and aggregating subpopulations have been reported in the literature in platelets treated with the GPVI agonists. How the formation of platelet subpopulations upon activation is regulated remains unclear. Here, it is shown that procoagulant and aggregating platelet subpopulations arise spontaneously upon adhesion of purified platelets on clean glass surfaces. Calcium ionophore treatment of the adhering platelets resulted in one platelet population expressing both the procoagulant and the adherent population markers phosphatidylserine and the activated form of GPIIb/IIIa, while all of the platelets expressed CD62P independently of the ionophore treatment. Therefore, all platelets have the capacity to express all three activation markers. It is concluded that platelet subpopulations observed in various studies reflect the dynamics of the platelet activation process.

  4. Apparatus and methods for purifying lead

    Science.gov (United States)

    Tunison, Harmon M.

    2016-01-12

    Disclosed is an exemplary method of purifying lead which includes the steps of placing lead and a fluoride salt blend in a container; forming a first fluid of molten lead at a first temperature; forming a second fluid of the molten fluoride salt blend at a second temperature higher than the first temperature; mixing the first fluid and the second fluid together; separating the two fluids; solidifying the molten fluoride salt blend at a temperature above a melting point of the lead; and removing the molten lead from the container. In certain exemplary methods the molten lead is removed from the container by decanting. In still other exemplary methods the molten salt blend is a Lewis base fluoride eutectic salt blend, and in yet other exemplary methods the molten salt blend contains sodium fluoride, lithium fluoride, and potassium fluoride.

  5. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  6. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran.

    Science.gov (United States)

    Savitha Prashanth, M R; Shruthi, R R; Muralikrishna, G

    2015-09-01

    Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p 2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator.

  7. Study of hot corrosion of flakes of non purified graphite and of purified graphite

    International Nuclear Information System (INIS)

    Boule, Michel

    1967-01-01

    The author reports the study of hot corrosion of the Ticonderoga graphite. He reports the study of the defects of graphite flakes (structure defects due to impurities), the dosing of these impurities, and then their removal by purification. Flakes have then been oxidised by means of a specially designed apparatus. Based on photographs taken by optical and electronic microscopy, the author compares the oxidation features obtained in dry air and in humid air, between purified and non purified flakes. He also reports the study of the evolution of oxidation with respect to the initial rate of impurities, and the study of the evolution of oxidation features in humid air during oxidation. All these comparisons are made while taking the oxidation rate into account [fr

  8. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  9. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  10. Studying the fate of non-volatile organic compounds in a commercial plasma air purifier

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Stefan [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Seiler, Cornelia; Gerecke, Andreas C. [Swiss Federal Laboratories for Material Science and Technology (EMPA), CH-8600 Dübendorf (Switzerland); Hächler, Herbert [University of Zürich, Institute for Food Safety and Hygiene, National Centre for Enteropathogenic Bacteria and Listeria (NENT), CH-8057 Zürich (Switzerland); Hilbi, Hubert [Ludwig-Maximilians-Universität München Max von Pettenkofer-Institut, D-80336 München (Germany); Frey, Joachim [University of Bern, Institute for Veterinary Bacteriology, CH-3001 Bern (Switzerland); Weidmann, Simon; Meier, Lukas; Berchtold, Christian [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland); Zenobi, Renato, E-mail: zenobi@org.chem.ethz.ch [ETH Zürich, Department of Chemistry and Applied Biosciences, CH-8093 Zürich (Switzerland)

    2013-07-15

    Highlights: • Degradation of environmental toxins, a protein, and bioparticles were studied. • A commercial air purifier based on a cold plasma was used. • Passage through the device reduced the concentration of the compounds/particles. • Deposition inside the plasma air purifier was the main removal process. -- Abstract: Degradation of non-volatile organic compounds–environmental toxins (methyltriclosane and phenanthrene), bovine serum albumin, as well as bioparticles (Legionella pneumophila, Bacillus subtilis, and Bacillus anthracis)–in a commercially available plasma air purifier based on a cold plasma was studied in detail, focusing on its efficiency and on the resulting degradation products. This system is capable of handling air flow velocities of up to 3.0 m s{sup −1} (3200 L min{sup −1}), much higher than other plasma-based reactors described in the literature, which generally are limited to air flow rates below 10 L min{sup −1}. Mass balance studies consistently indicated a reduction in concentration of the compounds/particles after passage through the plasma air purifier, 31% for phenanthrene, 17% for methyltriclosane, and 80% for bovine serum albumin. L. pneumophila did not survive passage through the plasma air purifier, and cell counts of aerosolized spores of B. subtilis and B. anthracis were reduced by 26- and 15-fold, depending on whether it was run at 10 Hz or 50 Hz, respectively. However rather than chemical degradation, deposition on the inner surfaces of the plasma air purifier occured. Our interpretation is that putative “degradation” efficiencies were largely due to electrostatic precipitation rather than to decomposition into smaller molecules.

  11. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  12. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Helena, E-mail: mariahelena.santos@gmail.com [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Silva, Rafael M.; Dumont, Vitor C. [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Neves, Juliana S. [Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Mansur, Herman S. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Belo Horizonte/MG 31270-901 (Brazil); Heneine, Luiz Guilherme D. [Department of Health Science, Ezequiel Dias Foundation-FUNED, Belo Horizonte/MG 30510-010 (Brazil)

    2013-03-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: Black-Right-Pointing-Pointer Type I collagen was obtained from bovine pericardium, an abundant tissue resource. Black-Right-Pointing-Pointer A simple and feasible processing technique was developed to purify bovine collagen. Black-Right-Pointing-Pointer The appropriate process may be performed on industrial scale. Black-Right-Pointing-Pointer The pure collagen presented appropriate morphological and molecular characteristics. Black-Right-Pointing-Pointer The purify

  13. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell's viper venom-factor X activator (RVV-X).

    Science.gov (United States)

    Suntravat, Montamas; Nuchprayoon, Issarang; Pérez, John C

    2010-09-15

    Snake venoms consist of numerous molecules with diverse biological functions used for capturing prey. Each component of venom has a specific target, and alters the biological function of its target. Once these molecules are identified, characterized, and cloned; they could have medical applications. The activated clotting time (ACT) and clot rate were used for screening procoagulant and anticoagulant properties of 28 snake venoms. Crude venoms from Daboia russellii siamensis, Bothrops asper, Bothrops moojeni, and one Crotalus oreganus helleri from Wrightwood, CA, had procoagulant activity. These venoms induced a significant shortening of the ACT and showed a significant increase in the clot rate when compared to the negative control. Factor X activator activity was also measured in 28 venoms, and D. r. siamensis venom was 5-6 times higher than those of B. asper, B. moojeni, and C. o. helleri from Wrightwood County. Russell's viper venom-factor X activator (RVV-X) was purified from D. r. siamensis venom, and then procoagulant activity was evaluated by the ACT and clot rate. Other venoms, Crotalus atrox and two Naja pallida, had anticoagulant activity. A significant increase in the ACT and a significant decrease in the clot rate were observed after the addition of these venoms; therefore, the venoms were considered to have anticoagulant activity. Venoms from the same species did not always have the same ACT and clot rate profiles, but the profiles were an excellent way to identify procoagulant and anticoagulant activities in snake venoms.

  14. Solid-Phase Synthesis for the Construction of Biologically Interesting Molecules and the Total Synthesis of Trioxacarcin DC-45-A2

    DEFF Research Database (Denmark)

    Mikkelsen, Remi Jacob Thomsen

    . Furthermore a route to another key building block was developed featuring a Stille cross-coupling.Synthesis of Poly-fused Heterocycles. In the search for new biologically active compounds a methodology for the synthesis of polyfused heterocycles was investigated. This led to the development and optimization...

  15. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture.

    Science.gov (United States)

    Moriyama, Kenji; Yoshizawa-Sugata, Naoko; Masai, Hisao

    2018-03-09

    Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  17. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  18. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    Science.gov (United States)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  19. Influence of Heat Treatment on the Corrosion Behavior of Purified Magnesium and AZ31 Alloy

    OpenAIRE

    Khalifeh, Sohrab; Burleigh, T. David

    2017-01-01

    Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{\\deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measu...

  20. Analysis of cavitation effect for water purifier using electrolysis

    Science.gov (United States)

    Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho

    2015-11-01

    Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  1. Production of rabbit antibodies against purified Glucose oxidase

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2012-02-01

    Full Text Available Glucose oxidase is an active oxygen species generating enzyme produced from Aspergillus niger grown in submerged fermentation. Disintegration of the mycelium resulted in high glucose oxidase activity that was subjected to ammonium sulfate precipitation at 60-85% saturation rates that resulted to 6.14 U mg -1 specific activity. Purification of enzyme by anion exchange column (DEAE-Cellulose resulted into 22.53 U mg-1 specific activity and 10.27 fold purification. This was applied to sephadex G-200 column for gel filtration chromatography. It was observed that enzyme achieved 59.37 U mg-1of specific activity with 27.08 fold purity and 64.36% recovery. Purified glucose oxidase was injected into rabbits through intravenous route, to raise the glucose oxidase antibodies. After 30 days incubation period, the rabbits were slaughtered and serum was separated from blood. The antibodies were isolated by ammonium sulfate precipitation and confirmed by agar gel precipitation test. This could be a convenient and low cost alternate assay for the estimation of glucose oxidase in biological fluids. Moreover, such antibodies against the said enzyme could be used in various therapeutic and diagnostic applications.

  2. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  3. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Isoforms of purified methyltransferase from human blood platelets ...

    African Journals Online (AJOL)

    ... purification from normal human blood platelets have not been investigated, hence, the aim of this study was to purify, characterise the enzyme from human blood platelets and determine its possible role in phospholipid transmethylation. The plasma membranes were purified by velocity and sucrose gradient centrifugation ...

  5. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  6. Reproducible in vitro regeneration system for purifying sugarcane ...

    African Journals Online (AJOL)

    This procedure may be considered as one of the best ever published report on regeneration from in vitro grown plants to purify clones without subjecting the plants to field conditions and harvesting the mature cane. This technique was used to purify transgenic sugarcane plants carrying Bacillus thuringiensis gene.

  7. Respirators: Air Purifying, Self-Study, Course 40723

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-21

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  8. Partially purified polygalacturonase from Aspergillus niger (SA6 ...

    African Journals Online (AJOL)

    Polygalacturonase (PG) was isolated from Aspergillus niger (A. niger) (SA6), partially purified and characterized. The PG showed two bands on SDS-PAGE suggesting an “endo and exo PG with apparent molecular weights of 35 and 40 KDa, respectively. It was purified 9-fold with a yield of 0.18% and specific activity of 246 ...

  9. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Drug Delivery Through the Skin: Molecular Simulations of Barrier Lipids to Design more Effective Noninvasive Dermal and Transdermal Delivery Systems for Small Molecules Biologics and Cosmetics

    Energy Technology Data Exchange (ETDEWEB)

    J Torin Huzil; S Sivaloganathan; M Kohandel; M Foldvari

    2011-12-31

    The delivery of drugs through the skin provides a convenient route of administration that is often preferable to injection because it is noninvasive and can typically be self-administered. These two factors alone result in a significant reduction of medical complications and improvement in patient compliance. Unfortunately, a significant obstacle to dermal and transdermal drug delivery alike is the resilient barrier that the epidermal layers of the skin, primarily the stratum corneum, presents for the diffusion of exogenous chemical agents. Further advancement of transdermal drug delivery requires the development of novel delivery systems that are suitable for modern, macromolecular protein and nucleotide therapeutic agents. Significant effort has already been devoted to obtain a functional understanding of the physical barrier properties imparted by the epidermis, specifically the membrane structures of the stratum corneum. However, structural observations of membrane systems are often hindered by low resolutions, making it difficult to resolve the molecular mechanisms related to interactions between lipids found within the stratum corneum. Several models describing the molecular diffusion of drug molecules through the stratum corneum have now been postulated, where chemical permeation enhancers are thought to disrupt the underlying lipid structure, resulting in enhanced permeability. Recent investigations using biphasic vesicles also suggested a possibility for novel mechanisms involving the formation of complex polymorphic lipid phases. In this review, we discuss the advantages and limitations of permeation-enhancing strategies and how computational simulations, at the atomic scale, coupled with physical observations can provide insight into the mechanisms of diffusion through the stratum corneum.

  11. Methods to Enrich Exosomes from Conditioned Media and Biological Fluids.

    Science.gov (United States)

    Sharma, Shayna; Scholz-Romero, Katherin; Rice, Gregory E; Salomon, Carlos

    2018-01-01

    Exosomes are nano-vesicles which can transport a range of molecules including but not limited to proteins and miRNA. This ability of exosomes renders them useful in cellular communication often resulting in biological changes. They have several functions in facilitating normal biological processes such as immune responses and an involvement in pregnancy. However, they have also been linked to pathological conditions including cancer and pregnancy complications such as preeclampsia. An understanding for the role of exosomes in preeclampsia is based on the ability to purify and characterize exosomes. There have been several techniques proposed for the enrichment of exosomes such as ultracentrifugation, density gradient separation, and ultrafiltration although there is no widely accepted optimized technique. Here we describe a workflow for isolating exosomes from cell-conditioned media and biological fluids using a combination of centrifugation, buoyant density, and ultrafiltration approaches.

  12. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2018-02-01

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  14. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Eun Su; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Objective Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. Methods The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. Results The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. Conclusion Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic

  15. Photo fragmentation dynamics of small argon clusters and biological molecular: new tools by trapping and vectorial correlation; Dynamique de photofragmentation de petits agregats d'argon et de molecules biologiques: nouvel outil par piegeage et correlation vectorielle

    Energy Technology Data Exchange (ETDEWEB)

    Lepere, V

    2006-09-15

    The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar{sup 2+} dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar{sup 2+} and Ar{sup 3+} photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)

  16. Light aging of reactive fuels purified by various methods

    Energy Technology Data Exchange (ETDEWEB)

    Khodzhaeva, M G; Burtyshev, N Ya; Molodozhenyuk, T B; Ryabovda, N D

    1976-01-01

    A study of the effect of uv-radiation on aging of Fergana fuel TS-1 has been extended to the uv-effect on alkali-purified fuels (e.g., Krasnovodsk, Omsk, and Orsk TS-1), on hydro-purified (Syzran T-8, Syzran T-7, and Novokuybyshev T-7) and on adsorption-purified Fergana TS-1. The PRK-4 lamp was employed. Aging criteria were formation of insoluble gums, soluble gums separable on silicagel, acidity, and optical density. Fuels purified in the same manner aged practically identically; after 6 months storage the greatest gum formation was seen in the fuels Orsk TS-1 and Syzran T-8. 3 references, 1 figure, 1 table.

  17. Low pressure tritiation of molecules

    International Nuclear Information System (INIS)

    Moran, T.F.; Powers, J.C.; Lively, M.O.

    1980-01-01

    A method is described of tritiating sensitive biological molecules by depositing molecules of the substance to be tritiated on a supporting substrate in an evacuated vacuum chamber near, but not in the path of, an electron beam which traverses the chamber, admitting tritium gas into the chamber, and subjecting the tritium to the electron beam. Vibrationally excited tritium gas species are generated which collide and react with the substance thus incorporating tritium atoms into the substance. (U.K.)

  18. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    Science.gov (United States)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  19. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  20. Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas Chromatographic methods validation for analysis of small molecules in biological matrices

    OpenAIRE

    Neila Maria Cassiano; Juliana Cristina Barreiro; Lúcia Regina Rocha Martins; Regina Vincenzi Oliveira; Quezia Bezerra Cass

    2009-01-01

    Chromatographic methods are commonly used for analysis of small molecules in different biological matrices. An important step to be considered upon a bioanalytical method's development is the capacity to yield reliable and reproducible results. This review discusses validation procedures adopted by different governmental agencies, such as Food and Drug Administration (USA), European Union (EU) and Agência Nacional de Vigilância Sanitária (BR) for quantification of small molecules by bioanalyt...

  1. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  2. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    Science.gov (United States)

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  4. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  5. Nucleic Acids as Information Molecules.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma. (JRH)

  6. Development of a biogas purifier for rural areas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Hinata, T. [Hokkaido Central Agricultural Experiment Station, Hokkaido (Japan); Yasui, S. [Zukosha Co. Ltd., Obihiro, Hokkaido (Japan); Noguchi, N. [Hokkaido Univ., Sapporo, Hokkaido (Japan); Tsukamoto, T. [IHI Shibaura. Co. Ltd., Obihiro, Hokkaido (Japan); Imai, T. [Green Plan Co. Ltd., Sapporo, Hokkaido (Japan); Kanai, M. [Air Water Co. Ltd, Sakai, Osaka (Japan); Matsuda, Z. [Hokuren Agricultural Research Center, Sapporo, Hokkaido (Japan)

    2010-07-01

    Although the biogas that is currently produced for dairy farms in Japan is a carbon-neutral energy, its use is restricted to farming areas only because there is no effective method of transporting unused biogas. There is a need for establishing practical methods for biogas removal from operating systems. In this study, a gas separation membrane was used in order to modify biogas to city gas 12A specifications, and to develop a biogas purifier equipped with a device to fill high pressure purified gas into cylinders to be taken outside the farming area. The objective was to expand the use of biogas produced from stand-alone gas plants. The amount of purified gas produced at a newly created refining-compression-filling (RCF) facility was approximately 97.0 Nm{sup 3}/day, for a raw material amount of about 216.0 Nm{sup 3}/day. The heat quantity of the purified gas was 38.9 MJ/Nm{sup 3}, which was within city gas 12A specifications. A total of 14.3 cylinders were filled each day with the manufactured purified gas. Test calculations along with a simulation exercise revealed that it would be possible to provide purified gas to approximately 6 per cent of common residences in a town in northern Japan. It was concluded that the newly created RCF facility allowed the modification of carbon-neutral biogas to conform to city gas 12A specifications, and allowed the transport of this gas out of the farming area.

  7. AQUAPEAT 95. New methods for purifying the run-offs of peat production areas

    International Nuclear Information System (INIS)

    Selin, P.; Marja-aho, J.; Madekivi, O.

    1994-01-01

    The aim of Aqua Peat 95-project was to develop new methods for purifying the runoff coming from the peat production areas. The national water protection program for the year 1995 (Ympaeristoeministerioe 1988) as well as the level of the requirements and instructions from the authorities will obligate the peat producers to find new and practical methods for water purification. The chemical treatment reduced the load of peat production areas and the quality of treated water was almost equal to the runoffs coming from the natural bog area. The chemicals were the same as used in purifying drinking water. This purifying method is quite expensive and for this reason applicable only in special cases. The transpiration and evaporation and the soil filtering capacity of the forest area was also observed. The purifying capacity was very good, especially for the total nutrients and suspended solids. The changes of the ground water quality were insignificant but the level of the ground water in the field areas was higher than before. The long term changes of the vegetation and the trees could not be seen, yet. The most important water management practice is the detention of the discharge. The capacity of the sedimentation will increase by using the flow regulation in the sedimentation ponds and ditches. The changes in the water biology downstreams the Laeynioensuo peat production area were clearly seen near the main ditch. Because of the suspended solids the bottom sediment changed which lead to impacts to the bottom fauna. The colour of the runoffs as well as the changes in the sediment influenced on the macrophytes

  8. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  9. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  10. Neutron scattering studies of biological molecules suggest

    Indian Academy of Sciences (India)

    tions of temperature, pressure or solvent environment for survival. ... scale that depends on the scattering vector range and energy resolution of the in- .... the structures) are good indicators of global evolutionary adaptation mechanisms.

  11. Review: Nectar biology: From molecules to ecosystems.

    Science.gov (United States)

    Roy, Rahul; Schmitt, Anthony J; Thomas, Jason B; Carter, Clay J

    2017-09-01

    Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  13. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information is of...

  14. Full scale demonstration of air-purifying pavement

    NARCIS (Netherlands)

    Ballari, M.; Brouwers, H.J.H.

    2013-01-01

    Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO2 over a length of 150 m ("DeNOx street"). Another part of the street, about 100 m, was paved with

  15. Air purification by cementitious materials: Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  16. Influence of a highly purified senna extract on colonic epithelium

    NARCIS (Netherlands)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    BACKGROUND: Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in

  17. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  18. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  19. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section 880.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to ultraviolet radiation. (b) Classification. Class II (performance standards). ...

  20. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo

    2010-01-01

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  1. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  2. Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions?

    Science.gov (United States)

    Lopes, Graciliana; Sousa, Carla; Silva, Luís R.; Pinto, Eugénia; Andrade, Paula B.; Bernardo, João; Mouga, Teresa; Valentão, Patrícia

    2012-01-01

    Bacterial and fungal infections and the emerging multidrug resistance are driving interest in fighting these microorganisms with natural products, which have generally been considered complementary to pharmacological therapies. Phlorotannins are polyphenols restricted to brown seaweeds, recognized for their biological capacity. This study represents the first research on the antibacterial, antifungal, anti-inflammatory and antioxidant activity of phlorotannins purified extracts, which were obtained from ten dominant brown seaweeds of the occidental Portuguese coast. Phlorotannins content was determined by the specific dimethoxybenzaldehyde (DMBA) method and a yield between 75 and 969 mg/Kg phloroglucinol units (dry matter) was obtained. Fucus spiralis ranked first, followed by three Cystoseira species. The anti-inflammatory potential of the purified extracts was assessed via inhibitory effect on nitric oxide (NO) production by lipopolysaccharide-stimulated RAW 264.7 macrophage cells, Cystoseira tamariscifolia being the one showing promising activity for the treatment of inflammation. NO scavenging ability was also addressed in cell free systems, F. spiralis being the species with highest capacity. The antimicrobial potential of the extracts was checked against five Gram-positive and four Gram-negative bacteria and three fungi strains, that commonly colonize skin and mucosa and are responsible for food contamination. The different extracts were more effective against Gram-positive bacteria, Staphylococcus epidermidis being the most susceptible species. Concerning antifungal activity, Trichophyton rubrum was the most sensitive species. Although the molecular mechanisms underlying these properties remain poorly understood, the results obtained turn phlorotannins purified extracts a novel and potent pharmacological alternative for the treatment of a wide range of microbial infections, which usually also present an inflammatory component. In addition to the biological

  3. Small molecules: the missing link in the central dogma.

    Science.gov (United States)

    Schreiber, Stuart L

    2005-07-01

    Small molecules have critical roles at all levels of biological complexity and yet remain orphans of the central dogma. Chemical biologists, working with small molecules, expand our understanding of these central elements of life.

  4. In vivo behavior of detergent-solubilized purified rabbit thrombomodulin on intravenous injection into rabbits

    International Nuclear Information System (INIS)

    Ehrlich, H.J.; Esmon, N.L.; Bang, N.U.

    1990-01-01

    Thrombomodulin is a thrombin endothelial cell membrane receptor. The thrombomodulin-thrombin complex rapidly activates protein C resulting in anticoagulant activity. We investigated the anticoagulant effects and pharmacokinetic behavior of detergent-solubilized purified rabbit thrombomodulin labeled with iodine 125 when intravenously injected into rabbits. Thrombomodulin half-life (t1/2) was determined by tracking the 125I-radiolabeled protein and the biologic activity as determined by the prolongation of the activated partial thromboplastin time (APTT) and thrombin clotting time (TCT). When 200 micrograms/kg 125I-thrombomodulin was injected into rabbits, the APTT and TCT were immediately prolonged, whereas no effect on the prothrombin time was seen. In vitro calibration curves enabled us to convert the prolongations of the clotting times into micrograms per milliliter thrombomodulin equivalents. The best fit (r greater than 0.99) for the disappearance curves was provided by a two-compartment model with mean t1/2 alpha (distribution phase) of 18 minutes for 125I, 12 minutes for APTT, and 20 minutes for TCT, and mean t1/2 beta (elimination phase) of 385 minutes for 125I, 460 for APTT, and 179 for TCT. The administration of two doses of endotoxin (50 micrograms/kg) 24 hours apart did not accelerate the turnover rate of 125I-thrombomodulin as measured by the disappearance of 125I from the circulation. Thus, detergent-solubilized purified thrombomodulin administered intravenously circulates in a biologically active form for appreciable time periods

  5. Epuration des eaux usées de raffinerie par le procédé biologique des lits bactériens. Problèmes pratiques de l'exploitation Purifying Refinery Waste Water by the Bacterial Bed Biological Process. Practical Operational Problems

    Directory of Open Access Journals (Sweden)

    Leising M.

    2006-11-01

    filtration process is an interesting solution. Nonetheless, practical operating problems currently exist, and in particular the tendency for existing fixed film systems to become plugged up, resulting in the uncontrolled fouling of bulk liners. A study has shown that improper evacuation of the biomass are the cause of the problem. An investigation of how to control this phenomenon shows a distinction between curative and preventive measures. Curative measures consisting in regenerating the filter packing by increasing the hydraulic loading and by chemical or mechanical cleaning do not give full satisfaction. Among preventive measures, one method consists in reducing the organic loading of the effluent: phenol-containing waste waters are desalinated, waters from DGO and FCC are stripped, alcaline waters are reinjected into the crude oil, oils are recovered. just downstream from where they are discharged, and primary treatments are optimized, in particular by the installation of scrapers and oleophilic drums on the API separators and by a better choice of flocculants. Nevertheless, experience shows that this method does not delay plugging. The best method is in choosing contact medium, as is shown by comparative pilot-plant texts performed by Institut National de Recherche Chimique Appliquée (lRCHA and Compagnie Française de Raffinage (CFR. These tests were concentrated on the fate of the specific gravity of the packing on purifying performances and on sludge quality; they have showes that cloisonyle forming a tubular packing is probable the best suited material.

  6. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  7. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  8. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  10. THERAPEUTIC EFFECTS OF HIGHLY PURIFIED DE-GLYCOSYLATED GCMAF IN THE IMMUNOTHERAPY OF PATIENTS WITH CHRONIC DISEASES

    OpenAIRE

    Lynda Thyer; Emma Ward; Rodney Smith; Jacopo J.V. Branca; Gabriele Morucci; Massimo Gulisano; David Noakes; Stefania Pacini

    2013-01-01

    The de-Glycosylated vitamin D binding protein is a powerful Macrophage Activating Factor (GcMAF) that shows multiple biological effects that could be exploited in the immunotherapy of tumours, viral infections and autism. Here we report the observation of a series of clinical cases describing the results obtained administering highly purified GcMAF to patients with diverse types of chronic diseases. These are heterogeneous and refer to patients with different types of diseases at different s...

  11. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease.

    Science.gov (United States)

    Sarwar, Ambrin; Hassan, Muhammad Nadeem; Imran, Muhammad; Iqbal, Mazhar; Majeed, Saima; Brader, Günter; Sessitsch, Angela; Hafeez, Fauzia Yusuf

    2018-04-01

    The potential of the Bacillus genus to antagonize phytopathogens is associated with the production of cyclic lipopeptides. Depending upon the type of lipopeptide, they may serve as biocontrol agents that are eco-friendly alternatives to chemical fertilizers. This study evaluates the biocontrol activity of surfactin-producing Bacillus (SPB) strains NH-100 and NH-217 and purified surfactin A from these strains against rice bakanae disease. Biologically active surfactin fractions were purified by HPLC, and surfactin A variants with chain lengths from C12 to C16 were confirmed by LCMS-ESI. In hemolytic assays, a positive correlation between surfactin A production and halo zone formation was observed. The purified surfactin A had strong antifungal activity against Fusarium oxysporum, F. moniliforme, F. solani, Trichoderma atroviride and T. reesei. Maximum fungal growth suppression (84%) was recorded at 2000 ppm against F. moniliforme. Surfactin A retained antifungal activity at different pH levels (5-9) and temperatures (20, 50 and 121 °C). Hydroponic and pot experiments were conducted to determine the biocontrol activity of SPB strains and the purified surfactin A from these strains on Super Basmati rice. Surfactin production in the rice rhizosphere was detected by LCMS-ESI at early growth stages in hydroponics experiments inoculated with SPB strains. However, the maximum yield was observed with a consortium of SPB strains (T4) and purified surfactin A (T5) treatments in the pot experiment. The outcomes of the present study revealed that surfactin A significantly reduced rice bakanae disease by up to 80%. These findings suggest that purified surfactin A could be an effective biocontrol agent against bakanae disease in rice and should be incorporated into strategies for disease management. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores

    Energy Technology Data Exchange (ETDEWEB)

    Fuad, Abdulloh, E-mail: abdulloh.fuad.fmipa@um.ac.id; Mufti, Nandang; Diantoro, Markus; Subakti,; Septa Kurniawati, S. [Jurusan Fisika FMIPA Universitas Negeri Malang. Jl. Semarang No. 5 Malang, east Java (Indonesia)

    2016-03-11

    A simple method based on alkaline extraction followed by acid precipitation and acid dissolution has been developed to produce highly purified nanosilica from pyrophyllite materials. The reaction parameters such as molar ratio NaOH/SiO{sub 2}, reaction time and reaction temperature are varied for obtaining maximum nanosilica convertion. About 99,45% highly purified precipitated nanosilica measure with ICP, 259 m{sup 2}/gr measure with BET surface area, 97% whiteness and 3 ml/gr oil absorbtion from pyrophyllite materials has been achieved in closed system at 150°C within 180 min. The physicals and chemical properties (such as X-Ray Diffraction from PANalytical, X-Ray Fluorescence Minipal4 from PANanalytical, BET surface area, Forier Transform Infra Red Spectroscopy from Hitachi, and SEM-EDS Inspect-S50 from FEI Company) of the highly purity nanosilica were studied.

  13. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  14. Occurrence of Conjugated Linolenic Acids in Purified Soybean Oil

    OpenAIRE

    Kinami, Tomohisa; Horii, Naoto; Narayan, Bhaskar; Arato, Shingo; Hosokawa, Masashi; Miyashita, Kazuo; Negishi, Hironori; Ikuina, Junichi; Noda, Ryuji; Shirasawa, Seiichi

    2007-01-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of conjugated linoleic acids (CLA) and conjugated linolenic acids (CLN). Methyl esters prepared from purified lipid fractions of soybean oil were analyzed using an HPLC system equipped with photodiode-array detector to detect peaks having maximum absorption around 233 and 275 nm. These peaks were concentrated by AgNO3-silicic acid column chromatography and reversed-phase HPLC. The structural analysis, o...

  15. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  16. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  17. Characterization and treatment of cyanide in MGP purifier wastes

    Energy Technology Data Exchange (ETDEWEB)

    Theis, T.L. [Clarkson University, Potsdam, NY (United States). Dept. of Civil and Environmental Engineering

    1995-12-31

    Purifier wastes were generated from the clean-up gaseous impurities, principally hydrogen sulfide and hydrogen cyanide, contained in raw gas from MGP operations through retention by iron oxide solids. These materials were generated at a rate of about 10-20 kg/1000 m{sup 3} of gas produced, and although regeneration was sometimes practised, eventual disposal as fill material, usually on site, was eventually necessary. The remediation of MGP sites generally requires that the disposition of these waste solids be addressed. The effective treatment of purifier wastes presents special problems due to the acid-base properties of the material, its elevated sulfur content, and the significant quantities of carbon both added as wood shavings and present as compounds generated as a result of gas manufacture. In broad terms, treatment approaches can be divided into two classes, those aimed at destroying the cyanide and objectionable carbon compounds and otherwise disposing of the residual, and those which attempt to isolate the waste from its surroundings. The latter approach attempts to take advantage of the natural insolubility of most of the constituents of concern found in purifier wastes, while destructive technologies limit potential liability. 9 refs.

  18. An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer.

    Science.gov (United States)

    Hamadani, Kambiz M; Howe, Jesse; Jensen, Madeleine K; Wu, Peng; Cate, Jamie H D; Marqusee, Susan

    2017-09-22

    Biomolecular systems exhibit many dynamic and biologically relevant properties, such as conformational fluctuations, multistep catalysis, transient interactions, folding, and allosteric structural transitions. These properties are challenging to detect and engineer using standard ensemble-based techniques. To address this drawback, single-molecule methods offer a way to access conformational distributions, transient states, and asynchronous dynamics inaccessible to these standard techniques. Fluorescence-based single-molecule approaches are parallelizable and compatible with multiplexed detection; to date, however, they have remained limited to serial screens of small protein libraries. This stems from the current absence of methods for generating either individual dual-labeled protein samples at high throughputs or protein libraries compatible with multiplexed screening platforms. Here, we demonstrate that by combining purified and reconstituted in vitro translation, quantitative unnatural amino acid incorporation via AUG codon reassignment, and copper-catalyzed azide-alkyne cycloaddition, we can overcome these challenges for target proteins that are, or can be, methionine-depleted. We present an in vitro parallelizable approach that does not require laborious target-specific purification to generate dual-labeled proteins and ribosome-nascent chain libraries suitable for single-molecule FRET-based conformational phenotyping. We demonstrate the power of this approach by tracking the effects of mutations, C-terminal extensions, and ribosomal tethering on the structure and stability of three protein model systems: barnase, spectrin, and T4 lysozyme. Importantly, dual-labeled ribosome-nascent chain libraries enable single-molecule co-localization of genotypes with phenotypes, are well suited for multiplexed single-molecule screening of protein libraries, and should enable the in vitro directed evolution of proteins with designer single-molecule conformational

  19. Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas Chromatographic methods validation for analysis of small molecules in biological matrices

    Directory of Open Access Journals (Sweden)

    Neila Maria Cassiano

    2009-01-01

    Full Text Available Chromatographic methods are commonly used for analysis of small molecules in different biological matrices. An important step to be considered upon a bioanalytical method's development is the capacity to yield reliable and reproducible results. This review discusses validation procedures adopted by different governmental agencies, such as Food and Drug Administration (USA, European Union (EU and Agência Nacional de Vigilância Sanitária (BR for quantification of small molecules by bioanalytical chromatographic methods. The main parameters addressed in this review are: selectivity, linearity, precision, accuracy, quantification and detection limits, recovery, dilution integrity, stability and robustness. Also, the acceptance criterions are clearly specified.

  20. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  3. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  4. A purified inactivated Japanese encephalitis virus vaccine made in Vero cells.

    Science.gov (United States)

    Srivastava, A K; Putnak, J R; Lee, S H; Hong, S P; Moon, S B; Barvir, D A; Zhao, B; Olson, R A; Kim, S O; Yoo, W D; Towle, A C; Vaughn, D W; Innis, B L; Eckels, K H

    2001-08-14

    A second generation, purified, inactivated vaccine (PIV) against Japanese encephalitis (JE) virus was produced and tested in mice where it was found to be highly immunogenic and protective. The JE-PIV was made from an attenuated strain of JE virus propagated in certified Vero cells, purified, and inactivated with formalin. Its manufacture followed current GMP guidelines for the production of biologicals. The manufacturing process was efficient in generating a high yield of virus, essentially free of contaminating host cell proteins and nucleic acids. The PIV was formulated with aluminum hydroxide and administered to mice by subcutaneous inoculation. Vaccinated animals developed high-titered JE virus neutralizing antibodies in a dose dependent fashion after two injections. The vaccine protected mice against morbidity and mortality after challenge with live, virulent, JE virus. Compared with the existing licensed mouse brain-derived vaccine, JE-Vax, the Vero cell-derived JE-PIV was more immunogenic and as effective as preventing encephalitis in mice. The JE-PIV is currently being tested for safety and immunogenicity in volunteers.

  5. Consumer Behavior Modeling: Fuzzy Logic Model for Air Purifiers Choosing

    Directory of Open Access Journals (Sweden)

    Oleksandr Dorokhov

    2017-12-01

    Full Text Available At the beginning, the article briefly describes the features of the marketing complex household goods. Also provides an overview of some aspects of the market for indoor air purifiers. The specific subject of the study was the process of consumer choice of household appliances for cleaning air in living quarters. The aim of the study was to substantiate and develop a computer model for evaluating by the potential buyers devices for air purification in conditions of vagueness and ambiguity of their consumer preferences. Accordingly, the main consumer criteria are identified, substantiated and described when buyers choose air purifiers. As methods of research, approaches based on fuzzy logic, fuzzy sets theory and fuzzy modeling were chosen. It was hypothesized that the fuzzy-multiple model allows rather accurately reflect consumer preferences and potential consumer choice in conditions of insufficient and undetermined information. Further, a computer model for estimating the consumer qualities of air cleaners by customers is developed. A proposed approach based on the application of fuzzy logic theory and practical modeling in the specialized computer software MATLAB. In this model, the necessary membership functions and their terms are constructed, as well as a set of rules for fuzzy inference to make decisions on the estimation of a specific air purifier. A numerical example of a comparative evaluation of air cleaners presented on the Ukrainian market is made and is given. Numerical simulation results confirmed the applicability of the proposed approach and the correctness of the hypothesis advanced about the possibility of modeling consumer behavior using fuzzy logic. The analysis of the obtained results is carried out and the prospects of application, development, and improvement of the developed model and the proposed approach are determined.

  6. Predicting group of metabolites available in partially purified tomato ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Faculty of Engineering, International Islamic University Malaysia, Gombak, 50728 Kuala Lumpur, ... research had applied HPLC to identify and quantify the ..... energies of organic molecules with quantum chemical methods. J.

  7. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  8. The stability of human, bovine and avian tuberculin purified protein derivative (PPD).

    Science.gov (United States)

    Maes, Mailis; Giménez, José Francisco; D'Alessandro, Adriana; De Waard, Jacobus H

    2011-11-15

    Guidelines recommend storing tuberculin purified protein derivative (PPD) refrigerated. However, especially in developing countries, maintaining the product refrigerated under field conditions can be difficult, limiting its use. Here we determine the effect of prolonged exposure to high temperatures on the potency of human, bovine and avian tuberculin PPD. Human, bovine and avian tuberculin PPD were stored for several weeks exposed to temperatures ranging from 37º to 100ºC. The potency was evaluated in vivo, in sensitized or naturally infected animals. Most test situations didn't affect the biological activity of the tuberculin PPDs and only very long and extreme incubations (several days at 100 °C) compromised the potency. Tuberculin PPD is very stable and can be stored or transported for long periods without refrigeration. 

  9. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  10. Influence of a highly purified senna extract on colonic epithelium.

    Science.gov (United States)

    van Gorkom, B A; Karrenbeld, A; van Der Sluis, T; Koudstaal, J; de Vries, E G; Kleibeuker, J H

    2000-01-01

    Chronic use of sennoside laxatives often causes pseudomelanosis coli. A recent study suggested that pseudomelanosis coli is associated with an increased colorectal cancer risk. A single high dose of highly purified senna extract increased proliferation rate and reduced crypt length in the sigmoid colon compared to historical controls. To evaluate in a controlled study the effects of highly purified senna extract on cell proliferation and crypt length in the entire colon and on p53 and bcl-2 expression. Addition of a senna extract to colonic lavage was studied in 184 consecutive outpatients. From 32 randomised patients, 15 with sennosides (Sen), 17 without (NSen), biopsies were taken. Proliferative activity was studied in 4 areas of the colon, using 5-bromo-2'-deoxyuridine labelling and immunohistochemistry (labelling index, LI). Expression of p53 and bcl-2 in the sigmoid colon was determined immunohistochemically. Crypts were shorter in Sen than in NSen in the transverse and sigmoid colon. LI was higher in Sen than in NSen in the entire colon. No difference in p53 expression was seen. Bcl-2 expression was higher in both groups when crypts were shorter and/or proliferation was increased. Sennosides induce acute massive cell loss probably by apoptosis, causing shorter crypts, and increased cell proliferation and inhibition of apoptosis to restore cellularity. These effects may reflect the mechanism for the suggested cancer-promoting effect of chronic sennoside use. Copyright 2000 S. Karger AG, Basel

  11. Activation of purified calcium channels by stoichiometric protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Nunoki, K.; Florio, V.; Catterall, W.A. (Univ. of Washington, Seattle (USA))

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  12. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Nunoki, K.; Florio, V.; Catterall, W.A.

    1989-01-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45 Ca 2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45 Ca 2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd 2+ , Ni 2+ , and Mg 2+ . The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  13. Creating and purifying an observation instrument using the generalizability theory

    Directory of Open Access Journals (Sweden)

    Elena Rodríguez-Naveiras

    2013-12-01

    Full Text Available The control of quality of data it is one of the most relevant aspects in observational researches. The Generalizability Theory (GT provides a method of analysis that allows us to isolate the various sources of error measurement. At the same time, it helps us to determine the extent to which various factors can change and analyze the effect on the generalizability coefficient. In the work shown here, there are two studies aimed to creating and purifying an observation instrument, Observation Protocol in the Teaching Functions (Protocolo de Funciones Docentes, PROFUNDO, v1 and v2, for behavioral assessment which has been carried out by instructors in a social-affective out-of-school program. The reliability and homogeneity studies are carried out once the instrument has been created and purified. The reliability study will be done through the GT method taking both codes (c and agents (a as differential facets in. The generalization will be done through observers using a crossed multi-faceted design (A × O × C. In the homogeneity study the generalization facet will be done through codes using the same design that the reliability study.

  14. High-level water purifying technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H; Tsukiashi, K [Meidensha Corp., Tokyo (Japan)

    1993-07-01

    Research and development have been carried out on a high-level water purifying system using ozone and activated charcoals to supply drinking water free of carcinogenic matters and odors. This system comprises a system to utilize ozone by using silent discharge and oxygen enriching device, and a living organism/activated charcoal treatment system. The latter system utilizes living organisms deposited on activated charcoal surfaces to remove polluting substances including ammonia. The treatment experimenting equipment comprises an ozone generating system, an ozone treating column, an activated charcoal treating column, an ozone/activated charcoal control device, and a water amount and quality measuring system. An experiment was carried out using an experimental plant with a capacity of 20 m[sup 3]/day on water taken from the sedimentation process at an actual water purifying plant. As a result, trihalomethane formation potential was removed at about 40% in the ozone treatment, and at 70% in the whole treatment combining the ozone and living organism/activated charcoal treatments. For parameterization of palatability of water, a method is being studied that utilizes nuclear magnetic resonance to investigate degrees of water cluster. The method is regarded promising. 1 ref., 4 figs.

  15. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  16. 76 FR 29191 - Purified Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping...

    Science.gov (United States)

    2011-05-20

    ... Carboxymethylcellulose From Finland and the Netherlands: Continuation of Antidumping Duty Orders AGENCY: Import... antidumping duty orders on purified carboxymethylcellulose from Finland and the Netherlands would likely lead...) from Finland and the Netherlands. See Notice of Antidumping Duty Orders: Purified...

  17. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  18. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  19. A long-term aging study of honeycomb drift tubes for the HERA-B Outer Tracker using a circulated and purified CF$_{4}$ gas mixture

    CERN Document Server

    Capéans-Garrido, M; Hohlmann, M; Schmidt, B

    2003-01-01

    The Outer Tracker of HERA-B uses a gas mixture containing CF/sub 4/ to obtain high electron drift velocities. The high cost of this gas makes it necessary to circulate the gas mixture which must then be purified to avoid accumulation of air and pollutants. However, the usage of gas purifiers poses the danger of outgassing pollutants from the purifiers themselves into the gas stream. Purifiers could also be attacked chemically by the aggressive products from the cracking of CF/sub 4/ molecules in the plasma avalanches of the detector. This could potentially release further harmful pollutants into the gas stream. To test for such effects, a long-term irradiation study of about 3000 h was carried out with the honeycomb drift tubes that are used in the Outer Tracker. This provided a check of the long-term stability of the gas purifiers before putting them into operation for the full-size detector. We report on the experimental setup, procedures and the results obtained. (8 refs).

  20. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  1. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  2. Oxidation of eugenol by purified human term placental peroxidase.

    Science.gov (United States)

    Zhang, R; Kulkarni, K A; Kulkarni, A P

    2000-01-01

    The oxidation of eugenol by purified human term placental peroxidase (HTPP) was examined. Spectral analyses indicated that, similar to horseradish peroxidase, HTPP is capable of catalyzing the oxidation of eugenol. The accumulated stable product in the reaction medium due to eugenol oxidation by HTPP was tentatively identified as quinone methide of eugenol (EQM). The EQM formation exhibited a pH optimum of 8.0 and was dependent on incubation time, amount of HTPP and the concentration of both eugenol and hydrogen peroxide. The specific activity of approx 2.8 micromoles of EQM/min/mg protein was observed with different preparations of HTPP. The EQM formation was significantly suppressed by glutathione and ascorbic acid. The classical peroxidase inhibitors viz. potassium cyanide and sodium azide blocked the reaction in a concentration manner. Collectively, the results suggest that eugenol may undergo peroxidative metabolism in human placenta. Copyright 2000 Harcourt Publishers Ltd.

  3. Gamma ray irradiation to semi-purified diet

    International Nuclear Information System (INIS)

    Takigawa, Akihiro; Danbara, Hiroshi; Ohyama, Yoshinobu

    1976-01-01

    Semi-purified diet containing 10% soybean oil was irradiated with gamma rays at levels of 0.6, 3 and 6 Mrad and was fed to chicks. Crude fat contents of the diets decreased and a considerable amount of peroxide was formed with high doses of irradiation. Feed consumption and feed efficiency of the highly irradiated diets were less than those of control. Metabolizable energy and digestibility of the diets, especially of fat, were decreased with the irradiation. The chicks fed with irradiated diets showed marked dilatation of the small intestine and the liver, and their erythrocytes were more fragile than those of control. The same phenomena were found with the chicks fed the diet containing the oil highly oxidized by autoxidation. Irradiation of the diet excluding oil showed little effect on the growth of chicks. It was considered that these phenomena were caused by the peroxide or other oxidation products of fat which were formed with gamma ray irradiation. (auth.)

  4. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  5. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  6. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Gleize, Jérôme [Laboratoire de Chimie Physique-Approche Multi-échelle de Milieux Complexes-Université de Lorraine, 1 Bd Arago, 57078 Metz (France); Lamura, Gianrico [CNR-SPIN – Dipartimento di Fisica, via Dodecaneso 33, 16146 Genova (Italy); Hérold, Claire [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Vigolo, Brigitte, E-mail: Brigitte.Vigolo@univ-lorraine.fr [Institut Jean Lamour, CNRS-Université de Lorraine, BP 70239, 54506 Vandoeuvre-lès-Nancy (France)

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel–yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni{sup 2+} ions, belonging to NiCl{sub 2} formed during the Cl-based purification process. In particular, NiCl{sub 2} compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature. - Highlights: • Cl-gas treatment of Ni catalyst of carbon nanotubes leads to NiCl{sub 2} residue. • Magnetic measurements show the transformation of Ni{sup 0} in Ni{sup 2+}through a purification process. • High temperature Cl treatment removes 75% of metallic impurities. • Cl-purification yields to an amount of metal of 1.5% in arc-discharge CNT samples.

  7. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  8. Finding optimal interaction interface alignments between biological complexes

    KAUST Repository

    Cui, Xuefeng; Naveed, Hammad; Gao, Xin

    2015-01-01

    Motivation: Biological molecules perform their functions through interactions with other molecules. Structure alignment of interaction interfaces between biological complexes is an indispensable step in detecting their structural similarities, which

  9. [Toxicologic evaluation of purified municipal and industrial waste water].

    Science.gov (United States)

    Prokopov, V A; Tolstopiatova, G V; Byshovets, T F; Andrienko, L G; Martyshchenko, N V; Nadvornaia, Zh N; Poviĭchuk, E R; Teteneva, I A

    1993-07-01

    Analysis of waters sewage in Kiev and of waste water of a textile and se wing enterprise in Chernigov has shown that treatment by biological method and with activated carbon was fairely efficient in toxicity reduction.

  10. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  11. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS (Brazil); Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana [Center for Cell-Based Therapy (CEPID/FAPESP), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre [Laboratory of Large-Scale Functional Biology (LLSFBio), Regional Center for Hemotherapy of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto, SP (Brazil); and others

    2016-12-10

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  12. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    International Nuclear Information System (INIS)

    Silva Meirelles, Lindolfo da; Deus Wagatsuma, Virgínia Mara de; Malta, Tathiane Maistro; Bonini Palma, Patrícia Viana; Araújo, Amélia Goes; Panepucci, Rodrigo Alexandre

    2016-01-01

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with an AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.

  13. HARP preferentially co-purifies with RPA bound to DNA-PK and blocks RPA phosphorylation.

    Science.gov (United States)

    Quan, Jinhua; Yusufzai, Timur

    2014-05-01

    The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.

  14. The status of molecules

    International Nuclear Information System (INIS)

    Barnes, T.; Oak Ridge National Lab., TN; Tennessee Univ., Knoxville, TN

    1994-06-01

    This report summarizes the experimental and theoretical status of hadronic molecules, which are weakly-bound states of two or more hadrons. We begin with a brief history of the subject and discuss a few good candidates, and then abstract some signatures for molecules which may be of interest in the classification of possible molecule states. Next we argue that a more general understanding of 2 → 2 hadron-hadron scattering amplitudes will be crucial for molecule searches, and discuss some of our recent work in this area. We conclude with a discussion of a few more recent molecule candidates (notably the f o (1710)) which are not well established as molecules but satisfy some of the expected signatures. (Author)

  15. Full scale demonstration of air-purifying pavement

    International Nuclear Information System (INIS)

    Ballari, M.M.; Brouwers, H.J.H.

    2013-01-01

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO x concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO x reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO 2 over a length of 150 m (“DeNO x street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO 2 and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO x concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO x concentration decrease of 45% could be observed

  16. Production of Purified CasRNPs for Efficacious Genome Editing.

    Science.gov (United States)

    Lingeman, Emily; Jeans, Chris; Corn, Jacob E

    2017-10-02

    CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Common Wet Chemical Agents for Purifying Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Rasel Das

    2014-01-01

    Full Text Available Purification and functionalization of multiwalled carbon nanotubes (MWCNTs are challenging but vital for their effective applications in various fields including water purification technologies, optoelectronics, biosensors, fuel cells, and electrode arrays. The currently available purification techniques, often complicated and time consuming, yielded shortened and curled MWCNTs that are not suitable for applications in certain fields such as membrane technologies, hybrid catalysis, optoelectronics, and sensor developments. Here we described the H2O2 synergy on the actions of HCl and KOH in purifying and functionalizing pristine MWCNTs. The method (HCl/H2O2 showed 100% purification yield as compared to HCl and KOH/H2O2 with purification yields 93.46 and 3.92%, respectively. We probed the findings using transmission electron microscope, energy dispersive X-ray spectroscope, attenuated total reflectance infrared spectroscope, Raman spectroscope, thermal gravimetric analysis, and X-ray powder diffraction. The study is a new avenue for simple, rapid, low cost, and scalable purification of pristine MWCNTs for application in versatile fields.

  18. Some properties of purified hepatoredoxin from bovine liver mitochondria

    International Nuclear Information System (INIS)

    Gilevich, S.N.; Gurev, O.L.; Shkumatov, V.M.; Chashchin, V.L.; Akhrem, A.A.

    1986-01-01

    Some of the most important physicochemical properties of hepatoredoxin from bovine liver, purified to a homogeneous state, were determined for the first time. The protein contains a [2Fe-2S] cluster in its active site and in an oxidized state has absorption maxima at 280, 320, 415, and 455 nm. The spectrophotometric index of purity (A 415 /A 280 ) of the homogeneous native preparation is 0.84; the extinction coefficient (epsilon 415 ) is equal to 9800 M -1 cm -1 . According to the data of gel electrophoresis in the presence of SDS, hepatoredoxin has an M/sub r/ of 12,500; its isoelectric point (pI) is equal to 4.2. Hepatoredoxin is necessary for the reconstitution of the C 27 -steroid hydroxylase activity and can be replaced by the related protein, adrenodoxin. All the parameters listed above, as well as the CD spectra, the immunochemical properties, and sequence of the first five N-terminal amino acids of hepatoredoxin and adrenodoxin are very similar of identical. At the same time, the amino acid composition of the two ferredoxins, along with common properties, has some differences

  19. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  20. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...... molecules are the questions discussed in this review. To us, the entire concept of processing has appeal not only because it explains some hitherto well-established, but poorly understood, phenomena such as the fact that T lymphocytes focus their attention entirely upon antigens on other cells. It has...

  1. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  2. Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles

    Directory of Open Access Journals (Sweden)

    Greta Zubaite

    2017-02-01

    Full Text Available Protein expression in vitro has broad applications in directed evolution, synthetic biology, proteomics and drug screening. However, most of the in vitro expression systems rely on relatively high DNA template concentrations to obtain sufficient amounts of proteins, making it harder to perform in vitro screens on gene libraries. Here, we report a technique for the generation of condensed DNA particles that can serve as efficient templates for in vitro gene expression. We apply droplet microfluidics to encapsulate single-DNA molecules in 3-picoliter (pL volume droplets and convert them into 1 μm-sized DNA particles by the multiple displacement amplification reaction driven by phi29 DNA polymerase. In the presence of magnesium ions and inorganic pyrophosphate, the amplified DNA condensed into the crystalline-like particles, making it possible to purify them from the reaction mix by simple centrifugation. Using purified DNA particles, we performed an in vitro transcription-translation reaction and successfully expressed complex enzyme β-galactosidase in droplets and in the 384-well format. The yield of protein obtained from DNA particles was significantly higher than from the corresponding amount of free DNA templates, thus opening new possibilities for high throughput screening applications.

  3. Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry.

    Science.gov (United States)

    Fairburn, B; Muthana, M; Hopkinson, K; Slack, L K; Mirza, S; Georgiou, A S; Espigares, E; Wong, C; Pockley, A G

    2006-09-01

    The stress protein gp96 exhibits a number of immunological activities, the majority of studies into which have used gp96 purified from a variety of tissues. On the basis of 1-D gel electrophoresis, the purity of these preparations has been reported to range between 70% and 99%. This study analyzed gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry (MS-MS). The procedure for purifying gp96 was reproducible, as similar protein profiles were observed in replicate gels of gp96 preparations. The purity of the preparations was typically around 70%, with minor co-purified proteins of varying molecular weights and mobilities being present. Dominant bands at 95-100 kDa in preparations from Wistar rats and C57BL/6 mice were identified as gp96 by ECL Western blotting. Multiple bands having similar, yet distinct molecular weights and differing pI mobility on ECL Western blots were confirmed as being gp96 in preparations from Wistar rats using MS-MS. The most striking feature of the 2-D gel analysis was the presence of additional dominant bands at 55 kDa in preparations from Wistar rats, and at 75-90 kDa in preparations from C57BL/6 mice. These were identified as gp96 by ECL Western blotting and, in the case of preparations from Wistar rats, by MS-MS. Although the lower molecular weight, gp96-related molecules might be partially degraded gp96, their reproducible presence, definition and characteristics suggest that they are alternative, species-specific isoforms of the molecule. A 55 kDa protein which exhibited a lower pI value than gp96 was present in all preparations and this was identified as calreticulin, another putative immunoregulatory molecule. This study confirms the reproducibility of the gp96 purification protocol and reveals the presence of multiple gp96 isoforms, some of which likely result from post-translational modifications such as differential glycosylation and

  4. Metabolic clearance rate and urinary clearance of purified beta-core

    International Nuclear Information System (INIS)

    Wehmann, R.E.; Blithe, D.L.; Flack, M.R.; Nisula, B.C.

    1989-01-01

    We injected a highly purified preparation of the beta-core molecule, a fragment of hCG beta excreted in pregnancy urine, into five men and three women to determine its kinetic parameters, MCR, and urinary clearance. The beta-core molecule was distributed in an initial volume [1950 +/- 156 (mean +/- SEM) mL/m2 body surface area] approximately equal to the estimated plasma volume. Its disappearance was multiexponential on a semilogarithmic plot, with a rapid phase t1/2 of 3.5 +/- 0.7 min and a slow phase t1/2 of 22.4 +/- 4.2 min. The transit time (the mean time spent by a molecule of beta-core in transit) was 20.6 +/- 2.1 min. The MCR was 192.0 +/- 8.0 mL/min.m2 body surface area. About 5% of the injected dose of beta-core was excreted into the urine in the first 30 min after injection, and low levels of excretion persisted for up to 7 days. The urinary clearance rate of beta-core was 13.7 +/- 1.4 mL/min.m2, accounting for about 8% of the elimination of beta-core from the plasma. The beta-core immunoreactivity in serum and urine was characterized by gel filtration and three independent RIA systems to show that its properties were indistinguishable from those of the injected beta-core. Serum levels of beta-core in pregnant women were less than 0.2 ng/mL, while the amounts excreted in their urine were as much as 5 mg/day. Based on these clearance parameters of beta-core in normal subjects, less than 0.2% of the beta-core excreted in pregnancy urine is derived by urinary clearance of plasma beta-core. Therefore, more than 99% of the beta-core excreted in pregnancy urine is derived from beta-core in a compartment separate from plasma. In particular, these data indicate that there is relatively little placental secretion of beta-core into plasma and that placental secretion does not account for the vast majority of beta-core in pregnancy urine

  5. Photoinduced electron transfer in some photosensitive molecules ...

    Indian Academy of Sciences (India)

    Unknown

    redox reactions of substrates like biological molecules,11,12 dyes,13,14 alcohols15,16 etc. Colloidal ... state which is characterised by a phenomenon of dual fluorescence. In the present ... The dried solid was transferred to quartz cell under vacuum ... Recently Grätzel et al34 have developed the dye-sensitized meso-.

  6. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  7. Full scale demonstration of air-purifying pavement

    Energy Technology Data Exchange (ETDEWEB)

    Ballari, M.M., E-mail: ballari@santafe-conicet.gov.ar [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Brouwers, H.J.H., E-mail: jos.brouwers@tue.nl [Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-06-15

    Highlights: ► The results of a demonstration project for photocatalytic pavement are shown. ► The photocatalytic performance was studied in a street as well as on lab scale. ► The outdoor monitoring was performed in different seasons and weather conditions. ► The NO{sub x} concentration was in average 19% lowered by the photocatalytic street. ► Under ideal weather conditions the NO{sub x} reduction reached up to 45%. -- Abstract: Experiments concerning a full-scale demonstration of air purifying pavement in Hengelo, The Netherlands, are reported. The full width of the street was provided with concrete pavement containing TiO{sub 2} over a length of 150 m (“DeNO{sub x} street”). Another part of the street, about 100 m, was paved with normal paving blocks (“Control street”). The outdoor monitoring was done during 26 days for a period exceeding one year, and measured parameters included traffic intensity, NO, NO{sub 2} and ozone concentrations, temperature, relative humidity, wind speed and direction, and the visible and UV light irradiance. Prior and parallel to these field measurements, the used blocks were also measured in the lab to assess their performance. The NO{sub x} concentration was, on average, 19% (considering the whole day) and 28% (considering only afternoons) lower than the obtained values in the Control street. Under ideal weather conditions (high radiation and low relative humidity) a NO{sub x} concentration decrease of 45% could be observed.

  8. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  9. Inhibition of purified enolases from oral bacteria by fluoride.

    Science.gov (United States)

    Guha-Chowdhury, N; Clark, A G; Sissons, C H

    1997-04-01

    Enolase activity in strains of oral streptococci previously has been found to be inhibited by 50% (Ki) by fluoride concentrations ranging from 50 to 300 microM or more in the presence of 0.5 to 1.0 mM inorganic phosphate ions. In this study, enolase was extracted and partly purified by a two-step process from five oral bacterial species and the effect of fluoride on the kinetics of enolase examined. The molecular weight of the putative enolase proteins was 46-48 kDa. The Vmax values ranged from 20 to 323 IU/mg and K(m) for glycerate-2-phosphate from 0.22 to 0.74 mM. Enolase activity was inhibited competitively by fluoride, with Ki values ranging from 16 to 54 microM in the presence of 5 mM inorganic phosphate ions. Ki values for phosphate ranged from 2 to 8 mM. The enolase from Streptococcus sanguis ATCC 10556 was more sensitive to fluoride (Ki = 16 +/- 2) than was enolase from Streptococcus salivarius ATCC 10575 (Ki = 19 +/- 2) or Streptococcus mutans NCTC 10449 (Ki = 40 +/- 4) and all three streptococcal strains were more sensitive to fluoride than either Actinomyces naeslundii WVU 627 (Ki = 46 +/- 6) or Lactobacillus rhamnosus ATCC 7469 (Ki = 54 +/- 6) enolases. The levels of fluoride found to inhibit the streptococcal enolases in this study are much lower than previously reported and are likely to be present in plaque, especially during acidogenesis, and could exert an anti-glycolytic effect.

  10. Purifier-integrated methanol reformer for fuel cell vehicles

    Science.gov (United States)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  11. Filter system for purifying gas or air streams

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Wilhelm, J.

    1981-01-01

    A filter system is provided for purifying a gas stream by means of flowable or tricklable contact filter material, wherein the stream flows through the filter material and the filter material forms a movable bed. The system contains a filter chamber through which the filter material can flow and which is provided with an inlet opening and an outlet opening for the filter material between which the filter material is conveyed by gravity. The filter system includes deflection means for deflecting the stream , after a first passage of the stream through the filter bed to charge the filter bed for a first time, to a position above where the stream first passed through the filter bed and for conducting the stream at least once again transversely through the filter bed above the first charge so that the filter bed is charged a second time. The filter chamber contains a first opening where the stream enters the filter bed for the first time and is aligned with the deflection means, and a second opening aligned with the deflection means and above the first opening. The second opening is located where the stream leaves the filter bed for the second time, with a partial quantity of the gas stream being able to pass directly through the filter bed from the first opening to the second opening without going through the deflection means. The distance between the upper edge of the first opening and the lower edge of the second opening is at least twice the thickness of the filter chamber

  12. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  13. Molecule of the Month

    Indian Academy of Sciences (India)

    Atoms in a molecule generally prefer, particularly among the neighbouring ones, certain optimmn geometrical relationships. These are manifested in specific ranges of bond lengths, bond angles, torsion angles etc. As it always happens, chemists are interested in making molecules where these 'standard relationships' are ...

  14. Molecule of the Month

    Indian Academy of Sciences (India)

    Cyclo bu tadiene (1) has been one of the most popular molecules for experimentalists and theoreticians. This molecule is unstable as . it is antiaromatic ( 4,n electrons in a cyclic array). Even though some highly substituted cyclobutadienes, for example, compound 2 and the Fe(CO)3 complex of cyclobutadiene (3) are ...

  15. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  17. Molecules in stars

    International Nuclear Information System (INIS)

    Tsuji, T.

    1986-01-01

    Recently, research related to molecules in stars has rapidly expanded because of progress in related fields. For this reason, it is almost impossible to cover all the topics related to molecules in stars. Thus, here the authors focus their attention on molecules in the atmospheres of cool stars and do not cover in any detail topics related to circumstellar molecules originating from expanding envelopes located far from the stellar surface. However, the authors do discuss molecules in quasi-static circumstellar envelopes (a recently discovered new component of circumstellar envelopes) located near the stellar surface, since molecular lines originating from such envelopes show little velocity shift relative to photospheric lines, and hence they directly affect the interpretation and analysis of stellar spectra

  18. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  19. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  20. Isolation and Characterisation of Some Microalgae Bioactive Molecules

    Directory of Open Access Journals (Sweden)

    Emeka Ugoala

    2016-12-01

    Full Text Available This study involved the isolation, structure elucidation, and biological screening of secondary metabolites in freshwater microalgae for bioactive and chemically novel compounds. Isolates were fractionated and purified from the methanol, ethyl acetate, dichloromethane, petroleum ether and aqueous extracts of microalgae via column chromatography technique over silica gel using a gradient mixture of solvents. The chemical structures of isolated compounds have been elucidated using Solid-state cross polarization (CP and magic angle spinning (MAS 13C-NMR spectroscopic technique at spectrometer frequency at a field strength corresponding to 91.3695 MHz for 13C and 363.331 MHz for 1H. Of the nine compounds isolated, eight have a glycan skeleton with attached amino acids units. Two of the eight contain beta amino acids units. These are not very common metabolites but hold promise as drug leads. The elements of diversity in the isolates were the gluco and manno configurations of the pyranose ring, the α-configurations at the anomeric centre, and the positions of the carbohydrate and amino acid sectors in the ring. These molecules are not easily available through gene technology since they are post translational products resulting from the activity of glycosyl hydrolases and transferases. The chemical shifts were rationalized in terms of the number of sugar residues, the sugar ring structures, the positions and anomeric configurations of the inter-sugar linkages. Considering all the NMR data, it was concluded that the compounds were glycylglycylglycylglycine, α-D-glucopyranosyl-2-amino-4-methylpentanoic acid, α-D-glucopyranosyl-2-methylamino-4-methylpentanoic acid, α-D-glucopyranosyl-2-amino-4-methylpentanoate, α-D-glucopyranosyl-glycylglycine, α-D-glucopyranosyl-3-aminobutanoic acid, α-D-glucopyranosyl-2,4,7-triaminooctantrioic acid, α-D-mannopyranosyl-2-amino-3-methylbutanoic acid and α-D-mannopyranosyl-3-aminobutanoic acid.

  1. Combining supramolecular chemistry with biology

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Petkau - Milroy, K.; Brunsveld, L.

    2010-01-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic

  2. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  3. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  4. Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber.

    Science.gov (United States)

    Soltani, Mozhgan; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Asili, Javad

    2014-10-01

    Holothuroids (sea cucumbers) are members of the phylum echinodermata, which produce saponins. Saponins exhibit a wide spectrum of pharmacological and biological activities. In this study, we isolated the crude saponins from the body wall of the dominant Iranian species of sea cucumber, Holothuria leucospilota (H. leucospilota). The purpose of this study was to confirm the presence of saponins in the Persian Gulf H. leucospilota and study the hemolytic and cytotoxic activities of these compounds. The body wall of sea cucumber was dried and powdered and the crude saponins were isolated using various solvents. The crude saponins were further purified by column chromatography using HP-20 resin. The foam test, Thin Layer Chromatography (TLC), hemolytic assay, and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of saponins. Cytotoxicity was analyzed using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on A549 cells, a human lung cancer cell line. The foam test, hemolytic assay, and TLC supported the presence of saponin compounds in the 80% ethanol fraction of H. leucospilota. The infrared (IR) spectrum of the extract showed hydroxyl (-OH), alkyl (C-H), ether (C-O) and ester (-C=O) absorption characteristic of teriterpenoid saponins. The C-O-C absorption indicated glycoside linkages to the sapogenins. The crude saponin extracted from sea cucumber was cytotoxic to A549 cells. The 80% ethanol fraction of saponin isolated from H. leucospilota exhibited hemolytic activity and offers promise as an anti-cancer candidate.

  5. Strychnos pseudoquina and Its Purified Compounds Present an Effective In Vitro Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Paula Sousa Lage

    2013-01-01

    Full Text Available The development of new and cost-effective alternative therapeutic strategies to treat leishmaniasis has become a high priority. In the present study, the antileishmanial activity of Strychnos pseudoquina St. Hil. was investigated and pure compounds that presented this biological effect were isolated. An ethyl acetate extract was prepared, and it proved to be effective against Leishmania amazonensis. A bioactivity-guided fractionation was performed, and two flavonoids were identified, quercetin 3-O-methyl ether and strychnobiflavone, which presented an effective antileishmanial activity against L. amazonensis, and studies were extended to establish their minimum inhibitory concentrations (IC50, their leishmanicidal effects on the intra-macrophage Leishmania stage, as well as their cytotoxic effects on murine macrophages (CC50, and in O+ human red blood cells. The data presented in this study showed the potential of an ethyl acetate extract of S. pseudoquina, as well as two flavonoids purified from it, which can be used as a therapeutic alternative on its own, or in association with other drugs, to treat disease evoked by L. amazonensis.

  6. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Dissociation in small molecules

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The study of molecular dissociation processes is one of the most interesting areas of modern spectroscopy owing to the challenges presented bt even the simplest of diatomic molecules. This paper reviews the commonly used descriptions of molecular dissociation processes for diatomic molecules, the selection rules for predissociation, and a few of the principles to be remembered when one is forced to speculate about dissociation mechanisms in a new molecule. Some of these points will be illustrated by the example of dissociative ionization in O 2

  8. Putting prions into focus: application of single molecule detection to the diagnosis of prion diseases.

    Science.gov (United States)

    Giese, A; Bieschke, J; Eigen, M; Kretzschmar, H A

    2000-01-01

    Prion diseases are characterized by the cerebral deposition of an aggregated pathological isoform of the prion protein (PrP(Sc)) which constitutes the principal component of the transmissible agent termed prion. In order to develop a highly sensitive method for the detection of PrP(Sc) aggregates in biological samples such as cerebrospinal fluid (CSF), we used a method based on Fluorescence Correlation Spectroscopy (FCS), a technique which allows detection of single fluorescently labeled molecules in solution. Within the FCS setup, fluorescent photons emitted by molecules passing an open volume element defined by the beam of an excitation laser focussed into a diffraction-limited spot are imaged confocally onto a single photon counting detector. Aggregates of PrP(Sc) could be labeled by co-aggregation of probe molecules such as monomeric recombinant PrP or PrP-specific antibodies tagged with a fluorescent dye. In addition to slow diffusion, labeled aggregates are characterized by high fluorescence intensity, which allows detection and quantification by analysis of fluorescence intensity distribution. To improve detection of rare target particles, the accessible volume element was increased by scanning for intensely fluorescent targets (SIFT). To further improve sensitivity and specificity, two different probes were used simultaneously in a two-color setup. In a diagnostic model system of CSF spiked with purified prion rods, dual-color SIFT was more sensitive than Western blot analysis. In addition, a PrP(Sc)-specific signal was also detected in a number of CSF samples derived from CJD patients but not in controls.

  9. Study of radiation processes for purifying liquid effluent and the design of pilot plants

    International Nuclear Information System (INIS)

    Kon'kov, N.G.; Buslaeva, S.P.; Osipov, V.B.; Panin, Yu.A.; Solodikhina, L.D.; Upadyshev, L.B.; Karpukhin, V.F.; Fajngol'd, Z.L.

    1975-01-01

    The possibilities of purifying liquid effluent containing dyestuffs and various organic and biological pollutants with an accelerated electron beam of energy up to 0.7 MeV are examined. A laboratory plant has been erected for the stationary, continuous irradiation - with bubbling of air - of artificial and natural industrial effluent containing organic pollutants in concentrations of up to 2g/litre and the 5 SKh dye in concentrations of up to 220 mg/litre. The results are discussed of the experimental irradiation of artificial mixtures consisting of distilled water, organic pollutants and dyestuffs, and also of natural industrial effluents from an enterprise where antibiotics are produced and from textile mills. The results of the studies indicate that the physicochemical characteristics of effluents are improved. On the basis of these studies pilot plants with electron accelerators are being designed for a daily throughput of 15 000 m 3 of effluent from the production of antibiotics. The electron accelerators are of the transformer type (EhLV-1) with an energy of up to 0.7 MeV and a power of up to 40 kW. In addition, units with a daily throughput of 200 m 3 are being designed for the breakdown of cyanides in effluent by 60 Co. Such a unit consists of three reactors with centro-axial irradiators and solid cast-iron biological shielding. The dose-rate can be measured over a wide range, thanks to the use of spherical source holders. The sources have a total activity of 62 kCi. Calculations of the cost of the radiation treatment of effluent demonstrate the economic feasibility of the method

  10. Proteomic analysis of barley cell nuclei purified by flow sorting

    Czech Academy of Sciences Publication Activity Database

    Petrovská, Beáta; Jeřábková, Hana; Chamrád, I.; Vrána, Jan; Lenobel, R.; Uřinovská, J.; Šebela, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 143, 1-3 (2014), s. 78-86 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cell cycle * Chromatin * Flow cytometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.561, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25059295

  11. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  12. Molecules to Materials

    Indian Academy of Sciences (India)

    evolved as a new line of thinking wherein a single molecule or perhaps a collection .... In photonic communication processes, laser light has to be modulated and .... The author wishes to thank G Rajaram for a critical reading of the manuscript.

  13. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    overall absorption spectrum of a molecule is a superposition of many such sharp lines .... dilute solution of the enzyme and the substrate over few drops of silicone oil placed ..... Near-field Scanning Optical Microscopy (NSOM): Development.

  14. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  15. Molecule of the Month

    Indian Academy of Sciences (India)

    Molecule of the Month - Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Volume 16 Issue 12 ... Keywords. Adamantane; diamondoid systems; plastic crystals. ... Resonance – Journal of Science Education | News. © 2017 Indian ...

  16. 78 FR 9884 - Purified Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-02-12

    ... Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty Administrative Review and Final No... carboxymethylcellulose (purified CMC) from the Netherlands.\\1\\ This review covers two respondents, Akzo Nobel Functional... Review'' section of this notice. \\1\\ See Purified Carboxymethylcellulose From the Netherlands...

  17. Method and device for feeding purified water to a pressure vessel

    International Nuclear Information System (INIS)

    Hirato, Miharu.

    1982-01-01

    Purpose: To prevent thermal wear at the junction of feedwater pipes and purified water pipes, as well as maintain the function of the purified water feeding system by stopping the introduction of purified water to the heated water feeding system and introducing purified water to the recycling water system upon transient operation or start-up. Constitution: Since a feedwater heater does not function well during transient operation or upon start-up, the temperature of heated water flowing through the feedwater pipe is reduced to produce a temperature difference relative to the set temperature for the purified water feeding system. The temperature difference is detected by a temperature sensor and, when it arrives at a predetermined difference, an operation valve is switched to interrupt the feed of the purified water to the heated water feeding system and it is sent to a water recycling system. Then, the purified water is sent from the water recycling system by way of the discharge portion to the inside of a pressure vessel. Thus, since only the heated water flows to the junction between the cleaned water pipes and the heated water pipes, neither shocks are generated nor the performance of the purified water feeding system is impaired. (Moriyama, K.)

  18. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  19. Single molecule image formation, reconstruction and processing: introduction.

    Science.gov (United States)

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  20. Kinetic Characterisation of Phosphofructokinase Purified from Setaria cervi: A Bovine Filarial Parasite

    Directory of Open Access Journals (Sweden)

    Bechan Sharma

    2011-01-01

    Full Text Available Phosphofructokinase (PFK, a regulatory enzyme in glycolytic pathway, has been purified to electrophoretic homogeneity from adult female Setaria cervi and partially characterized. For this enzyme, the Lineweaver-Burk's double reciprocal plots of initial rates and D-fructose-6-phosphate (F-6-P or Mg-ATP concentrations for varying values of cosubstrate concentration gave intersecting lines indicating that Km values for F-6-P (1.05 mM and ATP (3 μM were independent of each other. S. cervi PFK, when assayed at inhibitory concentration of ATP (>0.1 mM, exhibited sigmoidal behavior towards binding with F-6-P with a Hill coefficient (n value equal to 1.8 and 1.7 at 1.0 and 0.33 mM ATP, respectively. D-fructose-1,6-diphosphate (FDP competitively inhibited the filarial enzyme: Ki and Hill coefficient values being 0.18 μM and 2.0, respectively. Phosphoenolpyruvate (PEP also inhibited the enzyme competitively with the Ki value equal to 0.8 mM. The Hill coefficient values (>1.5 for F-6-P (at inhibitory concentration of ATP and FDP suggested its positive cooperative kinetics towards F-6-P and FDP, showing presence of more than one binding sites for these molecules in enzyme protein and allosteric nature of the filarial enzyme. The product inhibition studies gave us the only compatible mechanism of random addition process with a probable orientation of substrates and products on the enzyme surface.

  1. Characterization of crude and purified pumpkin seed oil.

    Directory of Open Access Journals (Sweden)

    Tsaknis, John

    1997-10-01

    Full Text Available Oil from hulled pumpkin seeds (Cucurbita pepo and Cucurbita Maxima was extracted with hot petroleum ether, and then it was degummed, neutralized and bleached, consecutively Physical and chemical characteristics of crude and purified oils were determined. Density, refractive index, viscosity and peroxide value were not affected by purification, while decreases in acidity, colour, unsaponifiable, E1%1cm 232, and oxidative stability, and increases in smoke point and E1%1cm 270 were observed. Purification did not affect the fatty acid and sterol profiles. GLC analysis for the fatty acid composition of the seed oil showed that the predominant unsaturates were linoleic (42% and oleic (38%, while the major saturates were palmitic (12,7% and stearic (6%. Only α-tocopherol was detected at a level of 126 mg/kg, which reduced to 78 mg/kg after purification. The main sterols of pumpkin seed oil unsaponifiable were Δ7.22,25 -stigmastatrien-3β-ol, α-spinasterol, Δ7,25_stigmastadienol and Δ7-avenasterol, followed by stigmasterol, 24-methylcholest-7-enol and Δ7-stigmastenol, and also trace to minor amounts of cholesterol, brassicasterol, campesterol, sitostanol, Δ5-avenasterol, erythrodiol and uvaol were found.

    Aceite de semillas de calabaza descascarada (Cucurbita pepo YCucurbita maxima fue extraído con éter de petróleo caliente, y luego desgomado, neutralizado y decolorado consecutivamente. Las características físicas y químicas de aceites crudo y purificado fueron determinadas. La densidad, el índice de refracción, la viscosidad y el índice de peróxido no se afectaron por la purificación, mientras que se observó una disminución en la acidez, color, insaponificable, E1%1cm 232, y estabilidad oxidativa, y un aumento en el punto de humo y de E1%1cm270. La purificaci

  2. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  3. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules.

    Science.gov (United States)

    Johnston, M J G; MacDonald, J A; McKay, D M

    2009-02-01

    Infection with parasitic helminths takes a heavy toll on the health and well-being of humans and their domestic livestock, concomitantly resulting in major economic losses. Analyses have consistently revealed bioactive molecules in extracts of helminths or in their excretory/secretory products that modulate the immune response of the host. It is our view that parasitic helminths are an untapped source of immunomodulatory substances that, in pure form, could become new drugs (or models for drug design) to treat disease. Here, we illustrate the range of immunomodulatory molecules in selected parasitic trematodes, cestodes and nematodes, their impact on the immune cells in the host and how the host may recognize these molecules. There are many examples of the partial characterization of helminth-derived immunomodulatory molecules, but these have not yet translated into new drugs, reflecting the difficulty of isolating and fully characterizing proteins, glycoproteins and lipid-based molecules from small amounts of parasite material. However, this should not deter the investigator, since analytical techniques are now being used to accrue considerable structural information on parasite-derived molecules, even when only minute quantities of tissue are available. With the introduction of methodologies to purify and structurally-characterize molecules from small amounts of tissue and the application of high throughput immunological assays, one would predict that an assessment of parasitic helminths will yield a variety of novel drug candidates in the coming years.

  4. Computational structural biology: methods and applications

    National Research Council Canada - National Science Library

    Schwede, Torsten; Peitsch, Manuel Claude

    2008-01-01

    ... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...

  5. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    Science.gov (United States)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  6. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  7. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  8. MOLECULES IN η CARINAE

    International Nuclear Information System (INIS)

    Loinard, Laurent; Menten, Karl M.; Güsten, Rolf; Zapata, Luis A.; Rodríguez, Luis F.

    2012-01-01

    We report the detection toward η Carinae of six new molecules, CO, CN, HCO + , HCN, HNC, and N 2 H + , and of two of their less abundant isotopic counterparts, 13 CO and H 13 CN. The line profiles are moderately broad (∼100 km s –1 ), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO + do not appear to be underabundant in η Carinae. On the other hand, molecules containing nitrogen or the 13 C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of η Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  9. Purified Human Dental Pulp Stem Cells Promote Osteogenic Regeneration.

    Science.gov (United States)

    Yasui, T; Mabuchi, Y; Toriumi, H; Ebine, T; Niibe, K; Houlihan, D D; Morikawa, S; Onizawa, K; Kawana, H; Akazawa, C; Suzuki, N; Nakagawa, T; Okano, H; Matsuzaki, Y

    2016-02-01

    Human dental pulp stem/progenitor cells (hDPSCs) are attractive candidates for regenerative therapy because they can be easily expanded to generate colony-forming unit-fibroblasts (CFU-Fs) on plastic and the large cell numbers required for transplantation. However, isolation based on adherence to plastic inevitably changes the surface marker expression and biological properties of the cells. Consequently, little is currently known about the original phenotypes of tissue precursor cells that give rise to plastic-adherent CFU-Fs. To better understand the in vivo functions and translational therapeutic potential of hDPSCs and other stem cells, selective cell markers must be identified in the progenitor cells. Here, we identified a dental pulp tissue-specific cell population based on the expression profiles of 2 cell-surface markers LNGFR (CD271) and THY-1 (CD90). Prospectively isolated, dental pulp-derived LNGFR(Low+)THY-1(High+) cells represent a highly enriched population of clonogenic cells--notably, the isolated cells exhibited long-term proliferation and multilineage differentiation potential in vitro. The cells also expressed known mesenchymal cell markers and promoted new bone formation to heal critical-size calvarial defects in vivo. These findings suggest that LNGFR(Low+)THY-1(High+) dental pulp-derived cells provide an excellent source of material for bone regenerative strategies. © International & American Associations for Dental Research 2015.

  10. Electron Accumulative Molecules.

    Science.gov (United States)

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  11. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  13. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  14. Hemolytic and Cytotoxic Properties of Saponin Purified from Holothuria leucospilota Sea Cucumber

    Directory of Open Access Journals (Sweden)

    Mozhgan Soltani

    2014-10-01

    Full Text Available Background: Holothuroids (sea cucumbers are members of the phylum echinodermata, which produce saponins. Saponins exhibit a wide spectrum of pharmacological and biological activities. In this study, we isolated the crude saponins from the body wall of the dominant Iranian species of sea cucumber, Holothuria leucospilota (H. leucospilota. The purpose of this study was to confirm the presence of saponins in the Persian Gulf H. leucospilota and study the hemolytic and cytotoxic activities of these compounds. Methods: The body wall of sea cucumber was dried and powdered and the crude saponins were isolated using various solvents. The crude saponins were further purified by column chromatography using HP-20 resin. The foam test, Thin Layer Chromatography (TLC, hemolytic assay, and Fourier Transform Infrared Spectroscopy (FTIR confirmed the presence of saponins. Cytotoxicity was analyzed using a 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT assay on A549 cells, a human lung cancer cell line. Results: The foam test, hemolytic assay, and TLC supported the presence of saponin compounds in the 80% ethanol fraction of H. leucospilota. The infrared (IR spectrum of the extract showed hydroxyl (-OH, alkyl (C-H, ether (C-O and ester (–C=O absorption characteristic of teriterpenoid saponins. The C-O-C absorption indicated glycoside linkages to the sapogenins. The crude saponin extracted from sea cucumber was cytotoxic to A549 cells. Conclusion: The 80% ethanol fraction of saponin isolated from H. leucospilota exhibited hemolytic activity and offers promise as an anti-cancer candidate.

  15. Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals.

    Science.gov (United States)

    El-Ahwany, Eman; Rabia, Ibrahim; Nagy, Faten; Zoheiry, Mona; Diab, Tarek; Zada, Suher

    2012-03-01

    Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by Fasciola gigantica play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 F. gigantica metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, IgG(1), and IgG(2) (P<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-γ, and TNF-α, revealed significant decreases (P<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, showed significant increases (P<0.05). In conclusion, it has been found that CP released by F. gigantica are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships.

  16. Isatin, a versatile molecule: studies in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Barbara, E-mail: barbara.iq@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Isatin is a small, versatile and widely applicable pharmacological molecule. These characteristics make isatin and its derivatives attractive to many research groups as resources for chemical and pharmacological studies. Although it has a relatively simple structure, isatin is a useful chemical scaffold for a variety of chemical transformations. This article discusses several studies performed by Brazilian groups, including investigations of its structural changes, biological assay designs and new methods for the synthesis of isatin. (author)

  17. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Molecule of the Month Isomers of Benzene - Still Pursuing Dreams. J Chandrasekhar. Feature Article Volume 1 Issue 2 February 1996 pp 80-83. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  19. Electrons in Molecules

    Indian Academy of Sciences (India)

    structure and properties (includingreactivt'ty) - both static (independent of time) and ... Furthermore, since the energy of H2 + in the ground state must be lower than that of .... (Figure 2b); note also that dp is positive in parts of the antibinding regions behind the two ... But, now both the sizes and shapes of molecules enter into.

  20. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - A Stable Dibismuthene - A Compound with a Bi-Bi Double Bond. V Chandrasekhar. Volume 16 ... Author Affiliations. V Chandrasekhar1. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India.

  1. OMG: Open molecule generator

    NARCIS (Netherlands)

    Peironcely, J.E.; Rojas-Chertó, M.; Fichera, D.; Reijmers, T.; Coulier, L.; Faulon, J.-L.; Hankemeier, T.

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical

  2. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    Employing self-assembly methods, it is possible to engineer a bulk molecular material ... synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be catego- ... maintained stably per organic molecule, stabilization of a ..... rotating freely under an applied field because it is a magne-.

  3. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao. Feature Article Volume 2 Issue 5 May 1997 pp 69-72. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Simultaneous purifying of Hg0, SO2, and NOx from flue gas by Fe3+/H2O2: the performance and purifying mechanism.

    Science.gov (United States)

    Xing, Yi; Li, Liuliu; Lu, Pei; Cui, Jiansheng; Li, Qianli; Yan, Bojun; Jiang, Bo; Wang, Mengsi

    2018-03-01

    Hg 0 , SO 2 , and NOx result in heavily global environmental pollution and serious health hazards. Up to now, how to efficiently remove mercury with SO 2 and NOx from flue gas is still a tough task. In this study, series of high oxidizing Fenton systems were employed to purify the pollutants. The experimental results showed that Fe 3+ /H 2 O 2 was more suitable to purify Hg 0 than Fe 2+ /H 2 O 2 and Cu 2+ /H 2 O 2. The optimal condition includes Fe 3+ concentration of 0.008 mol/L, Hg 0 inlet concentration of 40 μg/m 3 , solution temperature of 50 °C, pH of 3, H 2 O 2 concentration of 0.7 mol/L, and O 2 percentage of 6%. When SO 2 and NOx were taken into account under the optimal condition, Hg 0 removal efficiency could be enhanced to 91.11% while the removal efficiency of both NOx and SO 2 was slightly declined, which was consistent to the analysis of purifying mechanism. The removal efficiency of Hg 0 was stimulated by accelerating the conversion of Fe 2+ to Fe 3+ , which resulted from the existence of SO 2 and NOx. The results of this study suggested that simultaneously purifying Hg 0 , SO 2 , and NOx from flue gas is feasible.

  5. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  6. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  7. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  8. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  9. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  10. 75 FR 61700 - Purified Carboxymethylcellulose From Finland, the Netherlands, and Sweden: Final Results of the...

    Science.gov (United States)

    2010-10-06

    ... also referred to as purified sodium CMC, polyanionic cellulose, or cellulose gum, which is a white to....gov/frn . The paper copy and electronic version of the Decision Memo are identical in content. Final...

  11. 76 FR 3159 - Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden

    Science.gov (United States)

    2011-01-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1084-1087 (Review)] Purified Carboxymethylcellulose From Finland, Mexico, Netherlands, and Sweden AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject reviews. DATES: Effective Date: January 7, 2011. FOR FURTHER...

  12. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  13. Studies on a novel peptide isolated and purified from rat insulinoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Al-Akhras, G N

    1987-01-01

    Rat insulinoma peptide (RIP) which appears to be either a fragment of, or an altered rat C-peptide was isolated and purified by dialysis. The purity of this peptide was investigated using polyacrylamide gel electrophoresis with sodium dodecyl sulfate, isoelectric focusing, and high performance liquid chromatography. RIP may contain two peptides similar to each other but differing in their isoelectric points. The molecular weight of RIP was found to be 1982 daltons by fast atoms bombardment mass spectrometry giving a chain length of approximately 22 amino acid residues. From information obtained using radioimmunoassay employing antiserum R901, RIP appears to share a common C-terminus with rat C-peptide. A radioimmunoassay for RIP was developed using the purified RIP as immunogen and for standards and tracers. An indirect enzyme linked immunosorbent assay (ELISA) for rat insulinoma peptide was developed using purified RIP for immunogen and semi-purified RIP as a standard.

  14. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  15. Composition and potency characterization of Mycobacterium avium subsp. paratuberculosis purified protein derivatives

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain ATCC 19698. Traditional production consists of floating culture incubation at 37oC, organism inactivation by autoclaving, coarse filtrat...

  16. Effect of streamer plasma air purifier on sbs symptoms and performance of office work

    DEFF Research Database (Denmark)

    Zhang, X.J.; Fang, Lei; Wargocki, Pawel

    2011-01-01

    Subjective experiments were conducted to evaluate the effect of a streamer plasma air purifier on perceived air quality, SBS symptoms and performance of office work during 5-hour exposure of 32 recruited subjects in field laboratory in which real materials were used to establishing a realistic...... level of air pollution. Intensity of SBS symptoms were indicated using visual-analogue scales. Subjects’ performance was evaluated with several computer tasks. The results show that operation of the air purifiers improved perceived air quality and reduced the odor intensity of indoor air. Eye dryness...... symptom was found significantly improved when the air purifiers were used but no other SBS symptoms or performance of office work were improved when the air purifiers were in operation compared to the condition when they were off....

  17. Integrated Microchannel Reformer/Hydrogen Purifier for Fuel Cell Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Colorado School of Mines (CSM) propose to develop an integrated hydrogen generator and purifier system for conversion of in-situ...

  18. Investigating the characteristic strength of flocs formed from crude and purified Hibiscus extracts in water treatment.

    Science.gov (United States)

    Jones, Alfred Ndahi; Bridgeman, John

    2016-10-15

    The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. The results showed floc size increased from 300 μm when aluminium sulphate (AS) was used as a coagulant to between 696 μm and 722 μm with the addition of 50 mg/l of OK, KE and SB crude samples as coagulant aids. Similarly, an increase in floc size was observed when each of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74 mg/l. The largest floc sizes of 741 μm, 460 μm and 571 μm were obtained with a 0.123 mg/l dose of purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) respectively. Further coagulant aid addition from 0.123 to 0.74 mg/l resulted in a decrease in floc size and strength in POP and PSP. However, an increase in floc strength and reduced d50 size was observed in PKP at a dose of 0.74 mg/l. Flocs produced when using purified and crude extract samples as coagulant aids exhibited high recovery factors and strength. However, flocs exhibited greater recovery post-breakage when the extracts were used as a primary coagulant. It was observed that the combination of purified proteins and AS improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus seeds in either crude or purified form increases floc growth, strength, recoverability and can also reduce the cost associated with the import of AS in developing countries. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. An Experiment with Air Purifiers in Delhi during Winter 2015-2016.

    Science.gov (United States)

    Vyas, Sangita; Srivastav, Nikhil; Spears, Dean

    2016-01-01

    Particulate pollution has important consequences for human health, and is an issue of global concern. Outdoor air pollution has become a cause for alarm in India in particular because recent data suggest that ambient pollution levels in Indian cities are some of the highest in the world. We study the number of particles between 0.5μm and 2.5μm indoors while using affordable air purifiers in the highly polluted city of Delhi. Though substantial reductions in indoor number concentrations are observed during air purifier use, indoor air quality while using an air purifier is frequently worse than in cities with moderate pollution, and often worse than levels observed even in polluted cities. When outdoor pollution levels are higher, on average, indoor pollution levels while using an air purifier are also higher. Moreover, the ratio of indoor air quality during air purifier use to two comparison measures of air quality without an air purifier are also positively correlated with outdoor pollution levels, suggesting that as ambient air quality worsens there are diminishing returns to improvements in indoor air quality during air purifier use. The findings of this study indicate that although the most affordable air purifiers currently available are associated with significant improvements in the indoor environment, they are not a replacement for public action in regions like Delhi. Although private solutions may serve as a stopgap, reducing ambient air pollution must be a public health and policy priority in any region where air pollution is as high as Delhi's during the winter.

  20. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  1. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  2. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    Science.gov (United States)

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Toward Generalization of Iterative Small Molecule Synthesis.

    Science.gov (United States)

    Lehmann, Jonathan W; Blair, Daniel J; Burke, Martin D

    2018-02-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

  4. Toward Generalization of Iterative Small Molecule Synthesis

    Science.gov (United States)

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  5. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  6. Single-Molecule Nanomagnets

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, Myriam P.

    2010-04-01

    Single-molecule magnets straddle the classical and quantum mechanical worlds, displaying many fascinating phenomena. They may have important technological applications in information storage and quantum computation. We review the physical properties of two prototypical molecular nanomagnets, Mn12-acetate and Fe8: Each behaves as a rigid, spin-10 object and exhibits tunneling between up and down directions. As temperature is lowered, the spin-reversal process evolves from thermal activation to pure quantum tunneling. At low temperatures, magnetic avalanches occur in which the magnetization of an entire sample rapidly reverses. We discuss the important role that symmetry-breaking fields play in driving tunneling and in producing Berry-phase interference. Recent experimental advances indicate that quantum coherence can be maintained on timescales sufficient to allow a meaningful number of quantum computing operations to be performed. Efforts are under way to create monolayers and to address and manipulate individual molecules.

  7. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  8. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  9. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    Science.gov (United States)

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  10. Interaction between a "processed" ovalbumin peptide and Ia molecules

    DEFF Research Database (Denmark)

    Buus, S; Colon, S; Smith, C

    1986-01-01

    The binding of 125I-labeled immunogenic peptides to purified Ia molecules in detergent solution was examined by equilibrium dialysis. We used the chicken ovalbumin peptide ovalbumin-(323-339)-Tyr, which is immunogenic in the BALB/c mouse and restricted to I-Ad. 125I-labeled ovalbumin-(323-339)-Tyr......-Ak but not to I-Ek, I-Ad, or I-Ed. Thus, a specific interaction between Ia and antigen that correlates with the major histocompatibility complex restriction was demonstrated, strongly arguing in favor of a determinant selection hypothesis for such restriction....

  11. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  12. Interstellar molecules and masers

    International Nuclear Information System (INIS)

    Nguyen-Q-Rieu; Guibert, J.

    1978-01-01

    The study of dense and dark clouds, in which hydrogen is mostly in molecular form, became possible since the discovery of interstellar molecules, emitting in the centimeter and millimeter wavelengths. The molecular lines are generally not in local thermal equilibrium (LTE). Their intensity can often be explained by invoking a population inversion mechanism. Maser emission lines due to OH, H 2 O and SiO molecules are among the most intense molecular lines. The H 2 CO molecule, detected in absorption in front of the cold cosmic background radiation of 2.7 K, illustrates the inverse phenomenon, the antimaser absorption. For a radio transition of frequency v, the inversion rate Δn (relative population difference between the upper and lower level) as well as the maser gain can be determined from the radio observations. In the case of the OH lines in the 2 PIsub(3/2), J=3/2 state, the inversion rates approximately 1 to 2% derived from the observations, are comparable with those obtained in the laboratory. The determination of the excitation mechanisms of the masers, through the statistical equilibrium and radiative transfer equations, implies the knowledge of collisional and radiative transition probabilities. A pumping model, which can satisfactorily explain the radio observations of some interstellar OH clouds, will be discussed [fr

  13. Structure and hydrodynamic properties of plectin molecules.

    Science.gov (United States)

    Foisner, R; Wiche, G

    1987-12-05

    Plectin is a cytoskeletal, high molecular weight protein of widespread and abundant occurrence in cultured cells and tissues. To study its molecular structure, the protein was purified from rat glioma C6 cells and subjected to chemical and biophysical analyses. Plectin's polypeptide chains have an apparent molecular weight of 300,000, as shown by one-dimensional sodium dodecyl sulfate/polyacrylamide electrophoresis. Cross-linking of non-denatured plectin in solution with dimethyl suberimidate and electrophoretic analyses on sodium dodecyl sulfate/agarose gels revealed that the predominant soluble plectin species was a molecule of 1200 X 10(3) Mr consisting of four 300 X 10(3) Mr polypeptide chains. Hydrodynamic properties of plectin in solution were obtained by sedimentation velocity centrifugation and high-pressure liquid chromatography analysis yielding a sedimentation coefficient of 10 S and a Stokes radius of 27 nm. The high f/fmin ratio of 4.0 indicated a very elongated shape of plectin molecules and an axial ratio of about 50. Shadowing and negative staining electron microscopy of plectin molecules revealed multiple domains: a rigid rod of 184 nm in length and 2 nm in diameter, and two globular heads of 9 nm diameter at each end of the rod. Circular dichroism spectra suggested a composition of 30% alpha-helix, 9% beta-structure and 61% random coil or aperiodic structure. The rod-like shape, the alpha-helix content as well as the thermal transition within a midpoint of 45 degrees C and the transition enthalpy (168 kJ/mol) of secondary structure suggested a double-stranded, alpha-helical coiled coil rod domain. Based on the available data, we favor a model of native plectin as a dumb-bell-like association of four 300 X 10(3) Mr polypeptide chains. Electron microscopy and turbidity measurements showed that plectin molecules self-associate into various oligomeric states in solutions of nearly physiological ionic strength. These interactions apparently involved

  14. Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass

    Science.gov (United States)

    Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle

    2012-01-01

    Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further

  15. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  16. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  17. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  18. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  19. Small molecule annotation for the Protein Data Bank.

    Science.gov (United States)

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  20. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  1. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  2. Process for the winning of a concentrate containing uranium and purified phosphoric acid, as well as the concentrate containing uranium and purified phosphoric acid obtained by this process

    International Nuclear Information System (INIS)

    1980-01-01

    The uranium containing concentrate and purified phosphoric acid are obtained by treating wet phosphoric acid with an inorganic fluorine compound (ammonium fluoride) and an aliphatic ketone (acetone) in the presence of a reducing agent (finely divided iron). The ketone is added first and the formed uranium precipitate is separated from the solution. If the fluorine compound is added first, the yield is lowered by a factor of 2. (Th.P.)

  3. Mechanical performance of HMA-2 modified with purified and unpurified carbon nanotubes and nanofibers

    Directory of Open Access Journals (Sweden)

    Mario Rodrigo Rubio

    2017-05-01

    Full Text Available The present study evaluates the mechanical performance of a Hot Mix Asphalt – Type II (HMA-2 modified with carbon nanotubes and carbon nanofibers (CNTF. CNTF were made by means the Catalytic Vapor Deposition (CVD technique at 700° C using a Nickel, Copper and Aluminum (NiCuAl catalyst with a Cu/Ni molar relation of 0,33. In order to properly assess HMA-2 performance, three different mixtures were analyzed: 1 HMA-2 modified with purified CNTF; 2 HMA-2 modified with non-purified CNTF and, 3 a Conventional HMA-2 (control. Samples manufactured in accordance with the Marshall Mix Design were tested in the laboratory to study rutting, resilient modulus (Mr and fatigue. In addition to the aforementioned dynamic characterization, the effect of CNTF purification on the asphalt mixture’s mechanical properties was analyzed. In short, a comparative study was designed to determine whether or not CNTF should be purified before introduction into the HMA-2. This investigation responds to the growing demand for economical materials capable of withstanding traffic loads while simultaneously enhancing pavement durability and mechanical properties. Although purified CNTF increased HMA-2 stiffness and elastic modulus, non-purified CNTF increased the asphalt mixture’s elastic modulus without considerable increases in stiffness. Thus, the latter modification is deemed to help address fatiguerelated issues and improve the long-term durability of flexible pavements.

  4. Quark chemistry: charmonium molecules

    International Nuclear Information System (INIS)

    De Rujula, A.; Jaffe, R.L.

    1977-01-01

    The theoretical and experimental evidence for two quark-two antiquark hadrons is reviewed. Concentration is placed on predictions for S-wave ''charmonium molecules,'' built of a c anti c charmonium pair and a light quark-antiquark pair. Their spectrum and quantum numbers are predicted and an estimate of their decay couplings and their prediction in monochromatic pion decays from charmonium resonances produced in e + e - -annihilation is given. Some S-wave charmonium resonances should be detectable in these decays, but typical branching ratios are only at the 1% level. 19 references

  5. Probabilistic biological network alignment.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  6. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  7. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  8. Immunomodulatory Activity of Ganoderma atrum Polysaccharide on Purified T Lymphocytes through Ca2+/CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing.

    Science.gov (United States)

    Xiang, Quan-Dan; Yu, Qiang; Wang, Hui; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong

    2017-07-05

    Our previous study has demonstrated that Ganoderma atrum polysaccharide (PSG-1) has immunomodulatory activity on spleen lymphocytes. However, how PSG-1 exerts its effect on purified lymphocytes is still obscure. Thus, this study aimed to investigate the immunomodulatory activity of PSG-1 on purified T lymphocytes and further elucidate the underlying mechanism based on RNA sequencing (RNA-seq). Our results showed that PSG-1 promoted T lymphocytes proliferation and increased the production of IL-2, IFN-γ, and IL-12. Meanwhile, RNA-seq analysis found 394 differentially expressed genes. KEGG pathway analysis identified 20 significant canonical pathways and seven biological functions. Furthermore, PSG-1 elevated intracellular Ca 2+ concentration and calcineurin (CaN) activity and raised the p-ERK, p-JNK, and p-p38 expression levels. T lymphocytes proliferation and the production of IL-2, IFN-γ, and IL-12 were decreased by the inhibitors of calcium channel and mitogen-activated protein kinases (MAPKs). These results indicated that PSG-1 possesses immunomodulatory activity on purified T lymphocytes, in which Ca 2+ /CaN and MAPK pathways play essential roles.

  9. Laser spectroscopy on organic molecules.

    Science.gov (United States)

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  10. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1917-10-27

    Shale spirit, crude benzol, and other oils are treated for the removal of sulfur by washing with a solution of the sulfides of the alkalis or alkaline earths. The reagent may be prepared by saturating a strong solution of caustic potash with sulfuretted hydrogen and with flowers of sulfur in succession. The treatment may be effected by agitating the oil with the reagent for about six hours, or by heating them to about 40/sup 0/C. The reagent is drawn off, and the oil is washed with water, then with dilute caustic soda solution, and finally with water.

  11. Purified humanism

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    2016-01-01

    Abstract. The aim of the Leicester Conference is to help managers by way of experiential learning to acquire the prerequisites to influence effectively organizational change. For some time there has been an ongoing debate on the innovative potential of social psychological experiments and techniq...... and culturally specific attitudes in relation to leadership and the question of authority among participants. Keywords: The Leicester Conference, experiential learning, authority, socio-materiality, social techniques......Abstract. The aim of the Leicester Conference is to help managers by way of experiential learning to acquire the prerequisites to influence effectively organizational change. For some time there has been an ongoing debate on the innovative potential of social psychological experiments...

  12. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  13. Oxidative Stability of Dispersions Prepared from Purified Marine Phospholipid and the Role of α-Tocopherol

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    , respectively, during 32 days of storage at 2 °C. Nonenzymatic browning was investigated through measurement of Strecker aldehydes, color changes, and pyrrole content. Dispersions containing α-tocopherol or higher levels of purified marine PL showed a lower increment of volatiles after 32 days storage......The objective of this study was to investigate the oxidative stability of dispersions prepared from different levels of purified marine phospholipid (PL) obtained by acetone precipitation, with particular focus on the interaction between α-tocopherol and PL in dispersions. This also included...... the investigation of nonenzymatic browning in purified marine PL dispersions. Dispersions were prepared by high-pressure homogenizer. The oxidative and hydrolytic stabilities of dispersions were investigated by determination of hydroperoxides, secondary volatile oxidation products, and free fatty acids...

  14. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  15. Fabrication of Simple Indoor Air Haze Purifier using Domestic Discarded Substances and Its Haze Removal Performance

    Science.gov (United States)

    Wang, Zhou; Cao, Haoshu; Zhao, Shuang

    2018-01-01

    Based on the concept of circular economy, discarded plastic bottles stuffed with discarded cotton, clothing and sofa cushion were used as pre-filter to remove big particles (dust and coal dust) in air and 4 L tap water in discarded plastic bottle was worked as an absorbing medium to dissolve the water soluble ions in air (SO4 2-, NO3-, NH4+, Cl- and Ca2+). Moreover, the internet control design was used in this homemade indoor air haze purifier to achieve the performance of remote control and intelligent management. The experimental results showed that this indoor air haze purifier can effectively reduce the level of indoor air haze and the air quality after 20 minutes treatment is higher than that of two commercial well-known air haze purifier

  16. Inference of purifying and positive selection in three subspecies of chimpanzees (Pan troglodytes) from exome sequencing

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Duan, Jinjie; Hvilsom, Christina

    2015-01-01

    of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked vs. autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection (DoS) statistic exhibits a strong non......-monotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous vs. non-synonymous frequency classes to infer the distribution of S coefficients acting on non-synonymous mutations in each subspecies. The strength of purifying selection we...... infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human...

  17. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    . To describe the molecular basis of this behavior, two main mechanisms have been advanced: 'induced fit' and 'conformational selection'. Our understanding of these models relies primarily on NMR, computational studies and kinetic measurements. These techniques report the average behavior of a large ensemble...... of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...

  18. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  19. Improved detection of a staphylococcal infection by monomeric and protein A-purified polyclonal human immunoglobulin

    International Nuclear Information System (INIS)

    Calame, W.

    1993-01-01

    The present study was undertaken to compare the technetium-99m labelled non-specific polyclonal human immunoglobulin (Ig) with 99m Tc-labelled monomeric human immunoglobulin (m-Ig), 99m Tc-labelled, protein A-purified, human immunoglobulin (A-IG) and 99m Tc-labelled monomeric, protein A-purified, human immunoglobulin (mA-Ig) as tracer agents for the detection of a thigh infection with Staphylococcus aureus. In vitro the binding of the various tracer agents to bacteria at various intervals was determined. For the in vivo evaluation, mice were infected and received one of the various labelled proteins. Scintigrams were made 0.25, 1, 4 and 24 h later. All 99m Tc-labelled Igs bound to bacteria in vitro: The percentages of binding for the m-Ig (from 1 h onwards) and A-Ig and mA-Ig (from 3 h onwards) were significantly higher than that for Ig. The in vivo target-to-non-target (T/NT) ratios were significantly higher from 4 h onwards for all purified Igs than for Ig. Protein A-purified Ig yielded higher T/NT ratios than m-Ig. Furthermore, the amount of activity in the liver was significantly lower 24 h after administration of m-Ig, A-Ig and mA-Ig than after administration of Ig. It is concluded that in this experimental infection 99m Tc-labelled monomeric Ig localizes a staphylococcal thigh infection better and faster than 99m Tc-labelled unpurified Ig. However, the accumulation obtained with protein A-purified Ig or protein A-purified monomeric Ig was the highest of all tracer agents tested. (orig.)

  20. An improved process for the production of highly purified recombinant thaumatin tagged-variants.

    Science.gov (United States)

    Healey, Robert D; Lebhar, Helene; Hornung, Simon; Thordarson, Pall; Marquis, Christopher P

    2017-12-15

    The sweetest tasting molecule known is the protein thaumatin, first isolated from the katemfe fruit, Thaumatococcus daniellii. Thaumatin is used in the food and beverage industry as a low-calorie sugar substitute. Thaumatin interacts with taste receptors in the oral cavity eliciting a persistent sweet taste and a bitter, liquorice flavor. Recombinant thaumatin was expressed in Pichia pastoris and through a co-expression strategy with a molecular chaperone, yields of one engineered thaumatin variant increased by greater than two-fold. A detailed purification strategy for thaumatin is reported resulting in a homogenous sample recovered at a yield of 42%. The recombinant thaumatins were extensively characterised using size exclusion chromatography for homogeneity, reversed-phase HPLC for purity (99%), peptide digest LC-MS/MS for sequence determination, and circular dichroism and tryptophan fluorescence spectroscopies for conformational characterisation. These new thaumatin variants are amenable for bioconjugation, providing chemical biology tools for thaumatin:taste receptor interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tuberculin purified protein derivative (PPD) immunoassay as an in vitro alternative assay for identity and confirmation of potency.

    Science.gov (United States)

    Ho, Mei M; Kairo, Satnam K; Corbel, Michael J

    2006-01-01

    Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.

  2. Affinity-purified human interleukin I is cytotoxic to isolated islets of Langerhans

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Bendtzen, K; Nerup, J

    1986-01-01

    Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets. These e......Addition of highly purified human Interleukin-1 to the culture medium of isolated rat islets of Langerhans for 6 days led to 88% inhibition of glucose-induced insulin-release, reduction of islet contents of insulin and glucagon to 31% and 8% respectively, and disintegration of the islets...

  3. Isolation and Purification of an Early Pregnancy Factor–Like Molecule from Culture Supernatants Obtained from Lymphocytes of Pregnant Women

    OpenAIRE

    Aranha, Clara; Natraj, Usha; Iyer, K. S.; Shahani, Savitri

    1998-01-01

    Purpose:Our purpose was to determine whether lymphocytes synthesize proteins during pregnancy, to observe whether one of the proteins synthesized has early pregnancy factor (EPF)–like activity and to isolate and purify this molecule from culture supernatants obtained from stimulated lymphocytes of pregnant women.

  4. Regularities in positronium formation for atoms and molecules

    International Nuclear Information System (INIS)

    Machacek, J R; Buckman, S J; Sullivan, J P; Blanco, F; Garcia, G

    2016-01-01

    In an effort to aid the modelling of positron and positronium (Ps) transport in biological media we have compiled recent experimental results for the total Ps formation in positron scattering from atoms and molecules. A simple function was found to adequately describe the total Ps formation cross section for both atoms and molecules. The parameters of this function describe the magnitude and shape of the Ps formation cross section and are compared to physical characteristics of the target atoms and molecules. A general trend in the magnitude of the total Ps formation cross section is observed as a function of the target atom/molecule dipole polarisability. The functional form may enable quick estimation of the Ps cross section for molecules for which experimental measurements or theoretical estimates do not exist. (paper)

  5. The importance of correct tautomeric structures for biological molecules

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Mortensen, John; Kamounah, Fadhil S.

    2015-01-01

    The structures of usnic acid and tetracycline are determined using deuterium isotope effects on 13C chemical shifts in a water environment. In case of usnic acid this is achieved by synthesizing a more water soluble usnic acid with a PEG linker. In the usnic acid case an enolic b-triketone (C-1, ...

  6. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but

  7. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    Alvarez, R.; Evans, L.A.

    2000-01-01

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  8. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  9. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  10. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  11. Molecules in the Spotlight

    Energy Technology Data Exchange (ETDEWEB)

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  12. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  13. Magnetic field modification of ultracold molecule-molecule collisions

    International Nuclear Information System (INIS)

    Tscherbul, T V; Suleimanov, Yu V; Aquilanti, V; Krems, R V

    2009-01-01

    We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focuses on the analysis of elastic scattering and spin relaxation in collisions of O 2 ( 3 Σ g - ) molecules at cold (∼0.1 K) and ultracold (∼10 -6 K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1x10 -11 cm -3 s -1 . The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ∼100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.

  14. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  15. Report on achievements in fiscal 1999 on research and development of the glycocluster controlled biological molecule synthesizing under the industrial and scientific technology research and development theme [university collaborated type]. Bio-fiber manufacturing technology of glycocluster utilizing type; 1999 nendo glycocluster seigyo seitai bunshi gosei gijutsu seika hokokusho (glycocluster riyogata bio sen'i seizo gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the achievements in fiscal 1999 on development of the technology to manufacture glycocluster controlled biological molecules, particularly bio-fibers. It was made clear for the first time that the method for synthesizing glycoside and sugar chain using solid ultra-strong acid can be a new method for polysaccharide synthesis (polycondensation reaction) which is extremely simple and versatile as a result of using the solid ultra-strong acid. It can also be applied to general glycoside synthesis. In glycopeptide synthesis of the regular sequence type using high-functional condensation reaction, such a condensation agent as diphenyl phosphoryl azide was found effective in polymerization reaction without protection of glycopeptide, which has been impossible conventionally, and was found to have high versatility as a method for synthesizing mucin glycoproteins widely distributed naturally. In simplified synthesis of physiologically active glycopeptide, notice was given to tyrosine which is not glycosylated in the natural world, even though having hydroxyl groups in side chains as in serine and threonine. A method was established to introduce sugar chains into this hydroxyl group. This method exhibits power also in the synthesis of physiologically active glycopeptide of non-natural type. The paper describes also the comprehensive survey. (NEDO)

  16. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  17. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.

    2011-06-17

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.

  18. Aspartic acid racemisation in purified elastin from arteries as basis for age estimation.

    Science.gov (United States)

    Dobberstein, R C; Tung, S-M; Ritz-Timme, S

    2010-07-01

    Aspartic acid racemisation (AAR) results in an age-dependent accumulation of D: -aspartic acid in durable human proteins and can be used as a basis for age estimation. Routinely, age estimation based on AAR is performed by analysis of dentine. However, in forensic practise, teeth are not always available. Non-dental tissues for age estimation may be suitable for age estimation based on AAR if they contain durable proteins that can be purified and analysed. Elastin is such a durable protein. To clarify if purified elastin from arteries is a suitable sample for biochemical age estimation, AAR was determined in purified elastin from arteries from individuals of known age (n = 68 individuals, including n = 15 putrefied corpses), considering the influence of different stages of atherosclerosis and putrefaction on the AAR values. AAR was found to increase with age. The relationship between AAR and age was good enough to serve as basis for age estimation, but worse than known from dentinal proteins. Intravital and post-mortem degradation of elastin may have a moderate effect on the AAR values. Age estimation based on AAR in purified elastin from arteries may be a valuable additional tool in the identification of unidentified cadavers, especially in cases where other methods cannot be applied (e.g., no available teeth and body parts).

  19. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever

    NARCIS (Netherlands)

    Tran Vu Thieu, Nga; Trinh van, Tan; Tran Tuan, Anh; Klemm, Elizabeth J.; Nguyen Ngoc Minh, Chau; Voong Vinh, Phat; Pham Thanh, Duy; Ho Ngoc Dan, Thanh; Pham Duc, Trung; Langat, Pinky; Martin, Laura B.; Galan, Jorge; Liang, Li; Felgner, Philip L.; Davies, D. Huw; de Jong, Hanna K.; Maude, Rapeephan R.; Fukushima, Masako; Wijedoru, Lalith; Ghose, Aniruddha; Samad, Rasheda; Dondorp, Arjen M.; Faiz, Abul; Darton, Thomas C.; Pollard, Andrew J.; Thwaites, Guy E.; Dougan, Gordon; Parry, Christopher M.; Baker, Stephen

    2017-01-01

    The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. IgM against 12 purified antigens and the Vi polysaccharide

  20. 75 FR 6211 - Prospective Grant of Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine...

    Science.gov (United States)

    2010-02-08

    ... Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1,2,3, and 4 AGENCY: National Institutes of Health, Public Health...., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses''-- European Patent...

  1. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  2. C@Fe 3 O 4 /NTA-Ni magnetic nanospheres purify histidine-tagged ...

    African Journals Online (AJOL)

    This study reports synthesis of Ni-nitrilotriacetic acid (Ni-NTA) modified carbon nanospheres containing magnetic Fe3O4 particles (C@Fe3O4), which can act as a general tool to separate and purify histidine-tagged fetidin. In this experiment, C nanospheres are prepared from glucose using the hydrothermal process, ...

  3. Differentiation of purified malignant B cells induced by PMA or by activated normal T cells

    NARCIS (Netherlands)

    van Kooten, C.; Rensink, I.; Aarden, L.; van Oers, R.

    1993-01-01

    We studied the in vitro differentiation (immunoglobulin production) of purified malignant B cells of 21 patients with different B-cell malignancies, including chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HCL) and non-Hodgkin lymphoma (NHL). Direct

  4. Biochemical Properties and Mechanism of Action of Enterocin LD3 Purified from Enterococcus hirae LD3.

    Science.gov (United States)

    Gupta, Aabha; Tiwari, Santosh Kumar; Netrebov, Victoria; Chikindas, Michael L

    2016-09-01

    Enterocin LD3 was purified using activity-guided multistep chromatography techniques such as cation-exchange and gel-filtration chromatography. The preparation's purity was tested using reverse-phase ultra-performance liquid chromatography. The specific activity was tested to be 187.5 AU µg(-1) with 13-fold purification. Purified enterocin LD3 was heat stable up to 121 °C (at 15 psi pressure) and pH 2-6. The activity was lost in the presence of papain, reduced by proteinase K, pepsin and trypsin, but was unaffected by amylase and lipase, suggesting proteinaceous nature of the compound and no role of carbohydrate and lipid moieties in the activity. MALDI-TOF/MS analysis of purified enterocin LD3 resolved m/z 4114.6, and N-terminal amino acid sequence was found to be H2NQGGQANQ-COOH suggesting a new bacteriocin. Dissipation of membrane potential, loss of internal ATP and bactericidal effect were recorded when indicator strain Micrococcus luteus was treated with enterocin LD3. It inhibited Gram-positive and Gram-negative bacteria including human pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, E. coli (urogenic, a clinical isolate) and Vibrio sp. These properties of purified enterocin LD3 suggest its applications as a food biopreservative and as an alternative to clinical antibiotics.

  5. Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity

    NARCIS (Netherlands)

    Li, Y.; Tan, W.F.; Wang, M.X.; Liu, F.; Weng, L.P.; Norde, W.; Koopal, L.K.

    2012-01-01

    Humic acid is an important component of dissolved organic matter and in two previous papers it has been shown that purified Aldrich humic acid (PAHA) forms strong complexes with the oppositely charged protein lysozyme (LSZ). The complexation and aggregation of enzymes with humic acids may lead to

  6. 77 FR 14733 - Purified Carboxymethylcellulose From Finland and the Netherlands: Extension of Time Limit for...

    Science.gov (United States)

    2012-03-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-405-803, A-421-811] Purified Carboxymethylcellulose From Finland and the Netherlands: Extension of Time Limit for Preliminary Results of Antidumping... carboxymethylcellulose from Finland and the Netherlands covering the period July 1, 2010, through June 30, 2011. See...

  7. 75 FR 15678 - Certain Purified Carboxymethylcellulose from the Netherlands: Extension of Time Limit for...

    Science.gov (United States)

    2010-03-30

    ... Carboxymethylcellulose from the Netherlands: Extension of Time Limit for Preliminary Results of Antidumping Duty...) from the Netherlands. The period of review is July 1, 2008, through June 30, 2009. This extension is... of the antidumping duty order on purified CMC from the Netherlands. See Initiation of Antidumping and...

  8. 78 FR 78812 - Purified Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-12-27

    ... Carboxymethylcellulose From the Netherlands: Final Results of Antidumping Duty Administrative Review and Final No... Netherlands. For the final results, we continue to find that sales of subject merchandise by Akzo Nobel... of the AD order on purified CMC from the Netherlands.\\1\\ We invited interested parties to comment on...

  9. Optimum design of water supply purifying station in living section of a uranium mine

    International Nuclear Information System (INIS)

    Li Jianjun; Zhang Yu

    2012-01-01

    A design of water supply purifying station in living section of a uranium mine was optimized, and appropriate technique and equipment were chosen based on the raw water quality characteristic, water consumption and change, landform of construction field, etc. After the engineering finished, the circulation is steady-going, the quality of treated water fulfills water standards for drinking water quality. (authors)

  10. The design and commissioning of cold trap purifying system of hydrogen meter sodium loop

    International Nuclear Information System (INIS)

    Zhao Zhaoyi; Jia Baoshan; Chen Xiaoming; Pan Fengguo

    1993-01-01

    The design feature and parameters of cold trap purifying system of hydrogen meter sodium loop and its commissioning results are reported and discussed. In order to adjust the flow easily,. the cold trap purifying system is arranged in the exit of the electromagnetic pump. It is composed of regenerator and the cold trap. The regenerator is above the cold trap. The high temperature sodium in the main-loop flows through the regenerator, in the entrance of the cold trap, its temperature is reduced to 180 degree C. After entering into the cold trap, the sodium flows to the purifying region by side, when it arrives the bottom of the trap, its temperature is reduced to 110 degree C. The cold trap is cooled by air. The temperature of the clean sodium rises nearby the main-loop's by the regenerator, and then it returns to the entrance of the electromagnetic pump. According to the commissioning results, the sodium's temperature of the cold trap could be reduced to 110 degree C by reducing the flow of the cold trap purifying system and the temperature of the main-loop, or increasing the air flow and cutting off the power supply of its heating. The authors think that the latter is more conformable with the design stipulation and with the requirement of the hydrogen meter experiment, and it can meet the requirements of the operation of the Nuclear Power Plant

  11. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  12. Kinetic Analysis of Lactose Exchange in Proteoliposomes Reconstituted with Purified lac Permease

    NARCIS (Netherlands)

    Lolkema, Julius S.; Carrasco, Nancy; Kaback, H. Ronald

    1991-01-01

    Lactose exchange catalyzed by purified lac permease reconstituted into proteoliposomes was analyzed with unequal concentrations of lactose on either side of the membrane and at low pH so as to prevent equilibration of the two pools. Exchange with external concentrations below 1.0 mM is a

  13. A four-step sandwich radioimmunoassay for direct selection of monoclonal antibodies to allergen molecules

    International Nuclear Information System (INIS)

    Ley, V.; Corbi, A.L.; Sanchez-Madrid, F.; Carreira, J.C.

    1985-01-01

    A 4-step radioimmunoassay has been devised for direct identification of monoclonal antibodies (MAb) directed to IgE-binding molecules. Polyvinyl chloride wells coated with purified anti-mouse kappa chain MAb (187-1) were successively incubated with: (1) MAb-containing hybridoma supernatants, (2) allergen extract, (3) allergic patients' serum pool, and (4) 125 I-labeled anti-human IgE antiserum, to detect MAb-allergen-IgE complexes. MAb to allergens from Parietaria judaica pollen and Dermatophagoides mites have been selected with this screening procedure. The affinity-purified allergen molecules competed the binding of IgE to allergen extracts coated to paper discs in a RAST inhibition assay, confirming the anti-allergen specificity of the selected MAb. This screening method is sensitive enough to allow detection of MAb directed to poorly represented allergens. (Auth.)

  14. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  15. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Organic Molecules in Meteorites

    Science.gov (United States)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502

  17. Evolutionary game theory: molecules as players.

    Science.gov (United States)

    Bohl, Katrin; Hummert, Sabine; Werner, Sarah; Basanta, David; Deutsch, Andreas; Schuster, Stefan; Theissen, Günter; Schroeter, Anja

    2014-12-01

    In this and an accompanying paper we review the use of game theoretical concepts in cell biology and molecular biology. This review focuses on the subcellular level by considering viruses, genes, and molecules as players. We discuss in which way catalytic RNA can be treated by game theory. Moreover, genes can compete for success in replication and can have different strategies in interactions with other genetic elements. Also transposable elements, or "jumping genes", can act as players because they usually bear different traits or strategies. Viruses compete in the case of co-infecting a host cell. Proteins interact in a game theoretical sense when forming heterodimers. Finally, we describe how the Shapley value can be applied to enzymes in metabolic pathways. We show that game theory can be successfully applied to describe and analyse scenarios at the molecular level resulting in counterintuitive conclusions.

  18. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  19. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  20. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  1. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    International Nuclear Information System (INIS)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-01-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14 C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV

  2. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  3. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    measure absolute absorption cross sections in very dilute beams without the need of knowing the vapor pressure. In the future this technique can be extended to a variety of biological molecules. The experiments presented in this thesis define the currently most stringent bound of the experimental macroscopicity parameter for quantum superpositions. (author) [de

  4. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  5. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  6. Labelled molecules, modern research implements

    International Nuclear Information System (INIS)

    Pichat, L.; Langourieux, Y.

    1974-01-01

    Details of the synthesis of carbon 14- and tritium-labelled molecules are examined. Although the methods used are those of classical organic chemistry the preparation of carbon 14-labelled molecules differs in some respects, most noticeably in the use of 14 CO 2 which requires very special handling techniques. For the tritium labelling of organic molecules the methods are somewhat different, very often involving exchange reactions. The following are described in turn: the so-called Wilzbach exchange method; exchange by catalysis in solution; catalytic hydrogenation with tritium; reductions with borotritides. Some applications of labelled molecules in organic chemistry, biochemistry and pharmacology are listed [fr

  7. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  8. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    Salas, M.

    2009-01-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  9. The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule

    International Nuclear Information System (INIS)

    Horemans, N.; Asard, H.; Caubergs, R.J.

    1997-01-01

    Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol dithioerythritol beta-mercaptoethanol beta-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol

  10. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  11. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  12. Growing interstellar molecules with ion-molecule reactions

    International Nuclear Information System (INIS)

    Bohme, D.K.

    1989-01-01

    Laboratory measurements of gas-phase ion-molecule reactions continue to provide important insights into the chemistry of molecular growth in interstellar environments. It is also true that the measurements are becoming more demanding as larger molecules capture our interest. While some of these measurements are motivated by current developments in chemical models of interstellar environments or by new molecular observations by astronomers, others explore novel chemistry which can lead to predictions of new interstellar molecules. Here the author views the results of some recent measurements, taken in the Ion Chemistry Laboratory at York University with the SIFT technique, which address some of the current needs of modellers and observers and which also provide some new fundamental insight into molecular growth, particularly when it occurs in the presence of large molecules such as PAH molecules which are now thought to have a major influence on the chemistry of interstellar environments in which they are present

  13. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  14. Mesoscopic models of biological membranes

    DEFF Research Database (Denmark)

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  15. Flexibility and conformational change of IgG molecule

    International Nuclear Information System (INIS)

    Alpert, Y.; Ostanevich, Yu.M.

    1982-12-01

    The dynamic behaviour of pig anti-Dnp-immunoglobulin (IgG) investigated by the neutron spin echo technique gave evidence of internal motion of a biological macromolecule. It is suggested that this motion belongs to the wobbling of the Fab parts of the investigated IgG molecule around its so called hinge region. (author)

  16. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  17. Directed growth of graphene nanomesh in purified argon via chemical vapor deposition.

    Science.gov (United States)

    Sun, Haibin; Fu, Can; Shen, Xia; Yang, Wenchao; Guo, Pengfei; Lu, Yang; Luo, Yongsong; Yu, Benhai; Wang, Xiaoge; Wang, Chunlei; Xu, Junqi; Liu, Jiangfeng; Song, Fengqi; Wang, Guanghou; Wan, Jianguo

    2017-06-16

    Graphene nanomeshes (GNMs), new graphene nanostructures with tunable bandgaps, are potential building blocks for future electronic or photonic devices, and energy storage and conversion materials. In previous works, GNMs have been successfully prepared on Cu foils by the H 2 etching effect. In this paper, we investigated the effect of Ar on the preparation of GNMs, and how the mean density and shape of them vary with growth time. In addition, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM) revealed the typical hexagonal structure of GNM. Atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) indicated that large copper oxide nanoparticles produced by oxidization in purified Ar can play an essential catalytic role in preparing GNMs. Then, we exhibited the key reaction details for each growth process and proposed a growth mechanism of GNMs in purified Ar.

  18. Characterization of purified bacterial cellulose focused on its use on paper restoration.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Quintana, Ester; Ibarra, David; Gomez, Nuria; Ladero, Miguel; Eugenio, M Eugenia; Villar, Juan C

    2015-02-13

    Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. In vitro and in vivo antioxidant activities of polysaccharide purified from aloe vera (Aloe barbadensis) gel.

    Science.gov (United States)

    Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin

    2014-01-01

    The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  1. Organizing and addressing magnetic molecules.

    Science.gov (United States)

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  2. Ion-Molecule Reaction Dynamics.

    Science.gov (United States)

    Meyer, Jennifer; Wester, Roland

    2017-05-05

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  3. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.

    OpenAIRE

    Mountfort, D O

    1990-01-01

    Methanol dehydrogenase was found to be present in subcellular preparations of methanol-grown Methylosinus trichosporium and occurred almost wholly in the soluble fraction of the cell. The enzyme, purified by DEAE-Sephadex and Sephadex G-100 chromatography, showed broad specificity toward different substrates and oxidized the aromatic alcohols benzyl, vanillyl, and veratryl alcohols in addition to a range of aliphatic primary alcohols. No enzyme activity was found toward the corresponding alde...

  4. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  5. Tuberculin purified protein derivative-reactive T cells in cord blood lymphocytes.

    OpenAIRE

    Shiratsuchi, H; Tsuyuguchi, I

    1981-01-01

    Lymphocytes obtained from cord blood of newborn babies who were born of healthy mothers were studied in vitro for their responsiveness to purified protein derivative (PPD) of tuberculin. Cord blood lymphocytes proliferated in vitro by stimulation with PPD, despite wide variations in the results. Studies with fractionated lymphocytes revealed that PPD-responding cells belonged to E-rosetting, nylon wool-nonadherent T lymphocytes. Non-E-rosetting B lymphocytes alone did not proliferate at all a...

  6. Evaluation of the purified fraction of Wilbrandia (c. f. verticillata for antitumour activity

    Directory of Open Access Journals (Sweden)

    V. S. N. Rao

    1991-01-01

    Full Text Available Cucurbatacins are known to produce cytotoxic and anticancer activities. Two novel norcucurbitacin glucosides (Wvl and Wv2 have recently been isolated from a purified fraction obtained from the rhizome of Wilbrandia verticillata. The present study evaluates the cytotoxic and anti-tumour activities of the norcucurbitacins. We have found a regular cytotoxicity in KB cells (Cy50 = 12µg/ml as well as a significant inhibition in the Walker 256 carcinosarcoma growth (approximately 75%.

  7. Requirements for growth and IL-10 expression of highly purified human T regulatory cells

    OpenAIRE

    Bonacci, Benedetta; Edwards, Brandon; Jia, Shuang; Williams, Calvin; Hessner, Martin J.; Gauld, Stephen; Verbsky, James

    2012-01-01

    Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimu...

  8. Photoaffinity labelling of a small protein component of a purified (Na+-K+)ATPase

    International Nuclear Information System (INIS)

    Rogers, T.B.; Lazdunski, M.

    1979-01-01

    Studies have been carried out on the photoaffinity labelling of the (Na + -K + )ATPase from the electric organ of Electrophorus electricus. The aims were to see if different photoaffinity labels of the ouabain binding site, are capable of labelling a small protein component and to know if there is a small protein component, in addition to the major protein chains with molecular weights in the regions of 100 000 and 50 000, which is present in other purified (Na + -K + )ATPase preparations. (Auth.)

  9. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES 42 CFR Part 84 [Docket No. CDC-2013-0017; NIOSH-250] Development of Inward Leakage Standards for Half-Mask Air- Purifying Particulate Respirators AGENCY: Centers... regarding the development of inward leakage performance standards for half-mask air- purifying particulate...

  10. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  11. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  12. Single-molecule stochastic times in a reversible bimolecular reaction

    Science.gov (United States)

    Keller, Peter; Valleriani, Angelo

    2012-08-01

    In this work, we consider the reversible reaction between reactants of species A and B to form the product C. We consider this reaction as a prototype of many pseudobiomolecular reactions in biology, such as for instance molecular motors. We derive the exact probability density for the stochastic waiting time that a molecule of species A needs until the reaction with a molecule of species B takes place. We perform this computation taking fully into account the stochastic fluctuations in the number of molecules of species B. We show that at low numbers of participating molecules, the exact probability density differs from the exponential density derived by assuming the law of mass action. Finally, we discuss the condition of detailed balance in the exact stochastic and in the approximate treatment.

  13. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  14. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Roberts, J.C.; Lewis, D.; Newmyer, S.L.; Schulte, L.D.; Burns, T.P.; Mixon, P.L.; Jeffery, A.L.; Schreyer, S.A.; Cole, D.A.; Figard, S.D.; Lennon, V.A.; Hayashi, M.; Lavallee, D.K.

    1990-01-01

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  15. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  16. CHARACTERIZATION OF THE PARTIALLY PURIFIED PLANTARCIN SR18 PRODUCED BY LACTOBACILLUS PLANTARUM SR18

    Directory of Open Access Journals (Sweden)

    Wagih El-Shouny

    2013-04-01

    Full Text Available The bacteriocin bound to the cells and that secreted into the culture filtrate of Lactobacillus plantarum SR18 were precipitated by 75% ammomium sulphate, dialysed and further purified by Gel filtration on Sephadex G-100. Bacteriocins were purified from proteins bound to the cell of L. plantarum SR18 (plantarcin SR18 a and culture filtrate proteins (plantarcin SR18 b, respectively. The SDS-PAGE of partially purified Plantarcin SR18a showed a molecular weight of 3.5 KDa. While, plantarcin SR18 b had a molecular weight of 10.3 KDa. The antibacterial activity of the tested plantarcin SR18 preparations suffered no measurable loss after 45 min at 80ºC. Whereas, At 100ºC, significant decrease in the activity of bacteriocin preparations (60- 80 % took place by the end of 45 min. At pH ranged from 5-8, the activity of the plantarcin SR18 preparations suffered no measurable loss. Dissociating agents significantly affected the bacteriocin activity. Thus, tween 80 and mercaptoethanol increased the activity of bacteriocin preparations to 1.2-1.4 fold. Sodium dodecyl sulphate (SDS increased the activity of the tested bacteriocin preparations by about 20%.The lowest residual activity (60% was recorded after treatment with Triton X100 for 45 min. Protease completely inhibited the activities of all forms of plantarcin SR18 after 45 min at 37ºC.

  17. Biology of Bilirubin Photoisomers.

    Science.gov (United States)

    Hansen, Thor Willy Ruud

    2016-06-01

    Phototherapy is the main treatment for neonatal hyperbilirubinemia. In acute treatment of extreme hyperbilirubinemia, intensive phototherapy may have a role in 'detoxifying' the bilirubin molecule to more polar photoisomers, which should be less prone to crossing the blood-brain barrier, providing a 'brain-sparing' effect. This article reviews the biology of bilirubin isomers. Although there is evidence supporting the lower toxicity of bilirubin photoisomers, there are studies showing the opposite. There are methodologic weaknesses in most studies and better-designed experiments are needed. In an infant acutely threatened by bilirubin-induced brain damage, intensified phototherapy should be used expediently and aggressively. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  19. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  20. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.