WorldWideScience

Sample records for biological materials

  1. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    cortical bone, and the nanoscale response of bone in compression. Lastly, a framework for the investigation of biological design principles has been developed. The framework combines parametric modeling, multi-material 3D-printing, and direct mechanical testing to efficiently screen large parameter spaces...

  2. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  3. Making Biological Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent

    2005-01-01

    @@ 1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together.

  4. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment request....Fawcett@uspto.gov . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line of....Hanlon@uspto.gov . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part...

  5. Bioinspired materials: Boosting plant biology

    Science.gov (United States)

    Scholes, Gregory D.; Sargent, Edward H.

    2014-04-01

    Chloroplasts with extended photosynthetic activity beyond the visible absorption spectrum, and living leaves that perform non-biological functions, are made possible by localizing nanoparticles within plant organelles.

  6. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  7. Accidents with biological material in workers

    OpenAIRE

    Cleonice Andréa Alves Cavalcante; Elisângela Franco de Oliveira Cavalcante; Maria Lúcia Azevedo Ferreira de Macêdo; Eliane Cavalcante dos Santos; Soraya Maria de Medeiros

    2013-01-01

    The objective was to describe the accidents with biological material occurred among workers of Rio Grande do Norte, Brazil, between 2007 and 2009. Secondary data were collected in the National Notifiable Diseases Surveillance System by exporting data to Excel using Tabwin. Among the types of occupational accidents reported in the state, the biological accidents (no. = 1,170) accounted for 58.3% with a predominance of cases among nurses (48.6%). The percutaneous exposure was the most frequent ...

  8. Using Raman spectroscopy to characterize biological materials.

    Science.gov (United States)

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis. PMID:26963630

  9. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    International Nuclear Information System (INIS)

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  10. Determination of radioactivity in biological material

    International Nuclear Information System (INIS)

    The two major counting techniques in use in most laboratories today are those utilizing liquid or crystal scintillation counters. A discussion of liquid scintillation counting is inextricably linked with the problems of sample preparation and both are emphasized in this chapter. Radiochromatography and autoradiography are also discussed. Chromatography is one of the most important techniques for the separation of chemical compounds from biological material. Most of the detection mechanisms applicable to radiochromatography use x-ray film, a β-particle detector, or a luminescence detector. In biological autoradiography, labeled substances in the organism, tissue, or cell, are made visible by preparing thin sections and exposing them to a suitable photographic film. Light and electron microscope autoradiography were also discussed. 12 figures, 6 tables

  11. Accidents with biological material in workers

    Directory of Open Access Journals (Sweden)

    Cleonice Andréa Alves Cavalcante

    2013-11-01

    Full Text Available The objective was to describe the accidents with biological material occurred among workers of Rio Grande do Norte, Brazil, between 2007 and 2009. Secondary data were collected in the National Notifiable Diseases Surveillance System by exporting data to Excel using Tabwin. Among the types of occupational accidents reported in the state, the biological accidents (no. = 1,170 accounted for 58.3% with a predominance of cases among nurses (48.6%. The percutaneous exposure was the most frequent occurrence and the circumstances of the accidents were related to the handling of sharps and the most common organic material was blood (63.5%. More than 50% of the workers were vaccinated against hepatitis B, but without information regarding the evaluation of vaccine response. The study revealed the need of improvement in the quality of the information, once the sub-entries and inconsistencies make the National Notifiable Diseases Surveillance System less trustworthy in the characterization of the affected workers.

  12. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  13. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  14. The acquisition of dangerous biological materials :

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  15. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    Science.gov (United States)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  16. Validation of tritium measurements in biological materials

    International Nuclear Information System (INIS)

    The maximum deviation of experimental R value from its real value, which is defined as the ratio of tissue bound to tissue water tritium, has been calculated and verified experimentally by taking consideration of isotopic fractionation arised in the course of water separation. Experimental procedures examined for the purpose are the azeotropic distillation and lyophilization for the removal of tissue water and the oxidative combustion of organic residue either by thermal process or by low temperature plasma generation. Each procedure optimalized by obviating or correcting isotope effects as well as other sources of error has been tested with mixed standards and biological samples. By washing out the exchangeable tritium and also physically bound tritium, the precision and accuracy of R values are further improved

  17. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  18. Wear and abrasion resistance selection maps of biological materials.

    Science.gov (United States)

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  19. Analysis and Design of Biological Materials and Structures

    CERN Document Server

    Öchsner, Andreas; Altenbach, Holm

    2012-01-01

    This collection provides researchers and scientists with advanced analyses and materials design techniques in Biomaterials and presents mechanical studies of biological structures. In 16 contributions well known experts present their research on Stress and Strain Analysis, Material Properties, Fluid and Gas mechanics and they show related problems.

  20. The preparation of biological reference materials for QUASIMEME

    OpenAIRE

    Kotterman, M.J.J.

    2011-01-01

    Biological materials, consisting of three different batches of mussels; from Den Helder harbour (POPs, TBT), Irish mussels (metals) and Wadden Sea mussels, fortified with highly contaminated mussels from Belgium (POPs), and of one batch of turbot liver (metals) have been prepared for use in QUASIMEME interlaboratory studies for metal and organic contaminant analyses. The homogeneity of the prepared material was tested for metals or POPs, depending on the intended use of the material, and indi...

  1. The host response to allogeneic and xenogeneic biological scaffold materials.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2015-05-01

    The clinical use of biological scaffold materials has become commonplace. Such scaffolds are composed of extracellular matrix (ECM), or components of ECM, derived from allogeneic or xenogeneic tissues. Such scaffold materials vary widely in their source tissue, processing methods and sterilization methods. The success or failure of an ECM scaffold for a given application is dependent on the host response following implantation; a response that is largely mediated by the innate immune system and which is influenced by a numerous factors, including the processing methods used in the preparation of biological scaffolds. The present paper reviews various aspects of the host response to biological scaffolds and factors that affect this response. In addition, some of the logistical, regulatory and reconstructive implications associated with the use of biological scaffolds are discussed. PMID:24668694

  2. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. PMID:25393596

  3. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  4. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2008-05-01

    Full Text Available Near-infrared fluorescent (NIRF materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  5. Biological evaluation of dental materials, in vitro and in vivo

    International Nuclear Information System (INIS)

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  6. Structure and mechanics of interfaces in biological materials

    Science.gov (United States)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  7. Synthetic Self-Assembled Materials in Biological Environments.

    Science.gov (United States)

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  8. Biologically-Derived Photonic Materials for Thermal Protection Systems

    Science.gov (United States)

    Johnson, Sylvia M.; Squire, Thomas H.; Lawson, John W.; Gusman, Michael; Lau, K.-H.; Sanjurjo, Angel

    2014-01-01

    Space vehicles entering a planetary atmosphere at high velocity can be subject to substantial radiative heating from the shock layer in addition to the convective heating caused by the flow of hot gas past the vehicle surface. The radiative component can be very high but of a short duration. Approaches to combat this effect include investigation of various materials to reflect the radiation. Photonic materials can be used to reflect radiation. The wavelengths reflected depend on the length scale of the ordered microstructure. Fabricating photonic structures, such as layers, can be time consuming and expensive. We have used a biologically-derived material as the template for forming a high temperature photonic material that could be incorporated into a heatshield thermal protection material.

  9. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    OpenAIRE

    Susy Albert; Amee Padhiar

    2012-01-01

    Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepens...

  10. Development of methods for determining aflatoxins in biological material

    OpenAIRE

    Kussak, Anders

    1995-01-01

    In this thesis, it is shown how aflatoxins can be determined in biological material. The thesis is a summary of five papers. Aflatoxins are carcinogenic mycotoxins produced by Aspergillus moulds. Methods were developed for the determination of aflatoxins in samples of airborne dust and human urine collected at feed factories. For the dust samples from such agricultural products as copra, cotton seed and maize, methods were developed for the determination of aflatoxins B1, B2, G1 and G2. For u...

  11. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    Directory of Open Access Journals (Sweden)

    Susy Albert

    2012-12-01

    Full Text Available Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepense culm were prepared and subjected to four different pretreatment. Daedaleopsis confragosa was found to be effective in biopulping with a supplement of Potato dextrose broth medium to the raw material.

  12. OECD Policy Recommendations on Security for Biological Materials

    International Nuclear Information System (INIS)

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  13. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  14. Epithermal neutron activation analysis of trace elements in biological materials

    International Nuclear Information System (INIS)

    The detection limits of 24 important minor and trace elements were studied in NBS SRM-1571 Orchard Leaves, NBS SRM-1577 Bovine Liver, Bowen's kale and IAEA H-4 Animal Muscle using ENAA method with cadmium and cadmium-boron filter. The lower detection limits have been found for elements As, Au, Ba, Br, Cd, Mo, Ni, Sb, Se, Sm and U by ENAA with cadmium filter and for elements As, Cd, Mo and Ni by ENAA with cadmium-boron filter, respectively, in comparison with INAA method. The results of the determination of elements studied in the above mentioned biological materials are also presented. (author)

  15. The role of material in homogeneities in biological growth

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2005-01-01

    Full Text Available We investigate the influence of the material in homogeneities that are generated by an isotropic growth on the source of mass acting within a growing living tissue. In order to do that, we need to study the interaction between these material in homogeneities and the chemical agents dissolved within the tissue. For this purpose, we use some ideas and methods from Condensed Matter Physics (e.g., the Path Integral technique employed in modeling Brownian processes and apply them to the Continuum Mechanics description of volumetric Growth. We believe that this approach may provide new physical insight into the interactions between the macroscopic dynamics of living systems and the evolution of the subsystems which activate biological processes.

  16. The High-Strain Rate Loading of Structural Biological Materials

    Science.gov (United States)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  17. [Analysis of etofenamate. Particular determination in biological material (author's transl)].

    Science.gov (United States)

    Dell, H D; Fiedler, J; Wäsche, B

    1977-01-01

    The determination of 2-(2-hydroxyethoxy)-ethyl-N-(a,a,a-trifluoro-m-tolyl)-anthranilate (etofenamate, active principle of Rheumon gel) following its isolation from biological material is reported. Depending on the method of extraction etofenamate, free and alkali-labile conjugated flufenamic acid, total conjugates or the sum of CF3-containing compounds (sum of metabolites) are isolated. Separation is achieved by TLC, quantitative determination is made by degradation to flufenamic acid and fluorimetric measurement in CCl4/trichloracetic acid at 372/445 nm. Etofenamate can be identified by TLC, derivatisation, UV- and fluorescence spectroscopy and differentiated from its metabolites. It is demonstrated that etofenamate is the main component of fenamates in inflamed tissue. PMID:579119

  18. PROTECTION OF WOODEN MATERIALS AGAINST BIOLOGICAL ATTACK BY USING NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Michal Havrlik

    2015-04-01

    Full Text Available This article is focused on protection of wooden materials by using nanofibrous textiles with biocidal addition, which continues on the work of a group at the Center for Nanotechnology at the Faculty of Civil Engineering in the CTU. Timber is a natural material which is predisposed for biodegradation and therefore it is essential to study suitable and effective protection against microorganisms. Wood is a material susceptible to biological corrosion and therefore it is necessary to protect it. The study compares biocidal efficiency of polymer solution as a coating and as a layer from nanofiber textiles. We used polyvinyl alcohol (PVA as a basic polymer which was enriched by substances from commercial Lignofix E – profi, solution of CuSO4 · 5H2O and AgNO3 and finally colloidal silver as an example of nanoparticles. The final concentration of the biocidal substance was 1 (v/wt% in fiber. The nanofiber textiles are produced on the device Nanospider NS LAB 500 (Elmarco, CR on cylinder rotating electrode. The study was divided into two parts, the first being an agar plate test and the second a test on samples from timber. The mixture of mold was used as the model organism. (Alternaria tenuissima, Pochonia bulbiosa, Trichoderma viride and Acremonium sclerotigenum. Comparison of efficiency between the polymer paint and nanofiber textiles showed no difference. The best results were shown by PVA with an addition of substances from the commercial biocidal treatment Lignofix-E Profi on the agar plate. The difference of result was shown on timbre samples, finding that the best results were with treatment by PVA doped by Silver nitrate. The anticipated results were shown by treatment with non-doped PVA, which does not have any fungicidal protective effect.

  19. Survey of currently available reference materials for use in connection with the determination of trace elements in biological materials

    International Nuclear Information System (INIS)

    Elemental analysis of biological materials is at present the subject of intensive study by many different research groups throughout the world, in view of the importance of these trace elements in health and medical diagnosis. IAEA and other organizations are now making a variety of suitable reference materials available for use in connection with the determination of trace elements in biological materials. To help analysts in making a selection from among these various materials, the present report provides a brief survey of data for all such biological reference materials known to the author. These data are compiled by the author from January 1982 to June 1983

  20. Imaging of nonthrombotic pulmonary embolism: biological materials, nonbiological materials, and foreign bodies.

    Science.gov (United States)

    Bach, Andreas Gunter; Restrepo, Carlos Santiago; Abbas, Jasmin; Villanueva, Alberto; Lorenzo Dus, María José; Schöpf, Reinhard; Imanaka, Hideaki; Lehmkuhl, Lukas; Tsang, Flora Hau Fung; Saad, Fathinul Fikri Ahmad; Lau, Eddie; Rubio Alvarez, Jose; Battal, Bilal; Behrmann, Curd; Spielmann, Rolf Peter; Surov, Alexey

    2013-03-01

    Nonthrombotic pulmonary embolism is defined as embolization to the pulmonary circulation caused by a wide range of substances of endogenous and exogenous biological and nonbiological origin and foreign bodies. It is an underestimated cause of acute and chronic embolism. Symptoms cover the entire spectrum from asymptomatic patients to sudden death. In addition to obstruction of the pulmonary vasculature there may be an inflammatory cascade that deteriorates vascular, pulmonary and cardiac function. In most cases the patient history and radiological imaging reveals the true nature of the patient's condition. The purpose of this article is to give the reader a survey on pathophysiology, typical clinical and radiological findings in different forms of nonthrombotic pulmonary embolism. The spectrum of forms presented here includes pulmonary embolism with biological materials (amniotic fluid, trophoblast material, endogenous tissue like bone and brain, fat, Echinococcus granulosus, septic emboli and tumor cells); nonbiological materials (cement, gas, iodinated oil, glue, metallic mercury, radiotracer, silicone, talc, cotton, and hyaluronic acid); and foreign bodies (lost intravascular objects, bullets, catheter fragments, intraoperative material, radioactive seeds, and ventriculoperitoneal shunts). PMID:23102488

  1. Magneto-Archimedes separation and its application to the separation of biological materials

    International Nuclear Information System (INIS)

    A novel magnetic separation method, which utilizes the magneto-Archimedes levitation, has been introduced and applied to separation of biological materials. By using the feature that the stable levitation position under a magnetic field depends on the density and magnetic susceptibility of materials, we have successfully separated biological materials such as hemoglobin, fibrinogen, cholesterol, and so on. So far, the difference of magnetic properties was not utilized for the separation of biological materials. Magneto-Archimedes separation seems to be a potential way in biological materials separation

  2. Heavy metal ion removal by adsorption on to biological materials

    International Nuclear Information System (INIS)

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g-1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g-1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  3. Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

    1998-10-14

    Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

  4. Deciphering the language between biological and synthetic materials

    Directory of Open Access Journals (Sweden)

    Paolo Antonio Netti

    2014-06-01

    Full Text Available Chemical signals propagating through aqueous environment are at the basis of the language utilized by living systems to exchange information. In the last years, molecular biology has partly disclosed the grammar and the syntax of this complex language revealing the fascinating world of molecular communication that is the foundation of biological development.

  5. An Experimental Evaluation of the Effectiveness of the Biological Sciences Curriculum Study Special Materials Approach to Teaching Biology to the Slow Learner.

    Science.gov (United States)

    Welford, John Mack

    Students (comparable in intelligence and ability) in slow-learning classes using either "Biological Sciences Curriculum Study (BSCS) Special Materials" or some other slow-learner biology materials, were compared on the basis of scores on the "Nelson Biology Test", the "Biological Sciences; Patterns and Processes Final Examination", and two short…

  6. Trends in United States Biological Materials Oversight and Institutional Biosafety Committees

    Science.gov (United States)

    Jenkins, Chris

    2014-01-01

    Biological materials oversight in life sciences research in the United States is a challenging endeavor for institutions and the scientific, regulatory compliance, and federal communities. In order to assess biological materials oversight at Institutional Biosafety Committees (IBCs) registered with the United States National Institutes of Health,…

  7. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  8. Analysis of biological material using ion beams of a few MeV energy

    International Nuclear Information System (INIS)

    A review is given of the applications of ion beam analysis of biological materials by means of elastic scattering, nuclear reactions and x-ray production. The techniques which are specially relevant to biological materials, rather than the general principles which are already well covered in the literature, are discussed. The three techniques and their use for biological analysis are discussed in turn, with treatment of relevant practical matters such as specimen preparation. Finally some recent developments of ion beam analysis are described

  9. Photoconversion of gasified organic materials into biologically-degradable plastics

    Science.gov (United States)

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  10. Preparation and biological evaluations of PLA/chitosan composite materials

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chang-ren; LI Lihua; DING Shan

    2001-01-01

    @@ INTRODUCTION Polylactic acid (PLA) is a biodegradable material that is hontoxic and biocompatible. However, as scaffold materials, PLA has several obvious weaknesses:biodegrading too fast, acidic degradation product, and hydrophobic. When PLA isplanted in the body, the degradation takes place synchronously.

  11. Effects of UV and microwave radiation on biological material

    International Nuclear Information System (INIS)

    For the present study, ten publications on the effect of UV radiation were analyzed. In vitro tests were carried out with one biological substance and seven different human or animal organs and biocytocultures. In vivo, three bacterial strains were irradiated and four irradiation experiments were carried out on mice. As to the effect of microwave radiation, eleven publications were analyzed. In vitro tests were carried out with one biological substance and three animal organs. In vivo, one bacterial strain was irradiated and eight irradiation experiments were carried out on different types of animals. The study's aim was to obtain a survey on biochemical changes of the organisms. Phenomenological changes were given only when the corresponding articles contained further investigation results. Behavioral changes were not taken into account. The results published by the authors of the original papers were compiled in a kind of dictionary. All relevant data are listed in a defined order. (orig.)

  12. Sustainable production of biological materials for food and agricultural applications

    OpenAIRE

    Angün, Pınar

    2013-01-01

    Ankara : Materials Science and Nanotechnology Program of Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 94-110. Angün, Pınar Master's

  13. Novel biological materials for food and environmental applications

    OpenAIRE

    Umu, Özgün Candan Onarman

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 71-86. Umu, Özgün Candan Onarman Master's

  14. Cost-effective production of biological materials for food applications

    OpenAIRE

    Han, Diren

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 67-74. Han, Diren Master's

  15. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  16. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well...

  17. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...... the ppM level in samples of biological tissue....

  18. Remediation of anionic surfactants and ammonium by biological materials

    OpenAIRE

    Sarıoğlu, Ömer Faruk

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 83-97. Sarıoğlu, Ömer Faruk Master's

  19. Biomolecular coronas provide the biological identity of nanosized materials

    NARCIS (Netherlands)

    Monopoli, Marco P; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2012-01-01

    The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the en

  20. Nanostructured materials for biological imaging and chemical sensing

    OpenAIRE

    Yıldırım, Adem

    2014-01-01

    Ankara : Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2014. Thesis (Ph.D.) -- Bilkent University, 2014. Includes bibliographical references leaves 116-139. Yıldırım, Adem Ph. D.

  1. Multiscale modeling of emergent materials: biological and soft matter

    DEFF Research Database (Denmark)

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo;

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...... in the context of the so-called Henderson theorem and the inverse Monte Carlo method of Lyubartsev and Laaksonen. In the second part, we take a different look at coarse graining by analyzing conformations of molecules. This is done by the application of self-organizing maps, i.e., a neural network type approach....... Such an approach can be used to guide the selection of the relevant degrees of freedom. Then, we discuss technical issues related to the popular dissipative particle dynamics (DPD) method. Importantly, the potentials derived using the inverse Monte Carlo method can be used together with the DPD thermostat...

  2. Effects of industrial chemicals and radioactive materials in biological systems

    International Nuclear Information System (INIS)

    Much has been written on the effects of radiation and toxic chemicals on biological systems. In this communication general considerations regarding these topics will be discussed very briefly; the major emphasis will be focused on the effects of chemicals, namely ethyl methane sulfonate (EMS) on Amoeba, Advantages to the use of amoeba for studying the effects of radiation and chemicals include the following: large mononucleate unicellular organisms having a long generation time; opportunity to study cellular organelles and biochemical and genetic alterations in a single cell system; and a long cell cycle, the stages of which can be synchronized without resorting to chemical treatment or temperature shock and thereby readily permitting study at defined stages of the cell's life cycle. This, in turn, is discussed in light of current disposal methods for this type of waste and how it might be safely disposed of

  3. Biological potential of extraterrestrial materials - 1. Nutrients in carbonaceous meteorites, and effects on biological growth

    Science.gov (United States)

    Mautner, Michael N.

    1997-06-01

    Soil nutrient analysis of the Murchison C2 carbonaceous chondrite shows biologically available S, P, Ca, Mg, Na, K and Fe and cation exchange capacity (CEC) at levels comparable with terrestrial agricultural soils. Weathering, and aqueous, hydrothermal (121°C, 15 min) and high-temperature (550°C, 3 h) processing increase the extractable nutrients. Extractable phosphorus (by 0.3 M NH 4F + 0.1 M HCl) content, which may be growth-limiting, is 6.3 μg g -1 in the unprocessed meteorite, but increases to 81 μg g -1 by hydrothermal processing and weathering, and to 130 μg g -1 by high temperature processing. The cation exchange capacity (CEC), attributed mainly to the organic fraction, corresponds responds to 345 meq per 100 g of the polymer, suggesting one ionizable COOH or OH group per 3-4 aromatic rings. The Allende C3(V) meteorite has low extractable Ca, Mg and K, in parallel to its low organic content and CEC, but high extractable P levels (160 μg g -1). Biological effects are observed on growth of the soil microorganisms Flavobacterium oryzihabitans and Nocardia asteroides in meteorite extracts, and the population levels suggest that P is the limiting nutrient. Effects on plant growth are examined on Solanum tuberosum (potato), where extracts of the Murchison meteorite lead to enhanced growth and pigmentation. The biologically available organic and inorganic nutrients in carbonaceous chondrites can provide concentrated solutions for prebiotic and early life processes, and serve as soils and fertilizers for future space-based biological expansion.

  4. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  5. Status of study on biological and toxicological effects of nanoscale materials

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; FENG Weiyue; ZHAO Yuliang; XING Gengmei; CHAI Zhifang; WANG Haifang; JIA Guang

    2005-01-01

    Because the physical and chemical properties of nanosized materials mostly differ from the existing microsized materials, their potential impacts on human health and the environment will be topics under the serious discussions in press and in a number of international scientific journals. We analyze and summarize the existing data of the experimental study on the biological activities and adverse effects of nanoscale materials/particles including single wall carbon nanotubes, multi wall carbon nanotubes, titanium oxide and iron powders. Though some biological behaviors of nanoscale materials observed cannot be understood on the basis of the current knowledge, as the existing data are mostly preliminary, it is too early to make some exclusive conclusions on biological activities (or the toxicity) of any of nanoscale materials. The experimental techniques, the current topics, and the future research directions for this new research field are also discussed.

  6. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  7. Preparation of Biologically Active Materials by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  8. Model of heterogeneous material dissolution in simulated biological fluid

    Science.gov (United States)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  9. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  10. Sampling and sample preparation methods for the analysis of trace elements in biological material

    International Nuclear Information System (INIS)

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB)

  11. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  12. Nano-FTIR chemical mapping of minerals in biological materials

    Directory of Open Access Journals (Sweden)

    Sergiu Amarie

    2012-04-01

    Full Text Available Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM. On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

  13. Sample preparation techniques of biological material for isotope analysis

    International Nuclear Information System (INIS)

    Sample preparation is an essential step in all isotope-aided experiments but often it is not given enough attention. The methods of sample preparation are very important to obtain reliable and precise analytical data and for further interpretation of results. The size of a sample required for chemical analysis is usually very small (10mg-1500mg). On the other hand the amount of harvested plant material from plots in a field experiment is often bulky (several kilograms) and the entire sample is too large for processing. In addition, while approaching maturity many crops show not only differences in physical consistency but also a non-uniformity in 15N content among plant parts, requiring a plant fractionation or separation into parts (vegetative and reproductive) e.g. shoots and spikes, in case of small grain cereals, shoots and pods in case of grain legumes and tops and roots or beets (including crown) in case of sugar beet, etc. In any case the ultimate goal of these procedures is to obtain representative subsample harvested from greenhouse or field experiments for chemical analysis. Before harvesting an isotopic-aided experiment the method of sampling has to be selected. It should be based on the type of information required in relation to the objectives of the research and the availability of resources (staff, sample preparation equipment, analytical facilities, chemicals and supplies, etc.). 10 refs, 3 figs, 3 tabs

  14. Adverse reactions after cosmetic lip augmentation with permanent biologically inert implant materials.

    Science.gov (United States)

    Hoffmann, C; Schuller-Petrovic, S; Soyer, H P; Kerl, H

    1999-01-01

    Augmentation of lips is a common aesthetic procedure that is mostly performed with alloplastic materials or autologous tissue. Various alloplastic injectable implants have been developed for soft tissue augmentation without surgery. Most biologic materials are resorbed within a few months, fluid silicone may migrate, and autologous fat is not ideal for fine contouring of the lips. The search for a biocompatible, permanent, nontoxic, and biologically inert filler material led to the development of some new materials for subdermal or intradermal implantation. Recently Bioplastique, Artecoll, and Gore-Tex have been well established and recommended by many authors. Although these materials meet most of the characteristics that constitute an ideal injectable prosthetic material, we describe 3 examples of adverse reactions after their implantation into lips. PMID:9922021

  15. Ultrafast Spectroscopy in Conjugated Organic and Biological Materials

    Science.gov (United States)

    Yan, Ming

    The dynamics of two kinds of conjugated materials, the visual pigment rhodopsin and the organic polymer poly(p -phenylene vinylene), have been studied utilizing femtosecond spectroscopy. The 11-cis to all-trans torsional isomerization of the retinal chromophore in rhodopsin for both protonated and deuterated aqueous environments have been studied by time-resolved absorption measurements at room temperature. The kinetic results are well modeled by rate equations based on the scheme which involves the isomerization along the torsional coordinate of the 11-cis bond of the retinal chromophore. A metastable intermediate 90 degree twisted state is formed within 200 fs on the excited state surface by rotation around the C_{11} -C_{12} double bond, and it takes 3 ps to form the fully isomerized all -trans photoproduct known as bathorhodopsin and to repopulate the ground state rhodopsin. These results agree well with the semiempirical energy level and molecular dynamics calculations. The observed dynamics are insensitive to deuteration of the exchangeable protons which suggest that proton translocation is unimportant at physiological temperatures. The conjugated polymer, Poly(p-phenylene vinylene) (PPV) in a stretch oriented film, has been studied using polarized time-resolved absorption with subpicosecond resolution and transient luminescence measurements. Excitations are generated by photoexcitation near the band edge (500nm -540nm) with a 200 fs pulse and the resulting spectral changes are probed with a white light pulse. Lattice stabilized (singlet) self-trapped excitons are formed within 200 fs which are observed by measuring the stimulated gain in their emission band which decay at 10 ps. The agreement of the photoinduced exciton gain spectrum (luminescence spectrum (10 ps) and the steady state luminescence spectrum suggest that the singlet excitons are not further trapped after 200fs of their formation time. Excitation wavelength dependence measurements suggest that

  16. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  17. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  18. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  19. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  20. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  1. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  2. Instrumental neutron activation analysis for the certification of biological reference materials

    International Nuclear Information System (INIS)

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 22 minor and trace constituents in two proposed Standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques, Czechoslovakia. Also some biological standards such as Bowen's Kale, Cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of reference materials of biological matrices. (author). 7 refs., 1 tab

  3. The present and future of biologically inspired adhesive interfaces and materials.

    Science.gov (United States)

    Brubaker, Carrie E; Messersmith, Phillip B

    2012-01-31

    The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed. PMID:22224862

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  6. Fresh biological reference materials. Use in inter laboratory studies and as CRMs

    International Nuclear Information System (INIS)

    Biological reference materials were prepared and packed in tins and glass jars to be used in inter laboratory studies on chlorobiphenyls and organochlorine pesticides, and trace metals, respectively. The materials were homogenised, sterilised and packed as wet tissue, which is unique for the purpose of inter laboratory studies and offers the advantage of studying the extraction and destruction steps of the analytical methods. In addition to their use in inter laboratory studies, some materials have been prepared or are being prepared as certified reference material for chlorobiphenyl analysis. (author)

  7. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well as...... a new method where 10 mul of a spore suspension is placed in a spot on the test sample. The new method gave additional information about fungal growth on biologically derived materials, revealing a clear difference between survival and growth. PHB and PIA turned out to be most suitable for food...... packaging application as no significant growth was seen within 28 d of incubation at 30 degreesC....

  8. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  9. Biological Template Based on ent-Kaurane Diterpenoid Glycosides for the Synthesis of Inorganic Porous Materials

    OpenAIRE

    Ángela B. Sifontes; Mirla Rodriguez; David Freire; Wendy Rondón; Ligia Llovera; Edgar Cañizales; Méndez, Franklin J.; Andrea Monaco; Yraida Díaz

    2013-01-01

    Recent studies on the preparation of porous nano-materials revealed that the use of kaurane diterpenoids molecules from steviol as biological template favors the obtaining of metallic oxides with tubular morphology as nanorods or nanofibers. In this sense, the present contribution shows an analysis in order to understand how these glycosides of kaurane diterpenoids control the nucleation and growth of inorganic materials favoring the obtaining of these morphologies. For this purpose, it was n...

  10. Biological reference materials in routine analysis: Results from the German Food Contamination Monitoring Programme

    Energy Technology Data Exchange (ETDEWEB)

    Schauenburg, H.; Weigert, P. (Bundesgesundheitsamt, Berlin (Germany, F.R.))

    1990-10-01

    Within the research project 'German Food Contamination Monitoring Programme', selected foodstuffs have to be examined by the official food control laboratories. Contents of pesticides and heavy metals have to be determined by means of routine analysis. Biological reference materials are used in collaborative studies and in parallel investigations for analytical quality assurance. Using lead as an example, results obtained for three reference materials are discussed. (orig.).

  11. Penetration of laser light through biological materials - discrete models of reflection, absorption and scattering

    International Nuclear Information System (INIS)

    In this paper discrete models of absorption (DiMoScaLL) of laser light by biological materials are described. Individual models are integrated into a complex model - DiMoRAS. All the models are realized by finite automates (homogeneous structures) (Authors)

  12. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author)

  13. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    International Nuclear Information System (INIS)

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  14. X-ray spectrometric determination of thorium in bone and other biological materials

    International Nuclear Information System (INIS)

    An x-ray spectrometric method has been developed for the determination of thorium in bone and other biological materials. The limit of detection at the 95% confidence level is 20 ng. This corresponds to a concentration of 2 ppb in a 10-g sample of bone ash

  15. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  16. The use of reference materials in the elemental analysis of biological samples

    International Nuclear Information System (INIS)

    Reference materials (RMs) are useful to compare the accuracy and precision of laboratories and techniques. The desirable properties of biological reference materials are listed, and the problems of production, homogenization and storage described. At present there are only 10 biological RMs available compared with 213 geological and 520 metallurgical RMs. There is a need for more biological RMs including special materials for microprobe analysis and for in vivo activation analysis. A study of 650 mean values for elements in RM Kale, analysed by many laboratories, leads to the following conclusions. 61% of the values lie within +-10% of the best mean, and 80% lie within +-20% of the best mean. Atomic absorption spectrometry gives results that are 5-30% high for seven elements, while intrumental neutron activation analysis gives low and imprecise results for K. Other techniques with poor interlaboratory precision include neutron activation for Mg, polarography for Zn and arc-spectrometry for many elements. More than half the values for elements in Kale were obtained by neutron activation, confirming the importance of this technique and the need for RMs. As a rough estimate, 6 x 109 elemental analyses of biological materials are carried out each year, mostly by medical, agricultural and food scientists. It seems likely that a substantial percentage of these are inaccurate, a situation that might be improved by quality control using standard RMs. (author)

  17. Occupational accidents with exposure to biological material: Description of cases in Bahia

    Directory of Open Access Journals (Sweden)

    Técia Maria Santos Carneiro e Cordeiro

    2016-04-01

    Full Text Available Background and Objective: This study is included in the field of public health in Brazil, in particular occupational health, by the occupational accidents with exposure to biological material consists of a preventable injury. Thus, the objective was to describe risk factors the of occupational accidents with exposure to biological material and the conduct postexposure adopted notified of cases in Notifiable Diseases Information System (SINAN in the State of Bahia in 2012. Methods: This is a descriptive epidemiological study realized with data from the injuries of notifications SINAN in February 2013, the analysis was realized using descriptive statistics in absolute frequencies and relative. Results: The results indicate a higher occurrence of occupational accidents involving exposure to biological materials in Bahia in the female population (78.1% and aged between 30-49 years (51.5%; the blood was fluid larger contact in accidents 75.2% by percutaneous (71.5%; post-exposure procedures were adopted in accordance recommended by the Ministry of Health; divers information were not fulfilled in the notifications and only 23.8% of Occupational Accidents Comunication (CAT were issued. Conclusion: It is considered necessary to draw up strategies on occupational health and safety, consciousness of workers about the relevance of the measures adopted after occupational accidents with exposure to biological material and the training of professionals for case notification and research to fill all the fields of the notification form and also the issuance of CAT.

  18. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  19. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  20. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  1. Searching for biological traces on different materials using a forensic light source and infrared photography.

    Science.gov (United States)

    Sterzik, V; Panzer, S; Apfelbacher, M; Bohnert, M

    2016-05-01

    Because biological traces often play an important role in the investigation process of criminal acts, their detection is essential. As they are not always visible to the human eye, tools like a forensic light source or infrared photography can be used. The intention of the study presented was to give advice how to visualize biological traces best. Which wavelengths and/or filters give the best results for different traces on different fabrics of different colors? Therefore, blood (undiluted and diluted), semen, urine, saliva, and perspiration have been examined on 29 different materials. PMID:26500091

  2. INAA of trace elements in biological materials using the SLOWPOKE-2 reactor in Jamaica

    International Nuclear Information System (INIS)

    The biological standard reference materials Orchard Leaves SRM 1571 and Oyster Tissue SRM 1566a was analyzed by instrumental neutron activation analysis (INAA) at the International Centre for Environmental and Nuclear Sciences, Jamaica at (ICEN) and at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Brazil. The comparison of the results with those obtained with the more powerful reactor are used to evaluate the possibilities of INAA for the analysis of biological samples at ICENS. The detection limits, the precision and accuracy of the results obtained in both laboratories are compared. The advantages and disadvantages of the different irradiation facilities are discussed. Some results obtained for Jamaican biological samples are also presented. (author)

  3. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials

    International Nuclear Information System (INIS)

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  4. Neutron Activation Analysis of Biological Materials by Means of Neutron Multiplicator

    International Nuclear Information System (INIS)

    We have studied the possibilities of instrumental neutron activation analysis of freeze-dried biological materials performed with neutron multiplicator of average power (subcritical assembly PS-1). Neutron flux in the vertical channel amounts to 2.3*106n/cm2sec, concentrations of Na, Al and Mn were determined in freeze-dried samples of blue-green alga Spirulina platensis (S.platensis) (author)

  5. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Schauenburg, H.; Weigert, P. (Bundesgesundheitsamt, Berlin (Germany). Centre for Surveillance and Health Evaluation of Environmental Chemicals (ZEBS))

    1992-04-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.).

  6. Biologically-Responsive Hybrid Biomaterials A Reference for Material Scientists and Bioengineers

    CERN Document Server

    Jabbari, Esmaiel

    2010-01-01

    Conjugation of synthetic materials with cell-responsive biologically-active molecules, in addition to providing structural support and release of biomolecules in the regenerating region, can provide the signaling factors required to initiate the cascade of cell migration, adhesion, differentiation, maturation, growth factor modulation, maintenance of matrix integrity, and tissue morphogenesis. Nanoparticles conjugated with ligands that preferentially interact with cell surface receptors in the tumor environment have the potential to drastically improve bioavailability, selectivity and residenc

  7. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    Science.gov (United States)

    Joffe, R.; Kamenetskii, E. O.; Shavit, R.

    2013-02-01

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  8. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    CERN Document Server

    Joffe, R; Shavit, R

    2015-01-01

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  9. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  10. Biological and chemical-physical properties of root-end filling materials: A comparative study

    Directory of Open Access Journals (Sweden)

    Matteo Ceci

    2015-01-01

    Full Text Available Aim: The purpose of the study is to evaluate and compare the biological and chemical-physical properties of four different root-end filling materials. Materials and Methods: Cytotoxicity towards murine odontoblasts cells (MDPC-23 was evaluated using the Transwell insert methodology by Alamar blue test. Streptococcus salivarius, S. sanguis, and S. mutans strains were selected to evaluate the antimicrobial activity by agar disc diffusion test. Solubility was determined after 24 h and 2 months. pH values were measured after 3 and 24 h. To evaluate radiopacity, all materials were scanned on a GE Healthcare Lunar Prodigy. Results: Excellent percentage of vitality were obtained by mineral trioxide aggregate (MTA-based materials and Biodentine. MTA-Angelus, ProRoot MTA, and Intermediate Restorative Material (IRM showed the highest values for the inhibition zones when tested for S. mutans, while Biodentine showed the largest inhibition zone when tested for S. sanguis. All the materials fulfilled the requirements of the International Standard 6876, demonstrating low solubility with a weight loss of less than 3%. No significant reduction in pH value was demonstrated after 24 h. ProRoot MTA and MTA-Angelus showed the highest values of radiographic density. Conclusions: The differences showed by the root-end filling materials tested do not cover completely the ideal clinical requests.

  11. Determination of perfluorinated alkyl acid concentrations in biological standard reference materials.

    Science.gov (United States)

    Reiner, Jessica L; O'Connell, Steven G; Butt, Craig M; Mabury, Scott A; Small, Jeff M; De Silva, Amila O; Muir, Derek C G; Delinsky, Amy D; Strynar, Mark J; Lindstrom, Andrew B; Reagen, William K; Malinsky, Michelle; Schäfer, Sandra; Kwadijk, Christiaan J A F; Schantz, Michele M; Keller, Jennifer M

    2012-11-01

    Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs. PMID:22476786

  12. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  13. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  14. The determination of plutonium alpha activity in urine, faeces and biological materials

    International Nuclear Information System (INIS)

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  15. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    International Nuclear Information System (INIS)

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18F, a pure positron emitter which is the product of the photonuclear reaction 19F(γ, n)18F. The simultaneous formation of some additional positron emitters, particularly 45Ti and 34mCl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  16. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  17. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an `aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10 nm, simultaneously combined with imaging in the electron microscope.

  18. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    Science.gov (United States)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  19. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  20. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  1. A Zinc Fusion Method for the Determination of Tritium in Biological Material by Gas Counting

    International Nuclear Information System (INIS)

    The conversion of organic compounds to a mixture of hydrogen and methane by mixture with metallic zinc and suitable catalysts offers a convenient means for the determination of tritium in organic material by gas assay. It has been found, however, that, at least in proportional counting, compounds of certain types do not give reliable results with this method; and when a trial of its application to animal tissues was made, the results were extremely inaccurate. As the principle seemed to offer several advantages over other published methods, a search was conducted for reagents which would render it usable with biological material. It was found that, when up to 10 mg of animal tissue, such as blood, muscle and liver, containing or mixed with various tritiated compounds were heated for 3 hours at 650oC in an evacuated and sealed tube of special glass together with sufficient amounts of metallic zinc powder, nickel oxide and anhydrous sodium carbonate, gas which could be assayed in brass cathode proportional counters filled to atmospheric pressure with inactive methane was produced. Above 4000 V the counters filled with this gas mixture exhibited plateaux several hundred volts long and with a slope less than 1% per 100 V. This method for conversion of biological material to a suitable gas for proportional counting was found to be readily reproducible with a mean accuracy of within better than 3%. No serious memory effects have been noted, even with samples of rather high specific activity. (author)

  2. Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis.

    Science.gov (United States)

    Bonilla, M R; Stokes, J R; Gidley, M J; Yakubov, G E

    2015-02-01

    We present a novel Multi-Regime Analysis (MRA) routine for interpreting force indentation measurements of soft materials using atomic force microscopy. The MRA approach combines both well established and semi-empirical theories of contact mechanics within a single framework to deconvolute highly complex and non-linear force-indentation curves. The fundamental assumption in the present form of the model is that each structural contribution to the mechanical response acts in series with other 'mechanical resistors'. This simplification enables interpretation of the micromechanical properties of materials with hierarchical structures and it allows automated processing of large data sets, which is particularly indispensable for biological systems. We validate the algorithm by demonstrating for the first time that the elastic modulus of polydimethylsiloxane (PDMS) films is accurately predicted from both approach and retraction branches of force-indentation curves. For biological systems with complex hierarchical structures, we show the unique capability of MRA to map the micromechanics of live plant cells, revealing an intricate sequence of mechanical deformations resolved with precision that is unattainable using conventional methods of analysis. We recommend the routine use of MRA to interpret AFM force-indentation measurements for other complex soft materials including mammalian cells, bacteria and nanomaterials. PMID:25569139

  3. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    Science.gov (United States)

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials. PMID:27151190

  4. Imaging material properties of biological samples with a Force Feedback Microscope

    CERN Document Server

    Costa, Luca; Newman, Emily; Zubieta, Chloe; Chevrier, Joel; Comin, Fabio

    2013-01-01

    Mechanical properties of biological samples have been imaged with a force feedback microscope. The force, force gradient and the dissipation are simultaneously measured quantitatively from solely the knowledge of the spring constant. The results are preliminary but demonstrate that the method can be used to measure material properties, it is robust and produce quantitative high force resolution measurements of interaction characteristics. The small stiffness and oscillation of the cantilever results in an vibrational energy much smaller than the thermal energy, reducing the interaction to a minimum. Because the lever is over-damped, the excitation frequency can be chosen arbitrarily.

  5. Why should we respect the privacy of donors of biological material?

    OpenAIRE

    2010-01-01

    Why should we respect the privacy of donors of biological material? The question is answered in the present article in general philosophical terms from the point of view of an ethics of honour, a libertarian theory of rights, a view of respect for privacy based on the idea that autonomy is of value in itself, and utilitarianism respectively. For different reasons the ethics of honour and the idea of the value of autonomy are set to one side. It surfaces that the moral rights theory and utilit...

  6. Non-traditional metal electrode materials in electrochemical nvironmental analysis of biologically active compounds

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Šestáková, Ivana

    Tenerife: WSEAS, 2007 - (Otesteanu, M.; Celikyay, S.; Mastorakis, N.; Lache, S.; Benra, F.), s. 181-185 ISBN 978-960-6766-20-6. [WSEAS International Conference on ENVIRONMENT, ECOSYSTEMS and DEVELOPMENT (EED'07) /5./. Tenerife (ES), 14.12.2007-16.12.2007] R&D Projects: GA ČR GA203/07/1195; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal electrode materials * biologically actove compounds * electrochemistry Subject RIV: CG - Electrochemistry

  7. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  8. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  9. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  10. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    International Nuclear Information System (INIS)

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  11. Metrological assessment of the high-accuracy RNAA method of co-determination in biological materials

    International Nuclear Information System (INIS)

    The paper summarizes work on the development of the high-accuracy RNAA method for the determination of trace amounts of cobalt in biological materials. The method is based on a combination of neutron activation with selective and quantitative isolation of the analyte in a state of high radiochemical purity by use of column chromatography followed by gamma-ray spectrometric measurements. The method was devised according to a set of rules, which were formulated to obtain high accuracy of the method. The procedure has been also equipped with several criteria, being a key factor of quality assurance. The qualification of the high-accuracy RNAA method as a primary ratio method has been demonstrated and its usefulness in the certification of the candidate reference materials: Tea Leaves and Mixed Polish Herbs is presented. (author)

  12. Radiochemical separation for determining of some trace elements in standard biological materials

    International Nuclear Information System (INIS)

    A radiochemical separation method has been developed to determine the elements W, Cd, Cr, U, Th e Co in three biological materials of botanic origin used as SRM's: Peach Leaves, Apples Leaves and the new proposed material Spinach. The aim was to obtain more information for these elements whose values are not yet determined or are given only as suggested values. The radiochemical procedure was based on chromatographic separation using resin Chelex 100 in H Ac 0.1 M-N H4 Ac 0.1 M at pH 4.8. All the experimental data e results obtained are described and compared with the literature values. (author). 10 refs, 4 tabs

  13. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  14. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 00C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG)

  15. New Method for Monitoring the Process of Freeze Drying of Biological Materials.

    Science.gov (United States)

    Alkeev, Nikolay; Averin, Stanislav; von Gratowski, Svetlana

    2015-12-01

    A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to -70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value. PMID:26022547

  16. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  17. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  18. Photonuclear Activation Analysis of Biological Materials for Various Elements, including Fluorine

    International Nuclear Information System (INIS)

    Photonuclear activation analysis (PNAA) studies of a number of kinds of biological and non-biological materials have been carried out at these laboratories, in addition to highflux thermal-neutron and moderate-flux 14-MeV neutron activation analyses of the same materials. The photonuclear studies are carried out with the two high-current electron linear accelerators at the laboratory - machines of 17 MeV and 45 MeV maximum energies. These accelerators can be operated at electron energies anywhere from 2 MeV up to the maximum, and at integrated beam currents up to 0.5 mA. The partially diffused electron beam is absorbed in a water-cooled tungsten converter, to produce an intense bremsstrahlung beam. Samples are irradiated in a pneumatic tube just in front of the converter, or in a spinning multi-sample rack just beyond the pneumatic tube. Some of the advantages of high-flux PNAA, as compared with high-flux thermal-neutron activation analysis, in certain instances are: (1) some elements, such as C, N, and O, can be determined more sensitively, (2) the 24Na interference encountered in the thermal-neutron activation of many biological samples is eliminated, (3) many interfering activities can be eliminated by adjustment of the electron energy to values below the thresholds of interfering reactions, (4) alternate products, in some cases of more convenient half-lives or gamma-ray energies than those produced by (n, γ) reactions, can be formed, and (5) the problem of self-shielding is eliminated. The high penetrability of the bremsstrahlung photons makes the method more generally useful than charged-particle activation analysis. The experimentally determined limits of detection of some 40 elements studied, mostly by the (γ, γ') and (γ, n) reactions, will be reported, as well as photonuclear results on samples of hair, blood, urine, whisky, wood, tobacco and green plants. Detailed studies of the determination of fluorine in biological samples, by the 19F(γ, n)18F

  19. Very accurate determination of trace amounts of selenium in biological materials by Radiochemical Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Selenium is both a toxic and an essential trace element for humans and animals. The purpose of this work was to elaborate a very accurate (definitive) method for the determination of selenium traces in different types of biological materials. The method is based on a combination of neutron activation and quantitative and very selective radiochemical separation of selenium by ion-exchange and extraction chromatography, followed by gamma-spectrometric measurement of 75Se. Three amines: 2,3-diaminonaphtalene, 3,3'-diaminobenzidine and 4-nitro-phenyldiamine supported on Bio Beads SM-2 or Amberlite XAD-4 were chosen to batch experiments. Using 3,3'-diaminobenzidine tracer experiments were carried out with the unirradiated biological samples. They have proved that the whole radiochemical separation procedure is quantitative. Gamma-ray spectrum of the selenium fraction practically did not show any other activities except background peaks. The obtained results demonstrate good agreement of results obtained by our new '' definitive '' method for the determination of selenium with the certified values

  20. Evaluation of analytical methods for fluorine in biological and related materials.

    Science.gov (United States)

    Venkateswarlu, P

    1990-02-01

    During the past two decades, some major pitfalls in fluorine analysis have been recognized and overcome. Therefore, it is important that facts be separated from fallacies in published literature on levels and forms of fluorine (ionic, bound, covalent, etc.) in biological materials, in order that correct perceptions of physiological, biochemical, and toxicological aspects of inorganic as well as organic fluorine compounds can be formed. Trace amounts of inorganic fluoride in biological samples can now be accurately determined with the fluoride electrode either directly or following diffusion, adsorption, or reverse extraction of fluoride (when necessary). The aluminum monofluoride molecular absorption technique provides an excellent rapid method for determination of trace amounts of inorganic fluoride (in the absence of organic fluorine). Fluorine in most organic fluorine compounds is not available for distillation, diffusion, or reverse-extraction. The sample needs to be ashed (open ashing) or combusted (oxygen flask, oxygen bomb, pyrohydrolysis) for covalently bound fluorine to be converted to fluoride ions. This can now be readily accomplished at room temperature by the reductive cleavage of the C-F bond with the sodium biphenyl reagent. Some recommendations for future research have been made. PMID:2179310

  1. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g-1. The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  2. Simultaneous determination of mercury and arsenic in biological materials by radioactivation

    International Nuclear Information System (INIS)

    A new method has been devised for determining mercury and arsenic simultaneously in biological materials. It is based on complete digestion of the irradiated samples on a hot-plate, extracting arsenic as arsenic (III) chloride with benzene, and isolating mercury by reductive aeration with tin (II) chloride. These elements are precipitated as sulfides, and the activities are counted for quantitative evaluation. The chemical yield is determined by the use of 74As- and 203Hg-spikes, and the neutron flux is checked by the use of copper as a flux monitor. The detection limits are 0.5 ng of As with a counting error of +- 15% and 1 ng of Hg with +- 20%. The method was applied in the determination of mercury and arsenic in the maternal and neonatal hair and blood. (auth.)

  3. [A micromethod for determining total lipids in lymphocytes and other biological material].

    Science.gov (United States)

    Taranova, N P; Govorova, L V

    1987-01-01

    A micromethod, developed for estimation of total lipids in lymphocytes, other blood cells and body tissues, involved extraction of lymphocyte suspension with chloroform-methanol mixture, elimination of non-lipid impurities by means of the extract washing, concentration of the lipid fraction and hydrolysis of dry pellet in minimal volume of concentrated H2SO4. After reaction of the hydrolyzate with phosphorus-vanilin reagent the colour intensity of the reaction products was measured. The procedure described was sensitive and enabled to estimate lipids in minimal volume of biological material; in the lymphocyte fraction isolated from 2 ml of peripheric blood total lipids were measured with accuracy of 1-2 mg. PMID:3604134

  4. Reactivity comparison of biological material after radiolabeling with avidin-biotin system

    International Nuclear Information System (INIS)

    To find a method for determining the immunoreactivity of monoclonal antibodies after radiolabeling avidin is unlabeled and labeled with Rodamine, 131I and 188Re, respectively. The affinities and half-desorbed amounts of biotin and four kinds of avidin are determined by the biotin columns plus non-labeled avidin (cold avidin). The affinities of biotin and avidin unlabeled and labeled with Rodamine, 188Re and 131I are decreased in turn. Their half-desorbed amounts from biotin are 21.9, 19.5, 25.7 and 47.9 μg of cold avidin. Two kinds of radiolabeled avidin have lower affinity with biotin than that of avidin unlabeled and labeled with Rodamine. There is a possibility to evaluate the reactivity of biological materials with different labeling methods by avidin-biotin system

  5. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    Science.gov (United States)

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  6. Intervening factors in attention flow of professionals injured by biological material

    Directory of Open Access Journals (Sweden)

    Luana Cássia Miranda Ribeiro

    2014-06-01

    Full Text Available Objective: To describe the barriers and facilitator factors to follow the attention flow of professionals injured by biological material in the worker perspective. Method: Qualitative descriptive study with data collected through individual interviews with 18 injured workers, assisted in reference public units in the city of Goiânia. The content analysis was carried out with assistance of the ATLAS.ti 6.2 software, under the work organization and subjective perspectives. Results: From the interviews regarding the barriers and facilitator factors emerged the categories: organizational structure, Support from close people, and Knowledge influence. Conclusion: The organized services have enabled more qualified consultations and the workers follow-up, which caused a satisfaction feeling in relation to the working environment.

  7. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10-9 to 10-8g, of Cu in the range of 10-12 to 10-10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB)

  8. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  9. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy. PMID:27459699

  10. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  11. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  12. Biological reference materials for quality control of elemental composition analytical data

    International Nuclear Information System (INIS)

    Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA. (author)

  13. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    International Nuclear Information System (INIS)

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode. (paper)

  14. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    Science.gov (United States)

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials. PMID:21133431

  15. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    Science.gov (United States)

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations. PMID:17985666

  16. Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells.

    Science.gov (United States)

    Arnold, C L; Heisterkamp, A; Ertmer, W; Lubatschowski, H

    2007-08-01

    Cell surgery based on ultrashort laser pulses is a fast evolving field in biophotonics. Noninvasive intra cellular dissection at sub-diffraction resolution can be performed within vital cells with very little hazardous effects to adjacent cell organelles. Microscope objectives of high numerical aperture (NA) are used to focus ultrashort pulses to a small spot. Due to the high order of nonlinearity, plasma formation and thus material manipulation is limited to the very focus. Nonetheless nonlinear plasma formation is generally accompanied by a number of additional nonlinear effects like self-focusing and filamentation. These parasitic effects limit the achievable precision and reproducibility of applications. Experimentally it is known that the intensity of these effects decreases with increasing NA of the focusing optics, but the process of nonlinear plasma formation at high NA has not been studied numerically in detail yet. To simulate the interaction of ultrashort laser pulses with transparent materials at high NA a novel nonlinear Schr odinger equation is derived; the multiple rate equation (MRE) model is used to simultaneously calculate the generation of free electrons. Nonparaxial and vectorial effects are taken into account to accurately include tight focusing conditions. Parasitic effects are shown to get stronger and increasingly distortive for NA < 0.9, using water as a model substance for biological soft tissue and cellular constituents. PMID:19547380

  17. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  18. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    Science.gov (United States)

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  19. Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials

    Science.gov (United States)

    Schmid, Thomas; Sebesta, Aleksandar; Stadler, Johannes; Opilik, Lothar; Balabin, Roman M.; Zenobi, Renato

    2010-02-01

    Biological materials can be highly heterogeneous at the nanometer scale. The investigation of nanostructures is often hampered by the low spatial resolution (e.g. spectroscopic techniques) or very little chemical information (e.g. atomic force microscopy (AFM), scanning tunneling microscopy (STM)) provided by analytical techniques. Our research focuses on combined instruments, which allow the analysis of the exactly same area of a sample by complementary techniques, such as AFM and Raman spectroscopy. Tip-enhanced Raman spectroscopy (TERS) combines the high spatial resolution of AFM or STM with the chemical information provided by Raman spectroscopy. The technique is based on enhancement effects known from surface-enhanced Raman scattering (SERS). In TERS the enhancing metallic nanostructure is brought to the sample by an AFM or STM tip. With a TERS-active tip, enhanced Raman signals can be generated from a sample area as small as 10-50 nm in diameter. AFM analysis of bacterial biofilms has demonstrated their heterogeneity at the nanometer scale, revealing a variety of nanostructures such as pili, flagella, and extracelullar polymers. TERS measurements of the biopolymers alginate and cytochrome c have yielded spectroscopic fingerprints even of such weak Raman scatterers, which in future can allow their localization in complex matrices. Furthermore, biofilms of the bacterium Halomonas meridiana were studied, which was found to be involved in the generation of the mineral dolomite. Only combined AFM-Raman analysis was able to identify the nanoglobules found in laboratory cultures of H. meridiana as dolomite nanoparticles. Our combined setups are and will be applied to the investigation of biofilms, fish spermatozoa as well as biological membranes.

  20. Environmental routes for platinum group elements to biological materials--a review.

    Science.gov (United States)

    Ek, Kristine H; Morrison, Gregory M; Rauch, Sebastien

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust. The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  1. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  2. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  3. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    Science.gov (United States)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  4. Biological inspiration in optics and photonics: harnessing nature's light manipulation strategies for multifunctional optical materials (Conference Presentation)

    Science.gov (United States)

    Kolle, Mathias; Sandt, Joseph D.; Nagelberg, Sara N.; Zarzar, Lauren D.; Kreysing, Moritz; Vukusic, Peter

    2016-03-01

    The precise control of light-matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties. This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that

  5. Metrological assessment of the high-accuracy RNAA method of Co determination in biological materials

    International Nuclear Information System (INIS)

    Full text: In the contemporary world, chemical measurements are the basis for making central decisions to effective functioning of the society. The areas critically dependent on results of chemical analysis are e.g. environmental control, health, food safety, crime detection, support for R and D. Hence, there is a need for checking the reliability of the results of chemical analysis. This is of great importance especially in the case of trace analysis. One of the ways of checking the accuracy of chemical results is the use of primary methods. The aim of the presented paper has been to show that radiochemical neutron activation (RNAA) method can meet criteria for a primary ratio method (a definitive method). The high-accuracy RNAA method for the determination of trace amount of cobalt in biological materials has been developed. The method is based on a combination of neutron activation with selective and quantitative isolation of the analyte in a state of high radiochemical purity by use of column chromatography followed by gamma-ray spectrometric measurements. The method was devised according to a set of rules, which were formulated to obtain high accuracy of the method. The procedure has been also equipped with several criteria, being a key factor of quality assurance. The criteria have to be fulfilled by a result of analysis in order to be accepted. The paper summarizes the work on the development of the method and demonstrates the qualifications of the elaborated method as a primary ratio or a definitive method. The usefulness of the elaborated method in the certification of the candidate reference materials: Tea Leaves and Mixed Polish Herbs is presented. (author)

  6. Teleost fish scales: a unique biological model for the fabrication of materials for corneal stroma regeneration.

    Science.gov (United States)

    Takagi, Yasuaki; Ura, Kazuhiro

    2007-03-01

    The corneal stroma is composed of multiple lamellae, each containing closely packed collagen fibrils. The orientation of fibrils in a lamella is parallel, but those in different lamellae are orthogonal. As a result, the corneal stroma has a characteristic orthogonal plywood-like structure. Such a highly-regulated three-dimensional arrangement of collagen fibrils gives strength and transparency to the corneal stroma, but it also presents a challenge in the fabrication of materials to replace it. A bioinspired technology is required to process such materials, but the regulatory mechanism of collagen-fibril orientation is still unknown. The low regenerating activity of the corneal stroma seems to be a major factor preventing progress in this field of research. A similarly highly-ordered arrangement of collagen fibrils can be seen in the basal plates of teleost fish scales. Moreover, the scales have high regenerating ability. When a scale is mechanically lost, a new scale is rapidly regenerated. The cells that produce the basal plates are extremely activated; thus, production of the highly-ordered collagen fibrils is very rapid. Therefore, the regenerating scales should be a uniquely helpful biological model for studying the regulatory mechanism of collagen-fibril orientation. Fish-scale collagen has another advantage for use as a biomaterial: the low probability of zoonotic infection. Therefore, scale collagen is a most promising biomaterial for fabricating three-dimensionally arranged collagen fibers to substitute for the corneal stroma. Three tasks that must be clarified for the bioinspired production of a corneal substitute from fish scale collagen are proposed. PMID:17450830

  7. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  8. 3-d Brownian dynamics simulations of the smallest units of an active biological material

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Paudyal, Nabina; Adeli Koudehi, Maral

    Motor proteins generate stress in a cytoskeletal network by walking on one strand of the network while being attached to another one. A protein walker in contact with two elements of the network may be considered the smallest unit of an active biological material. In vitro experiments, mathematical modeling and computer simulations have provided important insights into active matter on large and on very small length and time scales. However, it is still difficult to model the effects of local environment and interactions at intermediate scales. Recently, we developed a coarse-grained, three-dimensional model for a motor protein transporting cargo by walking on a substrate. In this work, we simulate a tethered motor protein pulling a substrate with elastic response. As the walker progresses, the retarding force due to the substrate tension increases until contact fails. We present simulation results for the effect of motor-protein activity on the tension in the substrate and the effect of the retarding force on the processivity of the molecular motor.

  9. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    International Nuclear Information System (INIS)

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  10. The biological impacts of ingested radioactive materials on the pale grass blue butterfly

    Science.gov (United States)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M.

    2014-05-01

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  11. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  12. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al2O3 and coprecipitation with Fe(OH)3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  13. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Ding, Li

    has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  14. Development and effectiveness of an educational card game as supplementary material in understanding selected topics in biology.

    Science.gov (United States)

    Gutierrez, Arnel F

    2014-01-01

    The complex concepts and vocabulary of biology classes discourage many students. In this study, a pretest-posttest model was used to test the effectiveness of an educational card game in reinforcing biological concepts in comparison with traditional teaching methods. The subjects of this study were two biology classes at Bulacan State University-Sarmiento Campus. Both classes received conventional instruction; however, the experimental group's instruction was supplemented with the card game, while the control group's instruction was reinforced with traditional exercises and assignments. The score increases from pretest to posttest showed that both methods effectively reinforced biological concepts, but a t test showed that the card game is more effective than traditional teaching methods. Additionally, students from the experimental group evaluated the card game using five criteria: goals, design, organization, playability, and usefulness. The students rated the material very satisfactory. PMID:24591506

  15. A comparison of neutron activation analysis and inductively coupled plasma mass spectrometry for trace element analysis of biological materials

    International Nuclear Information System (INIS)

    Fifty individual food types were analysed by instrumental and radiochemical neutron activation analysis as well as inductively coupled plasma mass spectrometry after testing all techniques by analysing IAEA mixed human diet, H-9. The performance of these trace element techniques and their limitations were evaluated under normal, routine, multielement surveys of a large range of solid biological materials. (author) 18 refs.; 2 tabs

  16. Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    Directory of Open Access Journals (Sweden)

    Lionel F Gamarra

    2010-03-01

    Full Text Available Lionel F Gamarra1,2, Antonio J daCosta-Filho3, Javier B Mamani1, Rita de Cassia Ruiz4, Lorena F Pavon1, Tatiana T Sibov1, Ernanni D Vieira3, André C Silva1, Walter M Pontuschka5, Edson Amaro Jr1,21Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, São Paulo, Brazil; 2Instituto de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; 3Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil; 4Instituto Butantan, São Paulo, Brazil; 5Instituto de Física, Universidade de São Paulo, São Paulo, BrazilAbstract: The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs administered in biological materials by means of the ferromagnetic resonance technique (FMR applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133 in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo or per labeled cell (in vitro.Keywords: quantification, FMR, ferrofluid, biodistribution, nanoparticles

  17. Cut and puncture accidents involving health care workers exposed to biological materials

    Directory of Open Access Journals (Sweden)

    Cristiane Grande Gimenez Marino

    2001-10-01

    Full Text Available The first report of occupational acquisition of HIV appeared in 1984, and, by June, 1997, the Centers for Disease Control and Prevention (CDC had reported 52 documented cases of sero-conversion following occupational exposure to HIV-1 by health care workers of those cases. 47 (90.3% were exposed to blood. The most frequent type of accident reported was percutaneous needlestick injury. Prospective studies have estimated that the risk of HIV transmission following percutaneous exposure to infected blood is 0.3% (Confidence Interval 95% = 0.2% to 0.5%. Following a mucous membrane exposure, the risk is 0.09% (CI 95% = 0.006% to 0.5%. The risk of hepatitis B acquisition ranges from 6% to 30%, and hepatitis C acquisition, 3% to 10%. Since 1992, the São Paulo Hospital's Hospital Infection Prevention and Control Service (SPCIH has notified and treated all workers exposed to accidents involving biological materials. In the last six years, we have handled approximately 1,300 cases of reported accidents, of which 90% were percutaneous, most involving needlesticks. Such cases were frequently caused by the inadequate disposal and recapping of needles. In these accidents, 20% of the source patients were HIV positive, 10% were hepatitis C positive, and 7.6% were hepatitis B positive. This review summarizes the guidelines for a standardized response when dealing with accidents involving health care workers. Transmission of hepatitis B and HIV can be reduced if adequate preventive measures are taken in advance. If proper prophylaxis is not being done, it should be initiated immediately.

  18. Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials

    International Nuclear Information System (INIS)

    This report focuses on analytical reference materials which have been developed for use in connection with the determination of toxic and essential trace elements in biomedical and health-related environmental samples. Data are reported on 60 biological and 40 environmental (non-biological) reference materials from 11 suppliers. Certified concentration values (or their equivalents) and non-certified concentration values (or information values) are presented in various tables which are intended to help the user select a reference material that matches as closely as possible (i.e. with respect to matrix type and concentration of the element of interest) the ''real'' samples that are to be analysed. These tables have been generated from a database characterized by the following parameters: total number of reference materials=100; total number of elements recorded=69; total number of concentration values recorded=1771. Also included in the report is information (where available) on the cost of each material, the unit weight or volume supplied, and the minimum weight of material recommended for analysis. (author)

  19. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    Science.gov (United States)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  20. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-08-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112

  1. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  2. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  3. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  4. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Science.gov (United States)

    Ahmad, Syed Bilal; McNeill, Fiona E.; Prestwich, William V.; Byun, Soo Hyun; Seymour, Colin; Mothersill, Carmel E.

    2014-01-01

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some "bystander effects" that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 1010 protons mm-2 s-1. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  5. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  6. EDITORIAL: Nanotechnology at the interface of cell biology, materials science and medicine Nanotechnology at the interface of cell biology, materials science and medicine

    Science.gov (United States)

    Engel, Andreas; Miles, Mervyn

    2008-09-01

    The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep protein-protein and protein-nucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopy—a technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting

  7. A common basis for facilitated legitimate exchange of biological materials proposed by the European Culture Collections' Organisation

    Directory of Open Access Journals (Sweden)

    Dagmar Fritze

    2009-12-01

    Full Text Available Being charged with the task of accessioning and supplying of living microbiological material, microbial culture collections are institutions that play a central role between the interests of a variety of user communities. On the one side are the providers of living microbiological material, such as individual scientists, institutions and countries of origin and on the other side are the various kinds of recipients/users of cultures of microorganisms from academia and industry. Thus, providing access to high quality biological material and scientific services while at the same time observing donor countries' rights, intellectual property rights, biosafety and biosecurity aspects poses demanding challenges. E.g. donor countries rights relate to Article 15 of the Convention on Biological Diversity: "Contracting parties …. recognize the sovereign rights of states over their natural resources …. shall facilitate access to resources … and not impose restrictions that run counter to the aims of the Convention. Access to natural resources shall be by mutually agreed terms and subject to prior informed consent ..." The use of a proposed standard contract by culture collections is discussed as a way of contractually safeguarding the existing research commons, while observing the new rights established in the Convention on Biological Diversity as well as other existing and new legislation impacting on the accessibility of living microbial material.

  8. Separation Scheme for the Determination of Nine Elements in Biological Material

    International Nuclear Information System (INIS)

    A separation scheme is presented for the determination of nine trace elements in biological samples that give rise to long-lived gamma-emitting isotopes by neutron irradiation, namely silver, molybdenum, mercury, gold, chromium, cobalt, selenium, iron and zinc. The organic material is destroyed by combustion with oxygen in a flask according to Schöniger in the presence of 100 μg of carrier of each element. The ignition is electrical and provides an easy and safe method for burning the samples and avoiding losses of volatile elements. The combustion products are collected in HNO3-H2O2 - solution. Carrier yields of at least 98% were obtained in tracer experiments, except for gold and silver. At high temperatures these elements apparently form an Au-Pt and Ag-Pt alloy with the platinum combustion catalyst. Boiling the platinum sample holder with a few millilitres of aqua regia results in a quantitative recovery of both elements. The HNO3-H2O2 solution is evaporated to dryness and re dissolved in 2N HF. A number of trace elements are adsorbed on a Dowex 1-X8 column and eluted successively with 9N HCl, 1.2N HCl, 8N HNO3 + 4N NH4NO3 and 10% thiourea. A quantitative séparation is thus obtained of Ag, Mo, Hg and Au. Cr, Co, Se, Fe and Zn are not absorbed in 2N HF. This eluate is adsorbed on a second Dowex 1-X8 column in ION HCl and eluated successively with ION HCl, 3N HCl, 0.4N HCl and H2O. Fractions of Cr, Co + Se, Fe and Zn are obtained. A quantitative separation of Co from Se can be achieved on Dowex 50W-X4 in HCl. The volumes in which the individual elements are quantitatively collected are smaller than 30 ml. Consequently a relatively high counting efficiency can be achieved in a 25-ml well-type crystal. Quantitative recovery for all elements is obtained except for mercury and gold. Mercury losses occur on evaporating the HNO3-H2O2 mixture. As a suitable method for the determination of the mercury yield, dithizone titration was chosen. The yield of gold is

  9. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    Directory of Open Access Journals (Sweden)

    Stephen Juma Mulware

    2015-01-01

    Full Text Available The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  10. Substoichiometric isotope dilution analysis for the determination of iron in biological materials and comparison with substoichiometric isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Substoichiometric isotope dilution analysis for the determination of trace iron has been studied by using synergistic extraction of iron(III) with a substoichiometric amount of 4-isopropyltropolone (Hipt) in the presence of an excess of 3,5-dichlorophenol (DCP) in heptane. Optimum conditions for the substoichiometric extraction of iron(III) in μg to sub-μg levels were examined and the high selectivity for iron(III) toward various metal ions encountered in the analysis of biological materials was confirmed. The present method was applied to a biological reference material (NIES, CRM No.9, sargasso) without any pre-separation and was successfully evaluated. Furthermore, substoichiometric stable isotope dilution mass spectrometry using the present extraction method was also used with the above sample. Applicability and practicability was compared for both substoichiometric methods. (author)

  11. Effect of weight fraction of different constituent elements on the total mass attenuation coefficients of biological materials

    Indian Academy of Sciences (India)

    Karamjit Singh; Charanjeet Singh; Parjit S Singh; Gurmel S Mudahar

    2002-07-01

    The mass attenuation coefficients, m, of biological materials have been studied as a function of weight fraction of constituent elements (hydrogen, carbon, oxygen and nitrogen). A considerable change in m is seen only in low energy region whereas no change is observed with the increasing percentage of constituent elements in high energy region up to 10 MeV. The results have been presented in graphical form.

  12. Report on intercomparison run SNR-1 for the determination of trace elements in synthetic resin simulating biological material

    International Nuclear Information System (INIS)

    A synthetic resin, SNR-1, simulating biological material and containing homogeneously distributed trace amounts of As, Au, Br, Cr, Cs, Hg, La, Mn, Rb, Sb, Se and Sr, was made available to 16 laboratories in the form of 50 mg - pellets. Various methods for the quantitative determination of these elements (and, in some cases, also of impurities) including neutron activation analysis, and neutron activation analysis with radio-chemical analysis were used in an interlaboratory comparative study. The results are tabulated

  13. Determination of trace quantities of iodine in different sorts of tobacco and biological standard reference materials by rapid radiochemical separation

    International Nuclear Information System (INIS)

    The concentration levels of total iodine obtained by RNAA in different sorts of tobacco, including the reference sample Kentucky Tobacco 2RI, two new candidate reference materials, Oriental Tobacco Leaves (CTA-OTL-1) and Virginia Tobacco Leaves (CTA-VTL-2) prepared in the Institute of Nuclear Chemistry and Technology, Warsaw, and some biological SRMs, are presented and discussed. (author) 51 refs.; 1 fig.; 2 tabs

  14. Determination of selenium in biological materials by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS)

    OpenAIRE

    Galgan, Vera

    2007-01-01

    The selenium (Se) poor environment in the Scandinavian countries focused the interest on the development of an analytical method with high capacity, sensitivity, low limit of detection, including automated wet digestion, automated analysis and computer aided calculation. To facilitate the choice of an appropriate analytical method, procedures for determination in biological materials were discussed. The most frequently used sample-preparation procedures and various analytical techniques were ...

  15. Radiochemical separation for the certification of some trace elements in biological reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    A radiochemical separation procedure based on chromatographic separation using Chelex-100 in 0.1M HAc-0.1M NH4Ac at pH 4.8 and TDO in 6M HCL, has been developed to determine Cd, Co, Cr, Fe, Se, Th, U, W and Zn in three biological materials of botanic origin used as SRM's: 1547 Peach Leaves, 1515 Apple Leaves and the new proposed material Spinach. The aim was to obtain more information for these elements whose values are not yet determined or are given only as 'suggested values'. (author). 11 refs., 3 tabs

  16. Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials.

    Science.gov (United States)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2016-07-01

    One of the key functions of load-bearing biological materials, such as bone, dentin and sea shell, is to protect their inside fragile organs by effectively damping dynamic impact. How those materials achieve this remarkable function remains largely unknown. Using systematic finite element analyses, we study the stress wave propagation and attenuation in cortical bone at the nanoscale as a model material to examine the effects of protein viscosity, mineral fraction and staggered architecture on the elastic wave decay. It is found that the staggered arrangement, protein viscosity and mineral fraction work cooperatively to effectively attenuate the stress wave. For a typical mineral volume fraction and protein viscosity, an optimal staggered nanostructure with specific feature sizes and layouts is able to give rise to the fastest stress wave decay, and the optimal aspect ratio and thickness of mineral platelets are in excellent agreement with experimental measurements. In contrary, as the mineral volume fraction or the protein viscosity goes much higher, the structural arrangement is seen having trivial effect on the stress wave decay, suggesting that the damping properties of the composites go into the structure-insensitive regime from the structure-sensitive regime. These findings not only significantly add to our understanding of the structure-function relationship of load-bearing biological materials, and but also provide useful guidelines for the design of bio-inspired materials with superior resistance to impact loading. PMID:26925698

  17. Development of New Didactic Materials for Teaching Science and Biology: The Importance of the New Education Practices

    Directory of Open Access Journals (Sweden)

    Camila O. Arent

    2009-01-01

    Full Text Available Problem statement: The creativity of teachers in the planning process of their classes for teaching science and biology may be an instigator to promote and stimulate learning. The science should be something that awakens curiosity in students to make learning pleasurable and increase their interest. The aim this research was to develop didactic materials for to help the teaching-learning process in the content of science and biology. Especially, those content about systematic that can not be very exciting and bring some difficulty for the involvement of students. Approach: Inspired in the Atlantic forest, which extends along the Brazilian coast and offers a diverse ecosystem, were created some materials that enable the interaction of teacher with students, which were: "memory of the Atlantic forest", "unmasking the Atlantic forest” and a “set of transparencies”. The first is composed of 25 cards each containing an image of a species of fauna or flora of the Atlantic forest, popular and scientific name. Complete the material, 25 letters with specific characteristics of each species. The second is a panel with the illustration of the incompleteness of the Atlantic forest ecosystem, featuring 10 pictures of animals that are hidden between the two sides of the panel and asked for 10 letters, which were answered to complete the ecosystem. The third is a set of transparencies containing information on the Atlantic, maps and data on the fauna and flora. The latter should be used to perform a preliminary discussion on the biodiversity of the Atlantic. Results: Results showed that these materials facilitate learning, as well as linking images of known species with their respective characteristics, makes the class interesting by providing the effective interaction of the group. Conclusion/Recommendation: These materials were used and well accepted by students of the course of biological science in the

  18. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    OpenAIRE

    Joffe, R.; Kamenetskii, E. O.; Shavit, R.

    2015-01-01

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterizatio...

  19. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    Science.gov (United States)

    Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; Ottenwälder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640

  20. Potential of the PIGE method in the analysis of biological and mineral materials

    International Nuclear Information System (INIS)

    A possible application of the PIGE method for the analysis of the biological and mineral samples has been tested using a 3.5 MeV Van de Graaff accelerator. The limits of detection of 4 mg/kg for fluorine, 10 mg/kg for aluminium and 200 mg/kg for phosphorus were achieved with a 3.15 MeV proton beam (8 mm in diameter, 20 nA current and 1000 s irradiation time). The PIGE method was found to be a suitable method for the determination of fluorine in the samples analyzed. With this technique, total fluorine in the sample can be quantitated without any chemical treatment. In the analysis of the phosphorus in thick biological samples, PIGE can compete with PIXE and is probably less sensitive to matrix effects and spectra fitting, which may bring about a higher accuracy of the results

  1. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    OpenAIRE

    Inutan, Ellen D.; Trimpin, Sarah

    2012-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or adde...

  2. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    OpenAIRE

    Palagi, Stefano; Jager, Edwin; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to i...

  3. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  4. EFFECT OF MIXING CONDITIONS ON FLOCCULATION KINETICS OF WASTEWATERS CONTAINING PROTEINS AND OTHER BIOLOGICAL COMPOUNDS USING FIBROUS MATERIALS AND POLYELECTROLYTES

    Directory of Open Access Journals (Sweden)

    L.A. CHEN

    1998-12-01

    Full Text Available The application of a combined system of a polyelectrolyte, carboxymethyl cellulose (CMC, and highly fibrillated fibrous materials, cellulose triacetate fibrets (CTF, for the recovery of proteins and other biological compounds from model and actual biological systems has been demonstrated . In the present work, reaction batches were scaled-up to a one-liter agitated vessel, with a standard configuration. The effect of mixing conditions on the adsorption and flocculation process was studied. It was observed that flocculation time was very fast, occurring within the period of polymer addition. Long term shearing did not result in floc breakage and the values of percentage light transmission and protein concentration of the final filtrate remained the same during the incubation period. Increasing the shear rate resulted in improved process efficiency, up to an optimum value, above which performance was poorer. Perikinetic and orthokinetic rate parameters were calculated and results analyzed in view of these parameters.

  5. Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Point, David; Davis, W.C.; Christopher, Steven J.; Ellisor, Michael B.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology, Analytical Chemistry Division, Charleston, SC (United States); Donard, Olivier F.X. [Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRS, Pau (France); Porter, Barbara J.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g{sup -1} level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials - a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 {+-} 0.06, 2.7 {+-} 0.4, and 6.58 {+-} 0.19 ng g{sup -1} as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 {+-} 0.06, 1.19 {+-} 0.26, and 3.55 {+-} 0.44 ng g{sup -1}, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 {+-} 2.7 and 2.26 {+-} 0.38 ng g{sup -1} as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are

  6. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    Science.gov (United States)

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4+, NO2−, and NO3−, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  7. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Science.gov (United States)

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material. PMID:15804666

  8. Neutrons, deuteration and synchrotron X-rays for the study of biology and advanced materials: A match made in atoms..

    International Nuclear Information System (INIS)

    Together, the Australian Synchrotron in Melbourne and the OPAL research reactor, at the Bragg Institute in Sydney represent Australia's largest ever investment in scientific infrastructure. Both facilities commenced operation in 2007, have passed through their infancy and adolescence to take their place amongst the rank of top-flight international user facilities. Far from middle-aged, these two vibrant landmark facilities (each with 10 operational beamlines) and along with the National Deuteration Facility at ANSTO have provided transformational research capabilities for the Australian scientific community. Although modest in size compared to the well-established international competition, both institutions are producing excellent amounts of high-quality research with the Bragg Institute and the Australian Synchrotron generating more than 200 and 450 peer-reviewed publications per annum respectively. At first glance both synchrotron and neutron sources show similar scientific profiles, encompassing an extremely wide range of disciplines: materials, chemistry, biology, condensed matter physics, nanotechnology, engineering, geosciences, archaeology and studies relating to cultural heritage. Common to both are advanced capabilities for the study of atomic and molecular structure, as well as operational studies of functional materials under a diverse range of extreme environments. A more forensic examination however reveals fundamental differences in their DNA. While the biological, pharmaceutical and medical research communities drive substantial capability development and research outcomes at the Australian Synchrotron, neutron scattering and molecular deuteration at the Bragg Institute provides a focus for studies in soft condensed matter, physical and inorganic chemistry, solid state physics and crystallography. Although their respective probes are generated from different parts of the atom and interact with matter in fundamentally different ways, my

  9. The use of a single technique for the separation and determination of actinides in biological materials

    International Nuclear Information System (INIS)

    For the radiotoxicological survey of workers exposed to different types of alpha-emitting contaminants, a procedure was developed which permits the estimate of Th, Pa, U, Np, Pu, Am and Cm in biological samples with a single technique. The radionuclides are extracted on a column by tri-n-octylphosphine oxide and separated by elution at different pH values. Afterwards, the quantitative determinations are done by physical methods (alpha counting or spectrometry). In the case of an accident it is possible to use a simplification of the procedure (extraction in a beaker) for checks. A procedure for the rapid determination of actinides in faeces and in nasal secretions is described

  10. The use of Compton suppression spectrometers for trace element studies in biological materials.

    Science.gov (United States)

    Rossbach, M; Zeisler, R; Woittiez, J R

    1990-01-01

    A straightforward method for demonstrating the powerful background reduction of Compton suppression spectrometers for neutron activation purposes is presented. The shorter acquisition time needed in Anti-Compton mode (A/C on) for peaks of appropriate counting statistics, compared to normal gamma counting (A/C off), allows a much higher sample throughput, thus compensating for the higher cost of the instrument. Two examples of artificial mixtures of radionuclides demonstrate the drastic time saving for measurement of monoenergetic decaying isotopes. The comparison of results from three different instruments proves the general usefulness of Compton suppression spectrometers for Neutron Activation Analysis of biological samples. PMID:1704771

  11. Determination of trace elements in Brazilian rice grains and in biological reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis was applied to the determination of the elements Na, K, Br, As, Rb, Zn, Co, Fe and Sc in Brazilian rice samples and in biological standards. Hg and Se concentrations were determined by using a simple radiochemical separation. The chemical procedure was carried out by means of distillation of Hg and Se in HBr medium and subsequent precipitation of selenium by sodium methabissulfide and mercury by thioacetamide. The accuracy of the instrumental and radiochemical methods was evaluated by means of analysis of the Reference Materials NBS-Bovine Liver, Bowen's Kale and NBS-Rice Flour. (author)

  12. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  13. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2014. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  14. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-01-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  15. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg(2+) Ions.

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E; Dhawale, Dattatray S; Subramaniam, Vishnu P; Strounina, Ekaterina; Sathish, Clastinrusselraj I; Yamaura, Kazunari; Cooper-White, Justin J; Vinu, Ajayan

    2016-01-01

    We introduce "sense, track and separate" approach for the removal of Hg(2+) ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg(2+) ions with a high precision but also adsorb and separate a significant amount of Hg(2+) ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg(2+) ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  16. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-02-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery.

  17. Graphene: One Material, Many Possibilities—Application Difficulties in Biological Systems

    Directory of Open Access Journals (Sweden)

    Marta Skoda

    2014-01-01

    Full Text Available Energetic technologies, nanoelectronics, biomedicine including gene therapy, cell imaging or tissue engineering are only few from all possible applications for graphene, the thinnest known carbon configuration and a basic element for other more complicated, better discovered and widely used nanostructures such as graphite, fullerenes and carbon nanotubes. The number of researches concerning graphene applications is rising every day which proves the great interest in its unique structure and properties. Ideal pristine graphene sheet presents a flat membrane of unlimited size with no imperfections while in practice we get different flakes with irregular edges and structural defects which influence the reactivity. Nanomaterials from graphene family differ in size, shape, layer number, lateral dimension, surface chemistry and defect density causing the existence of graphene samples with various influence on biological systems. Whether graphene induces cellular stress and activates apoptosis, or on the contrary facilitates growth and differentiation of the cells depends on its structure, chemical modifications and the growth process. A certain number of in vitro studies has indicated cytotoxic effects of graphene while the other show that it is safe. The diversity of the samples and methods of the production make it impossible to establish clearly the biological impact of graphene.

  18. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  19. Biological impact tests on complex hydrides used as hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Kiyobayashi, T.; Kuriyama, N. [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Tokoyoda, K. [R and D Center, Taiheiyo Cement Corporation, 2-4-2 Osaku, Sakura, Chiba 285-8655 (Japan); Matsumoto, M. [Materials Department, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2010-10-15

    The mutagenicity of a series of the light element hydrides (containing NaAlH{sub 4}, Mg(NH{sub 2}){sub 2}, LiBH{sub 4}, etc.) was examined by evaluating the frequency of mutation in bacterial DNAs. Although some materials were suspected to be slightly mutagenic, their effect was much less malignant than that of well-known potent mutagens. The hydrides exhibited high cytotoxicity, rather than mutagenicity. A Mg(NH{sub 2}){sub 2}-related material was also subjected to a series of toxicity tests on aqueous organisms, i.e., algae, water fleas and fish. The result suggests that the material is as toxic as alkaline metal hydroxides, such as NaOH and KOH. (author)

  20. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon

    2008-05-15

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  1. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  2. Intercomparison of enriched stable isotope reference materials for medical and biological studies

    International Nuclear Information System (INIS)

    This report summarizes the results of an intercomparison exercise organized by the IAEA during the latter part of 1988 and 1989. Data are presented for 13 different kinds of enriched stable isotope reference material containing 2H, 13C, 15N and 18O. Results were submitted by forty participants in twenty countries. 2 refs, 13 figs, 18 tabs

  3. Synthesis of Precision for the Certification of Phosphorus in Biological Materials by INAA

    DEFF Research Database (Denmark)

    Damsgaard, E.; Heydorn, K.

    1987-01-01

    The β-emitter32P was used to determine total phosphorus by INAA in Skim Milk Powder RM 63, a material now certified by the EEC Bureau of Reference (BCR). Samples and comparator were irradiated in the Danish reactor DR 3. One month later the samples were dissolved in water and aliquots counted...

  4. Technical guide management of waste materials with radioactive contents in biological research centers

    International Nuclear Information System (INIS)

    The guide presented offers significant improvements in the management procedures of waste materials with radioactive contents, in addition to unifying modes of action on radioactive facilities for research and teaching. The guide has been developed within the activities of the SEPR in collaboration with ENRESA. (Author)

  5. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  6. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  7. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell Response to Carboxylated Nanocellulose.

    Science.gov (United States)

    Hua, Kai; Rocha, Igor; Zhang, Peng; Gustafsson, Simon; Ning, Yi; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2016-03-14

    This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials. PMID:26886265

  8. [Gas-liquid chromatographic determination of etofenamate/ Determination, method and use in biological material (author's transl)].

    Science.gov (United States)

    Dell, H D; Fiedler, J; Jacobi, H; Kolle, J

    1981-01-01

    Etofenamate in biological specimen can be determined by gas-liquid chromatography with etofenamate benzyl ether as internal standard. Determination in urine is done directly after extraction and concentration, whereas plasma and homogenates from organs have to be prepurified by thin-layer chromatography. Unchanged etofenamate is found in small amounts in human urine (0--4, 6--6, 6--8 h p. appl.). Inflamed rat paws after local application contain up to 75 microgram etofenamate/g in comparison to only 2 microgram flufenamic acid/g tissue. Both compounds are also found in non-inflamed paws, contents being only 3--4% as compared to the inflamed tissue. Elimination of etofenamate from the inflamed area occurs with a half-life of approx. 8.5 h. These results from gas-liquid chromatography correspond to results from t.l.c./fluorescence measurements. PMID:6971109

  9. The application of semiconductor based UV sources for the detection and classification of biological material

    Science.gov (United States)

    Kaliszewski, Miron; Włodarski, Maksymilian; Bombalska, Aneta; Kwaśny, Mirosław; Mularczyk-Oliwa, Monika; Młyńczak, Jarosław; Kopczyński, Krzysztof

    2013-01-01

    Fluorescence analysis of dry samples of biological origin like pollens, fungi, flours and proteins was presented. In the laboratory study presentenced here two fluorescence methods using semiconductor light sources were applied. Firstly, laser induced fluorescence emission (LIF) spectra of the samples were recorded under 266 and 375 nm excitation. The second technique covered fluorescence decay (FD) at 280 and 340 nm excitation. Hierarchical Cluster Analysis (HCA) of acquired spectra and decays was performed. Both LIF and FD showed that single wavelength excitation 266 and 280 nm, respectively allow distinguishing of pollens from other samples. Combining data of both excitation wavelengths, for LIF and FD, respectively, resulted in substantial improvement of data classification for groups according to the samples origin.

  10. Simultaneous low-level determination of iodine and manganese in biological materials by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    A new RNAA procedure was developed for the simultaneous determination of low levels of I and Mn in biological materials. The procedure is based on sample decomposition by alkaline-oxidative fusion in a mixture of Na2O2 + NaOH at 900 deg C followed by extraction of elementary iodine with chloroform. Subsequently, Mn is separated either by precipitation of hydrated MnO2 or by extraction of the Mn diethyldithiocarbamate complex with chloroform. The chemical yields of separation of I and Mn are in the range of 85 to 95 %, as found by using 131I and 54Mn radiotracers. The assets and drawbacks of the two Mn separation procedures are discussed. The accuracy of the RNAA procedure developed was proved by analysis of several low-level biological reference materials, such as NIST SRM 1549 Milk Powder, NIST RMs 8433 Corn Bran and 8435 Whole Milk Powder. The results for NIST SRM 1598a Animal Serum (renewal of 1598 Bovine Serum) will also be presented

  11. Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper.

    Science.gov (United States)

    Jordaan, Donrich W

    2016-07-01

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or her body) to participate on an altruistic basis, while the researchers and the investors in the research can gain commercially from the research? In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research via a proposed new statutory right to the intellectual property emanating from such research. In order to stimulate debate on this important issue of social justice, this article responds to the position of Mahomed et al. by focusing on two main points: Firstly, I contend that Mahomed et al. fail to make a convincing argument in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of the binary poles of altruism v. profitsharing, and suggest that should healthcare public policy ever move away from altruism, various non-monetary forms of benefit-sharing by research participants should be considered. PMID:27384358

  12. Biological properties of a thermally crosslinked gelatin film as a novel anti-adhesive material: Relationship between the biological properties and the extent of thermal crosslinking.

    Science.gov (United States)

    Tsujimoto, Hiroyuki; Tanzawa, Ayumi; Miyamoto, Hiroe; Horii, Tsunehito; Tsuji, Misaki; Kawasumi, Akari; Tamura, Atsushi; Wang, Zhen; Abe, Rie; Tanaka, Shota; Yamanaka, Kouki; Matoba, Mari; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Suzuki, Shuko; Morita, Shinichiro; Ikada, Yoshito; Hagiwara, Akeo

    2015-10-01

    In order to prevent postoperative adhesion and the related complications, a thermally crosslinked gelatin (TCG) film was developed and the basic biological properties were examined, paying special attention to the relationship between these properties and the extent of crosslinking of the film. The gelatin films crosslinked thermally for five different time periods (0, 1, 3, 8, and 14 hours) were developed and the following tests were performed. Regarding the material characterization of the films, the water content, the water solubility, and the enzymatic degradation for collagenase were found to be closely related to the duration of thermal crosslinking. In an in vitro study conducted to examine the cell growth of fibroblasts cultured on the films, the degree of cell growth, except no crosslinked film, was less than that observed in the control group, thus suggesting that such effects of the films on fibroblast cell growth may be related with their anti-adhesive effects. In in vivo tests, the films crosslinked for longer time periods (3, 8, and 14 hours) were retained for longer after being implanted into the abdominal cavity in rats and showed a significant anti-adhesive effect in the rat cecum adhesion models, indicating that the biodegradability and anti-adhesive effects of the TCG films depend on the duration of thermal crosslinking. In order to develop useful and effective anti-adhesive gelatin film, it is very important to optimize duration of the thermal crosslinking. PMID:25449656

  13. Large-scale photonic neural networks with biology-like processing elements: the role of electron-trapping materials

    Science.gov (United States)

    Farhat, Nabil H.; Wen, Zhimin

    1995-08-01

    Neural networks employing pulsating biology-oriented integrate-and-fire (IF) model neurons, that can exhibit synchronicity (phase-locking), bifurcation, and chaos, have features that make them potentially useful for learning and recognition of spatio-temporal patterns, generation of complex motor control, emulating higher-level cortical functions like feature binding, separation of object from background, cognition and other higher-level functions; all of which are beyond the ready reach of nonpulsating sigmoidal neuron networks. The spiking nature of biology-oriented neural networks makes their study in digital hardware impractical. Prange and Klar convincingly argued that the best way of realizing such networks is through analog CMOS technology rather than digital hardware. They showed, however, that the number of neurons one can accommodate on a VLSI chip limited to a hundred or so, even when submicron CMOS technology is used, because of the relatively large size of the neuron/dendrite cell. One way of reducing the size of neuron/dendrite cell is to reduce the structural complexity of the cell by realizing some of the processes needed in the cell's operation externally to the chip and by coupling these processes to the cell optically. Two such processes are the relaxation mechanism of the IF neuron and dendritic-tree processing. We have shown, by examining the blue light impulse response of electron trapping materials (ETMs) used under simultaneous infrared and blue light bias, that these materials offer features that can be used in realizing both the optical relaxation and synapto-dendritic response mechanisms. Experimental results demonstrating the potential of this approach in realizing dense arrays of biology-oriented neuron/dendrite cells will be presented, focusing on the concept and design of ETM-based image intensifier as new enabling technology.

  14. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  15. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  16. Engineering the rational design and optimisation of lyophilization processes for biological materials

    OpenAIRE

    Grant, Y. G.

    2011-01-01

    Lyophilization is a common method used for long term stability of pharmaceutical and biopharmaceutical products that are unstable in the liquid state for a substantial period of time. Currently, formulation and cycle development are often determined empirically. Although this approach is gradually changing as scientific publications reveal more about the nature of protein stability, nevertheless the lack of material during early stage development prevents large screening inv...

  17. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  18. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    International Nuclear Information System (INIS)

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO2/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line

  19. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  20. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials

    Science.gov (United States)

    Kautek, Wolfgang; Krueger, Joerg

    1994-09-01

    Production of holes and grooves of microcracks extending from an annular melting zone, or substantial disruption, respectively. Experimental results are presented which demonstrate that the development of intense ultrashort pulse laser systems (>> 1012 W cm-2, (tau) bone material, and human cornea transplants. The fs-laser generates its own absorption in transparent materials by a multiphoton absorption process, and thus forces the absorption of visible radiation. Because the time is too short (< ps) for significant transport of mass and energy, the beam interaction generally results in the formation of a thin plasma layer of approximately solid state density. Only after the end of the subpicosecond laser pulse, it expands rapidly away from the surface without any light absorption and further plasma heating. Therefore, energy transfer (heat and impulse) to the target material, and thermal and mechanical disruption are minimized. In contrast to heat- affected zones (HAZ's) generated by conventional nanosecond pulse lasers of the order of 1 - 10 micrometers , HAZ's of less than 0.02 micrometers were observed.

  1. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    International Nuclear Information System (INIS)

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×102 LM−1 and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies

  2. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    Science.gov (United States)

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  3. Diretrizes nacionais para biorrepositório e biobanco de material biológico humano Brazilian guidelines for biorepositories and biobanks of human biological material

    Directory of Open Access Journals (Sweden)

    Gabriela Marodin

    2013-02-01

    Full Text Available OBJETIVO: Caracterizar a construção participativa e democrática das Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa, baseada nos princípios éticos da dignidade humana, da autonomia, da beneficência, da justiça e da precaução. MÉTODOS: Para a elaboração do documento formou-se um grupo de trabalho interdisciplinar Bioética considerando os seguintes critérios: experiência na operacionalização de biobancos, Biobancos representatividade regional, tipo de material biológico acondicionado e especialistas em Biorrepositório bioética. Participaram, também, membros da Agência Nacional de Vigilância Sanitária Diretrizes - Anvisa, pela competência regulatória e da Comissão Nacional de Ética em Pesquisa - Conep, enquanto controle social. RESULTADOS: O documento, baseado nos preceitos éticos, legais e técnicos, apresenta os conceitos, as atividades, finalidades e diferenças entre biorrepositórios e biobancos, as formas de consentimento do sujeito, além de outros aspectos permeados pela preocupação do uso adequado da informação. As Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa contém 39 artigos, dispostos em cinco capítulos. CONCLUSÃO: A importância de uma regulamentação surge da reflexão ética, considerando a moral, e tendo como norteador os aspectos legais, os quais se traduzem em um documento que não se esgota em si mesmo. A dinamicidade da ciência sempre nos remete à mudança de paradigmas, que podem ir além das legislações existentes.OBJECTIVE: To characterize the participatory and democratic creation of the Brazilian guidelines for biorepositories and biobanks of human biological material with the purpose of research based on the ethical principles of human dignity, autonomy, beneficence, justice, and precaution. METHODS: An interdisciplinary work group was constituted to

  4. A search for losses of chemical elements during freeze-drying of biological materials

    International Nuclear Information System (INIS)

    Possible losses of seven chemical elements were investigated in biological tissues during freeze-drying in vacuum. Thyroid glands were taken during post-mortem examination of 23 people died of different diseases. Instrumental neutron activation analysis (INAA) was used to estimate contents of Br, Ca, Cl, I, K, Mg, and Na. The nuclear reactor vertical channel with flux density of 1.2 x 1013 n x cm-2 x s-1 was used for neutron irradiation. The analysis was carried out using short-lived radionuclides induced in samples after neutron irradiation. Then thyroids were freeze-dried at below 0 deg C in vacuum up to the constant mass (lyophilisation) and then homogenized. Samples of lyophilised and homogenized tissues were again studied by INAA. The lack of difference between the results of the analysis before and after lyophilisation is an evidence of no loss of Br, Ca, Cl, I, K, Mg, and Na during freeze-drying of biotissues in vacuum. (author)

  5. Optical standing-wave artifacts in reflection-absorption FTIR microspectroscopy of biological materials

    International Nuclear Information System (INIS)

    Reflection-absorption spectra obtained with an infrared microscope should yield the same absorption coefficients as direct micro-transmission measurements as long as the correct effective sample thickness is used, but in practice, severe optical artifacts can complicate the spectra. Using deposited protein gel fdms as a homogenous model for biological cell-like samples, we demonstrate the effect of standing-wave interference of the IR beam at the reflective substrate surface which dramatically and systematically alters the absorbance intensity across the spectrum as a function of sample thickness. To explain the observed spectral artifacts, we simulate the optical standing-wave for the focussed IR beam, and insert the parameters into an existing standing-wave absorption theory. By introducing an additional term to the theory representing a component of the standing-wave resonant with the film thickness, the data are accurately reproduced, and the relative band intensities can be corrected to the direct transmission values. This approach may be generally applicable in reflection-absorption experiments to obtain reliable absorbance spectra of homogenous samples even when the sample thickness is larger than the IR wavelength.

  6. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman, E-mail: sumansingh01@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Kaur, Rajnish; Chahal, Jitender; Devi, P. [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Jain, D.V.S. [Panjab University, Chandigarh (India); Singla, M.L., E-mail: singla_min@yahoo.co.in [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India)

    2013-09-15

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×10{sup 2} LM{sup −1} and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies.

  7. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  8. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

    Directory of Open Access Journals (Sweden)

    Ingi Agnarsson

    Full Text Available BACKGROUND: Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? METHODOLOGY: We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini, which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2 suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3, with some samples reaching 520 MJ/m(3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. CONCLUSIONS: Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web

  9. Comparison of three different DNA extraction methods from a highly degraded biological material.

    Science.gov (United States)

    Kuś, M; Ossowski, A; Zielińska, G

    2016-05-01

    The identification of unknown victims is one of the most challenging tasks faced by forensic medicine. This is due to the rapid decomposition of tissues, beginning at the moment of death and caused by released enzymes and microbial activity. Decay is directly associated with the decomposition of soft tissues and also the degradation of genetic material inside cells. Decomposition rates vary depending on a number of environmental factors, including temperature, humidity, season, and soil properties. Decomposition also differs between bodies left in the open air or buried. To date, forensic medicine has identified mainly people who were the victims of various types of criminal offences. However, with advances in identification methods, increasingly frequent attempts are made to identify the victims of armed conflicts, crimes of totalitarian regimes, or genocide. The aim of the study was to compare three different methods for the extraction of nuclear DNA from material considered in forensic medicine as difficult to handle, i.e. fragments of bones and teeth, and to determine the performance of these methods and their suitability for identification procedures. PMID:27016882

  10. Determination of copper, molybdenum and selenium in biological reference materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186). Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias. (orig.)

  11. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations.

    Science.gov (United States)

    Bottino, Marco C; Yassen, Ghaeth H; Platt, Jeffrey A; Labban, Nawaf; Windsor, L Jack; Spolnik, Kenneth J; Bressiani, Ana H A

    2015-11-01

    An electrospun nanocomposite fibrous material holds promise as a scaffold, as well as a drug-delivery device to aid in root maturogenesis and the regeneration of the pulp-dentine complex. A novel three-dimensional (3D) nanocomposite scaffold composed of polydioxanone (PDS II®) and halloysite nanotubes (HNTs) was designed and fabricated by electrospinning. Morphology, structure, mechanical properties and cell compatibility studies were carried out to evaluate the effects of HNTs incorporation (0.5-10 wt% relative to PDS w/w). Overall, a 3D porous network was seen in the different fabricated electrospun scaffolds, regardless of the HNT content. The incorporation of HNTs at 10 wt% led to a significant (p biocompatibility, rendering them good candidates for the potential encapsulation of distinct bioactive molecules. Collectively, the reported data support the conclusion that PDS-HNTs nanocomposite fibrous structures hold potential in the development of a bioactive scaffold for regenerative endodontics. PMID:23475586

  12. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges

  13. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.

    Science.gov (United States)

    Mulopo, Jean; Schaefer, L

    2015-01-01

    This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation. PMID:26038932

  14. Aspects of accuracy and precision in the determination of As and Sb in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Aspects of accuracy and precision on the analysis of As and Sb in biological materials using neutron activation with post-irradiation separation are discussed. The separation technique is based on hydride generation. The average yield is over 98% for As and over 95% for Sb, but differences between samples necessitate a yield determination for each sample. Both radiotracers and reactivation have been applied and their practical use for yield correction is discussed. Under optimised conditions, As in NBS SRM 1577A has been analysed to be 45.5 ± 0.7 μg/kg (N = 4), while the Sb-content points to 2.3 ± 1.0 μg/kg (N = 11). 3 figs.; 20 refs.; 5 tabs

  15. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  16. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  17. Isotope ratio analysis of lead in biological materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICP-MS) allowed 0.2-0.3% imprecision (1 sigma) in 204Pb/206Pb 207Pb/'206Pb, and 208Pb/206Pb measurements at the 20-100 ppb level, which was precise enough to detect some of the isotopic variations observed in nature. Mass discrimination could be corrected within ±0.5% of the true value by periodical analysis of standard reference material of known lead isotopic composition. As a separation method for lead in human bone, which contains enormous amounts of calcium and phosphorus, anion exchange of the Pb-Br complex was found to be effective. Lead isotope ratios in bone, measured by ICP-MS after separation, were consistent with those measured by thermal ionization mass spectrometry. Hair matrix did not have any influence on the accuracy and precision of the analysis; a digested sample could be directly analyzed and this offered rapid sample throughput. Preliminary data on lead isotope ratios in bone and hair from prehistoric and contemporary Japanese are presented. (author)

  18. Proton irradiation effect on hydrogen bond in material and biological systems

    International Nuclear Information System (INIS)

    After proton beam irradiation, we found the magnetic structure change in graphite. This work has been published as 'Electron Spin Resonance of Proton-Irradiated Graphite' (PHYSICAL REVIEW LETTERS, 97, 137206). And this work has been selected as 'the most prominent 10 science news 2006 in Korea'. When the proton beam was irradiated on KDP single crystal with fluence of 1015 ions/cm3, and the range of irradiation energy: 300 kev ∼ 2.0 MeV, the dielectric constant and the capacitance has increased as irradiation energy was increased. This means the distance of the separation of equilibrium in hydrogen bond has enlarged by proton beam irradiation. Using X-Ray diffraction pattern measurement, we found that the lattice constant was decreased after the irradiation and the activation energy has decreased from 0.42 eV to 0.28 eV by 1H NMR spin-lattice relaxation time measurement. This means that after proton beam irradiation, the hydrogen ions in KDP are more activated. We also found similar change in hydrogen bond after proton beam irradiation by dielectric constant measurement. These results have been published as 'Structural and proton-dynamical effects in a proton-irradiated KH2PO4 single crystal' ( PRB 73, 134114. (2006) ). In order to perform finer analysis for hydrogen bonds in KDP single crystal, we focused on the domain freezing effect near the phase transition temperature of KDP. Finally we set up Debye relaxation for domain wall motion, Cole-Cole and Cole-Davison models. We also developed proton beam resist materials for lithography using proton beam irradiation and nano proton-beam writing based technology

  19. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  20. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  1. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  2. Applications - Some Influences of Engineering Ideas on Biology Being the fifth in a series of essays on the materials of nature

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent

    2006-01-01

    Ideas from engineering have helped the understanding of biological organisms for thousands of years. However, the mechanical aspects of biological materials and structures can, if properly interpreted and analysed, lead to a deeper understanding of the biology of organisms. Such an approach, although always current in some form, is nevertheless subject to the vagaries of fashion and the availability of analytical techniques. At present we are in a period of upturn. Areas of interest are deployable structures (applications in aerospace), palaeontology (how little do we need to know in order to create a credible biosphere) and food science (we need a rational approach to the mechanics of food).

  3. Investigations on construction material and construction concepts in order to obtain dose-reducing effects in the dismantling of the biological shield of a 1300 MWe-PWR

    International Nuclear Information System (INIS)

    Numerical values of neutron fluxes, activations, dose rates etc. as a function of characteristic values of materials required for optimization purposes to reduce the radiation effect of the biological shield of a PWR are not available. Design concepts are presented for biological shields of PWRs made of concrete with respect to both the most suitable application of materials and the design principles aiming at reduced radiation exposure as compared to present designs during entering, waste disposal and ultimate storage. To evaluate the present-state design the above values have been calculated. Suggested alternative designs are biological shields with selective material application, built from precast elements with or without boron carbide layer arranged in front of it. (orig./HP)

  4. Utilization of liquid human wastes and introduction into the material cycling in biological life-support systems

    Science.gov (United States)

    Kovaleva, N. P.>; Ushakova, S. A.; Gribovskaya, I. V.; Kudenko, U. A.

    The possibilities of step-by-step utilization of liquid human wastes in biological life-support systems on long-functioning space stations have been considered in this work. Utilization involves "wet" urine incineration with hydrogen peroxide at normal pressure and 90 - 95°C temperature, urease-enzymic decomposition of urine and biological desalination in the higher plant link. The soybean flour was used as a source of urease. Growing soya plants as a component of the higher plant link would give a steady source of urease to the system. To decompose urea (9-15g) contained in 1l of incinerated urine we used 0.5 - 1 g of soy flour. The duration of hydrolysis of daily urea excreted by a human is 70 - 95 hours. It is supposed that ammonia excreted in the reaction of urea decomposition will be processed by nitrifying bacteria. The concentration of total nitrogen in urine after urea hydrolysis and removal of ammonia formed during the reaction constituted 0.6 - 1.2 g/l. Further biological desalination was carried out in the higher plant link, for that the edible salt-accumulating halophytes Salicornia europaea were used. To grow this plant under the aqueous culture conditions, the urine was additionally mineralized at 180 °C after incineration and decomposition of urea. The process of additional mineralization was related to the necessity of removal of organic materials and nitrogen residues, which higher concentration under the aqueous culture conditions has negative effect on plants. The volume of the nutrient solution for growing 6 plants of Salicornia europaea was 1.5 l (daily norm of urine excreted by human), the planting area was 0.032 m2. By the end of vegetation the productivity and mineral composition of Salicornia europaea plants were analyzed. The productivity of plants grown on liquid human wastes (the experiment) practically was not different from the productivity of plants grown on the mineral solution with sodium chloride (checkout). In experimental

  5. Application of X ray fluorescence techniques for the determination of hazardous and essential trace elements in environmental and biological materials

    International Nuclear Information System (INIS)

    Full text: The utilization of X ray fluorescence (XRF) technique for the determination of trace element concentrations in environmental and biological samples is presented. The analytical methods used include energy dispersive X ray fluorescence (EDXRF), total reflection X ray fluorescence (TXRF), micro-beam X ray fluorescence and direct in situ X-ray fluorescence analysis. The measurements have been performed with X ray tube- and radioisotope-based energy dispersive X ray fluorescence spectrometers. Both liquid nitrogen- and thermo electrically-cooled silicon detectors were utilized in the analysis. Samples analysed include soil, water, plant material, and airborne particulate matter collected on filters. Depending on the technique and the investigated elements, the above-mentioned samples were analysed either directly or indirectly (after decomposing the sample in a mineralization process or/and chemical preconcentration procedure). The achieved detection limits for different techniques, established by measuring appropriate reference standards, are presented. The utilization of the micro-beam XRF technique for studying element distribution in heterogeneous samples and investigating the 3D- and 2D-morphology of minute samples by means of computerized X ray absorption and X ray fluorescence tomography is described. The different X ray techniques have their unique advantages. The micro-beam X ray fluorescence set-up has an advantage of producing very well collimated primary X ray beam (by means of X ray capillary optics the beam is collimated down to about 15 μm in diameter), in front of which the analysed sample can be precisely positioned, providing local information about the sample composition. TXRF technique has its leading edge in analysis of liquid samples, and as a reference method for a conventional bulk EDXRF analysis of heterogeneous materials such as air particulates collected on filter where the particle size effects can seriously influence the

  6. Mass-spectrometric identification of primary biological particle markers: indication for low abundance of primary biological material in the pristine submicron aerosol of Amazonia

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2011-07-01

    Full Text Available The abundance of marker compounds for primary biological particles in submicron aerosol was investigated by means of aerosol mass spectrometry. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker peaks were identified. The identified marker peaks were compared with mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the Central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker peaks places upper limits of 7.5 % for amino acids and 5.6 % for carbohydrates on the contribution of primary biological aerosol particles (PBAPs to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m−3. Carbohydrates and protein amino acids make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAPs mass fraction of about 20 % to the submicron organic aerosol.

  7. 纤维素生物活性材料的种类及应用%The types and application of cellulosic Materials with biological activity

    Institute of Scientific and Technical Information of China (English)

    柳春; 宁玉娟; 史磊; 蓝丽; 陈专; 吕旷

    2013-01-01

    纤维素的功能化一直是人们研究的热点,近年来又涌现出一批以纤维素为基准的具有生物性的活性材料。文章主要论述了以纤维素为基准的细菌纤维素、复合材料、纤维素硫酸钠材料等具有生物活性材料的种类与应用。%Cellulose functional materials has been a challenge for researchers, this year has emerged a group of cellulose as the biological function of the substrate material. This paper summarizes the types and application of the bacterial cellulose, cellulose-based, composite materials, and sodium cellulose with biological materials.

  8. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  9. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  10. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; preparation procedure for aquatic biological material determined for trace metals

    Science.gov (United States)

    Hoffman, Gerald L.

    1996-01-01

    A method for the chemical preparation of tissue samples that are subsequently analyzed for 22 trace metals is described. The tissue-preparation procedure was tested with three National Institute of Standards and Technology biological standard reference materials and two National Water Quality Laboratory homogenized biological materials. A low-temperature (85 degrees Celsius) nitric acid digestion followed by the careful addition of hydrogen peroxide (30-percent solution) is used to decompose the biological material. The solutions are evaporated to incipient dryness, reconstituted with 5 percent nitric acid, and filtered. After filtration the solutions were diluted to a known volume and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and cold vapor-atomic absorption spectrophotometry (CV-AAS). Many of the metals were determined by both ICP-MS and ICP-AES. This report does not provide a detailed description of the instrumental procedures and conditions used with the three types of instrumentation for the quantitation of trace metals determined in this study. Statistical data regarding recovery, accuracy, and precision for individual trace metals determined in the biological material tested are summarized.

  11. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  12. Use of new composite materials for the determination of Cu, Cd, Mo, As, and Sb in biological samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    New composite materials were developed and tested for determination of Cu, Cd, Mo, As, and Sb in biological materials by radiochemical neutron activation analysis (RNAA). The materials were prepared by incorporation of solid zinc diethyldithiocarbamate or liquid bis(2,4,4- trimethylpentyl)dithiophosphinic acid (CYANEX 301) into a polyacrylonitrile (PAN) binding matrix. The accuracy of the RNAA methods developed was proved by analysis of NIST SRM-1515 Apple Leaves, NIST SRM-1577b Bovine Liver, and NIST SRM-1549 Non Fat Milk Powder. (author)

  13. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  14. Automated extraction of DNA from reference samples from various types of biological materials on the Qiagen BioRobot EZ1 Workstation

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Jørgensen, Mads; Hansen, Anders Johannes;

    2009-01-01

    We have validated and implemented a protocol for DNA extraction from various types of biological materials using a Qiagen BioRobot EZ1 Workstation. The sample materials included whole blood, blood from deceased, buccal cells on Omni swabs and FTA Cards, blood on FTA Cards and cotton swabs, and...... muscle biopsies. The DNA extraction was validated according to EN/ISO 17025 for the STR kits AmpFlSTR« Identifiler« and AmpFlSTR« Yfiler« (Applied Biosystems). Of 298 samples extracted, 11 (4%) did not yield acceptable results. In conclusion, we have demonstrated that extraction of DNA from various types...... of biological material can be performed quickly and without the use of hazardous chemicals, and that the DNA may be successfully STR typed according to the requirements of forensic genetic investigations accredited according to EN/ISO 17025...

  15. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  16. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  17. Small-Angle Neutron Scattering (SANS) Facility at BATAN for Nanostructure Studies in Materials Science and Biology

    Science.gov (United States)

    Putra, E. Giri Rachman

    2010-01-01

    structure of n-dodecyl-β-D-maltoside (β-DMS) core-shell micelle has been revealed by applying a contrast variation, H2O/D2O mixture. Preliminary investigation of globular protein on folding-unfolding, protein denaturation and protein self-assembly studies is being performed. It can be concluded that SMARTer, a 36 m SANS BATAN spectrometer becomes a major tool for structural investigations in the effective length scale of 1-100 nm in materials science and biology.

  18. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials; Eskalation des Terrors? Ueber das Anschlagsrisiko mit chemischen, biologischen, radiologischen und nuklearen Waffen oder Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    Nass, Jens

    2010-07-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  19. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  20. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min−1, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g−1 under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample

  1. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  2. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  3. 生物质电厂电气主接线的选择%Electrical Main Wiring Selection in Biological Material Power Plant

    Institute of Scientific and Technical Information of China (English)

    张彦昌; 石巍; 张超

    2012-01-01

    Due to the distribution and transportation cost limit in biological material power plant, the capacity is generally not too large, its internal electrical main wiring type is flexible and various. Introduction was made to the plan of the power plant connect-in system, the selection measures of generator voltage and high-voltage used by plant, and the setting principle of generator outlet circuit breakers. Two kinds of electrical main wiring in biological material power plant were compared and analyzed from the reliability and economy aspects, thus the optimized plan was obtained to provide reference for design and study in biological material power plant.%生物质发电厂容量由于受燃料分布及运输成本限制,容量一般不大,其内部电气主接线型式灵活多变。介绍了电厂接入系统的方案、发电机电压及高压厂用电压的选择措施,以及发电机出口断路器的设置原则。从可靠性和经济性两方面对生物质电厂的两种电气主接线进行对比分析,进而得出优选方案,供生物质电厂设计与研究参考。

  4. Certification of a new biological reference material - Virginia Tobacco Leaves (CTA-VTL-2) and homogeneity study by NAA on this and other candidate reference materials

    International Nuclear Information System (INIS)

    This report describes the laboratory's participation in the interlaboratory comparison run where the laboratory applied neutron activation analysis aimed at certification of the candidate reference material. Data evaluation and statistical treatment steps are discussed. The report also describes homogeneity study on the reference material and provides details of the analytical procedures

  5. 合成生物学与微生物遗传物质的重构%Synthetic biology and rearrangements of microbial genetic material

    Institute of Scientific and Technical Information of China (English)

    梁泉峰; 王倩; 祁庆生

    2011-01-01

    作为一门新兴学科的合成生物学已经展现出巨大的科学价值和应用前景.近年来已经发表了多篇综述文章,从不同角度对合成生物学进行了总结和论述.文章首次对合成生物学和微生物遗传学之间的关系进行了阐述,同时介绍了合成生物学在微生物遗传物质的重构方面最近的研究进展,包括微生物遗传物质的合成、设计和精简,遗传元件的标准化和遗传线路的模块化.也探讨了合成生物学与微生物遗传工程的关系.%As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  6. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    OpenAIRE

    Edward T Mee; Preston, Mark D.; Minor, Philip D.; ,; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtai...

  7. Investigating Teacher Learning Supports in High School Biology Curricular Programs to Inform the Design of Educative Curriculum Materials

    Science.gov (United States)

    Beyer, Carrie J.; Delgado, Cesar; Davis, Elizabeth A.; Krajcik, Joseph

    2009-01-01

    Reform efforts have emphasized the need to support teachers' learning about reform-oriented practices. Educative curriculum materials are one potential vehicle for promoting teacher learning about these practices. Educative curriculum materials include supports that are intended to promote both student "and" teacher learning. However, little is…

  8. Simultaneous determination of inorganic mercury, methylmercury, and total mercury concentrations in cryogenic fresh-frozen and freeze-dried biological reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Point, David; Davis, W.C.; Christopher, Steven J.; Becker, Paul R. [National Institute of Standards and Technology, Analytical Chemistry Division, Hollings Marine Laboratory, Charleston, SC (United States); Garcia Alonso, J.I. [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain); Monperrus, Mathilde; Donard, Olivier F.X. [Equipe de Chimie Analytique Bio-Inorganique et Environnement - UMR 5254, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, Pau (France); Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-10-15

    Two speciated isotope dilution (SID) approaches consisting of a single-spike (SS) method and a double-spike (DS) method including a reaction/transformation model for the correction of inadvertent transformations affecting mercury species were compared in terms of accuracy, method performance, and robustness for the simultaneous determination of methylmercury (MeHg), inorganic mercury (iHg), and total mercury (HgT) concentrations in five biological Standard Reference Materials (SRMs). The SRMs consisted of oyster and mussel tissue materials displaying different mercury species concentration levels and different textural/matrix properties including freeze-dried (FD) materials (SRMs 1566b, 2976, and 2977) and cryogenically prepared and stored fresh-frozen (FF) materials (SRMs 1974a, 1974b). Each sample was spiked with {sup 201}iHg (Oak Ridge National Laboratory, ORNL) and Me{sup 202}Hg (Institute for Reference Materials and Measurements. IRMM-670) solutions and analyzed using alkaline microwave digestion, ethylation, and gas chromatography inductively coupled plasma mass spectrometry (GC/ICP-MS). The results obtained by the SS-SID method suggested that FF and FD materials are not always commutable for the simultaneous determination of iHg, MeHg, and HgT, due to potential transformation reactions resulting probably from the methodology and/or from the textural/matrix properties of the materials. These transformations can occasionally significantly affect mercury species concentration results obtained by SS-SID, depending on the species investigated and the materials considered. The results obtained by the DS-SID method indicated that the two classes of materials were commutable. The simultaneous and corrected concentrations of iHg, MeHg, and HgT obtained by this technique were not found to be statistically different form the certified and reference concentration together with their expanded uncertainty budgets for the five SRMs investigated, exemplifying the robustness

  9. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  10. Biology Notes.

    Science.gov (United States)

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  11. Genetic relationship of organic bases of the quinoline and isoquinoline series from lignite semicoking tars with the initial biological material

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Podshibyakin, S.I.; Domogatskii, V.V.; Shvykin, A.Y.; Shavyrina, O.A.; Chilachava, K.B. [Leo Tolstoy State Pedagog University, Tula (Russian Federation)

    2002-07-01

    The genetic relationship of quinoline and isoquinoline compounds present in semicoking tars of Kimovsk lignites (near-Moscow fields) with the initial vegetable material is discussed. Transformation pathways of the native compounds in the course of lignite formation are suggested.

  12. Radiochemical method for the simultaneous determination of 233U, 236U, 237Np, 236Pu, 238Pu, and 239Pu in biological materials

    International Nuclear Information System (INIS)

    A radiochemical method has been developed for the determination of multiple isotopes of uranium, neptunium, and plutonium in biological materials. The elements are separated from the other sample constituents and from each other by anion exchange in halide media. Their recoveries are monitored by isotopic diluents. The amounts of the analyte and diluent isotopes of each element are measured alpha spectrometrically. The interelemental separation factors are generally greater than 102, and the recovery of each element ranges from 60% to 90%. 4 references, 1 table

  13. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  14. Organizational influence on the occurrence of work accidents involving exposure to biological material La influencia de la organización en la ocurrencia de accidentes de trabajo con exposición a material biológico Influência organizacional na ocorrência de acidentes de trabalho com exposição a material biológico

    OpenAIRE

    Maria Helena Palucci Marziale; Fernanda Ludmilla Rossi Rocha; Maria Lúcia do Carmo Cruz Robazzi; Camila Maria Cenzi; Heloisa Ehmke Cardoso dos Santos; Marli Elisa Mendes Trovó

    2013-01-01

    OBJECTIVES: to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. METHOD: a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological ...

  15. Preliminary assessment of geologic materials to minimize biological intrusion of low-level waste trench covers and plans for the future

    International Nuclear Information System (INIS)

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause radionuclide transport from a waste site. Preliminary results demonstrate that a sandy backfill material offers little resistance to root and animal intrusion through the cover profile. However, bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion through cover profiles compared with sandy backfill soil. However, bentonite clay barrier systems appear to be degraded by plant roots through time. Desiccation of the clay barrier by invading plant roots may limit the usefulness of bentonite clay as a moisture and/or biological carrier unless due consideration is given to this interaction. Future experiments are described that further examine the effect of plant roots on clay barrier systems and that determine the effectiveness of proposed biological barriers on larger scales and under various stress conditions

  16. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70Zn:68Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  17. Devising of the method for the determination of small and very small amounts of cadmium in biological materials by radiochemical version of neutron activation analysis

    International Nuclear Information System (INIS)

    The newly modified version of the method for the determination of cadmium in biological materials by radiochemical NAA based on selective post irradiation separation of Cd using ion exchange rasin Retardion 11A8 is presented. The conditions necessary for the selective retaining of Cd on the column exploiting both anionic and cationic ion exchange function of the resin have been discussed. Depending on the composition of the external solution, cadmium existing in the form of either anionic chloride complexes or cationic amine species is taken up by quaternary ammonium or carboxylate functional groups, respectively while accompanying elements are eluted. The elaborated method was further verified by determine Cd content in several certified biological reference materials using neutron activation analysis. The ion exchange separation procedure assures very high radiochemical purity of the cadmium fraction. Decontamination factors obtained for Mo, Sb, Na, Zn, Co, Sc amounted to 103 - 106. Detection limit for Cd was 0.5 μg kg-1. Analytical results show good agreement with the certified values. (author). 10 refs, 7 figs, 1 tab

  18. Investigation of the cyclic techniques in neutron activation analysis on Da Lat research reactor for determination of short-lived radionuclides in biological materials

    International Nuclear Information System (INIS)

    The ability of the sensitivity and precision of Cyclic, Pseudocyclic and Cumulative (Replicate) techniques in neutron activation analysis (NAA) on Dalat research reactor were investigated for the determination of short-lived radionuclides. This research focused on determination of 77mSe (T1/2 = 17.4 seconds) in biological materials as a case in point. The result shows that an improvement of detection limits of approximately 2 times in the 3rd cycle to 4th cycle was obtained by using Cyclic NAA, Pseudocyclic NAA and Cumulative NAA in comparison with conventional NAA. The lower detection limits of approximately 3 times can be obtained by a combination of 3 subsamples in Cumulative NAA and 3 cycles in PCNAA. The precision of the techniques is typically within 2-5% from 2nd to 3rd cycles and afterward. In general, the precision and confidence in representative of the analysis result of Cumulative NAA are better than others. However, the utilization of Cyclic NAA is the most useful as regards analysis time. With reference to analytical sensitivity, Cumulative NAA in combination with CNAA or PCNAA will provide a lowest detection limit, and thereby suiting for determining short-lived radionuclides in biological materials with very low concentration levels. (author)

  19. Determination of iodine in biological materials by pseudo-cyclic epithermal INAA using anti-coincidence gamma-ray spectrometry and estimation of expanded uncertainties

    International Nuclear Information System (INIS)

    Epithermal instrumental neutron activation analysis (EINAA) technique in conjunction with anti-coincidence gamma-ray spectrometry (AC) has been applied for the determination of ppm to ppb levels of iodine in biological materials containing high levels of Al, Br, Cl, K, Mn, and Na. Both conventional EINAA-AC and pseudo-cyclic EINAA-AC (PC-EINAA-AC) methods using a combination of Cd and B filters have been developed using Dalhousie University SLOWPOKE-2 reactor (DUSR) facility. The expanded uncertainties (EU), at about 95% confidence level, for iodine in biological materials by EINAA-AC varied between 6 and 10%. The advantages of the non-destructive PC-EINAA-AC method has been successfully demonstrated by analyzing the NIST Pine Needles (SRM 1575) containing a low amount of iodine in presence of high quantities of Mn and other interfering elements where an iodine content of 92.8 μg kg-1 with an EU of 6.1 μg kg-1 and a detection limit of 40 μg kg-1 has been obtained at the end of fourth cycle. (author)

  20. Comparative evaluation of the biological properties of bone bioimplants Tutoplast® and bioactive ceramic material "Syntekost" when implanted in the middle ear in the experiment

    Directory of Open Access Journals (Sweden)

    Kravchenko S.V.

    2014-09-01

    were formed. In none of the experimental cases after implanting of this material into the tympanic bullae of guinea pigs inflammation was observed which may have led to suppuration or ototoxic effects on the structures of the inner ear. Conclusion. The experimental studies showed that the transformation of bone implant Tutoplast® occurred more actively and to a greater extent than that of bioactive ceramic material "Sintekost". In none of the experimental cases after implanting this material into the tympanic bullae of guinea pigs inflammation was observed. Citation: Kravchenko SV, Zaporoschenko AYu, Savitskaya IM. [Comparative evaluation of the biological properties of bone bioimplants Tutoplast® and bioactive ceramic material "Syntekost" when implanted in the middle ear in the experiment]. Morphologia. 2014;8(3:35-41. Russian.

  1. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  2. Plans for production of undulator X-rays on AR and its applications to material and biological sciences

    International Nuclear Information System (INIS)

    This report carries 19 studies. The first two describe 'Hope for Andulator X-Rays' and 'A Plan for Application of AR Synchrotron Radiation Beam'. Three studies on undulator X-rays are presented, which are entitled 'Development of X-Ray Undulator', 'AR-BL-NE Triple Beamline' and 'Fluctuations of Synchrotron Radiation Beam Position and Development of a Beam Position Feedback System for a Beamline of the TRISTAN Accumulation Ring'. Two studies on application to Moessbauer X-rays are contained, which are entitled 'Nuclear Resonant Scattering of Synchrotron Radiation X-Rays' and 'Biological Action of Moessbauer Effect -- Feasibility of Application to Treatment of Cancer'. Two studies on application to research on surface and interface are addressed, which are entitled 'Application to Research on Surface and Interface; Research by Diffraction' and 'How Can Compton Scattering Serve for Study on Surface Layer?'. Five studies on the application to research on submicron crystal structure' are presented, which are entitled Application to Research on Submicron Crystal Structure; Inorganic and Mineral Substances', 'Comments on Application to Research on Submicron Crystal Structure', etc. The report also contains two studies on abnormal scattering and three studies on microbeam X-rays. (N.K.)

  3. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  4. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    International Nuclear Information System (INIS)

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  5. Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials

    International Nuclear Information System (INIS)

    Graphical abstract: Electropolymerization of C4-EDOT-COOH and corresponding polymer's sensing application for environmental, pharmaceutical, biology and food. -- Highlights: •C4-EDOT-COOH monomer with good solubility in water was synthesized by an efficient five-step route. •That acidic conditions were favorable for the electropolymerization of C4-EDOT-COOH. •The resulting high-quality polymer film can be employed for the fabrication of chemo/bio-sensors and optical sensors. •These as-prepared sensors can be applied to the simple, fast and sensitive detection of different analytes. -- Abstract: Various electrochemical chemo/bio-sensors and optical sensors are facilely explored for the sensitive determination of biomolecules, drug molecules, environmental pollutants, and metal ions using a carboxylic-functionalized poly(3,4-ethylenedioxythiophene) derivative (PC4), which is easily obtained by the direct electropolymerization of a water-soluble 4-((2,3-dihydrothieno[3,4-b][1,4] dioxin-2-yl) methoxy)-4-oxobutanoic acid (C4-EDOT-COOH) monomer in a microemulsion system. The effect of different pH values on the electropolymerization of C4-EDOT-COOH monomer is investigated, and the as-prepared PC4 film is characterized by electrochemical method, infrared spectrum, and scanning electron microscope. The resulting high-quality PC4 film as a sensing material not only can combine with various biologically active species via covalent linkage and inorganic materials via layer-by-layer self-assembly for the construction of electrochemical chemo/bio-sensors, but also excellent optical performance of PC4 can be employed for the fabrication of optical sensors. These as-prepared chemo/bio-sensors can be applied to the simple, fast and sensitive detection of environmental pollutants, pharmaceuticals, hazardous substances, and biological active substance and nutrients present in food by means of electrochemistry, ultraviolet and fluorescence spectroscopy. Satisfactory results

  6. Artificial materials for repair of sports injuries: Biological properties of these materials%人工材料修复运动性骨损伤:材料的生物学特性

    Institute of Scientific and Technical Information of China (English)

    王鑫

    2012-01-01

    背景 传统复位和外固定技术对骨裂、规则性骨折等轻伤性骨折能起到较好的治疗效果,而对关节等部位的复杂骨折治疗效果不理想,目前人工生物材料在骨损伤治疗中逐步成熟与多样化.目的 对骨损伤治疗的材料学措施进行综述,并对相关材料的性质尤其生物相容性对人体的免疫反应进行分类与分析.方法 应用计算机检索PubMed、维普和万方数据库中1990/2011 关于损伤性骨折治疗及其材料学方面的文章,在标题和摘要中以"骨,生物材料,生物学特性"或"bone,biological materials,biological properties"为检索词进行检索.选择文章内容与骨损伤治疗措施及材料学相关,同一领域文献则选择近期发表或发表在权威杂志文章.初检得到194 篇文献,根据纳入标准选择24 篇文章进行综述.结果 与结论 骨科疾病中,受暴力运动冲击造成的损伤性骨折是致病的主要因素,骨修复及骨移植材料的研制经历了漫长的过程,运用材料学手段进行治疗的措施日趋成熟.从内固定材料、金属假体材料以及骨组织工程支架材料的选择研制和临床应用来看,良好的生物相容性是骨修复人工生物材料必备的的特征和运用的基础,也是各种材料在实践运用工程中必须面临和克服的难题.%BACKGROUND: Traditional reduction and external fixation techniques have a better therapeutic effect on bone crack andregulated fractures, while they are not satisfactory in the treatment of complex fractures. The current biomaterials for bone injuriesbecome gradually mature and diversified.OBJECTIVE: To review the material measures for treatment of bone injuries, and to classify and analyze the properties of relevantmaterials, especially their biocompatibility to human immune responses.METHODS: A computer-based search of PubMed, VIP and Wanfang databases (1990/2011) was performed for artificial materialsfor treatment of traumatic

  7. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  8. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas

    2015-01-13

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  9. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    Science.gov (United States)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  10. The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique

    Science.gov (United States)

    O'Connor, David J.; Healy, David A.; Sodeau, John R.

    2013-12-01

    Agricultural activities have, for some time, been linked to adverse health effects such as Farmers' lung, hypersensitivity pneumonitis, aspergillosis and chronic obstructive pulmonary disease (COPD) This connection is known to be, at least in part, due to the numerous microbiological organisms that live and grow on materials found in occupational settings such as barns, animal shelters, stables and composting sites. Traditional techniques for determining biological release of fungal spores and bacteria require intensive, experienced human resources and considerable time to determine ambient concentrations. However more recently the fluorescence and light scattering signals obtained from primary biological aerosol particles (PBAP) have been utilised for their near real-time counting and characterisation abilities. In the current study, data collected for the bioaerosol types released from hay and silage were counted and identified using a combination of the WIBS-4 bioaerosol sensor approach and impaction/optical microscopy. Particle emissions were characterised according to particle numbers, their size distributions, particle asymmetry values and fluorescence characteristics. The variables obtained were shown to provide potential “fingerprint” signatures for PBAP emissions emanating from two important compost components, namely, silage and hay. Comparisons between the data acquired by the WIBS-4 bioaerosol sensor, optical microscopy findings and also previous literature suggest that the likely identification of Aspergillus/Penicillium type spores and bacterial species released from hay and silage was achieved on a relatively rapid time-scale.

  11. Influence of radiation on the content of biologically active substances in herbal raw materials. Pharmacological activity of herbal drugs after microbiological decontamination by irradiation

    International Nuclear Information System (INIS)

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology research work on microbiological decontamination of herbal raw materials and herbal drugs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of biologically substances such a essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of herbal drugs has been found satisfactory after microbiological decontamination by irradiation. (author)

  12. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    International Nuclear Information System (INIS)

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry

  13. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    Science.gov (United States)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun; Jo, Cheorun; Woo Byun, Myung; Jeun An, Bong

    2007-11-01

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  14. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Woo Byun, Myung [Radiation Food Science and Biotechnology Team, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Jeun An, Bong [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of)], E-mail: anbj@dhu.ac.kr

    2007-11-15

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  15. Preparation of Epichlorohydrin Using Biological Glycerol as Raw Material%以生物甘油为原料制备环氧氯丙烷的研究

    Institute of Scientific and Technical Information of China (English)

    刘蕾; 权静; 徐琳; 陆青山

    2012-01-01

    Epichlorohydrin was prepared with chlorination and cyclization using biological glycerol as raw material in this paper. Firstly, dichloropropanol(DCP) with chlorination yield of 90. 09% was prepared by using biological glycerol as raw material,HC1 gas as chlorination agent,adipic acid as catalyst,eliminated water four times using Na2SO4,then,epichlorohydrin with cyclization yield of 88. 2% was prepared with DCP and NaOH at following optimal conditions:the reaction time 30 min,the molar ratio of NaOH to DCP 1. 15 s l,the reaction temperature 95℃.%以生物甘油为原料,经氯化反应和环化反应制备了环氧氯丙烷.首先以生物甘油为原料、以氯化氢气体为氯化剂、以己二酸为催化剂,采用无水Na2 SO4除水4次,制得二氯丙醇(DCP),氯化收率达90.09%;再以二氯丙醇和氢氧化钠反应制得环氧氯丙烷,通过单因素实验,得到环化反应的最佳工艺条件为:反应时间30 min、氢氧化钠与二氯丙醇摩尔比1.15∶1、反应温度95℃,在此条件下的环化收率为88.2%.

  16. Structure and reaction studies of biological organic and inorganic composite materials: Abalone shells, diatoms, and a unique birch bark

    Science.gov (United States)

    Zaremba, Charlotte Marie

    Biopolymer/calcium carbonate composites grown on inorganic abiotic substrates implanted between the shell and the shell-secreting epithelium of live red abalones (Haliotis rufescens) results in an unusual highly (104)-oriented aggregate of microcrystalline calcite that precedes nacre deposition. Calcite of this orientation has never before been observed in nature. Also with this method, nacre deposition is found to correct for calcite surface roughness and chemically anomalous surfaces. Pole figure X-ray diffraction studies of these "flat pearls" provide comparisons of preferred orientation of the various mineral components of the abalone shell. Complete conversion of the aragonite in abalone nacre to hydroxyapatite in hydrothermal phosphate solution results in an oriented polycrystalline aggregate with ultrastructure preservation and an unexpected preferred orientation different from that of other biominerals and abiogenic CaCO3 samples subjected to this reaction. The new orientation, which increases with reaction time, may result from the organization of the organic matrix in the nacre, which directs the hydrothermal solution through the material. This orientation suggests strongly that the conversion proceeds via a dissolution-recrystallization mechanism, rather than by topotaxy, which was previously proposed. In addition to cellulose I, a highly oriented cellulose-II-like polymer was found in the bark of Prunus serrula, an exceptionally strong, tough, and extensible composite film. The cellulose II polymorph, which has not previously been found in nature, may be accordion-folded in the plane of the bark thickness and contribute to the strength and unusual behavior with plasticization of this natural film. The silica frustule of the diatom Skeletonema costatum has a surface area of 135 mm2/g and contains 1.5--2 wt % occluded organic. This organic includes a water-insoluble scaffolding. When treated with organic oxidizers, the chitin secreted by the diatom

  17. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x1011 n cm-2 s-1, followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of 128I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10''x10'' NaI(TI) annulus and a 3''x3'' NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of 137Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported

  18. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.H.; Chatt, A. [Dalhousie University, Halifax, Nova Scotia (Canada). Radiochemistry Research Laboratory

    1997-10-01

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x10{sup 11} n cm{sup -2} s{sup -1}, followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of {sup 128}I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10``x10`` NaI(TI) annulus and a 3``x3`` NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of {sup 137}Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported 6 refs., 2 tabs.

  19. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. [Battelle Marine Research Lab., Sequim, WA (United States)

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  20. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with regard to forensic genetic analysis.

    Science.gov (United States)

    Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jędrzejczyk, M; Berent, J

    2015-01-01

    The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient's blood was identical with the donor's in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal) material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient's profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells - similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases. PMID:27543957

  1. Válvula mecânica em carbono, de disco basculante, com revestimento de material biológico: princípios e desenvolvimento Pivoting disc carbon mechanical valve covered with biological material: principles and development

    Directory of Open Access Journals (Sweden)

    Hélio Pereira de Magalhães

    1995-12-01

    . RESULTADOS INICIAIS: como o número de pacientes é pequeno, destacam-se apenas algumas observações iniciais: ausência de tromboembolismo, ausência de disfunção mecânica primária, ocorrência de dois acidentes hemorrágicos maiores e um episódio de trombose em paciente com dois meses de evolução, por anticoagulação inadequada, com reoperação e mantendo a mesma prótese com achado de depósito difuso de fibrina e boa evolução após dez meses. CONCLUSÕES: os resultados dos testes mecânicos do material e da válvula e os aspectos clínicos iniciais são favoráveis, devendo-se ampliar a casuística, com proteção anticoagulante mais efetiva e uniforme nos três primeiros meses. Após três meses, a presença do material biológico e as baixas doses de anticoagulante parecem ser eficientes no controle das complicações pós-operatórias da válvula mecânica, contra a trombose, o tromboembolismo e os acidentes hemorrágicos.INTRODUCTION: a hybrid valve was developed for improving a durable mechanic disc valve with good biocompatibility, by promoting easy healing around the ring valve and making the maximum isolation of the synthetic material in the blood stream. Lining the mechanical valve with porcine biologic tissue (pericardium and vein is a tentative to reduce the morbidity and mortality on respect of thrombosis, thromboembolism, reoperations and minor use of anticoagulants to reduce the hemorrhagic events. Some principles were established on hybrid valve: durable mechanical system, points of contact without biologic material, use of biological material with minor organic reaction, movable parts without biologic material outside its perimeter, preferential closing system with superposition on a track seat and loose joints for accept biologic material limited growth. MATERIAL AND METHOD: the valve is the type of perforated tilting disc and all made of Carbolite (hardened polymeric carbon. The prosthesis is all covered except the central pivot, the disc

  2. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    Energy Technology Data Exchange (ETDEWEB)

    Oehrlein, Gottlieb S. [Univ. of Maryland, College Park, MD (United States); Seog, Joonil [Univ. of Maryland, College Park, MD (United States); Graves, David [Univ. of California, Berkeley, CA (United States); Chu, J. -W. [Univ. of California, Berkeley, CA (United States)

    2014-09-24

    temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.

  3. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  4. Biological applications of nanoscale materials

    Science.gov (United States)

    Liang, Chi-Hui

    2007-12-01

    The objective of my research work is to synthesize, characterize, design, and apply nanocrystals for biomedical use. Gold nanoparticles were synthesized in the presence of chitosan via reduction of HAuCl4 with sodium borohydride. The average particle size of gold nanoparticles was significantly affected with the concentration of chitosan added and was ranged between 5 and 30 nm. The gold-chitosan nanocomposites were formed by adsorbing chitosan molecules on the gold nanoparticles. CdSe/ZnS quantum dots were prepared by a solution phase synthetic method. A new route for the phase transfer of CdSe/ZnS quantum dots from non-polar solvents into aqueous solution was developed using hydrophobically modified polysaccharides, both chitosan and alginate. In addition, it was shown that CdSe/ZnS based polysaccharide nanoparticles effectively inhibited the proliferation of human ovarian cancer cell line SKOV-3 in vitro. The findings suggest that CdSe/ZnS quantum dot based polysaccharide nanoparticles not only act as a long-term biomarker but also have potential value in cancer therapy. A novel method for extracting magnetite nanoparticles from magnetotactic bacteria was developed by using co-surfactant. The problem of mass cultivation was solved by growing AMB-1 in Ca2+-alginate microbeads. To apply magnetotactic bacterial in biomedical applications, uptake of chitosan-capped CdSe/ZnS quantum dots on magnetotactic bacteria and introducing fluorescent magnetotactic bacteria into mouse macrophage cells was achieved. A general strategy is described which allows for constructing multifunctional magnetic nanocomposites based on bacterial magnetite nanoparticles. Specifically, core-shell structures of bacterial magnetite-CdSe ZnS and bacterial magnetite-gold nanocomplexes have been built in this way. Furthermore, design and synthesis multimodal contrast agents which are ultrasound and photoacoustic active are achieved by utilizing biocompatible gold nanorods self assembling on liquid perfluorocarbon particles. The probe is likely to provide richer information for a better understanding of the target and subsequent diagnosis. In summary, nanocrystals including gold, CdSe ZnS quantum dots, and bacterial magnetite and nanocomplexes including bacterial magnetite-quantum dots, bacterial magnetite-gold, gold-perfluorocarbon, quantum dots-chitosan, and quantum dots-alginate were successful synthesized. Some potential applications of these nanoparticles and nanocomplexes in biomedical engineering are explored.

  5. Development and applications of photosensitive device systems to studies of biological and organic materials: Progress report for period June 1964-December 1986

    International Nuclear Information System (INIS)

    A broad range of devices based on electro-optical technologies were developed and applied to the study of biological and other organic materials, ranging from single cell organisms to complex lipid liquid crystals. The detector systems developed have incorporated state of the art image intensifiers, vidicons, and solid state detectors. A major emphasis has been on the development of an x-ray image intensifier system suitable for diffraction experiments at high flux synchrotron sources. The detector has been applied to time resolved studies of lipid membrane phase transitions, with time resolution of the order of 10 msec. In addition, the x-ray detectors have been used to discover 3 cubic phases in the 1-methylphosphatidylethanolamine-water system, permitting a refinement of the phase transition theory developed earlier. The detectors have also been applied to low level light detection of selected luminescence phenomena. In particular, the cellular sources of bioluminescence in many organisms have been discovered, along with detailed information on the spectral distributions. Using the photoprotein aequorin and fluorescence techniques detailed studies have been made of free calcium release and uptake in a number of important metabolic processes. 11 refs

  6. Communication of 19 January 2006 from the Permanent Mission of Pakistan to the Agency concerning 'Control Lists of Goods, Technologies, Materials and Equipment related to Nuclear and Biological Weapons and their Delivery Systems' adopted by Pakistan

    International Nuclear Information System (INIS)

    The Director General has received a letter from the Resident Representative of Pakistan, dated 19 January 2006, attaching a statutory regulatory order containing the 'Control Lists of Goods, Technologies, Materials and Equipment related to Nuclear and Biological Weapons and their Delivery Systems' adopted by Pakistan. As requested in the letter, the letter and its attachment are herewith circulated for the information of Member States

  7. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    Science.gov (United States)

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  8. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.

    Science.gov (United States)

    Di Lonardo, Maria Chiara; Franzese, Maurizio; Costa, Giulia; Gavasci, Renato; Lombardi, Francesco

    2016-01-01

    This work assessed the quality in terms of solid recovered fuel (SRF) definitions of the dry light flow (until now indicated as refuse derived fuel, RDF), heavy rejects and stabilisation rejects, produced by two mechanical biological treatment plants of Rome (Italy). SRF classification and specifications were evaluated first on the basis of RDF historical characterisation methods and data and then applying the sampling and analytical methods laid down by the recently issued SRF standards. The results showed that the dry light flow presented a worst SRF class in terms of net calorific value applying the new methods compared to that obtained from RDF historical data (4 instead of 3). This lead to incompliance with end of waste criteria established by Italian legislation for SRF use as co-fuel in cement kilns and power plants. Furthermore, the metal contents of the dry light flow obtained applying SRF current methods proved to be considerably higher (although still meeting SRF specifications) compared to those resulting from historical data retrieved with RDF standard methods. These differences were not related to a decrease in the quality of the dry light flow produced in the mechanical-biological treatment plants but rather to the different sampling procedures set by the former RDF and current SRF standards. In particular, the shredding of the sample before quartering established by the latter methods ensures that also the finest waste fractions, characterised by higher moisture and metal contents, are included in the sample to be analysed, therefore affecting the composition and net calorific value of the waste. As for the reject flows, on the basis of their SRF classification and specification parameters, it was found that combined with the dry light flow they may present similar if not the same class codes as the latter alone, thus indicating that these material flows could be also treated in combustion plants instead of landfilled. In conclusion, the

  9. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    Energy Technology Data Exchange (ETDEWEB)

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth’s surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system’s data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  10. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials

    International Nuclear Information System (INIS)

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth's surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system's data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  11. Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? Supplemental material (case studies, natural enemy releases, country views concerning ABS)

    OpenAIRE

    Cock, M.J.W.; Lenteren, van, J.C.; Brodeur, J; Barratt, I.P.; Bigler, F.; Bolckmans, K.; Cônsoli, F.L.; Haas, F.; Mason, P.G.; J.R.P. PARRA

    2010-01-01

    Under the Convention on Biological Diversity (CBD) countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties [i.e. Access and Benefit Sharing (ABS)]. This also applies to species collected for potential use in biological control. Recent applications of CBD principles have already made it difficult or impossible to collect and export natu...

  12. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology. PMID:24156739

  13. 动物源性生物材料残留DNA的定量检测法%Quantification of Residues DNA in Animal-derived Biological Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    徐丽明; 邵安良; 赵艳红

    2012-01-01

    动物源性生物材料的残留DNA定量检测是产品脱细胞处理过程是否彻底,以及免疫原性风险是否得到有效控制的重要产品技术指标之一.目前,国际上还没有针对这类材料的残留DNA检测方法.本研究设计了动物源性生物材料的残留DNA定量检测三步法,即固体生物材料的蛋白酶K消化,DNA纯化和荧光染色法DNA测定,在整个实验过程中增加了回收率实验,经过回收率曲线方程校正后得到最终检测结果.实验过程中的磁珠法DNA纯化步骤的优化设计保证了较好的回收率,同时满足了准确性和精密度.该实验方法经验证,其检测灵敏度达到6.25 ng/每份样品,回收率样品DNA含量在3.125~100 ng以及25~400 ng范围内线性良好,其回收率曲线R2>0.99.此方法保证了生物材料中微量或痕量DNA检测的科学性和可信性.%Quantification of residual DNA in animal-derived biological scaffold materials is one of technical specifications for evaluating decellularization process and immunotoxicity risk. Up to now, there have been no standard methods available for quantification of residues DNA in animal-derived biological scaffold materials. In this study, a three-step method, including proteinase K digestion, DNA purification and determination of DNA using fluorescence assay, was designed for residual DNA quantification. A parallel recovery experiment of standard DNA using the same protocol to test article determination was used for adjusting final results of residuul DNA amount. DNA purification based on magnetic beads enabled the experiments to get high accuracy and repeatability. The validation experiment showed that the three-step method had high sensitivity up to 6. 25ng of DNA per sample with good linearity (recover-y curve R2>0. 99) in the concentration range of 3. 125-100ng, and 25-400ng per sample. This method is useful for determining micro or trace amount DNA remained in the biomaterials.

  14. MRT letter: Human bloodstains on antique aboriginal weapons: a guiding low-vacuum SEM study of erythrocytes in experimental samples on ethnographically documented biological raw materials.

    Science.gov (United States)

    Hortolà, Policarp

    2012-08-01

    The aboriginal use of reed and bone as raw materials for knives and daggers, respectively, has been well-documented ethnographically in some geographical areas of Melanesia. Because of the significant role that these weapons played in inter- and intra-ethnic aggression, they can potentially have retained smears from the contact with human blood. To carry out a guiding low-vacuum scanning electron microscopy (SEM) study of specific interest to ethnography, the outsides of a fragment of stalk of giant cane (Arundo donax) and tibial diaphysis of domestic sheep (Ovis aries) were smeared with peripheral human blood. No biological specimen preparation was applied to the samples. After just over 1 month, bloodstain boundaries and their neighboring inner areas were examined via secondary electrons by a variable-pressure SEM (VP-SEM) working in low-vacuum mode. On both substrates, bloodstains exhibited micro-scales. No janocyte (erythrocyte negative replica) was observed in the examined areas. However, erythrocytes were seen crowded together as grain-shaped corpuscles in the smear on reed, and several hecatocytes (moon-like shaped erythrocytes) were evidenced in the smear on bone. The results of this study suggest that a VP-SEM working in low-vacuum mode can be used fruitfully to detect blood remains in medium-sized reed and bone antique aboriginal artifacts. This procedure can prospectively help to ethnographic museum curators and aboriginal-art surveyors as an easy guiding test in the valuation of antique traditional weapons prior to acquisition, when the real use of a piece has been claimed by the supplier. PMID:22648991

  15. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  16. Flourinated material

    OpenAIRE

    Bozukova, Dimitriya; Jérôme, Christine; Pagnoulle, Christophe

    2009-01-01

    This invention relates to a method for modifying the surface of a material for use with a biological sample or tissue comprising the steps of providing a material having a surface which comprises reactive-functional groups; providing fluorinated molecules having reactive-functional groups complimentary to those on the material surface; using wet chemistry to attach the fluorinated molecules to the surface of the material by reacting the reactive-functional groups of the implant with the compl...

  17. Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control? Supplemental material (case studies, natural enemy releases, country views concerning ABS)

    NARCIS (Netherlands)

    Cock, M.J.W.; Lenteren, van J.C.; Brodeur, J.; Barratt, I.P.; Bigler, F.; Bolckmans, K.; Cônsoli, F.L.; Haas, F.; Mason, P.G.; Parra, J.R.P.

    2010-01-01

    Under the Convention on Biological Diversity (CBD) countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties [i.e. Access and Benefit Sharing

  18. Using Clickers in Nonmajors- and Majors-Level Biology Courses: Student Opinion, Learning, and Long-Term Retention of Course Material

    OpenAIRE

    Crossgrove, Kirsten; Kristen L Curran

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005–spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Stu...

  19. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  20. New pH sensitive sensor materials. Luminescent fiber-optic dual sensors for non-invasive and simultaneous measurement of pH and pO2 (dissolved oxygen) in biological systems

    OpenAIRE

    Kocincová, Anna S.

    2007-01-01

    This thesis describes the development and characterization of novel, pH-sensitive, optical sensor materials. Special attention is given to the development of dual optical chemical sensors for non-invasive determination of pH and dissolved oxygen (DO) in biological systems. A new measurement scheme is introduced to evaluate and calculate the data for these two parameters via dual luminophore referencing (DLR). An application example for simultaneous monitoring of pH and DO in bioprocessing is ...

  1. Preparation of pseudo-biological reference material containing all rare earth elements and its application to the assessment of the accuracy of rare earth determination by neutron activation analysis after separation by coprecipitation

    International Nuclear Information System (INIS)

    A synthetic multi-element reference material (SyRM) with a pseudo-biological matrix composition containing all rare earths (REs) was prepared. The elemental composition of the SyRM was regulated by the starting materials used for the synthesis. The present SyRM contains 45 elements with accurately known amounts and its elemental composition is regulated to be closely similar to that of land plant sample (NIST SRM 1572 Citrus Leaves). In order to evaluate the reliability of analytical technique for REs, REs in SyRM were determined compared with the original contents in SyRM. (author). 9 refs.; 4 figs

  2. MAK- and BAT values list 2000. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    The definitions and use of MAK and BAT values for hazardous materials are presented, and tables are presented for various hazardous materials, e.g. carcinogenic and allergogenic materials, aerosols and organic substances such as peroxides, benzenes, turpentine oil, and cooling lubricants. (SR)

  3. Bridging the gap between systems biology and synthetic biology

    OpenAIRE

    Liu, Di; Hoynes-O’Connor, Allison; Zhang, Fuzhong

    2013-01-01

    Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, syst...

  4. Use of Nuclear Techniques in Biological Control: Managing Pests, Facilitating Trade and Protecting the Environment. Report of a Consultants Group Meeting. Working Material

    International Nuclear Information System (INIS)

    High-priority opportunities are proposed for use of nuclear techniques to effect improved production and shipping of augmentative biological control agents. Proposed subprojects include use of ionizing radiation to improve the production of insect natural enemies on natural hosts/prey or on artificial diets. Other subprojects pertain to improving the ability to move beneficial organisms in international trade, and in using them in the field. Additional high priority activities were identified proposing use of nuclear techniques to produce sterile and/or substerile F-1 weed biological control agents to help evaluate potential impact on non-target species in the pre-release phase, integration of augmentative releases and F-1 sterility in IPM and area-wide pest management programmes, and utilization of by-products from SIT mass-rearing facilities in augmentative biological control programmes. (author)

  5. 不同材料矫形器的生物学性能%Biological properties of orthoses made of different materials

    Institute of Scientific and Technical Information of China (English)

    林志伟; 王应球; 郑群香

    2011-01-01

    背景:矫形器通过力的作用以预防、矫正畸形,达到治疗骨骼、关节、肌肉和神经疾患并补偿其功能的效果.目的:介绍了矫形器的分类,不同材料矫形器的性能及应用效果.方法:以"矫形器,生物学性能,先天性马蹄内翻足,婴幼儿"为中文关键词,以"orthosis,Congenital Club Foot" 为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1996-01/2010-12)相关文章.纳入与矫形器材料、以及先天性马蹄内翻足治疗相关内容的文献,排除重复研究或Meta分析类文章,共入选20篇文章进入结果分析.并回顾性分析应用低温热塑板或高温热塑板,根据3点力作用原理设计制作静态足踝矫形器或动态足踝矫形器,结合手法推拿等综合治疗婴幼儿先天性马蹄内翻足96例(106足)临床效果.结果与结论:文章重点从矫形器的分类、矫形器的材料、矫形器的基本作用及临床验证几方面进行了叙述.目前常用的矫形器材料主要有金属材料(钢材和铝合金)、皮革、橡胶、塑料及各种纤维等.临床验证结果:随访1年优86例(93足);良8例(10足);可2例(3足).提示选用高温热塑板制作成静态踝足矫形器或动态踝足矫形器治疗婴幼儿先天性马蹄内翻足早期效果满意.%BACKGROUND: Orthoses are used to prevent and correct deformity through the force in order to treat bone, joint, muscle and nerve disorders and compensate the functions.OBJECTIVE: To introduce the classification, properties, and curative effects of orthoses made of different materials.METHODS: A computer-based search of CNKI and PubMed databases(1996-01/2010-12) were performed using the keywords of “orthosis, biological properties, congenital club food, infants” in Chinese and “orthosis,congenital club foot” in English. Articles related to orthosis and congenital club foot were included, and repetitive article or Meta analysis were excluded. Finally, 20

  6. Optics of Biological Particles

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  7. Biological and Pharmaceutical Nanomaterials

    Science.gov (United States)

    Kumar, Challa S. S. R.

    2006-01-01

    This first comprehensive yet concise overview of all important classes of biological and pharmaceutical nanomaterials presents in one volume the different kinds of natural biological compounds that form nanomaterials or that may be used to purposefully create them. This unique single source of information brings together the many articles published in specialized journals, which often remain unseen by members of other, related disciplines. Covering pharmaceutical, nucleic acid, peptide and DNA-Chitosan nanoparticles, the book focuses on those innovative materials and technologies needed for the continued growth of medicine, healthcare, pharmaceuticals and human wellness. For chemists, biochemists, cell biologists, materials scientists, biologists, and those working in the pharmaceutical and chemical industries.

  8. 生物珊瑚人工骨支架材料生物相容性检测%Biocompatibility test of biological coral artificial bone as scaffold materials

    Institute of Scientific and Technical Information of China (English)

    黄涛; 孟志斌; 金大地; 付昆; 刘建航; 宋策; 贾丙申

    2012-01-01

    目的 评价生物珊瑚人工骨( BCAB)材料作为骨组织工程支架材料与小鼠胚胎干细胞(MESCs)构建组织工程骨的有效性及材料生物相容性.方法 设MESCs与BCAB支架材料混合黏附培养为实验组,单纯MESCs培养为对照组,分别于第2、4、6、8天进行MTT法检测细胞增殖活性,特异性胚胎抗原-1检测细胞对材料的黏附性.于第8日对接种细胞材料片行成骨诱导,诱导培养10d后行茜素红染色及电镜扫描检测成骨诱导及体外组织工程骨构建情况.取12只大鼠,脊柱左侧皮下植入空白BCAB支架片状材料,右侧植入黏附细胞BCAB片状材料,随机分4、8、12周3组行影像学检查,并取双侧标本行病理切片观察局部炎症反应,四环素标记下荧光显微镜观察成骨情况.第12周组取心、肝、肾病理切片及评估心、肝、肾毒性反应.结果 MTT法检测细胞增殖活性结果显示,在培养2d和4d时实验组与对照组间MTT值差异无统计学意义(P>0.05),在6d及8d时实验组MTT值明显高于对照组,差异具有统计学意义(P<0.05).特异性胚胎抗原-1检测证实MESCs对BCAB支架材料具有良好的黏附性,在其三维微孔隙内能较快增殖.茜素红染色及电镜扫描检测证实黏附细胞材料成骨诱导有效,体外组织工程骨构建成功.材料植入局部组织炎症反应轻,空白支架材料于第8周开始降解,12周达初步降解,无异位成骨;黏附细胞支架材料则有明显异位成骨现象,且较对侧空白支架材料降解时效延长.第12周组实验动物心、肝、肾标本病理切片未见异常损害.结论 BCAB支架材料具有良好的生物相容性,其降解周期与新骨重建周期大致相当,是一种良好的骨组织工程支架材料.%[Objective] To test the biocompatibility of biological coral artificial bone (BCAB) and the efrect of tissue engineered bone construction using BCAB scaffolds with mouse embryonic stem cells (MESCs

  9. Diseño de Material Didáctico para la Educación Ambiental (Biología y Geología / 2º ciclo de ESO)

    OpenAIRE

    Molina Ranchal, Marta

    2015-01-01

    En este trabajo se presenta un material didáctico diseñado específicamente para trabajar la Educación Ambiental en el segundo ciclo de la Educación Secundaria Obligatoria (E.S.O). Se trata de siete actividades para impartir en la materia de Biología y Geología, que pretenden promover y afianzar actitudes y comportamientos positivos hacia el medio ambiente y ser un apoyo alternativo al libro de texto durante el trabajo en el aula. Cada actividad consta de una ficha para el docente y u...

  10. Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process.

    Science.gov (United States)

    Kumari, Sinu; Das, Debabrata

    2016-10-01

    The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one. PMID:27469089

  11. Cork-based activated carbons as supported adsorbent materials for trace level analysis of ibuprofen and clofibric acid in environmental and biological matrices.

    Science.gov (United States)

    Neng, N R; Mestre, A S; Carvalho, A P; Nogueira, J M F

    2011-09-16

    In this contribution, powdered activated carbons (ACs) from cork waste were supported for bar adsorptive micro-extraction (BAμE), as novel adsorbent phases for the analysis of polar compounds. By combining this approach with liquid desorption followed by high performance liquid chromatography with diode array detection (BAμE(AC)-LD/HPLC-DAD), good analytical performance was achieved using clofibric acid (CLOF) and ibuprofen (IBU) model compounds in environmental and biological matrices. Assays performed on 30 mL water samples spiked at the 25.0 μg L(-1) level yielded recoveries around 80% for CLOF and 95% for IBU, under optimized experimental conditions. The ACs textural and surface chemistry properties were correlated with the results obtained. The analytical performance showed good precision (0.9922) from 1.0 to 600.0 μg L(-1). By using the standard addition methodology, the application of the present approach to environmental water and urine matrices allowed remarkable performance at the trace level. The proposed methodology proved to be a viable alternative for acidic pharmaceuticals analysis, showing to be easy to implement, reliable, sensitive and requiring low sample volume to monitor these priority compounds in environmental and biological matrices. PMID:21820664

  12. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  13. [Possibilities of testing the biological acceptability of composite filling materials, with special reference to the microscopic test for pulp vitality. Review of the literature].

    Science.gov (United States)

    Nyárasdy, I

    1990-08-01

    The main problem of microscopically observing the living pulpa consists in that it lies embedded into hard tissue. The haemodynamics of the pulpa may be defined by studying the physical parameters by examining the characteristics of blood flow and by the factors determining them. By comparison with other tissues little work is dealing with regulating the blood flow. The vital microscopic model of the rat incisor pulpa was first employed by Gängler to testing dental filling materials. The results thereof well complete the findings of standardized tests. On basis of the foregoing the sublining in case of clinical employment of composite filling materials is unconditionally suggested. PMID:2401373

  14. Teaching evolutionary biology

    Directory of Open Access Journals (Sweden)

    Tidon Rosana

    2004-01-01

    Full Text Available Evolutionary Biology integrates several disciplines of Biology in a complex and interactive manner, where a deep understanding of the subject demands knowledge in diverse areas. Since this knowledge is often inaccessible to the majority of specialized professionals, including the teachers, we present some reflections in order to stimulate discussions aimed at the improvement of the conditions of education in this area. We examine the profile of evolutionary teaching in Brazil, based on questionnaires distributed to teachers in Secondary Education in the Federal District, on data provided by the "National Institute for Educational Studies and Research", and on information collected from teachers working in various regions of this country. Issues related to biological misconceptions, curriculum and didactic material are discussed, and some proposals are presented with the objective of aiding discussions aimed at the improvement of the teaching of evolutionary biology.

  15. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  16. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted or...... residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled, and...

  17. Exposição ocupacional por material biológico no Hospital Santa Casa de Pelotas - 2004 a 2008 La exposición ocupacional a material biológico en el Hospital Santa Casa de Pelotas - 2004 a 2008 Occupational exposure to biological material at the Hospital Santa Casa de Pelotas - 2004 to 2008

    Directory of Open Access Journals (Sweden)

    Lílian Moura de Lima

    2011-03-01

    concluye que el estudio es muy importante porque, basándose en el reconocimiento de los tipos de accidentes más frecuentes, se puede conocer los riesgos e intervenir en su reducción a través de acciones preventivas que beneficien a los empleados y la institución.The research deals with occupational exposure to biological material that was used with health professionals at the Hospital Santa Casa de Misericordia de Pelotas, from January 2004 to June 2008. This is a cross-sectional, descriptive and quantitative. Used as a research tool questionnaire based on the report form of accident at work of that institution. Data were entered and analyzed using Epi-info 6.04. The main result was found a higher incidence of accidents with biological material among technical professionals in nursing females (38.6%, aged 21 to 30 years (53.9%. Most accidents happened through injuries with sharp objects (82.2%, and 24.1% in the surgery, and 84.5% involving blood. It is concluded that the study is extremely important because, based on the recognition of the type of most frequent accidents, one can know the risks and to intervene in its reduction through preventive actions that benefit the employee and the institution.

  18. O significado do acidente de trabalho com material biológico para os profissionais de enfermagem El significado del accidente de trabajo con material biológico para los profesionales de enfermería The significance of accidents involving biological material to nursing professionals

    Directory of Open Access Journals (Sweden)

    Maristela Aparecida Magri Magagnini

    2011-06-01

    occupational accidents with exposure to biological material from the perspective of nursing professionals. This study is exploratory with qualitative approach using Bardin's content analysis. 87 accidents involving biological material occurred in the period between 2001 and 2006, among them, eight were seropositive for hepatitis B and C and Acquired Immunodeficiency Syndrome/Human Immunodeficiency Virus. In order to collect data, it was used interview with oriented questions. When inquiring these professionals about the significance of these accidents, four categories emerged: risk situation, danger perception, fatality and feelings. Although it is not strategy of enlightenment, but it is fact that work organization and educative actions have considerable impact in order to reduce this type of accident, also reducing detriment to life of professionals who were involved in accidents.

  19. Use of new composite materials for the determination of Cu, Cd, Mo, As, and Sb in biological samples by radiochemical neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Lučaníková, M.; Kučera, Jan; Šebesta, F.; John, J.

    2006-01-01

    Roč. 269, č. 2 (2006), s. 463-468. ISSN 0236-5731 R&D Projects: GA ČR(CZ) GA203/04/0943 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiochemical neutron activation analysis * separation using composite materials Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  20. Biological Congress in Sweden

    Science.gov (United States)

    Bennett, D. P.

    1975-01-01

    Reports on the International Congress on the Improvement of Biology Education which was attended by delegates from fifty-eight different countries. The objectives of the Congress were to identify and analyze trends, to prepare a four-year plan for further improvement, and to prepare materials for publication by UNESCO. (GS)

  1. Organizational influence on the occurrence of work accidents involving exposure to biological material La influencia de la organización en la ocurrencia de accidentes de trabajo con exposición a material biológico Influência organizacional na ocorrência de acidentes de trabalho com exposição a material biológico

    Directory of Open Access Journals (Sweden)

    Maria Helena Palucci Marziale

    2013-02-01

    Full Text Available OBJECTIVES: to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. METHOD: a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological materials as recorded over a seven-year period by the nursing staff in the hospital studied, and registered in the Network databank. The second stage involved the analysis of 122 nursing staff members' perception of the institutional culture, who were allocated to the control group (workers who had not had an accident and the case group (workers who had had an accident. RESULTS: 386 accidents had been recorded: percutaneous lesions occurred in 79% of the cases, needles were the materials involved in 69.7% of the accidents, and in 81.9% of the accident there was contact with blood. Regarding the influence of the organizational culture on the occurrence of accidents, the results obtained through the analysis of the two groups did not demonstrate significant differences between the average scores attributed by the workers in each organizational value or practice category. It is concluded that accidents involving exposure to biological material need to be avoided, however, it was not possible to confirm the influence of organizational values or practices on workers' behavior concerning the occurrence of these accidents.OBJETIVOS: analizar los accidentes de trabajo con exposición a material biológico entre el personal de enfermería y evaluar la influencia de la cultura organizacional en la ocurrencia de accidentes de este tipo. MÉTODO: estudio retrospectivo, analítico, desarrollado en dos etapas en un Hospital de la Red para la Prevención de Accidentes. En

  2. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  3. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    Science.gov (United States)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  4. Doppler broadening calculations of Compton scattering for molecules, plastics, tissues, and few biological materials in the X-ray region: An analysis in terms of Compton broadening and geometrical energy broadening

    International Nuclear Information System (INIS)

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90 deg. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials

  5. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  6. Genetic investigation of biological materials from patients after stem cell transplantation based on autosomal as well as Y-chromosomal markers

    OpenAIRE

    Jacewicz, Renata; Lewandowski, Krzysztof; Rupa-Matysek, Joanna; Jedrzejczyk, Maciej; Komarnicki, Mieczysław; Berent, Jarosław

    2012-01-01

    The authors presented the results of DNA polymorphism investigation of blood, buccal swabs and hair follicles originating from patients after allogeneic hematopoietic stem cell transplantation. The real-time and multiplex assays based on polymerase chain reaction within the range of autosomal as well as Y-chromosomal markers were applied to assess the possible dangers arising from investigation of these materials in forensic genetics. The results revealed that not only post-transplant blood a...

  7. Fluidized-Bed Drying of Biological Materials:Two Case Studies%生物物料的流化床干燥:两个案例研究

    Institute of Scientific and Technical Information of China (English)

    李建国; 赵丽娟; 陈国华; 周明

    2004-01-01

    Drying is the last operation for processing most biomaterials. Due to the heat and moisture sensitivity of biomaterials, selections of drying methods and operating parameters are very important to keep the viability of these materials. In the present study, experiments were carried out in fluidized bed drying of photosynthetic microorganism liquid and mixed culture animal food. Results show that most activities can be kept in dried products. Appropriate operation parameters were determined.

  8. Quantum Biology

    CERN Document Server

    Sergi, Alessandro

    2009-01-01

    A critical assessment of the recent developments of molecular biology is presented. The thesis that they do not lead to a conceptual understanding of life and biological systems is defended. Maturana and Varela's concept of autopoiesis is briefly sketched and its logical circularity avoided by postulating the existence of underlying {\\it living processes}, entailing amplification from the microscopic to the macroscopic scale, with increasing complexity in the passage from one scale to the other. Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces, is criticized. It is suggested that the correct interpretation of quantum dispersion forces (van der Waals, hydrogen bonding, and so on) as quantum coherence effects hints at the necessity of including long-ranged forces (or mechanisms for them) in condensed matter theories of biological processes. Some quantum effects in biology are reviewed and quantum mechanics is acknowledge...

  9. Material flow management by combining mechanic-biological and thermal waste processing; Stoffstrommanagement durch Kombination von mechanisch-biologischer und thermischer Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Zahlten, M.J. [Joma Umwelt-Beratungsgesellschaft mbH, Hamburg (Germany)

    1998-10-01

    The aim of modern, sustainable waste management must be to conceive flexible waste management concepts which safeguard economy and the optimized use of realized investments even if the waste volumes accruing do not tally with projections. A prerequisite of cost-optimized, environmentally compatible and sustainable waste management in accordance with the requirements of the technical code on municipal waste (TASi) is the integration of the thermal processing of waste and its harnessing as an energy source. A way of realizing such flexible and cost-efficient concepts is by combining mechanic, and mechanic-biological, conditioning of waste with a topped thermal processing plant harnessing its energy potential. (orig./SR) [Deutsch] Zielsetzung moderner, nachhaltiger Abfallwirtschaft muss es sein, flexible abfallwirtschaftliche Konzepte zu realisieren, die bei unsicheren Restabfallmengen neben der Wirtschaftlichkeit der Konzeption insbesondere auch eine optimierte Auslastung der realisierten Anlagen (der getaetigten Investitionen) erlaubt. Voraussetzung fuer eine kostenoptimierte, umweltvertraegliche und nachhaltige Abfallwirtschaft, die die Vorgaben der TASi beruecksichtigt, ist die Einbindung von thermischer Behandlung und energetischer Verwertung. Ein moeglicher Weg, derartige, flexible und auch kostenvertraegliche Konzepte zu realisieren, ist die Kombination aus mechanischer und mechanisch-biologischer Vorbehandlung der verbleibenden Restabfaelle mit einer nachgeschalteten thermischen/energetischen Nutzung der vorbehandelten Abfaelle. (orig./SR)

  10. Biological production of hydrogen from agricultural raw materials and residues with a subsequent methanisation step; Biologische Wasserstoffproduktion aus landwirtschaftlichen Roh- und Reststoffen mit nachfolgender Methanstufe

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Stegmann, R. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2007-07-01

    In order to examine the thermophile fermentative production from biohydrogen, discontinuous attempts were accomplished at a temperature of 60 C. As an inoculum, heat-treated sewage sludge was used. Glucose was used as a substrate. The fermenting residues of the hydrogen attempts were used as a substrate in a methane reactor in order to examine a two-stage system. The hydrogen attempts in the anaerobic test system were operated with a hydraulic retention time by 3.3 days and were performed during a period of 300 days. The optimal space load amounts to 5 g (l*d). The production rate at hydrogen amounts to 1.2 Nl/(l{sub R}*d). The yields amount to between 200 and 250 Nml/g oTS. In the case of an overloading of the system with substrate, the hydrogen production decreases drastically due to poor yields. Biological hydrogen production by fermentation possesses the potential to become a component for a lasting emission-free power supply. The thermophile approach ensures a simultaneous hygienization. As a fermenting remainder treatment a downstream methanation stage is possible.

  11. Development of the PF-6 Device ffor the Goal Of the Mainstream Fusion Research and Spin-Off Applications; Medocine, Biology, Material Sciences etc

    International Nuclear Information System (INIS)

    In the framework of the Project we have elaborated a new design of the electrical circuit (in co-operation with ICTP) to increase the repetition rate f of the operational regime of PF-6 device till the level: U = 23 kV, E = 7.4 kJ, f = 5 Hz. With this power supply we have elaborated and tested our new DPF chambers able to work with the deuterium-tritium mixture as a working gas. We have developed, implemented and tested new diagnostics of X ray and neutron pulses with temporal resolution 0.3 ns and 16-frame 1-ns laser interferometry. In cooperation with our partners on this IAEA CRP we provided radiation tests of materials candidate for the main-stream fusion reactors (tungsten, CFC, ceramics Al2O3 and NB, low- activation steels, etc.) using besides the PF-6 facility the Dense Plasma Focus devices PF-5M, ING-103 and PF-1000. In addition with the same partners we undertake initial experiments with an aim to improve characteristics of the surface layer of materials (mechanical and tribological behavior, radiation resistance, etc.) using the above devices. The idea is to use hot plasma streams and beams of fast ions generated in DPF in treatment of internal hard-to-reach compartments of the machine components. In cooperation with Pirelli we have provided first experiments in the field of X ray dynamic quality control with DPF aimed to disclosure imperfections in car tyres. Also we spread our previous X ray based experiments on pulsed radio- enzymology to the pulsed neutron irradiation of enzymes and other bio-test objects. We have provided experiments intended to detect large-volume objects containing illegal substances (explosives, drugs, etc.) and first experiments on irradiation by neutron pulses a fuel element containing fissile materials by means of time-of flight neutron technique. These experiments give an opportunity to use DPF in a single-shot technique of unveiling illegal materials hidden in a luggage or in containers. (author)

  12. Non-viral gene delivery strategies for gene therapy: a 'menage a trois' among nucleic acids, materials, and the biological environment

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Daniele; Candiani, Gabriele, E-mail: gabriele.candiani@polimi.it [INSTM (National Interuniversity Consortium of Materials Science and Technology), Research Unit Milano Politecnico (Italy)

    2013-03-15

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription-translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  13. Non-viral gene delivery strategies for gene therapy: a “ménage à trois” among nucleic acids, materials, and the biological environment

    International Nuclear Information System (INIS)

    Gene delivery is the science of transferring genetic material into cells by means of a vector to alter cellular function or structure at a molecular level. In this context, a number of nucleic acid-based drugs have been proposed and experimented so far and, as they act on distinct steps along the gene transcription–translation pathway, specific delivery strategies are required to elicit the desired outcome. Cationic lipids and polymers, collectively known as non-viral delivery systems, have thus made their breakthrough in basic and medical research. Albeit they are promising alternatives to viral vectors, their therapeutic application is still rather limited as high transfection efficiencies are normally associated to adverse cytotoxic side effects. In this scenario, drawing inspiration from processes naturally occurring in vivo, major strides forward have been made in the development of more effective materials for gene delivery applications. Specifically, smart vectors sensitive to a variety of physiological stimuli such as cell enzymes, redox status, and pH are substantially changing the landscape of gene delivery by helping to overcome some of the systemic and intracellular barriers that viral vectors naturally evade. Herein, after summarizing the state-of-the-art information regarding the use of nucleic acids as drugs, we review the main bottlenecks still limiting the overall effectiveness of non-viral gene delivery systems. Finally, we provide a critical outline of emerging stimuli-responsive strategies and discuss challenges still existing on the road toward conceiving more efficient and safer multifunctional vectors.

  14. Clinical application of temporary crown and cement materials: physical properties and biological safety%临时冠材料及黏结材料的临床应用:物理性能与生物安全性

    Institute of Scientific and Technical Information of China (English)

    聂二民; 姜瑞; 张春元; 曾尽娣; 谈济州

    2015-01-01

    背景:临时冠在临床应用较为广泛,临时冠及其黏结材料随着材料科学的发展不断更新,其临床应用、物理学性能及生物安全性方面也越来越优越.目的:综述临时冠及其黏结材料的临床应用现状、物理性能及生物安全性.方法:以"temporary crown,provisional crown,temporary restoration,provisional restoration,interim restoration"为英文检索词,应用计算机检索PubMed数据库中2004年1月至2014年12月发表的相关文章.纳入与临时冠及其黏结材料相关的研究文献,排除重复性研究.结果与结论:通过临床评价和实验研究得出,临时冠材料自身聚合收缩、聚合产热、单体释放等物理特性和细胞毒性、对软组织的刺激性等生物安全性方面是临床要克服的关键问题.临时冠材料和黏结材料在临床上应用广泛,随着新材料筛选和新制作方法的出现其具有巨大的应用前景和较高的临床价值,但在其实验室研究和临床应用的探索过程中,还有许多亟待解决和深入探究的问题.%BACKGROUND:Temporary crown has been used widely in clinic. The physical properties and biological safety of temporary crown and cement materials are more superior along with the development of material science. OBJECTIVE:To summarize clinical application, physical properties and biological safety of the temporary crown and cement materials. METHODS:PubMed database was searched by the key words of "temporary crown, provisional crown, temporary restoration, provisional restoration, interim restoration" in English to retrieve relevant articles published from January 2004 to December 2014. Literatures addressing the temporary crown and cement materials were included, and the repetitive researches were excluded. RESULTS AND CONCLUSION:Through the clinical evaluation and experimental study, the physical properties (polymerization shrinkage, polymerization heat production, polymerization monomer release) and

  15. A new 202Hg isotopically enriched methylmercury spike material with SI-traceable reference values for isotope dilution measurements in biological and environmental samples

    International Nuclear Information System (INIS)

    HgO enriched in 202Hg was used for the preparation of a solution of 202Hg enriched CH3Hg. The CH3HgCl was synthesised by reaction with a Grignard reagent and a subsequent comproportionation reaction between dimethylmercury, (CH3)2Hg, and HgCl2, that was optimised to give a high yield of the product, pure from other Hg species and by-products of the synthesis reaction. To prepare the CH3HgCl for use as an IDMS spike, it was dissolved in 2 % ethanol. The spike was thereby maintained in a relatively reactive form without solution preservatives that might alter its chemical behaviour compared to incipient CH3Hg in a sample. Aliquots were sealed in quartz ampoules and a 1-year stability study was undertaken by storing a series of ampoules under different temperature conditions to all be measured on the same occasion (an isochronous study) and by retaining a portion of the solution in a closeable bottle under recommended storage conditions, with measurements at 3-month intervals. The Hg amount content in the form of CH3Hg was obtained by subtraction of the inorganic Hg amount content (determined by gas chromatography inductively coupled plasma mass spectrometry, GC-ICP-MS) from the total Hg amount content (determined by blending with IRMM-639, a natural Hg isotopic certified reference material, ICRM, and isotope dilution mass spectrometry of the digested material). Only CH3Hg and inorganic Hg were detectable in the reference material with inorganic Hg in 3Hg was identical to that of IRMM-640, an inorganic Hg ICRM prepared from the same 202Hg enriched HgO, within enlarged uncertainty statements. These processes allowed the SI-traceable certification of both the amount content of CH3Hg and its isotopic composition, accompanied by combined uncertainty statements estimated according to ISO/GUM. The final uncertainty on the Hg amount content in the form of CH3Hg (3.5 % relative, k=2) included a contribution covering for potential changes over 2 years of shelf-life. No

  16. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  17. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO2/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  18. Elemental characterization of new Polish and U.S. NIST geological, environmental and biological reference materials by neutron activation analysis and comments on the methodology of interlaboratory comparisons

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) has been extensively used in interlaboratory comparisons aiming at the certification of new Polish geological, environmental and botanical materials (RMs): Apatite Concentrate CTA-AC-1, Fine Fly Ash CTA-FFA-1, Oriental Tobacco Leaves CTA-OTL-1, Virginia Tobacco Leaves CTA-VTL-2. For quality assurance and traceability purposes, already existing RMs of similar composition, such as Apatite Ore AR and NIST SRM-2704 Buffalo River Sediment were analyzed in our Laboratory as well as NIST SRM-1573a Tomato Leaves which was assayed as an intercomparison sample prior to the certification at the NIST. Results obtained for a total of 47 elements are reported and critically evaluated. Problems of organizing and evaluating interlaboratory comparisons are also discussed. (author). 28 refs, 1 fig., 8 tabs

  19. Stability of Commercial Small-Sized Cerium Oxide in the Presence of Biological Material: Dilucidating Relationships between Reactivity and Toxicity of Nanomaterials

    Science.gov (United States)

    Cervini-Silva, J.; Gilbert, B.; Fernandez-Lomelin, P.; Guzman-Mendoza, J.; Chavira, E.

    2007-05-01

    the transformation of biomolecules (as % carbon) with decreasing CeO2 particle diameter (13 oxidation are distributed next to the mineral surface and its occurrence is coupled to Ce reduction-oxidation. As evidenced by DSL and UV experiments conducted for the pH 2 to 8 range, the aggregation behavior of nanoCeO2 is susceptible to pH variations imposed because the presence of biological moieties itself over solid concentration.

  20. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  1. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  2. 壳聚糖/丝胶蛋白生物流体材料的制备及性能测试%Preparation and Property Characterization of Chitosan/Sericin Biological Fluid Material

    Institute of Scientific and Technical Information of China (English)

    严晨峰; 刘琳; 姚菊明

    2013-01-01

    To overcome the limitation of commercial wound dressings with poor fluid absorption capability,a novel chitosan/sericin biological fluid material was successfully prepared by using chitosan extracted from shells of sea crabs and sericin discarded as waste material in silk industry as the major materials.The unique biological material was tawny,semitransparent and semi-fluid.It could form soft and transparent film,functioning as a natural barrier against infection.Its fluid absorption capability and permeability could be adjusted by changing the ratio of chitosan to sericin.Its moist absorption capability and water vapor permeability was in the range of 2.33 ~23.73 g/g and 2 738 ~3 752 g/(m2 ·d) respectively,being able to satisfy the needs in healing various wounds.The mechanical property of resultant film slightly reduced after addition of sericin,but it still kept excellent flexibility to satisfy clinical demand of wound dressing.In vitro antibacterial experiment indicated that,although the addition of sericin reduced antibacterial activity of the fluid material,its antibacterial rate was as high as 83% against Staphylococcus aureus when the mass ratio of chitosan to sericin was 1 ∶ 0.6,being able to prevent wound infection effectively.These results indicate that the novel chitosan/sericin biological fluid materials have good perspective in clinical application.%针对现有医用敷料吸收渗液能力不强等缺点,以海洋蟹虾外壳中提取的壳聚糖和蚕丝加工过程废弃的丝胶蛋白为主要原料,研制出一种新型生物流体材料.该材料为黄褐色半透明、半流动物质,能形成柔韧透明的薄膜从而起到防感染的天然屏障作用.通过改变壳聚糖与丝胶蛋白的配比,可以有效调控壳聚糖/丝胶蛋白生物流体材料膜的吸液能力和通透性等,其吸水量、水蒸汽透过率分别分布在2.33~ 23.73 g/g和2 738 ~3 752 g/(m2·d)之间,可以满足不同程度创面修复需要.虽

  3. Acidentes ocupacionais por exposição a material biológico entre a equipe multiprofissional do atendimento pré-hospitalar Accidentes ocupacionales por exposición a material biológico entre el equipo multiprofesional de atención pre hospitalaria Occupational accidents due to exposure to biological material in the multidisciplinary team of the emergency service

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Oliveira

    2009-09-01

    ñamiento serológico, 61,2%. Estuvieron asociados al accidente: tiempo en la institución, (Odds ratio-OR 2,84; Intervalo de confianza-IC 95% 1,22-6,62, asignado en la Unidad de Soporte Avanzado, (OR 4,18; IC 95% 1,64-10,64; interacción: tiempo en la institución y asignado en la Unidad de Soporte Básico, (OR 0,27; IC 95% 0,07-1,00. Se sugiere: la implantación de protocolos después de accidentes, con el objetivo de reducirlos; la subnotificación y el aumento del acompañamiento después del accidente.This transversal, survey-based research was carried out with a multiprofessional emergency care team in Belo Horizonte, between June and December 2006. The study aimed at estimating the incidence of occupational accidents by exposure to biological material, post-accidents conducts and demographic determinant factors. The study applied a structured questionnaire and descriptive analyses, as well as incidence calculations and logistic regression. The incidence of accidents with biological material reached 20.6%, being 40.8% by sharp materials and 49.0% by body fluids; 35.3% of the accidents took place among physicians and 24.0% among nurses. Post-accidents procedures: no medical assessment, 63.3%; under-notification, 81.6%; no conduct, 55.0%; and no serological follow-up, 61.2%. Factors associated with accidents: working time in the institution (Odds Ratio - OR, 2.84; Credible Interval - CI 95% - 1.22-6.62; working in advanced support units (OR=4.18; CI 95% - 1.64-10.64; and interaction between working time in the institution and working in Basic Support Unit (OR 0.27; CI 95% - 0.07-1.00. In order to reduce accidents, the implementation of post-accident protocols and follow-up, as well as under-notification norms, are suggested.

  4. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    Science.gov (United States)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  5. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.

    Science.gov (United States)

    Kwon, Man Jae; Finneran, Kevin T

    2010-11-01

    The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH(4) (+)) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40-50% of [(14)C]-RDX was mineralized to (14)CO(2) in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments. PMID:20424887

  6. Responses of Cell Renewal Systems to Long-term Low-Level Radiation Exposure: A Feasibility Study Applying Advanced Molecular Biology Techniques on Available Histological and Cytological Material of Exposed Animals and Men

    International Nuclear Information System (INIS)

    First results of this feasibility study showed that evaluation of the stored material of the chronically irradiated dogs with modern molecular biological techniques proved to be successful and extremely promising. Therefore an in deep analysis of at least part of the huge amount of remaining material is of outmost interest. The methods applied in this feasibility study were pathological evaluation with different staining methods, protein analysis by means of immunohistochemistry, strand break analysis with the TdT-assay, DNA- and RNA-analysis as well as genomic examination by gene array. Overall more than 50% of the investigated material could be used. In particular the results of an increased stimulation of the immune system within the dogs of the 3mSv group as both compared to the control and higher dose groups gives implications for the in depth study of the cellular events occurring in context with low dose radiation. Based on the findings of this study a further evaluation and statistically analysis of more material can help to identify promising biomarkers for low dose radiation. A systematic evaluation of a correlation of dose rates and strand breaks within the dog tissue might moreover help to explain mechanisms of tolerance to IR. One central problem is that most sequences for dog specific primers are not known yet. The discovery of the dog genome is still under progress. In this study the isolation of RNA within the dog tissue was successful. But up to now there are no gene arrays or gene chips commercially available, tested and adapted for canine tissue. The uncritical use of untested genomic test systems for canine tissue seems to be ineffective at the moment, time consuming and ineffective. Next steps in the investigation of genomic changes after IR within the stored dog tissue should be limited to quantitative RT-PCR of tested primer sequences for the dog. A collaboration with institutions working in the field of the discovery of the dog genome could

  7. Bridging the gap between systems biology and synthetic biology

    Directory of Open Access Journals (Sweden)

    FuzhongZhang

    2013-07-01

    Full Text Available Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, systems biology provides the knowledge necessary for the development of synthetic biology tools, which in turn facilitates the manipulation and understanding of complex biological systems. Thus, the combination of systems and synthetic biology has huge potential for studying and engineering microbes, especially to perform advanced tasks, such as producing biofuels. Although there have been very few studies in integrating systems and synthetic biology, existing examples have demonstrated great power in extending microbiological capabilities. This review focuses on recent efforts in microbiological genomics, transcriptomics, proteomics and metabolomics, aiming to fill the gap between systems and synthetic biology.

  8. Estilo de vida e exposição à material biológico entre notificados com hepatite B
    Lifestyle and exposure to biological material among reported with hepatitis B

    OpenAIRE

    Fabiane Silva Pereira; Bruna Matos Gusmão; Ana Paula Rocha; Michelle Bonfim da Silva Fernandes; Orlene Veloso Dias; Simone de Melo Costa

    2016-01-01

    Introdução: A hepatite B é uma doença de caráter mundial, que se tornou um problema de saúde pública. A contaminação pode acontecer em qualquer indivíduo, contudo há grupos que estão mais propensos, por serem mais expostos, como os pacientes em diálise e os profissionais da área da saúde. O objetivo deste estudo foi descrever o estilo de vida e as exposições a material biológico entre os notificados para hepatite B em município de porte médio, entre 2007 a 2015, assim como avaliar o resultado...

  9. [The biologization of ethics].

    Science.gov (United States)

    Moreno Lax, Alejandro

    2010-01-01

    Three ethics exist as a condition of possibility of any possible ethics, following a material and biological foundation. This content argument (not logical-formal) supposes a refutation of the naturalistic fallacy that the analytical philosophy attributes to Hume, in three areas of the ethical human experience: body, society and nature. These are: the ethics of the species [J. Habermas], the ethics of liberation [E. Dussel] and the ethics of the responsibility [H. Jonas]. This material argument is a philosophical foundation to considering for three types of applied ethics: medical bioethics, development ethics and environmental ethics. PMID:20405971

  10. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning In...

  11. SIMS applications in biological research

    International Nuclear Information System (INIS)

    Full text: SIMS has been utilised as a tool for biological research since the early 1970's. SIMS' abilities in isotopic detection with high sensitivity, imaging capabilities at a subcellular level, and the possibility of molecular imaging have been the main areas of interest for biological development. However, whilst hundreds of instruments are available in industrial and university laboratories for semiconductor and materials analysis, only a handful successfully perform biological research. For this reason there is generally a lack of awareness of SIMS by the biological community. Biological SIMS analysis requires a working knowledge of both biology and SIMS. Sample preparation is a critical and time consuming prerequisite for any successful biological SIMS study. In addition, for quantification to be possible a homogeneous, matrix matched standard must be available. Once these difficulties are more widely understood and overcome there will be a greater motivation for the biological community to embrace SIMS as a unique tool in their research. This paper provides an overview of some of the more successful biological SIMS application areas internationally, and summarises the types of biological SIMS requests received by ANSTO

  12. Mesoscopic biology

    Indian Academy of Sciences (India)

    G V Shivashankar

    2002-02-01

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological systems. In recent years advances in technology have led to the study of some of the design principles of these machines; in particular at the level of an individual molecule. For example, the forces that operate in molecular interactions, the stochasticity involved in these interactions and their spatio-temporal dynamics are beginning to be explored. Understanding such design principles is opening new possibilities in mesoscopic physics with potential applications.

  13. Biological programming

    OpenAIRE

    Ramsden, Jeremy J.; Bándi, Gergely

    2010-01-01

    Biology offers a tremendous set of concepts that are potentially very powerfully usable for the software engineer, but they have been barely exploited hitherto. In this position paper we propose a fresh attempt to create the building blocks of a programming technology that could be as successful as life. A key guiding principle is to develop and make use of unambiguous definitions of the essential features of life.

  14. Biological radioprotector

    International Nuclear Information System (INIS)

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  15. Marine biology

    International Nuclear Information System (INIS)

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  16. Marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  17. Accidents with biological material and immunization against hepatitis B among students from the health area Accidente con material biológico y la vacunación contra la hepatitis B en estudiantes del área de la salud Acidente com material biológico e vacinação contra hepatite B entre graduandos da área da saúde

    OpenAIRE

    Elucir Gir; Jeniffer Caffer Netto; Silmara Elaine Malaguti; Silvia Rita Marin da Silva Canini; Miyeko Hayashida; Alcyone Artioli Machado

    2008-01-01

    Undergraduate students from the health area often handle piercing-cutting instruments in their academic activities, which exposes them to the risk of contracting infections. This study aimed to analyze accidents with biological material among these students. Out of 170 accidents registered, 83 (48.8%) occurred with Dentistry students, 69 (40.6%) with Medical students, 11 (6.5%) with Nursing students and in 06 (3.5%) of the cases there was no such information in the files. Most accidents, 106 ...

  18. Biological Databases

    Directory of Open Access Journals (Sweden)

    Kaviena Baskaran

    2013-12-01

    Full Text Available Biology has entered a new era in distributing information based on database and this collection of database become primary in publishing information. This data publishing is done through Internet Gopher where information resources easy and affordable offered by powerful research tools. The more important thing now is the development of high quality and professionally operated electronic data publishing sites. To enhance the service and appropriate editorial and policies for electronic data publishing has been established and editors of article shoulder the responsibility.

  19. Application of ellipsometry techniques to biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Arwin, Hans, E-mail: han@ifm.liu.s

    2011-02-28

    Ellipsometry is well-suited for bioadsorption studies and numerous reports, mainly using null ellipsometry, are found on this subject whereas investigations addressing structural properties of thin biolayers are few. Here two examples based on the use of spectroscopic ellipsometry (SE) on the latter are briefly discussed. In the first example, time evolution of thickness, spectral refractive index and surface mass density of a fibrinogen matrix forming on a silicon substrate are investigated with SE and a structural model of the protein matrix is discussed. In the second example a model dielectric function concept for protein monolayers is presented. The model allows parameterization of the optical properties which facilitates monitoring of temperature induced degradation of a protein layer. More recently, photonic structures in beetles have been studied with SE. It is shown here that full Mueller-matrix SE can resolve very complex nanostructures in scarab beetles, more specifically chiral structures causing reflected light to become circularly polarized.

  20. Voltammetry in Analysis of Biological Materials

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Říčařová, B.; Šenholdová, Z.

    1. Jalgaon: Society for Science and Environment, 2009 - (Vojtisek, M.; Prakash, R.), s. 171-248 ISBN 81-85543-09-7 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : polarography * voltammetry * stripping voltammetry * electrodes Subject RIV: CG - Electrochemistry

  1. 78 FR 16472 - Deposit of Biological Materials

    Science.gov (United States)

    2013-03-15

    ... of the invention sufficient to enable a person (knowledgeable in the relevant science), to make and... collection techniques or other forms of information technology, e.g., permitting electronic submission of... special packaging. Additional FedEx special handling charges for inaccessible dangerous goods shipments...

  2. Neutrons in biology

    International Nuclear Information System (INIS)

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  3. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  4. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom materials, including "diet poker" (nutrition game); an experiment on enzyme characteristics; demonstrations of yeast anaerobic respiration and color preference in Calliphora larvae; method to extract eugenol from clove oil to show antibiotic properties; and Benedict's test. Includes…

  5. Indoor biological pollution

    International Nuclear Information System (INIS)

    Inside buildings - besides the umpteen toxic substances emanating from materials and appliances used daily for the most assorted activities - there are may be a number of different pathogenic micro-organisms able to cause diseases and respiratory system infections. Indoor pollution caused by biological agents may be due not only to living microorganisms, but also to dead ones or to the produce of their metabolism as well as to allergens. The most efficient precautionary measure against biological agents is to ventilate the rooms one lives in. In case of air-conditioning, it's good rule to keep air pipes dry and clean, renewing filters at regular intervals in order to avoid fungi and bacteria from settling in

  6. Biological effects

    International Nuclear Information System (INIS)

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH)

  7. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  8. Biology of Nanobots

    Science.gov (United States)

    Duan, Wentao; Pavlick, Ryan; Sen, Ayusman

    2013-12-01

    One of the more interesting recent discoveries has been the ability to design nano/microbots which catalytically harness the chemical energy in their environment to move autonomously. Their potential applications include delivery of materials, self-assembly of superstructures, and roving sensors. One emergent area of research is the study of their collective behavior and how they emulate living systems. The aim of this chapter is to describe the "biology" of nanobots, summarizing the fundamentals physics behind their motion and how the bots interact with each other to initiate complex emergent behavior.

  9. Isotope dilution mass spectrometry as the primary method of measurement for the amount of matter. Application to cadmium determination in biological materials and comparison with instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    A primary method of measurement as defined by the Consultative Committee on the Quantity of Matter (Comite Consultatif pour la Quantite de Matiere, CCQM) of the International Bureau of Weights and Measurements (Bureau International des Poids et Mesures, BIPM), is one whose measurement process is perfectly known, has valid theoretical foundations and is fully described and answers to an equation that relates what is measured with what is intended to be measured without any significant empirical correction factors. It is also a method that has insignificant systematic errors, where only magnitudes from the International System of Units (SI) are used and where, preferably, the uncertainties are small ones. They are, therefore, procedures that do not need instrumental calibration. The absolute methods of measurement allow a chain of traceability to be formed between the result obtained and the magnitude of the SI assigned to what is measured. So the results are said to be traceable to the SI. One of the methods that meets these requirements and is recognized as the primary method by the CCQM is Isotope Dilution Mass Spectrometry (IDMS). Through a project of Technical Cooperation with the International Atomic Energy Agency in the area of Chemical Metrology, the CCHEN obtained training in CIEMAT, Spain, in IDMS and its applications to the analysis of biological samples. This work describes the first experience carried out entirely in Chilean laboratories, applying IDMS to the determination of cadmium in the biological reference materials Oyster Tissue 15566-A from the NIST, United States, Dogfish Liver, DOLT-2 from the NRC-CNRC, Canada and Poplar Leaves GBW07604 from the NRCC, China. The samples were traced with an isotope enriched spike 111Cd and then shaken to obtain the isotopic exchange. Once dissolved, the isotopic relationship 111Cd/114Cd was determined in the samples using mass spectrometry with plasma source. These results were compared with those obtained using

  10. Simulating Biological and Non-Biological Motion

    Science.gov (United States)

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  11. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  12. Laboratory Materials: Affordances or Constraints?

    Science.gov (United States)

    Jordan, Rebecca C.; Ruibal-Villasenor, Maria; Hmelo-Silver, Cindy E.; Etkina, Eugenia

    2011-01-01

    Laboratory instruction is critical to the understanding of biology and is a central piece of biological sciences instruction. Although much investigation has focused on the content of biology laboratory exercises, we contend that understanding the extent to which the laboratory materials can aid or limit experimental investigation is of equal…

  13. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  14. Computational Skills for Biology Students

    Science.gov (United States)

    Gross, Louis J.

    2008-01-01

    This interview with Distinguished Science Award recipient Louis J. Gross highlights essential computational skills for modern biology, including: (1) teaching concepts listed in the Math & Bio 2010 report; (2) illustrating to students that jobs today require quantitative skills; and (3) resources and materials that focus on computational skills.

  15. Quantum Effects in Biology

    Science.gov (United States)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  16. Biological internal fixation of the fracture and performance analysis of the internal fixation materials%骨折的生物学内固定及内固定材料性能分析

    Institute of Scientific and Technical Information of China (English)

    成翔宇; 纪斌; 庞金辉

    2012-01-01

    BACKGROUND: In recent years, the focus of internal fixation for the fracture has developed from rigidity, stability and anatomic reduction to biological fixation which can preserve soft tissue blood supply, relatively stable and had anatomical axis arrangement.OBJECTIVE: To summarize the clinical characteristics of various materials for fracture fixation, and to analyze the biocompatibility after fixation device implantation.METHODS: A computer-based online retrieval of CNKI database and VIP database from January 1990 to November 2011 was conducted for articles addressing fracture internal fixation materials, by screening the key words of "fracture, internal fixation, plates, screws" in title and "loose, breakage, compatibility" in abstract. Documents related with fracture fixation treatment were involved, and those published in recent years or in authorized journals were preferred in the same field. After preliminary retrieval, 178 literatures were screened out and 24 of them were involved in the retrospective analysis according to inclusion criteria. RESULTS AND CONCLUSION: With the advanced progress on raw materials industry and biomedicine, internal fixation devices are rapidly developing. The vast majority of current orthopedic internal fixation plates and screws used in medical institutions show very good biocompatibility and stiffness. However, fixation materials in different parts and different types of fracture alter, thus resulting in different bending resistance, axial, lateral and anti-rotational stability, as well as complications and compatibility after fixation. Biological fixation for the fracture can greatly reduce the injury at soft tissue and rate of bone graft, thereby shortening fracture healing time and significantly reducing the incidence of fracture non-union, second fracture and infection.%背景:近年来,骨折内固定已经从强调坚强内固定、绝对稳定和解剖复位,转向强调保留软组织血运、相对稳定和解剖

  17. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  18. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  19. 基于文献计量的新兴趋势分析*--以生物材料为例%Emerging Trend Analysis Based on Bibliometric-Taking Biological Materials for Example

    Institute of Scientific and Technical Information of China (English)

    黄鲁成; 王静静; 李欣; 吴菲菲; 王立章

    2015-01-01

    Detecting emerging trend topics from lots of papers is one of the difficulties for information research. This paper put forward e-merging trend analysis based on bibliometric method. Firstly,this paper used co-citation method to find out burst cited references and then downloaded their citing papers as data source for the following analysis. This paper used two indexes( attention and practicality) to detect emerging trend topics. The " attention" index through the high frequent keywords was used to create co-occurrence matrix and visualiza-tion,summing up the emerging trend topics; the " practicality" index through the countries,organizations and average impact factor,was used to evaluate whether the selected emerging trend topics meet the demands. This paper used biological materials as one example to ana-lyze the emerging trend.%科学有效地从浩瀚的科技文献中探测出领域的新兴趋势,是情报研究领域关注的热点和难点问题。提出了基于文献计量的新兴趋势分析方法,首先对领域数据进行共被引聚类分析,找出突现文献的施引文献作为后续分析的数据源,然后通过“关注度”和“实用性”来分析新兴趋势:“关注度”分析通过高频关键词共现及聚类发现新兴趋势,“实用性”分析新兴趋势论文作者国家、机构以及期刊的平均影响因子是否呈增大的趋势来验证是否满足条件。最后用生物材料作为实例进行了实证研究,验证了其有效性。

  20. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  1. Acidente com material biológico entre trabalhadores da área de expurgo em centros de material e esterilização - DOI: 10.4025/actascihealthsci.v26i2.1577 Accident with biological material with workers of expurgation area in central supply - DOI: 10.4025/actascihealthsci.v26i2.1577

    OpenAIRE

    Shellen Bueno de Souza; André Nunes Gomes de Almeida; Adenícia Custódia Silva Souza; Anaclara Ferreira Veiga Tipple; Karina Machado Siqueira

    2004-01-01

    A limpeza dos artigos odonto-médico-hospitalares realizada por métodos manuais aumenta o risco de acidentes com material biológico. Foram objetivos deste estudo caracterizar os acidentes envolvendo exposição a material biológico entre trabalhadores de expurgos; identificar a freqüência da subnotificação dos acidentes e descrever as medidas de prevenção adotadas. Após aprovação em comitê de ética e consentimento dos trabalhadores, os dados foram coletados mediante entrevista com 111 trabalhado...

  2. O significado do acidente de trabalho com material biológico para os profissionais de enfermagem El significado del accidente de trabajo con material biológico para los profesionales de enfermería The significance of accidents involving biological material to nursing professionals

    OpenAIRE

    Maristela Aparecida Magri Magagnini; Suelen Alves Rocha; Jairo Aparecido Ayres

    2011-01-01

    O objetivo deste estudo foi compreender o significado dos acidentes de trabalho com exposição a material biológico na perspectiva dos profissionais de enfermagem. De caráter exploratório com abordagem qualitativa pela análise de conteúdo de Bardin. No período de 2001 a 2006 ocorreram 87 acidentes com material biológico, sendo que destes, oito eram soropositivos para hepatite B e C e Síndrome da Imunodeficiência Adquirida/Vírus da Imunodeficiência Humana. Para coleta de dados utilizou-se entre...

  3. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  4. Biological radiation effects

    International Nuclear Information System (INIS)

    The book covers all aspects of biological radiation effects and provides the fundamental basis for understanding the necessity of radiation protection as well as applications in radiotherapy. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are thoroughly discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects). It can be used by graduate students as an introduction and as a source book for all who want to become acquainted with this important field. It is an extended version of the original German book containing updated information and new material. (orig.) With 273 figs

  5. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  6. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  7. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  8. Pictures of Synthetic Biology

    OpenAIRE

    Cserer, Amelie; Seiringer, Alexandra

    2009-01-01

    This article is concerned with the representation of Synthetic Biology in the media and by biotechnology experts. An analysis was made of German-language media articles published between 2004 and 2008, and interviews with biotechnology-experts at the Synthetic Biology conference SB 3.0 in Zurich 2007. The results have been reflected in terms of the definition of Synthetic Biology, applications of Synthetic Biology and the perspectives of opportunities and risks. In the media, Synthetic Biolog...

  9. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  10. Atendimento e seguimento clínico especializado de profissionais de enfermagem acidentados com material biológico Atención y seguimiento clínico especializado de profesionales de enfermería accidentados con material biológico Care and specialized clinical follow-up of nursing professionals who have been victims of accidents with biological material

    OpenAIRE

    Flaviana Regina Pimenta; Milene Dias Ferreira; Elucir Gir; Miyeko Hayashida; Silvia Rita Marin da Silva Canini

    2013-01-01

    O presente trabalho trata-se de estudo de corte transversal, com objetivo de avaliar a conduta dos profissionais de enfermagem vítimas de acidentes com material biológico, do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, no estado de São Paulo, referente ao atendimento e ao seguimento clínico especializado. A população foi composta por 1.215 profissionais de enfermagem, entrevistados entre os anos de 2010 e 2011, dos quais 636 (52,3%) sofreram ...

  11. Exposição ocupacional por material biológico no Hospital Santa Casa de Pelotas - 2004 a 2008 La exposición ocupacional a material biológico en el Hospital Santa Casa de Pelotas - 2004 a 2008 Occupational exposure to biological material at the Hospital Santa Casa de Pelotas - 2004 to 2008

    OpenAIRE

    Lílian Moura de Lima; Camila Cardoso de Oliveira; Katiuscia Milano Rosales de Rodrigues

    2011-01-01

    A pesquisa trata de exposições ocupacionais por material biológico a que foram submetidos os profissionais de saúde, no Hospital Santa Casa de Misericórdia de Pelotas, no período de janeiro de 2004 a junho de 2008. Trata-se de um estudo transversal, descritivo, com abordagem quantitativa. Utilizou-se como instrumento de pesquisa um questionário elaborado com base na ficha de notificação de acidente de trabalho da referida instituição. Os dados foram digitados e analisados no programa Epi-info...

  12. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  13. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  14. Soil ecology and pedogenesis on ophiolitic materials in the western Alps (Mont Avic Natural Park, North-western Italy): soil properties and their relationships with substrate, vegetation and biological activity

    OpenAIRE

    D'Amico,

    2009-01-01

    Soils formed from ultramafic rocks are normally by pH values close to neutrality, a high base status and are usually rich in Mg, Fe and heavy metals. The low Ca/Mg ratio and the high heavy metal content could cause toxic effects in the biological communities. Plant communities, in particular, are usually different from nearby areas with different substrates and rich in endemisms and adapted species and subspecies. Despite their great environmental and ecological interest, pedological and e...

  15. Energia total de ruptura: um teste biomecânico para avaliação de material biológico com propriedade viscoelástica não linear Total energy of rupture: a biomechanical test to evaluate non-linear viscoelastic biological material

    Directory of Open Access Journals (Sweden)

    Feng Chung Wu

    2004-12-01

    also possible to generate descriptive and statistics reports and graphics through the data acquisition and analysis automatization and management. Conclusion: Based on physic-mechanical, computational and biomechanical concepts, the Total Energy of Rupture test provides mathematical analysis of the rat’s left colon segment behaviour during the experiments, demonstrating to be a possible method to measure the intrinsic resistance of this biological material presenting non-linear viscoelastic property.

  16. Accidents with potentially hazardous biological material among workers in hospital supporting services Accidentes con material biológico entre trabajadores de servicios de apoyo hospitalario Acidentes com material biológico entre trabalhadores dos serviços de apoio hospitalar

    Directory of Open Access Journals (Sweden)

    Silvia Rita Marin da Silva Canini

    2005-08-01

    Full Text Available Descriptive study was carried out to characterize the occupational accidents involving potentially contaminated material among workers of hospital supporting services. The study reviewed records of workers involved in these accidents and attended at a specialized outpatient clinic of a large tertiary care hospital between January 1997 and October 2001. A total of 2814 workers from different professional categories were attended during this period. Of these, 147 (5.2% belonged to the hospital supporting services and were the victims of 156 accidents, auxiliary cleaning personnel (80.2%, and over a third of the workers had not received any dose of hepatitis B vaccine (35.4%. Most accidents were due to sharp injuries (96.8% caused by inadequately discarded hollow needles. Chemoprophylaxis for HIV was not indicated in only 23.1% of cases. We conclude that these workers are also exposed to the possibility of acquiring blood-borne pathogens and that periodical education programs are needed.Estudio descriptivo fue caracterizar los accidentes ocupacionales con material potencialmente contaminado y los trabajadores de los Servicios de Apoyo Hospitalario. El estudio revisó los datos de los trabajadores involucrados en estos accidentes y atendidos en un ambulatorio especializado de un grande hospital terciario, en el periodo de enero de 1997 a octubre de 2001. Fueron atendidos en este periodo 2.814 trabajadores de diversas categorías profesionales. De estos, 147 (5,2% pertenecían al Servicio de Apoyo y registraron 156 accidentes. La categoría más atingida fue auxiliar de limpieza (80,2%. La mayoría de los trabajadores no había recibido ninguna dosis de la vacuna contra hepatitis B (35,4%. La mayoría de los accidentes fue corto-punzante (96,8% ocasionados por agujas ocas descartadas en local impropio. La quimioprofilaxis no fue indicada apenas en el 23,1% de los casos. Se concluye que estos profesionales también están sujetos a la contaminaci

  17. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  18. Biology of Blood

    Science.gov (United States)

    ... Mail Facebook TwitterTitle Google+ LinkedIn Home Blood Disorders Biology of Blood Overview of Blood Medical Dictionary Also ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  19. Engineering scalable biological systems

    OpenAIRE

    Lu, Timothy K.

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic, and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast, and mammal...

  20. Systems interface biology

    OpenAIRE

    Francis J Doyle; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Henc...

  1. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  2. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    OpenAIRE

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” tex...

  3. Upgrading Undergraduate Biology Education

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  4. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  5. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451. ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.458, year: 2014

  6. Influência do tipo de material suporte no desempenho de reatores biológicos de leito móvel na remoção de carbono e nitrificação de esgoto sanitário The influence of material support kind on the biological moving bed reactors performance used for the carbon removal and nitrification of sewage

    Directory of Open Access Journals (Sweden)

    Delmira Beatriz Wolff

    2010-06-01

    Full Text Available Neste trabalho foi mostrada a influência do tipo de material suporte: P4 (plástico reciclado rugoso, diâmetro médio de 2,31 mm, densidade de 900 kg.m-3, superfície específica potencial de 2.596 m².m-3sup e P5 (polietileno, pouco rugoso, forma cilíndrica, diâmetro médio de 10 mm, densidade de 880 kg.m-3, superfície específica potencial de 3.075m².m-³sup utilizados em dois reatores biológicos de leito móvel, fluxo contínuo, na remoção de carbono e nitrificação de esgoto sanitário, os quais foram divididos em duas fases, de acordo com a idade do lodo (IL: fase A: IL de 10 dias e fase B: IL de 3 dias. Foram aplicadas cargas orgânicas superficiais médias de 4,0 kgDQO.m-2.d-1 (P4 e de 4,1 kgDQO.m-2.d-1 (P5; e cargas superficiais de nitrogênio de 0,63 kgN.m-2.d-1 (P5 e de 0,66 kgN.m-2.d-1 (P5. Para o material P4, a remoção média foi de 87% de carbono e 83% de nitrogênio (fase A e 80% de carbono e 77% de nitrogênio (fase B. Para o P5, remoção de 63% de carbono e 55% de nitrogênio (Fase A e 59% de carbono e de nitrogênio (fase B. Com base nos resultados obtidos, verificou-se que a remoção de carbono e nitrogênio não foi influenciada pela idade do lodo, mas pelo tipo de material suporte (forma ou características de superfície e superfície disponível para o crescimento da biomassa.This paper presented the influence of material support kind: P4 (rugous recycled plastic, medium diameter of 2.31 mm, density of 900 kg.m-3, specific surface potential of 2,596 m².m-3sup and P5 (polietilene, cilindric shape, medium diameter of 10 mm, density of 880 kg.m-3, specific surface potential of 3,075m².m-3sup used in two continuous flux biological moving bed reactors using different material support to remove nitrogen and carbon from sewage, which was divided in two phases according to sludge retention time (SRT: phase A: SRT of 10 days and phase B: SRT of 3 days. The organic loading rates applied were 4.0 kgCOD.m-2.d-1 (P4 and

  7. Synthetic biological networks

    International Nuclear Information System (INIS)

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  8. Communication of 7 August 2007 from the Permanent Mission of Pakistan to the IAEA concerning the establishment of the oversight Board to monitor the implementation of Pakistan's export control on goods, technologies, materials and equipment related to nuclear and biological weapons and their Delivery Systems Act (Act No.V) 2004

    International Nuclear Information System (INIS)

    The Secretariat has received a Note Verbale dated 7 August 2007 from the Permanent Mission of Pakistan enclosing a copy of the Gazette of Pakistan S.R.O. No.693(I)/2007, dated 11 July 2007, regarding the establishment of the Oversight Board to monitor the implementation of Pakistan's Export Control on Goods, Technologies, Materials and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act (Act No.V) 2004, including the formation and functioning of Strategic Export Control Division. As requested in the Note Verbale, the Note Verbale and the enclosure thereto are circulated for the information of Member States

  9. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  10. Biological dosimetry; Dosimetria biologica

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C., E-mail: citlali.guerrero@inin.gob.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ) the works to establish a laboratory of biological dosimetry were initiated in 1998, with the purpose that could assist any situation with respect to the exposition to radiation, so much of the occupational exposed personnel as of individuals not related with the handling of radio-active material. The first activity that was realized was to develop the corresponding curves in vitro of dose response for different qualities and radiation types. In the year 2000 the curve corresponding to the gamma radiation of {sup 60}Co was published and up to 2002 the curve corresponding to the X rays of 58 KeV, 120 and 250 kVp. In all the cases, the curves contain the requirements to be used in the determination of the exposition dose. At the present time the curves dose-response are developing for neutrons take place in the reactor Triga Mark III of ININ. Additionally to these activities, cases of suspicion of accidental exposition to radiation have been assisted, using in a beginning the curves published by the IAEA and, from the year 2000, the curves developed in the ININ. (Author)

  11. Biological and Biomedical Coatings Handbook Applications

    CERN Document Server

    Zhang, Sam

    2011-01-01

    Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes--Processing and Characterization and Applications--this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contri

  12. Interaction of electromagnetic fields and biological tissues

    Science.gov (United States)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  13. Accidents with biological material and immunization against hepatitis B among students from the health area Accidente con material biológico y la vacunación contra la hepatitis B en estudiantes del área de la salud Acidente com material biológico e vacinação contra hepatite B entre graduandos da área da saúde

    Directory of Open Access Journals (Sweden)

    Elucir Gir

    2008-06-01

    Full Text Available Undergraduate students from the health area often handle piercing-cutting instruments in their academic activities, which exposes them to the risk of contracting infections. This study aimed to analyze accidents with biological material among these students. Out of 170 accidents registered, 83 (48.8% occurred with Dentistry students, 69 (40.6% with Medical students, 11 (6.5% with Nursing students and in 06 (3.5% of the cases there was no such information in the files. Most accidents, 106 (62.4%, occurred with students from private schools and 55 (32.3% with those from public schools. Percutaneous accidents occurred in 133 (78.2% exposures and there was immediate search for specialized health care in only 38 (21.3% accidents. In 127 (74.7% accidents, the immunization schedule against hepatitis B was complete. Therefore, schools need to offer courses and specific class subjects regarding biosafety measures, including aspects related to immunization, especially the vaccine against hepatitis B.La manipulación de instrumentos punzo cortantes por estudiantes del área de la salud es frecuente en la actividad académica, lo que los expone al riesgo de adquirir infecciones. Este estudio tuvo como objetivo analizar los accidentes con material biológico ocurridos en alumnos del área de la salud. De los 170 accidentes registrados, 83 (48,8% ocurrieron con alumnos del curso de Odontología, 69 (40,6% de Medicina, 11 (6,5% de Enfermería y en 06 (3,5% no había información en la ficha de atención. La mayoría, 106 (62,4%, ocurrió con alumnos de escuelas privadas y 55 (32,3% de públicas. Los accidentes percutáneos ocurrieron en 133 (78,2% exposiciones y en 38 (21,3% accidentes la búsqueda por atención especializada fue inmediata. En 127 (74,7% accidentes el esquema de vacunas contra hepatitis B estaba completo. Así es imprescindible que las escuelas ofrezcan cursos y/o disciplinas específicas sobre medidas de bioseguridad incluyendo aspectos

  14. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  15. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  16. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  17. Fatal case of a 27-year-old male after taking iboga in withdrawal treatment: GC-MS/MS determination of ibogaine and ibogamine in iboga roots and postmortem biological material.

    Science.gov (United States)

    Mazoyer, Cédric; Carlier, Jérémy; Boucher, Alexandra; Péoc'h, Michel; Lemeur, Catherine; Gaillard, Yvan

    2013-11-01

    We report the case of a man who died twelve hours after ingesting powdered iboga root, commonly taken for its stimulant and hallucinogenic properties. Ibogaine and ibogamine were quantified in the powder ingested and the victim's body fluids by GC-MS/MS after liquid-liquid extraction (Toxi-tubes A(®)). The concentrations of ibogaine measured in the blood samples taken at the scene and in the peripheral blood, urine, and gastric fluid samples taken during the autopsy were 0.65, 1.27, 1.7, and 53.5 μg/mL, while the iboga content in the powder was 7.2%. Moreover, systematic toxicological analyses of biological samples showed the presence of diazepam and methadone in therapeutic concentrations. Death was attributed to the ingestion of a substantial quantity of iboga in the context of simultaneous methadone and diazepam consumption. PMID:23919354

  18. Sustainable materials

    Science.gov (United States)

    Allwood, Julian M.

    2016-01-01

    Materials influence every aspect of the energy system; therefore, as well as developing new materials for energy generation, materials scientists should engage in public debate about the limitations of future innovations and the conservation of existing materials.

  19. Spectroscopy of biological nanocrystals

    OpenAIRE

    Ortac, Inanc; Severcan, Feride

    2007-01-01

    Nanocrystals have gained much interest in recent years, due to their unusual properties allowing interesting applications in physical and biological science. In this literature review, biological nanocrystals are discussed from the spectroscopic point of view. Firstly, the theory behind the outstanding abilities of the nanocrystals is described. Secondly, the spectroscopic properties of biological nanocrystals are mentioned. Lastly, the use of nanocrystals with various spectroscopic applicati...

  20. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  1. Biological detector and method

    Energy Technology Data Exchange (ETDEWEB)

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  2. Introducing Aquatic Biology

    OpenAIRE

    Kinne, Otto; Browman, Howard I.; Seaman, Matthias

    2007-01-01

    The Inter-Research Science Center (IR) journals Marine Ecology Progress Series (MEPS) and Aquatic Microbial Ecology (AME) have been receiving increasing numbers of high-quality manuscripts that are principally biological, rather than ecological. With regret, we have had to turn these submissions away. Also, leading limnologists have for many years suggested that IR should provide an outlet for top quality articles on freshwater biology and ecology. Aquatic Biology (...

  3. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  4. Glycobiology Current Molecular Biology

    OpenAIRE

    Sabire KARAÇALI

    2003-01-01

    Carbohydrate chemistry evolved into carbohydrate biochemistry and gradually into the biology of carbohydrates, or glycobiology, at the end of the last century. Glycobiology is the new research area of modern molecular biology, and it investigates the structure, biosynthesis and biological functions of glycans. The numbers, linkage types (a or b), positions, binding points and functional group differences of monosaccharides create microheterogeneity. Thus, numerous glycoforms with precise stru...

  5. Foundations of biology

    OpenAIRE

    Sikorav, Jean-Louis; Braslau, Alan; Goldar, Arach

    2014-01-01

    It is often stated that there are no laws in biology, where everything is contingent and could have been otherwise, being solely the result of historical accidents. Furthermore, the customary introduction of fundamental biological entities such as individual organisms, cells, genes, catalysts and motors remains largely descriptive; constructive approaches involving deductive reasoning appear, in comparison, almost absent. As a consequence, both the logical content and principles of biology ne...

  6. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  7. Biogenic Impact on Materials

    Science.gov (United States)

    Stephan, Ina; Askew, Peter; Gorbushina, Anna; Grinda, Manfred; Hertel, Horst; Krumbein, Wolfgang; Müller, Rolf-Joachim; Pantke, Michael; Plarre, Rüdiger (Rudy); Schmitt, Guenter; Schwibbert, Karin

    Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

  8. Biological aerosol background characterization

    Science.gov (United States)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  9. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  10. Generation and characterization of biological aerosols for laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  11. Evaluación químico-biológica de diferentes materiales utilizados como envases de adhesivos quirúrgicos Chemical and biological evaluation of different materials used as containers of surgical adhesives

    Directory of Open Access Journals (Sweden)

    María Elena Cañizares Graupera

    2004-12-01

    Full Text Available entrar en contacto con el adhesivo y se evaluó el resultado estadísticamente mediante el análisis de la varianza y utilizando la t de Student. Se aprovechó el experimento para evaluar la adhesión e histotoxicidad sobre el tejido tratado. El objetivo fue implementar un método sensible y sencillo para evaluar estas interferencias. De los resultados se prevé que estos materiales no serán útiles para el envase, pues todos presentan variación significativa del peso. Se concluyó que el método es sensible y resulta adecuado para posteriores evaluaciones de otros materiales. El uso de técnicas interdisciplinarias en un mismo experimento permite integrar resultados y así obtener mayor información con un mínimo de animales de experimentación. El resultado pudiera ser de utilidad para la toxicología regulatoria, pues no se dispone de normas vigentes para este tipo de evaluación.Analytical chemistry methods were unified by using infrared spectroscopy and gravimetric evaluation of the materials before and after getting in touch with the adhesive. The results were statistically evaluated by analyzing the variance and using the t student test. The experiment was availed to evaluate the adhesion and histotoxicity in the treated tissue. The objective was to implement a sensitive and simple method to assess these interferences. According to the results, these materials are not useful for the container, since they all present a significant weight variation. It was concluded that the method is sensitive and adequate for further evaluations of other materials. The use of interdisciplinary techniques in the same experiment allows to integrate results and obtain more information with a minimum of lab animals. The result could be useful for the regulating toxicology, since there are no standing norms for this type of evaluation.

  12. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  13. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  14. Bioinformatics and School Biology

    Science.gov (United States)

    Dalpech, Roger

    2006-01-01

    The rapidly changing field of bioinformatics is fuelling the need for suitably trained personnel with skills in relevant biological "sub-disciplines" such as proteomics, transcriptomics and metabolomics, etc. But because of the complexity--and sheer weight of data--associated with these new areas of biology, many school teachers feel…

  15. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  16. Biological pretreatment sewages water

    OpenAIRE

    Veselý, Václav

    2009-01-01

    Bachelor's thesis deals with waste water purification at the stage of pre-inflow of water into the biological waste water treatment plants. It is divided into two parts, a theoretical and calculation. The theoretical part deals about sewage water and the method of biological treatment. Design proposal is part of the activation tank for quantity EO.

  17. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  18. Synthetic biology and biosecurity: challenging the "myths".

    Science.gov (United States)

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance. PMID:25191649

  19. Biological sample collector

    Science.gov (United States)

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  20. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  1. Selenium determination in biological materials by neutron activation analysis - statistical comparison between the use of 77m Se (t1/2 17.45 s) and 75 Se (t1/2 = 119,8 d)

    International Nuclear Information System (INIS)

    Selenium is nowadays considered to be an essential trace element in human diet. The most extensively studied biochemical role of this element is related to its participation in the composition of glutathione peroxidase. This enzyme acts as an antioxidant for the free radicals formed in the human body. In the present work, selenium was determined by INAA in reference materials ('Human hair' IAEA-085, 'Human hair' IAEA-086, 'Dogfish Liver' DOLT-1 e 'Dogfish Muscle' DORM-1) and in toenails and vitamin supplement, using the short-lived radioisotope 77m Se. The usual method, which utilizes long- lived 75 Se, was also employed, in order to make a comparative study. A statistical test was applied for this comparison. It was verified that the average concentrations of selenium, in the reference materials and in the samples analyzed, do not differ statistically at a significance level of 0.05, which indicates the applicability of the short-lived 77m Se for INAA of the matrixes studied. (author)

  2. Mechanical Treatment: Material Recovery Facilities

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bilitewski, B.

    2011-01-01

    .g. shredding prior to incineration or screening after composting). The mechanical treatment unit process is in the latter case an integrated part of the overall treatment usually with the purpose of improving the quality of the input material, or the efficiency or stability of the biological or thermal process......, or improving the quality of the output material. Examples hereof appear in the chapters on biological and thermal treatment. Mechanical treatment unit processes may also appear at industries using recycled material as part of their feedstock, for example, for removing impurities and homogenizing the...... material. Examples hereof appear in the chapters describing the recycling of materials. Mechanical treatment unit processes most often perform only one function, but placing different mechanical unit processes in a series or ‘treatment train’ creating a material recovery facility, often called an MRF...

  3. Applications—Influence of Biology on Engineering

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent

    2006-01-01

    Examples are presented showing the way in which biological systems produce a range of functions which can be implemented in engineering, such as feedback-control of stiffness (muscles and nervous system), the design of fault-free structures (trees) and damage-tolerant materials (wood) and high performance insulation (penguin feathers) and shock absorbers (hedgehog spines).

  4. Biological characteristics and clinical application of artificial hip joint weight-bearing surface materials%人工髋关节负重面材料的生物特性及其临床应用

    Institute of Scientific and Technical Information of China (English)

    唐焜

    2012-01-01

    背景:人工髋关节假体材料对髋关节置换的成功率及对患者治愈率起到决定性作用.目的:评价不同组合方式髋关节负重面材料的性能及置入体内与机体的生物相容性.方法:以"全髋关节置换,人工髋关节,金属,陶瓷,聚乙烯,生物相容性,临床应用;total hip replacement,Artificialhip,prosthetic materials,Biocompatibility,clinical application"为关键词,应用计算机检索2001-01/2011-12 万方数据库、PubMed 数据库有关人工髋关节负重面生物材料与宿主生物相容性的文章.结果与结论:金属-超高分子量聚乙烯组合是目前常用的组合,也是衡量其他组合的金标准,但其磨损颗粒引起周围组织反应导致骨溶解和无菌性假体松动;金属-高交联聚乙烯、金属-金属、陶瓷-陶瓷和陶瓷-聚乙烯组合均在一定程度上减少了磨损,但金属离子毒性、陶瓷脆性、造价高等仍然是需要解决的问题.理想的负重面材料应具有良好生物相容、耐蚀性、耐磨性、耐疲劳性、强韧性好等特点,目前人工髋关节负重面组合材料各有优缺点.因此,临床医师针对不同的患者,采取个体化治疗原则,综合患者病情和经济状况等多方面因素,选择合适假体组合类型,以期达到最佳临床疗效.%BACKGROUND: Artificial hip prosthesis materials play a decisive role in the success rates of hip replacement and the recovery rate for patientsOBJECTIVE: To evaluate the properties of hip joint weight-bearing surface materials with different combinations, as well as the biocompatibihty of the materials and the host after implanted in vivoMETHODS: The keyword of "total hip replacement, artificial hip joint, metal, ceramic, polyethylene, biocompatibihty, clinical application" in Chinese and "total hip replacement, artificial hip, prosthetic materials, biocompatibihty, clinical application" in English were used to retrieve the articles published from January 2001 to

  5. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    OpenAIRE

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-...

  6. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  7. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  8. Characterization and remote sensing of biological particles using circular polarization

    CERN Document Server

    Nagdimunov, Lev; Mackowski, Daniel

    2014-01-01

    Biological molecules are characterized by an intrinsic asymmetry known as homochirality. The result is optical activity of biological materials and circular polarization in the light scattered by microorganisms, cells of living organisms, as well as molecules (e.g. amino acids) of biological origin. Lab measurements (Sparks et al. 2009a, b) have found that light scattered by certain biological systems, in particular photosynthetic organisms, is not only circular polarized but contains a characteristic spectral trend, showing a fast change and reversal of sign for circular polarization within absorption bands. Similar behavior can be expected for other biological and prebiological organics, especially amino acids. We begin our study by reproducing the laboratory measurements for photosynthetic organisms through modeling the biological material as aggregated structures and using the Multiple Sphere T-matrix (MSTM) code for light scattering calculations. We further study how the spectral effect described above d...

  9. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  10. 生物材料修复视网膜脱离的临床应用进展%Clinical advanced research of biological materials for repairing retinal detachment

    Institute of Scientific and Technical Information of China (English)

    靳冬; 张果忠

    2011-01-01

    BACKGROUND: Designing various biomaterials for intraocular lens can provide better image quality and myopia/hyperopia function for retinal detachment.OBJECTIVE: To evaluate the effectiveness of different biomaterials in the repair after retinal detachment.METHODS: A computer-based online retrieval of Wanfang database from January 1999 to December 2009 was performed for studies regarding the retinal detachment, with key words of “retinal detachment; materials” in Chinese.RESULTS AND CONCLUSION: Many studies have investigated the clinical reports of biomaterials in the treatment of retinal detachment. With the application of micro -surgery in ophthalmology and the development of micro -surgical instruments in recent 20 years, the materials and technique for the production of intraocular lens have been greatly improved, cataract treatment combined with posterior chamber intraocular lens implantation has become widely used to regain the eyesight, considering as an important advanced progress of ophthalmology. The new folding, injectable materials such as acrylic ester and silicone gel, can reduce the immune rejection and complications such as posterior capsule opacification, reported as many studies. There are many material candidates for retinal detachment, we should make a choice according to the actual situation of patients, thus achieving the satisfactory results.%背景:各种生物材料人工晶状体的设计为视网膜脱离提供了更好的成像质量和近视、远视功能.目的:评价不同生物材料修复视网膜脱离的效果.方法:采用电子检索的方式在万方数据库中检索1999-01/2009-12有关视网膜脱离的研究,关键词为"视网膜脱离;材料".结果与结论:关于治疗视网膜脱落的生物材料临床报道很多.近20多年来,随着显微手术在眼科的应用和显微手术器械的发展,人工晶状体的制作材料及制作工艺的不断改进,白内障联合后房型人工晶状体植入已成为国

  11. A Molecular Biology Database Digest

    OpenAIRE

    Bry, François; Kröger, Peer

    2000-01-01

    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration...

  12. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure;

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii...

  13. 2.3.1 Biological Effects of Ionizing Radiations

    Science.gov (United States)

    Kaul, A.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.1 Biological Effects of Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the comtents:

  14. SOIL BIOLOGY AND ECOLOGY

    Science.gov (United States)

    The term "Soil Biology", the study of organism groups living in soil, (plants, lichens, algae, moss, bacteria, fungi, protozoa, nematodes, and arthropods), predates "Soil Ecology", the study of interactions between soil organisms as mediated by the soil physical environment. oil ...

  15. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  16. Vibrations, Quanta and Biology

    CERN Document Server

    Huelga, S F

    2013-01-01

    Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme -- the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

  17. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  18. Enhanced Biological Sampling Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of a variety of biological, reproductive, and energetic data collected from fish on the continental shelf in the northwest Atlantic Ocean....

  19. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  20. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations