WorldWideScience

Sample records for biological materials final

  1. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  2. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  3. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  4. Making Biological Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent

    2005-01-01

    @@ 1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together.

  5. Artful interfaces within biological materials

    Directory of Open Access Journals (Sweden)

    John W.C. Dunlop

    2011-03-01

    Full Text Available Biological materials have a wide range of mechanical properties matching their biological function. This is achieved via complex structural hierarchies, spanning many length scales, arising from the assembly of different sized building blocks during growth. The interfaces between these building blocks can increase resistance to fracture, join materials of different character, make them deform more easily and provide motility. While they represent only a tiny fraction of the overall volume, interfaces are essential for the integrity and function of the overall tissue. Understanding their construction principles, often based on specialized molecular assemblies, may change our current thinking about composite materials.

  6. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko.

  7. 78 FR 16472 - Deposit of Biological Materials

    Science.gov (United States)

    2013-03-15

    ... United States Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection....'' SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of a patent application is... use the invention as specified by 35 U.S.C. 112. The term ``biological material'' is defined by 37...

  8. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment request....Fawcett@uspto.gov . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line of....Hanlon@uspto.gov . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part...

  9. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    Energy Technology Data Exchange (ETDEWEB)

    Oehrlein, Gottlieb S. [Univ. of Maryland, College Park, MD (United States); Seog, Joonil [Univ. of Maryland, College Park, MD (United States); Graves, David [Univ. of California, Berkeley, CA (United States); Chu, J. -W. [Univ. of California, Berkeley, CA (United States)

    2014-09-24

    temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.

  10. Suspension membrane reactor for biological elimination of non-degradable materials from mixed effluents. Final report; Suspensionsmembranreaktor zur biologischen Eliminierung schwer abbaubarer Stoffe aus Abwassergemischen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Raebiger, N.; Schierenbeck, A.

    2002-07-01

    An earlier research project had shown that a combined process involving membrane filtration and a bioreactor ensure substrate-specific times of residue inside the reactor, i.e. high selective conversation at low discharge rates. The second project aimed at higher flexibility. For this purpose, a two-stage suspension membrane reactor was developed in which the filtration stage and the bioreactor were decoupled. The liquid effluents are concentrated first in a nanofiltration stage, and the permeate, which should be free of non-degradable materials, is discharged. The concentrate is treated in the biological reaction stage and recirculated into the nanofiltration stage in order to ensure complete degradation during a substrate-specific time of residue. An intermediate microfiltration stage serves to retain biomass and prevent the growth of a biofilm in the nanofiltration stage. The method was tested with the practically relevant model pollutant 4-chlorophenol and a real industrial effluent from the antifelting stage of a Bremen woollen mill (Bremer Wollkaemmerei), with a high AOX concentration. [German] Im vorhergehenden Teil des Forschungsvorhabens konnte gezeigt werden, dass durch eine kombinierte Anwendung der Membranfiltration mit einem Bioreaktor eine substratspezifische Verweilzeitverteilung im Reaktor und damit eine hohe selektive Umsatzleistung bei gleichzeitig niedrigen Ablaufwerten realisierbar ist. Um eine groessere Flexibilitaet bei dem Einsatz verschiedener Membranmodule zu realisieren, wurde in dem zweiten Abschnitt des Forschungsvorhabens eine zweistufige Anlage vom Typ des Suspensions-Membranreaktors entwickelt, bei der Filtration und Bioreaktor entkoppelt werden. Das zu reinigende Abwasser wird zunaechst in einer Nanofiltrationsstufe aufkonzentriert, das moeglichst an schwer abbaubaren Stoffen freie Permeat bildet den Ablauf der Anlage. Der Konzentratstrom wird in der nachfolgenden Reaktionsstufe biologisch behandelt und in die Nanofiltrationsstufe

  11. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  12. Thermoelectric material development. Final report

    International Nuclear Information System (INIS)

    A search was made for improved TE materials that could have higher efficiency than state-of-the-art SiGe alloys used in Radioisotope Thermoelectric Generators. A new family of materials having the skutterudite structure was identified (cubic space group Im3, formula (Fe, Co, Ni)As3). Properties of n-type IrSb3, CoSb3, and their solid solutions were investigated. Pt, Te, Tl, and In were used as dopants. The thermal conductivity was reduced by about 70% for the solid solutions vs the binary compounds. A maximum ZT of about 0.36 was measured on Co-rich solid solutions which is 160% improved over that of the binary compounds

  13. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  14. Accidents with biological material in workers

    OpenAIRE

    Cleonice Andréa Alves Cavalcante; Elisângela Franco de Oliveira Cavalcante; Maria Lúcia Azevedo Ferreira de Macêdo; Eliane Cavalcante dos Santos; Soraya Maria de Medeiros

    2013-01-01

    The objective was to describe the accidents with biological material occurred among workers of Rio Grande do Norte, Brazil, between 2007 and 2009. Secondary data were collected in the National Notifiable Diseases Surveillance System by exporting data to Excel using Tabwin. Among the types of occupational accidents reported in the state, the biological accidents (no. = 1,170) accounted for 58.3% with a predominance of cases among nurses (48.6%). The percutaneous exposure was the most frequent ...

  15. An Experimental Evaluation of the Effectiveness of the Biological Sciences Curriculum Study Special Materials Approach to Teaching Biology to the Slow Learner.

    Science.gov (United States)

    Welford, John Mack

    Students (comparable in intelligence and ability) in slow-learning classes using either "Biological Sciences Curriculum Study (BSCS) Special Materials" or some other slow-learner biology materials, were compared on the basis of scores on the "Nelson Biology Test", the "Biological Sciences; Patterns and Processes Final Examination", and two short…

  16. Neutron interactions with biological tissue. Final report

    International Nuclear Information System (INIS)

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of neutrons with tissue through the ejected secondary charged particles. The authors used theoretical calculations whose input includes neutron cross section data; range, stopping power, ion yield, and straggling information; and geometrical properties. Outputs are initial and slowing-down spectra of charged particles, kerma factors, average values of quality factors, microdosimetric spectra, and integral microdosimetric parameters such as bar yF, bar yD, y*. Since it has become apparent that nanometer site sizes are also relevant to radiobiological effects, the calculations of event size spectra and their parameters were extended to these smaller diameters. This information is basic to radiological physics, radiation biology, radiation protection of workers, and standards for neutron dose measurement

  17. Using Raman spectroscopy to characterize biological materials.

    Science.gov (United States)

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis. PMID:26963630

  18. Structure and mechanics of interfaces in biological materials

    Science.gov (United States)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  19. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation.

  20. Material science lesson from the biological photosystem

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  1. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    OpenAIRE

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) quest...

  2. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  3. Diffusion theory in biology: a relic of mechanistic materialism.

    Science.gov (United States)

    Agutter, P S; Malone, P C; Wheatley, D N

    2000-01-01

    Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

  4. Final characterization report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    This report provides a compilation of characterization data for the 108-F Biological Laboratory collected during the period of May 7, 1996 through August 29, 1996. The 108-F Biology Laboratory is located on the Hanford Site in Richland, Washington. The characterization activities were organized and implemented to evaluate the radiological status of the laboratory and to identify hazardous materials. This report reflects the current conditions and status of the laboratory. Information in this report is intended to be utilized to prepare an accurate cost estimate for building demolition, to aid in planning decontamination and demolition activities, and allow proper disposal of demolition debris

  5. Final Report Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C.

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  6. Buried waste containment system materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  7. Ultrafast spectroscopy in biological and organic materials

    Science.gov (United States)

    Bai, Guang

    This thesis consists of an experimental investigation of the dynamics of the biological material, visual pigment rhodopsin, and the persistent hole burning material, octaethylpophine-doped polystyrene (OEP/PS), utilizing femtosecond laser spectroscopy. The cis-trans isomerization of the retinal chromophore in rhodopsin at ambient temperature has been studied by employing a novel three beam femtosecond transient absorption method, and a new model is proposed. Two- thirds of the excited rhodopsin molecules isomerize promptly via curve-crossing to form bathorhodopsin in ~200 femtoseconds. The remaining third will miss curve-crossing and stay in the excited state, which never isomerizes and decays to the ground state rhodopsin in ~3 picoseconds. These results are consistent with recent two-beam femtosecond transient experiments[1-6] and agree well with molecular dynamics calculations[7-8]. The three-beam pump-probe measurement is an important technical advance in the characterization of transient species in the initial step of vision, which directly measures the formation dynamics of the ground state species. Using this technique, we could drive the bathorhodopsin back into rhodopsin. This is the first experimental evidence of trans to cis formation of rhodopsin at ambient temperature. The characteristic parameters and phototransformation pathway of OEP/PS have been studied for optical storage applications. Femtosecond accumulated photon echo and time-resolved absorption spectroscopy were used. The optical dephasing time T2 for a laser bandwidth covering the whole inhomogeneous zero-phonon absorption band is 200 ± 50 ps at 1.4 K. T2 reduces significantly to 100 ps when the temperature increases to 4.2 K. This temperature dependence indicates that OEP/PS must operate at very low temperatures. The saturation dose is 6 J/cm2. The maximum number of readings is equivalent to the same amount of energy of writing. 150 fs single-shot detection of a 4-bit packet stored in an

  8. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell University; Mutolo, Paul F [Cornell University

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for: • the development and improved performance of materials for both electrodes at which storage or conversion occurs • understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity • development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed • development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  9. Energy Materials Center at Cornell: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)

    2015-01-02

    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  10. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  11. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  12. Material for Point Design (final summary of DIME material)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  13. The acquisition of dangerous biological materials :

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  14. PROTECTION OF WOODEN MATERIALS AGAINST BIOLOGICAL ATTACK BY USING NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Michal Havrlik

    2015-04-01

    Full Text Available This article is focused on protection of wooden materials by using nanofibrous textiles with biocidal addition, which continues on the work of a group at the Center for Nanotechnology at the Faculty of Civil Engineering in the CTU. Timber is a natural material which is predisposed for biodegradation and therefore it is essential to study suitable and effective protection against microorganisms. Wood is a material susceptible to biological corrosion and therefore it is necessary to protect it. The study compares biocidal efficiency of polymer solution as a coating and as a layer from nanofiber textiles. We used polyvinyl alcohol (PVA as a basic polymer which was enriched by substances from commercial Lignofix E – profi, solution of CuSO4 · 5H2O and AgNO3 and finally colloidal silver as an example of nanoparticles. The final concentration of the biocidal substance was 1 (v/wt% in fiber. The nanofiber textiles are produced on the device Nanospider NS LAB 500 (Elmarco, CR on cylinder rotating electrode. The study was divided into two parts, the first being an agar plate test and the second a test on samples from timber. The mixture of mold was used as the model organism. (Alternaria tenuissima, Pochonia bulbiosa, Trichoderma viride and Acremonium sclerotigenum. Comparison of efficiency between the polymer paint and nanofiber textiles showed no difference. The best results were shown by PVA with an addition of substances from the commercial biocidal treatment Lignofix-E Profi on the agar plate. The difference of result was shown on timbre samples, finding that the best results were with treatment by PVA doped by Silver nitrate. The anticipated results were shown by treatment with non-doped PVA, which does not have any fungicidal protective effect.

  15. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    Science.gov (United States)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  16. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  17. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  18. Support of the IMA summer program molecular biology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.

    1995-08-01

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The mathematical sciences accompany and support much of the progress achieved by experiment and computation, as well as provide insight into geometric and topological properties of biomolecular structure and processes. The 4 week program at the IMA brought together biologists and mathematicians leading researchers, postdocs, and graduate students. It focused on genetic mapping and DNA sequencing, followed by biomolecular structure and dynamics. High-resolution linkage maps of genetic marker were discussed extensively in relation to the human genome project. The next level of DNA mapping is physical mapping, consisting of overlapping clones spanning the genome. These maps are extremely useful for genetic analysis. They provide the material for less redundant sequencing and for detailed searches for a gene among other things. This topic was also extensively studied by the participants. From there, the program moved to consider protein structure and dynamics; this is a broad field with a large array of interesting topics. It is of key importance in answering basic scientific questions about the nature of all living organisms, and has practical biomedical applications. The major subareas of structure prediction and classification, techniques and heuristics for the simulation of protein folding, and molecular dynamics provide a rich problem domain where mathematics can be helpful in analysis, modeling, and simulation. One of the important problems in molecular biology is the three-dimensional structure of proteins, DNA and RNA in the cell, and the relationship between structure and function. The program helped increased the understanding of the topology of cellular DNA, RNA and proteins and the various life-sustaining mechanisms used by the cell which modify this molecular topology.

  19. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  20. Materiomics: biological protein materials, from nano to macro

    Directory of Open Access Journals (Sweden)

    Steven Cranford

    2010-11-01

    Full Text Available Steven Cranford, Markus J BuehlerCenter for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and

  1. Analysis and Design of Biological Materials and Structures

    CERN Document Server

    Öchsner, Andreas; Altenbach, Holm

    2012-01-01

    This collection provides researchers and scientists with advanced analyses and materials design techniques in Biomaterials and presents mechanical studies of biological structures. In 16 contributions well known experts present their research on Stress and Strain Analysis, Material Properties, Fluid and Gas mechanics and they show related problems.

  2. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  3. FY05 LDRD Final Report, A Revolution in Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Bajt, S; Balhorn, R; Barty, A; Barsky, D; Bogan, M; Chung, S; Frank, M; Hau-Riege, S; Ishii, H; London, R; Marchesini, S; Noy, A; Segelke, B; Szoke, A; Szoke, H; Trebes, J; Wootton, A; Hajdu, J; Bergh, M; Caleman, C; Huldt, G; Lejon, S; der Spoel, D v; Howells, M; He, H; Spence, J; Nugent, K; Ingerman, E

    2006-01-20

    X-ray free-electron lasers (XFELs) are currently under development and will provide a peak brightness more than 10 orders of magnitude higher than modern synchrotrons. The goal of this project was to perform the fundamental research to evaluate the possibility of harnessing these unique x-ray sources to image single biological particles and molecules at atomic resolution. Using a combination of computational modeling and experimental verification where possible, they showed that it should indeed be possible to record coherent scattering patterns from single molecules with pulses that are shorter than the timescales for the degradation of the structure due to the interaction with those pulses. They used these models to determine the effectiveness of strategies to allow imaging using longer XFEL pulses and to design validation experiments to be carried out at interim ultrafast sources. They also developed and demonstrated methods to recover three-dimensional (3D) images from coherent diffraction patterns, similar to those expected from XFELs. The images of micron-sized test objects are the highest-resolution 3D images of any noncrystalline material ever formed with x-rays. The project resulted in 14 publications in peer-reviewed journals and four records of invention.

  4. The host response to allogeneic and xenogeneic biological scaffold materials.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2015-05-01

    The clinical use of biological scaffold materials has become commonplace. Such scaffolds are composed of extracellular matrix (ECM), or components of ECM, derived from allogeneic or xenogeneic tissues. Such scaffold materials vary widely in their source tissue, processing methods and sterilization methods. The success or failure of an ECM scaffold for a given application is dependent on the host response following implantation; a response that is largely mediated by the innate immune system and which is influenced by a numerous factors, including the processing methods used in the preparation of biological scaffolds. The present paper reviews various aspects of the host response to biological scaffolds and factors that affect this response. In addition, some of the logistical, regulatory and reconstructive implications associated with the use of biological scaffolds are discussed. PMID:24668694

  5. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. PMID:25393596

  6. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area.

  7. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  8. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2008-05-01

    Full Text Available Near-infrared fluorescent (NIRF materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  9. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  10. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  11. Electron Microscopy of Biological Materials at the Nanometer Scale

    Science.gov (United States)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  12. Biological evaluation of dental materials, in vitro and in vivo

    International Nuclear Information System (INIS)

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  13. The preparation of biological reference materials for QUASIMEME

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    2011-01-01

    Biological materials, consisting of three different batches of mussels; from Den Helder harbour (POPs, TBT), Irish mussels (metals) and Wadden Sea mussels, fortified with highly contaminated mussels from Belgium (POPs), and of one batch of turbot liver (metals) have been prepared for use in QUASIMEM

  14. Dosimetry using environmental and biological materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  15. Dosimetry using environmental and biological materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R.

    1996-09-01

    Although theoretical models have been the traditional tool for assessment of doses delivered by nuclear accidents, their use is now accompanied by increasing political and scientific demand for physical measurements which provide site specific dose information related directly to the original events, can be used to verify and augment the theoretical models, and can be performed and reflicated by independent laboratories. This report details a four year effort to improve the sensitivity and reliability of retrospective methods, to collaborate with laboratories engaged in related research, and to share the technology with startup laboratories seeking similar capabilities.

  16. Synthetic Self-Assembled Materials in Biological Environments.

    Science.gov (United States)

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  17. Biological upgrading of coal-derived synthesis gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  18. FDTD Simulation of Exposure of Biological Material to Electromagnetic Nanopulses

    CERN Document Server

    Simicevic, N; Simicevic, Neven; Haynie, Donald T

    2004-01-01

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed in the time domain using the finite difference-time domain method (FDTD). The approach required existing Cole-Cole model-based descriptions of dielectric properties of biological matter to be re-parametrized using the Debye model, but without loss of accuracy. The approach has been applied to several tissue types. Results show that the electromagnetic field inside a biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behavior inside a tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 $kV/m$ nanopulses is insufficient to change the temperature of the exposed material for the pulse repetition rates of 1 $MHz$ or less.

  19. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  20. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  1. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    Directory of Open Access Journals (Sweden)

    Susy Albert

    2012-12-01

    Full Text Available Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepense culm were prepared and subjected to four different pretreatment. Daedaleopsis confragosa was found to be effective in biopulping with a supplement of Potato dextrose broth medium to the raw material.

  2. Development of methods for determining aflatoxins in biological material

    OpenAIRE

    Kussak, Anders

    1995-01-01

    In this thesis, it is shown how aflatoxins can be determined in biological material. The thesis is a summary of five papers. Aflatoxins are carcinogenic mycotoxins produced by Aspergillus moulds. Methods were developed for the determination of aflatoxins in samples of airborne dust and human urine collected at feed factories. For the dust samples from such agricultural products as copra, cotton seed and maize, methods were developed for the determination of aflatoxins B1, B2, G1 and G2. For u...

  3. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    OpenAIRE

    Susy Albert; Amee Padhiar

    2012-01-01

    Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepens...

  4. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  5. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  6. OECD Policy Recommendations on Security for Biological Materials

    International Nuclear Information System (INIS)

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  7. Interfacing materials science and biology for drug carrier design.

    Science.gov (United States)

    Such, Georgina K; Yan, Yan; Johnston, Angus P R; Gunawan, Sylvia T; Caruso, Frank

    2015-04-01

    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.

  8. Molecular biological enhancement of coal biodesulfurization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  9. Advanced Tomography Techniques For Inorganic, Organic, and Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Friedrich, Heiner

    2016-07-01

    Three-dimensional (3D) tomography using electrons and x-rays has pushed our understanding of the micro- and nanoscale spatial organization for biological, organic and inorganic materials. While significant impact has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition and function of complex 3D assemblies across multiple scales. In this article we highlight several frontiers where new developments in tomography are empowering all new science across biology, chemistry and physics. The 5 articles that appear in this MRS Bulletin Issue describe in detail these latest developments in analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.

  10. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  11. The role of material in homogeneities in biological growth

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2005-01-01

    Full Text Available We investigate the influence of the material in homogeneities that are generated by an isotropic growth on the source of mass acting within a growing living tissue. In order to do that, we need to study the interaction between these material in homogeneities and the chemical agents dissolved within the tissue. For this purpose, we use some ideas and methods from Condensed Matter Physics (e.g., the Path Integral technique employed in modeling Brownian processes and apply them to the Continuum Mechanics description of volumetric Growth. We believe that this approach may provide new physical insight into the interactions between the macroscopic dynamics of living systems and the evolution of the subsystems which activate biological processes.

  12. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  13. New Materials for Electric Drive Vehicles - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  14. Access and benefit sharing of Antarctica's biological material.

    Science.gov (United States)

    Puig-Marcó, Roser

    2014-10-01

    Searching and sampling of Antarctic Biological Material (ABM) is happening with no explicit regulation on access and benefit sharing requirements. Patents already exist on inventions stemming from Antarctic living organisms. The Antarctic Treaty System (ATS) provides mechanisms to ensure that scientific knowledge and data generated from the collection and use of ABM are shared, although commercialization might be a threat to this free exchange of scientific knowledge. Some of the underlying problems regarding the access and benefit sharing of ABM are that under the ATS there are gaps concerning definitions, access to specimens, benefit sharing, commercialization and reporting issues. The Antarctic Treaty Consultative Parties (ATCPs) have decided that the Antarctic Treaty Consultative Meeting (ATCM) is the competent body to discuss the matter, and the ATS is the appropriate framework for managing the collection of biological material in the Antarctic Treaty area and for considering its use. Nevertheless, opinions diverge as to the need for more specific rules on access and benefit sharing other than that already resulting from the obligation to give prior notification and share scientific results.

  15. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis

    Science.gov (United States)

    Hasenekoglu, Ismet; Timucin, Melih

    2007-01-01

    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the "case". The goal of the…

  16. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  17. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  18. State surveillance of radioactive material transportation. Final report

    International Nuclear Information System (INIS)

    The main objective of this final report on the state surveillance of the transportation of radioactive material (RAM) is to suggest the most cost-effective inspection areas where enforcement actions might be taken by the states during their participation in the State Hazardous Materials Enforcement Development (SHMED) Program. On the basis of the lessons learned from the surveillance program, these actions are enforcement at low-level radioactive burial sites by means of civil penalties and site use suspension; enforcement at airports and at terminals that forward freight; and enforcement of courier companies. More effective and efficient enforcement can be achieved through instrumented police patrol cars and remote surveillance because they require the least amount of time of enforcement personnel. In addition, there is a strong relationship between effective emergency response and enforcement because the appropriate shipping papers, placarding and knowledge of appropriate emergency response procedures lead to improved emergency response. These lessons originate from a ten-state surveillance program from 1977 through 1981 jointly sponsored by the US Nuclear Regulatory Commission (NRC) and DOT. The states give recommendations in the categories of education, training, expanded surveillance, coordination and enforcement. The topics of special interest covered include low-level radioactive waste disposal sites, airports, cargo terminals, highways, ports, and accidents and incidents. The three most common problems in compliance with RAM transportation regulations reported by the states are incorrect package labeling; improper shipping papers; and incorrect or missing placards. Other common problems reported by the states are summarized. The relationship to other studies, the status of the SHMED Program, a synopsis of state RAM surveillance reports, and NRC/DOT expenditures are given

  19. The High-Strain Rate Loading of Structural Biological Materials

    Science.gov (United States)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  20. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  1. Analyze of histopathelogical for medical devices and biological material on biocompatibility evaluation

    Institute of Scientific and Technical Information of China (English)

    NIE Wei; JIANG Hua; WANG Li; GUAN Jing-fang; SHI Hong-dao

    2001-01-01

    @@ The toxicity and biocompatibility of medical devices and biological material areprominent facts in evaluation of the material. There are two major methods to evaluate the biocompatibility of biological materials . one kind is to do vivo. The materialor extracts are used to study the effect of the material on the growth, metabolismand proliferation of the histocyte.

  2. New Method for Monitoring the Process of Freeze Drying of Biological Materials.

    Science.gov (United States)

    Alkeev, Nikolay; Averin, Stanislav; von Gratowski, Svetlana

    2015-12-01

    A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to -70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value. PMID:26022547

  3. Imaging of nonthrombotic pulmonary embolism: biological materials, nonbiological materials, and foreign bodies.

    Science.gov (United States)

    Bach, Andreas Gunter; Restrepo, Carlos Santiago; Abbas, Jasmin; Villanueva, Alberto; Lorenzo Dus, María José; Schöpf, Reinhard; Imanaka, Hideaki; Lehmkuhl, Lukas; Tsang, Flora Hau Fung; Saad, Fathinul Fikri Ahmad; Lau, Eddie; Rubio Alvarez, Jose; Battal, Bilal; Behrmann, Curd; Spielmann, Rolf Peter; Surov, Alexey

    2013-03-01

    Nonthrombotic pulmonary embolism is defined as embolization to the pulmonary circulation caused by a wide range of substances of endogenous and exogenous biological and nonbiological origin and foreign bodies. It is an underestimated cause of acute and chronic embolism. Symptoms cover the entire spectrum from asymptomatic patients to sudden death. In addition to obstruction of the pulmonary vasculature there may be an inflammatory cascade that deteriorates vascular, pulmonary and cardiac function. In most cases the patient history and radiological imaging reveals the true nature of the patient's condition. The purpose of this article is to give the reader a survey on pathophysiology, typical clinical and radiological findings in different forms of nonthrombotic pulmonary embolism. The spectrum of forms presented here includes pulmonary embolism with biological materials (amniotic fluid, trophoblast material, endogenous tissue like bone and brain, fat, Echinococcus granulosus, septic emboli and tumor cells); nonbiological materials (cement, gas, iodinated oil, glue, metallic mercury, radiotracer, silicone, talc, cotton, and hyaluronic acid); and foreign bodies (lost intravascular objects, bullets, catheter fragments, intraoperative material, radioactive seeds, and ventriculoperitoneal shunts). PMID:23102488

  4. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    Science.gov (United States)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  5. Electroceramic functional gradient materials. Final report 1995 - 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toft Soerensen, O. [ed.

    1999-10-01

    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  6. Darwin y la imposibilidad de causas finales en la biología

    Directory of Open Access Journals (Sweden)

    Corral Cuartas Álvaro

    2009-12-01

    Full Text Available La teoría de la selección natural propuesta por Charles Darwin en su obra El Origen de las Especies no sólo colocó las bases para una explicación coherente de los hechos fundamentales de la biología (el origen común de los seres vivos, la diversidad de individuos y especies y la transmisión de características hereditarias, sino que además introduce maneras nuevas de hacer filosofía. La teoría de la selección natural hace superflua cualquier posibilidad de apelar a explicaciones de tipo finalista en la ciencia. Desde Aristóteles se conocen cuatro tipos de causa: la material, la formal, la eficiente y la final. Aunque la causa eficiente es el paradigma de explicación por excelencia de las ciencias empíricas, la causa final sigue desempeñando un papel explicativo, por cuanto parece estar arraigada en nuestra estructura humana de pensamiento y la tendencia a presentar explicaciones finalistas sigue siendo recalcitrante. Quizá por estar los seres humanos tan familiarizados con la complejidad inherente a los procesos de diseño en las artes y en la técnica, suponemos por vía de analogía que la naturaleza en su complejidad exige la presencia y acción de un diseñador inteligente. Kant en la Crítica de la facultad de juzgar hace una defensa del carácter “irrenunciable” de este modelo explicativo. Para controvertir esta opinión, me apoyaré, en recientes investigaciones de Richard Dawkins y de otros biólogos contemporáneos para mostrar con la evolución de ojos en la naturaleza que el surgimiento de órganos de alta complejidad puede ser explicado sin

  7. Organic materials for second harmonic generation. Final report

    International Nuclear Information System (INIS)

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs

  8. Organic materials for second harmonic generation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Twieg, R.J. (comp.)

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  9. Organization and diffusion in biological and material fabrication problems

    Science.gov (United States)

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  10. Thermoelectric needle probe for temperature measurements in biological materials.

    Science.gov (United States)

    Korn, U; Rav-Noy, Z; Shtrikman, S; Zafrir, M

    1980-04-01

    In certain biological and medical applications it is important to measure and follow temperature changes inside a body or tissue. Any probe inserted into a tissue causes damage to tissue and distortion to the initial temperature distribution. To minimize this interference, a fine probe is needed. Thus, thin film technology is advantageous and was utilized by us to produce sensitive probes for these applications. The resulting probe is a small thermocouple at the tip of a thin needle (acupuncture stainless steel needle, approximately 0.26 mm in diameter and length in the range 5-10 cm was used). The junction was produced at the needle's tip by coating the needle with thin layers of insulating and thermoelectric materials. The first layer is an insulating one and is composed of polyacrylonitrile (PAN) and polymide produced by plasma polymerization and dip-coating respectively. This layer covers all the needle except the tip. The second layer is a vacuum deposited thermoelectric thin layer of Bi-5% Sb alloy coating also the tip. The third layer is for insulation and protection and is composed of PAN and polyimide. In this arrangement the junction is at the needle's tip, the needle is one conductor, the thermoelectric layer is the other and they are isolated by the plastic layer. The probe is handy and mechanically sturdy. The sensitivity is typically 77 microV/degrees C at room temperature and is constant to within 2% up to 90 degrees C. The response is fast (less than 1 sec) the noise is small, (less than 0.05 degrees C) and because of the small dimension, damage to tissue and disturbance to the measured temperature field are minimal. PMID:7382928

  11. Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

    1998-10-14

    Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

  12. Deciphering the language between biological and synthetic materials

    Directory of Open Access Journals (Sweden)

    Paolo Antonio Netti

    2014-06-01

    Full Text Available Chemical signals propagating through aqueous environment are at the basis of the language utilized by living systems to exchange information. In the last years, molecular biology has partly disclosed the grammar and the syntax of this complex language revealing the fascinating world of molecular communication that is the foundation of biological development.

  13. Application of game theory to nuclear material accounting. Final report

    International Nuclear Information System (INIS)

    An approach based upon the theory of games is presented that determines an optimal alarm threshold for detecting unauthorized or deliberate diversion of nuclear material based upon material accounting data. A mathematical model is developed, solved, and applied to a generic nuclear facility. By considering a malevolent diverter as a basic ingredient of the analysis this approach offers advantages over conventional statistical hypothesis testing. The results show that periodic inventories and appropriate interpretation of MUF can provide a high assurance for indicating diversion in a nuclear material safeguards situation. The optimal policy is to select the alarm threshold by a mixed strategy rather than a pre-set single fixed value. Procedures for doing this are presented in the report. With this approach, MUF data by itself may be more useful in indicating possible unauthorized diversion of special nuclear material

  14. Materials Technology Support for Radioisotope Power Systems Final Report

    International Nuclear Information System (INIS)

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules

  15. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  16. Trends in United States Biological Materials Oversight and Institutional Biosafety Committees

    Science.gov (United States)

    Jenkins, Chris

    2014-01-01

    Biological materials oversight in life sciences research in the United States is a challenging endeavor for institutions and the scientific, regulatory compliance, and federal communities. In order to assess biological materials oversight at Institutional Biosafety Committees (IBCs) registered with the United States National Institutes of Health,…

  17. Materials Degradation and Detection (MD2): Deep Dive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.

    2013-02-01

    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  18. Textbooks and Learning Materials Program: Zambia. Final Report

    Science.gov (United States)

    US Agency for International Development, 2009

    2009-01-01

    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  19. Glazing materials for solar and architectural applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, C.M. [ed.

    1994-09-01

    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  20. Photoconversion of gasified organic materials into biologically-degradable plastics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  1. Photoconversion of gasified organic materials into biologically-degradable plastics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  2. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  3. Fissile material disposition program final immobilization form assessment and recommendation

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations

  4. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  5. The BIOSCI electronic newsgroup network for the biological sciences. Final report, October 1, 1992--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, D.; Mack, D.

    1996-10-01

    This is the final report for a DOE funded project on BIOSCI Electronic Newsgroup Network for the biological sciences. A usable network for scientific discussion, major announcements, problem solving, etc. has been created.

  6. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    Science.gov (United States)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  7. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    Science.gov (United States)

    Sun, Sam

    2002-07-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  8. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  9. Preparation and biological evaluations of PLA/chitosan composite materials

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chang-ren; LI Lihua; DING Shan

    2001-01-01

    @@ INTRODUCTION Polylactic acid (PLA) is a biodegradable material that is hontoxic and biocompatible. However, as scaffold materials, PLA has several obvious weaknesses:biodegrading too fast, acidic degradation product, and hydrophobic. When PLA isplanted in the body, the degradation takes place synchronously.

  10. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)

    2016-05-27

    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  11. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 104 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 105 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  12. Radiation effects on organic materials in nuclear plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  13. Determination of lead and cadmium in biological materials

    International Nuclear Information System (INIS)

    Sampling techniques and experience, and decomposition methods are presented. The processes used in flameless atomic absorption spectrometry (including the method using automatic insertion of samples), pulse polarography and isotope dilution mass spectrometry are described. Finally, the results of lead and cadmium measurements in bovine liver, blood, urine and hair samples are reported and discussed with a comparison of methods in some cases

  14. Third international conference on intelligent systems for molecular biology (ISMB-95): Summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The specific aims of the Third International Conference on Intelligent Systems for Molecular Biology (ISMB-95) were to: convene a critical mass of researchers applying advanced computational techniques to problems in molecular biology; promote interchange of problems and solutions between computer scientists and molecular biologists; create education opportunities in this cross-disciplinary field for students and senior researchers wishing to either apply or benefit from these techniques; produce an archival proceedings as a forum for rapid dissemination of new results in a peer-reviewed manner; produce a set of tutorial materials for education and training of researchers interested in this field; maintain the momentum generated by the highly successful previous conferences in the series, and establish a regular event that will help to solidify the field; and foster the involvement of women and minorities in the field.

  15. Sustainable production of biological materials for food and agricultural applications

    OpenAIRE

    Angün, Pınar

    2013-01-01

    Ankara : Materials Science and Nanotechnology Program of Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 94-110. Angün, Pınar Master's

  16. Novel biological materials for food and environmental applications

    OpenAIRE

    Umu, Özgün Candan Onarman

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 71-86. Umu, Özgün Candan Onarman Master's

  17. Cost-effective production of biological materials for food applications

    OpenAIRE

    Han, Diren

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 67-74. Han, Diren Master's

  18. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls.

  19. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  20. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well ...

  1. Alternate electrode materials for the SP100 reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Randich, E.

    1992-05-01

    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB{sub 2} (C) CVD coating on SiMo substrates, (2) development of a ZrB{sub 2} (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB{sub 2} coatings on SiGe and graphite substrates, and later into developing ZrB{sub 2} coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB{sub 2} during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  2. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    Directory of Open Access Journals (Sweden)

    Stephen Juma Mulware

    2015-01-01

    Full Text Available The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  3. Agricultural biological reference materials for analytical quality control

    Energy Technology Data Exchange (ETDEWEB)

    Ihnat, M.

    1986-01-01

    Cooperative work is under way at Agriculture Canada, US Department of Agriculture, and US National Bureau of Standards in an attempt to fill some of the gaps in the world repertoire of reference materials and to provide much needed control materials for laboratories' day to day operations. This undertaking involves the preparation and characterization of a number of agricultural and food materials for data quality control for inorganic constituents. Parameters considered in the development of these materials were material selection based on importance in commerce and analysis; techniques of preparation, processing, and packaging; physical and chemical characterization; homogeneity testing and quantitation (certification). A large number of agricultural/food products have been selected to represent a wide range of not only levels of sought-for constituents (elements) but also a wide range of matrix components such as protein, carbohydrate, dietary fiber, fat, and ash. Elements whose concentrations are being certified cover some two dozen major, minor, and trace elements of nutritional, toxicological, and environmental significance.

  4. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  5. Spatio-structural granularity of biological material entities

    Directory of Open Access Journals (Sweden)

    Vogt Lars

    2010-05-01

    Full Text Available Abstract Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc., the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio

  6. Remediation of anionic surfactants and ammonium by biological materials

    OpenAIRE

    Sarıoğlu, Ömer Faruk

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 83-97. Sarıoğlu, Ömer Faruk Master's

  7. Biomolecular coronas provide the biological identity of nanosized materials

    NARCIS (Netherlands)

    Monopoli, Marco P; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2012-01-01

    The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the en

  8. Nanostructured materials for biological imaging and chemical sensing

    OpenAIRE

    Yıldırım, Adem

    2014-01-01

    Ankara : Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2014. Thesis (Ph.D.) -- Bilkent University, 2014. Includes bibliographical references leaves 116-139. Yıldırım, Adem Ph. D.

  9. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  10. Multiscale modeling of emergent materials: biological and soft matter

    DEFF Research Database (Denmark)

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo;

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...... in the context of the so-called Henderson theorem and the inverse Monte Carlo method of Lyubartsev and Laaksonen. In the second part, we take a different look at coarse graining by analyzing conformations of molecules. This is done by the application of self-organizing maps, i.e., a neural network type approach....... Such an approach can be used to guide the selection of the relevant degrees of freedom. Then, we discuss technical issues related to the popular dissipative particle dynamics (DPD) method. Importantly, the potentials derived using the inverse Monte Carlo method can be used together with the DPD thermostat...

  11. Analysis of biological materials using a nuclear microprobe

    Science.gov (United States)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  12. Cueing Metacognition to Improve Researching and Essay Writing in a Final Year High School Biology Class

    Science.gov (United States)

    Conner, L. N.

    2007-03-01

    This paper reports on degrees of awareness and use of specific metacognitive strategies by 16 students in a final-year high school biology class in New Zealand. The aims of the intervention were to broaden students' thinking about bioethical issues associated with cancer and to enhance students' use of metacognition. Cues and prompts were used in this unit of work to help students use metacognitive strategies since students did not generally use metacognitive strategies spontaneously. Scaffolding was mediated through the teacher modelling, questioning, cueing or prompting students to evaluate their learning. The research reported here illustrates how teachers can cue students to be more self-directed in their learning. Three case studies illustrate how learning strategies were used differentially. Most students were aware of strategies that could help them to learn more effectively. It was found that those students who were not only aware of but also used strategies to plan, monitor and evaluate their work, produced essays of higher quality.

  13. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  14. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    Science.gov (United States)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  15. Status of study on biological and toxicological effects of nanoscale materials

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; FENG Weiyue; ZHAO Yuliang; XING Gengmei; CHAI Zhifang; WANG Haifang; JIA Guang

    2005-01-01

    Because the physical and chemical properties of nanosized materials mostly differ from the existing microsized materials, their potential impacts on human health and the environment will be topics under the serious discussions in press and in a number of international scientific journals. We analyze and summarize the existing data of the experimental study on the biological activities and adverse effects of nanoscale materials/particles including single wall carbon nanotubes, multi wall carbon nanotubes, titanium oxide and iron powders. Though some biological behaviors of nanoscale materials observed cannot be understood on the basis of the current knowledge, as the existing data are mostly preliminary, it is too early to make some exclusive conclusions on biological activities (or the toxicity) of any of nanoscale materials. The experimental techniques, the current topics, and the future research directions for this new research field are also discussed.

  16. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  17. Preparation of Biologically Active Materials by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  18. Detection of Biological Materials Using Ion Mobility Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

    1999-03-01

    Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

  19. Model of heterogeneous material dissolution in simulated biological fluid

    Science.gov (United States)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  20. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  1. Preparation of two biological reference materials for QUASIMEME inter-laboratory testing

    NARCIS (Netherlands)

    Lohman, M.; Korytar, P.

    2007-01-01

    Two biological materials have been prepared for the Institute for Environmental Studies (IVM), Free University, Amsterdam to be used in QUASIMEME interlaboratory studies. The materials prepared are: 300 tins of homogenized blue mussels from the Waddenzee (QO07-1) and 300 tins of homogenized shrimps

  2. Preparation of three biological reference material for QUASIMEME inter-laboratory testing

    NARCIS (Netherlands)

    Lohman, M.; Korytar, P.

    2006-01-01

    Three biological materials have been prepared for IVM, Free University, Amsterdam to be used in QUASIMEME interlaboratory studies. The materials prepared are: 300 glass jars of homogenized Mediterranean mussels (QM06-1), 280 tins of homogenized blue mussels from German Bight (QM06-3) and 300 tins of

  3. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, J. T. [Washington State University

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  4. Sampling and sample preparation methods for the analysis of trace elements in biological material

    International Nuclear Information System (INIS)

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB)

  5. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  6. Nano-FTIR chemical mapping of minerals in biological materials

    Directory of Open Access Journals (Sweden)

    Sergiu Amarie

    2012-04-01

    Full Text Available Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM. On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

  7. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  8. EFFECT OF MIXING CONDITIONS ON FLOCCULATION KINETICS OF WASTEWATERS CONTAINING PROTEINS AND OTHER BIOLOGICAL COMPOUNDS USING FIBROUS MATERIALS AND POLYELECTROLYTES

    Directory of Open Access Journals (Sweden)

    L.A. CHEN

    1998-12-01

    Full Text Available The application of a combined system of a polyelectrolyte, carboxymethyl cellulose (CMC, and highly fibrillated fibrous materials, cellulose triacetate fibrets (CTF, for the recovery of proteins and other biological compounds from model and actual biological systems has been demonstrated . In the present work, reaction batches were scaled-up to a one-liter agitated vessel, with a standard configuration. The effect of mixing conditions on the adsorption and flocculation process was studied. It was observed that flocculation time was very fast, occurring within the period of polymer addition. Long term shearing did not result in floc breakage and the values of percentage light transmission and protein concentration of the final filtrate remained the same during the incubation period. Increasing the shear rate resulted in improved process efficiency, up to an optimum value, above which performance was poorer. Perikinetic and orthokinetic rate parameters were calculated and results analyzed in view of these parameters.

  9. Ultrafast Spectroscopy in Conjugated Organic and Biological Materials

    Science.gov (United States)

    Yan, Ming

    The dynamics of two kinds of conjugated materials, the visual pigment rhodopsin and the organic polymer poly(p -phenylene vinylene), have been studied utilizing femtosecond spectroscopy. The 11-cis to all-trans torsional isomerization of the retinal chromophore in rhodopsin for both protonated and deuterated aqueous environments have been studied by time-resolved absorption measurements at room temperature. The kinetic results are well modeled by rate equations based on the scheme which involves the isomerization along the torsional coordinate of the 11-cis bond of the retinal chromophore. A metastable intermediate 90 degree twisted state is formed within 200 fs on the excited state surface by rotation around the C_{11} -C_{12} double bond, and it takes 3 ps to form the fully isomerized all -trans photoproduct known as bathorhodopsin and to repopulate the ground state rhodopsin. These results agree well with the semiempirical energy level and molecular dynamics calculations. The observed dynamics are insensitive to deuteration of the exchangeable protons which suggest that proton translocation is unimportant at physiological temperatures. The conjugated polymer, Poly(p-phenylene vinylene) (PPV) in a stretch oriented film, has been studied using polarized time-resolved absorption with subpicosecond resolution and transient luminescence measurements. Excitations are generated by photoexcitation near the band edge (500nm -540nm) with a 200 fs pulse and the resulting spectral changes are probed with a white light pulse. Lattice stabilized (singlet) self-trapped excitons are formed within 200 fs which are observed by measuring the stimulated gain in their emission band which decay at 10 ps. The agreement of the photoinduced exciton gain spectrum (luminescence spectrum (10 ps) and the steady state luminescence spectrum suggest that the singlet excitons are not further trapped after 200fs of their formation time. Excitation wavelength dependence measurements suggest that

  10. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  11. Investigation of factors affecting the learning of final year advanced materials and manufacturing students

    OpenAIRE

    Naher, Sumsun; Brabazon, Dermot; Looney, Lisa

    2007-01-01

    An investigation was recently conducted into the delivery of an Advanced Materials and Manufacturing Processes module which was presented to a sub-group of the final year engineering students at Dublin City University (DCU). Results from the class which has just completed their final year studies were examined in relation to the method of delivery. This cohort consisted of 25 students, 13 which studied for the Computer Aided Mechanical and Manufacturing Engineering (CAM) degree and 12 which s...

  12. Studies of the genetic material of some RNA viruses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.

    1977-01-01

    Studies of the genetic material of some RNA viruses showed that strains of the plant virus, TMV, fall into groups and within a group there is no appreciable nucleotide sequence divergence between the strain RNAs. A study was initiated into the molecular biology of replication of the POTY plant virus group that includes tobacco etch virus.

  13. DARWIN Y LA IMPOSIBILIDAD DE CAUSAS FINALES EN LA BIOLOGÍA Darwin and the Impossibility of Final Causes in Biology

    Directory of Open Access Journals (Sweden)

    ÁLVARO CORRAL CUARTAS

    Full Text Available La teoría de la selección natural propuesta por Charles Darwin en su obra El origen de las especies no solo colocó las bases para una explicación coherente de los hechos fundamentales de la biología (el origen común de los seres vivos, la diversidad de individuos y especies y la transmisión de características hereditarias, sino que además introdujo maneras nuevas de hacer filosofía. La teoría de la selección natural hace superflua cualquier posibilidad de apelar a explicaciones de tipo finalista en la ciencia. Desde Aristóteles se conocen cuatro tipos de causa: la material, la formal, la eficiente y la final. Aunque la causa eficiente es el paradigma de explicación por exce-lencia de las ciencias naturales, la causa final sigue desempeñando un papel explicativo, por cuanto parece estar arraigada en nuestra estructura humana de pensamiento y la tendencia a presentar explicaciones finalistas sigue siendo recalcitrante. Quizá por estar los seres humanos tan familiarizados con la complejidad inherente a los procesos de diseño en las artes y en la técnica y quizá por la circunstancia de que los seres humanos organizamos casi todas nuestras acciones en torno a propósitos, es decir, a la definición de unos fines para los cuales buscamos unos medios, suponemos por vía de analogía que la naturaleza en su complejidad exige la presencia y acción de un diseñador inteligente. Kant en la Crítica de la facultad de juzgar hace una defensa del carácter "irrenunciable al género humano" de este modelo explicativo. Para contro-vertir esta opinión milenaria, me apoyaré, en investigaciones recientes de Richard Dawkins y de otros biólogos contemporáneos para mostrar con la evolución de ojos en la naturaleza que el surgimiento de órganos de alta complejidad puede ser explicado sin problema con la teoría de la selección natural propuesta por Darwin en 1859.Darwin’s theory of natural selection in The Origin of Species not only laid

  14. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  15. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  16. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  17. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  18. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  19. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  20. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  1. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Willie [Boston College, Chestnut Hill, MA (United States)

    2016-02-11

    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  2. 77 FR 23713 - Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for...

    Science.gov (United States)

    2012-04-20

    ... relationship between EPA-approved labels for pesticides registered under the Federal Insecticide, Fungicide... AGENCY Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for.... SUMMARY: The Agency is announcing the availability of a Pesticide Registration Notice (PR Notice)...

  3. Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James W. Allen

    2011-08-26

    This document is the final report of research performed under U.S. DOE Award Number DE-FG02-07ER46379, entitled Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials. It covers the full period of the award, from June 1, 2007 through May 31, 2011.

  4. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  5. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Science.gov (United States)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  6. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  7. X-ray spectrometric determination of thorium in bone and other biological materials

    International Nuclear Information System (INIS)

    An x-ray spectrometric method has been developed for the determination of thorium in bone and other biological materials. The limit of detection at the 95% confidence level is 20 ng. This corresponds to a concentration of 2 ppb in a 10-g sample of bone ash

  8. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author)

  9. New materials and biologically active preparations on the basis of (organilthio) chloroacetylene

    Institute of Scientific and Technical Information of China (English)

    D'yachkova; S.; G.

    2005-01-01

    (Organylthio)chloroacetylenes [RSC≡CCl, 1], the object of our systematic research, provide a promising source of new classes of polyfunctional compounds of acetylenic and polyheterocyclic seriesamong which biologically active substances, monomers and precursors for the preparation of new materials possessing a whole complex of valuable properties have been recognized.……

  10. New materials and biologically active preparations on the basis of (organilthio) chloroacetylene

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ (Organylthio)chloroacetylenes [RSC≡CCl, 1], the object of our systematic research, provide a promising source of new classes of polyfunctional compounds of acetylenic and polyheterocyclic seriesamong which biologically active substances, monomers and precursors for the preparation of new materials possessing a whole complex of valuable properties have been recognized.

  11. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  12. Occupational accidents with exposure to biological material: Description of cases in Bahia

    Directory of Open Access Journals (Sweden)

    Técia Maria Santos Carneiro e Cordeiro

    2016-04-01

    Full Text Available Background and Objective: This study is included in the field of public health in Brazil, in particular occupational health, by the occupational accidents with exposure to biological material consists of a preventable injury. Thus, the objective was to describe risk factors the of occupational accidents with exposure to biological material and the conduct postexposure adopted notified of cases in Notifiable Diseases Information System (SINAN in the State of Bahia in 2012. Methods: This is a descriptive epidemiological study realized with data from the injuries of notifications SINAN in February 2013, the analysis was realized using descriptive statistics in absolute frequencies and relative. Results: The results indicate a higher occurrence of occupational accidents involving exposure to biological materials in Bahia in the female population (78.1% and aged between 30-49 years (51.5%; the blood was fluid larger contact in accidents 75.2% by percutaneous (71.5%; post-exposure procedures were adopted in accordance recommended by the Ministry of Health; divers information were not fulfilled in the notifications and only 23.8% of Occupational Accidents Comunication (CAT were issued. Conclusion: It is considered necessary to draw up strategies on occupational health and safety, consciousness of workers about the relevance of the measures adopted after occupational accidents with exposure to biological material and the training of professionals for case notification and research to fill all the fields of the notification form and also the issuance of CAT.

  13. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration.

    Science.gov (United States)

    Valerio, F

    2010-11-01

    The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended.

  14. Biological reference materials from the National Institute for Environmental Studies (Japan)

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kensaku

    1988-12-01

    The National Institute for Environmental Studies has recently undertaken the development of two new biological reference materials, Sargasso and Rice Flour-Unpolished, for trace element analysis. The sargasso seaweed (Sargassum felvellum) reference material contains high levels of alkali, alkaline earth elements and As, together with low concentrations of heavy metals. The rice flour-unpolished reference material was prepared from unpolished rice collected from three different locations in Japan. This reference material consists of three samples, each containing different levels (low, medium, high) of Cd. This paper presents the preparation and elemental composition of NIES Sargasso and Rice Flour-Unpolished reference materials, following a brief description of each of the currently available NIES certified reference materials.

  15. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  16. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  17. Pectina: da matéria-prima ao produto final Pectin: from raw material to the final product

    Directory of Open Access Journals (Sweden)

    Maria H. G. Canteri

    2012-01-01

    Full Text Available A pectina, provavelmente a mais complexa macromolécula natural, é um heteropolissacarídeo contendo predominantemente resíduos de ácido galacturônico. Este polímero, do grupo das fibras dietéticas, é amplamente utilizado como geleificante e estabilizante na indústria de alimentos. O principal processo industrial para obtenção de pectina está baseado na solubilização da protopectina do bagaço de maçã e casca de frutos cítricos, realizada em condições levemente ácidas sob aquecimento. Estudos recentes têm reportado a extração de pectina de novas matérias-primas sob diferentes condições, com influência sobre a qualidade e sobre o rendimento do produto final, para aumentar sua qualidade reológica. Esta revisão descreve a estrutura, as fontes, as aplicações, o processo de extração industrial assim como as principais técnicas de caracterização da pectina.Pectin, probably the most complex macromolecule in nature is a hetero-polysaccharide containing predominantly residues of galacturonic acid (GalA. This polymer, which belongs to a group of dietary fibers, is widely used as a gelling agent and stabilizer in the food industry. The main industrial processing to obtain pectin is based on the solubilization of protopectin from apple pomace and citrus peels, which is done under low acidity and heated conditions. Recent studies have reported the extraction of pectin from new raw materials and using different extraction conditions, which influence the yield and quality of the final product, and may improve the rheological properties. This review describes the structure, sources, applications and industrial extraction processes, as well as the analysis methods of physicochemical characterization of pectin.

  18. Metropolitan Programs in Applied Biological and Agricultural Occupations; A Need and Attitude Study. Final Report.

    Science.gov (United States)

    Thomas, Hollie B.; And Others

    To establish the feasibility of implementing applied biological and agricultural occupations programs in the metropolitan area of Chicago, four populations were surveyed by means of mailed questionnaires or interest inventories to determine: (1) the employment opportunities in the applied biological and agricultural industries, (2) the interests…

  19. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  20. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  1. Evaluation of a fungal collection as certified reference material producer and as a biological resource center.

    Science.gov (United States)

    Forti, Tatiana; Souto, Aline da S S; do Nascimento, Carlos Roberto S; Nishikawa, Marilia M; Hubner, Marise T W; Sabagh, Fernanda P; Temporal, Rosane Maria; Rodrigues, Janaína M; da Silva, Manuela

    2016-01-01

    Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC). For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061. PMID:26991280

  2. Evaluation of a fungal collection as certified reference material producer and as a biological resource center

    Directory of Open Access Journals (Sweden)

    Tatiana Forti

    2016-06-01

    Full Text Available Abstract Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC. For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061.

  3. Licensing of LLW final storage casks as transport casks of type IP for fissile radioactive materials

    International Nuclear Information System (INIS)

    In 1995 Siemens AG decided to stop the manufacture of fuel assemblies in Hanau and to decommission the Uranium and MOX plant. Since this time about 70.000 tons of radioactive contaminated materials have either been recycled or prepared for final storage in the planned repository Konrad. In the case of Siemens AG Hanau essentially two types of containers were used, which are called Steel Container Type IV and Type VI

  4. Indium arsenide as a material for biological applications: Assessment of surface modifications, toxicity, and biocompatibility

    Science.gov (United States)

    Jewett, Scott A.

    III-V semiconductors such as InAs have recently been employed in a variety of applications where the electronic and optical characteristics of traditional, silicon-based materials are inadequate. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it very attractive for high performance transistors, optical applications, and chemical sensing. However, InAs forms an unstable surface oxide layer in ambient conditions, which can corrode over time and leach toxic indium and arsenic components. Current research has gone into making InAs more attractive for biological applications through passivation of the surface by adlayer adsorption. In particular, wet-chemical methods are current routes of exploration due to their simplicity, low cost, and flexibility in the type of passivating molecule. This dissertation focuses on surface modifications of InAs using wet-chemical methods in order to further its use in biological applications. First, the adsorption of collagen binding peptides and mixed peptide/thiol adlayers onto InAs was assessed. X-ray photoelectron spectroscopy (XPS) along with atomic force microscopy (AFM) data suggested that the peptides successfully adsorbed onto InAs, but were only able to block oxide regrowth to a relatively low extent. This low passivation ability is due to the lack of covalent bonds of the peptide to InAs, which are necessary to effectively block oxide regrowth. The addition of a thiol, in the form of mixed peptide/thiol adlayers greatly enhanced passivation of InAs while maintaining peptide presence on the surface. Thiols form tight, covalent bonds with InAs, which prevents oxide regrowth. The presence of the collagen-binding peptide on the surface opens the door to subsequent modification with collagen or polyelectrolyte-based adlayers. Next, the stability and toxicity of modified InAs substrates were determined using inductively coupled plasma mass spectrometry (ICP-MS) and zebrafish

  5. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    CERN Document Server

    Joffe, R; Shavit, R

    2015-01-01

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  6. Study of hydrological and geochemical data on materials for the final cover of subsurface storage sites

    International Nuclear Information System (INIS)

    The European Research program includes studies on highly watertight materials likely to sait the final cover of low-level and intermediate-level waste disposal. The experimental equipment is composed of a 26 sq. m collector placed on an inclined plane, just below the material to be tested and connected by means of a gutter with a measuring room where the infiltration waters flow rate is steadily measured. On the surface of the tumulus, a 300 sq.m inclined plane permits the measure of the running off water. The recording raingauge completes the device. Water vapour pressures are measured at different depths within the material. Total watercontents are registered along vertical profils using a special neutron logging tool. Numerous physico-chemical measures are carried out on the infiltration and running off waters: pH, Eh, temperature, dissolved oxygen, conductivity, turbidity and major anions and cations. Two materials have been tested with this device: - weathered schists; Compacted clay. The first material showed that, on average over the six months period of measurements, the overall rainfall brokedown into 11% running waters, 13% infiltration and 76% evaporation because infiltration accounts for a large part of rainfall. It resulted in a complete saturation of the material during certain periods of the year. Humidity measurements performed at different places pointed out large heterogeneities inside the material. It is worth noting that, despite some problems due to calibration, the whole instrumentation located in the measuring room worked rather well and permitted to demonstate the bad qualities of the material. The second material was subsequently covered by a 20 cm thick layer made of a mixture of sand in order to regularize water infiltration under the soil vegetation constituted by a special grass growing

  7. A Strategic Initiative in Applied Biological Simulations 01-SI-012 Final Report for FY01 - FY03

    Energy Technology Data Exchange (ETDEWEB)

    Lau, E Y; Venclovas, C; Schwegler, E; Gygi, F; Colvin, M E; Bennion, B J; Barsky, D; Mundy, C; Lightstone, F C; Galli, G; Sawicka, D

    2004-02-16

    The goal of this Strategic Initiative in Applied Computational Biology has been to apply LLNL's expertise in computational simulation to forge a new laboratory core competency in biological simulation. By every measure, this SI has been very successful in this goal. Based on a strong publication record and large number of conference presentations and invited talks, we have built a recognized niche for LLNL in the burgeoning field of computational biology. Further, many of the projects that were previously part of this LDRD are now externally funded based on the research results and expertise developed under this SI. We have created successful collaborations with a number of outside research groups including several joint projects with the new UC Davis/LLNL Comprehensive Cancer Center. In addition to these scientific collaborations, the staff developed on this SI is involved in computational biology program development and advisory roles with other DOE laboratories and DOE Headquarters. Moreover, a number of capabilities and expertise created by this SI are finding use in LLNL programmatic applications. Finally, and most importantly, this SI project has brought to LLNL the human talent on who will be the ensuring the further success of computational biology at this laboratory.

  8. Gas permeability of biochar-amended clay: potential alternative landfill final cover material.

    Science.gov (United States)

    Wong, James Tsz Fung; Chen, Zhongkui; Ng, Charles Wang Wai; Wong, Ming Hung

    2016-04-01

    Compacted biochar-amended clay (BAC) has been proposed as an alternative landfill final cover material in this study. Biochar has long been proposed to promote crop growth, mitigate odor emission, and promote methane oxidation in field soils. However, previous studies showed that soil-gas permeability was increased upon biochar application, which will promote landfill gas emission. The objective of the present study is to investigate the possibility of using compacted BAC as an alternative material in landfill final cover by evaluating its gas permeability. BAC samples were prepared by mixing 425-μm-sieved peanut shell biochar with kaolin clay in different ratios (0, 5, 10, and 15 %, w/w) and compacting at different degrees of compactions (DOC) (80, 85, and 90 %) with an optimum water content of 35 %. The gas permeability of the BACs was measured by flexible wall gas permeameter and the microstructure of the BACs was analyzed by SEM with energy-dispersive x-ray spectroscopy (EDX). The results show that the effects of biochar content on BAC gas permeability is highly dependent on the DOC. At high DOC (90 %), the gas permeability of BAC decreases with increasing biochar content due to the combined effect of the clay aggregation and the inhibition of biochar in the gas flow. However, at low DOC (80 %), biochar incorporation has no effects on gas permeability because it no longer acts as a filling material to the retard gas flow. The results from the present study imply that compacted BAC can be used as an alternative final cover material with decreased gas permeability when compared with clay. PMID:26092359

  9. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  10. Effect of the Freshness of Starting Material on the Final Product Quality of Dried Salted Shark

    Directory of Open Access Journals (Sweden)

    Ponnerassery Sukumaran Sudheesh

    2012-04-01

    Full Text Available This study describes the relationship between the freshness of the starting raw material (fish and the final product quality in experimentally dried shark fish. Sharks were stored at room temperature (25ºC for 0, 24 and 48 h and then salted, processed and sun dried at ambient temperatures ranging from 35 to 42ºC. There was marked difference in sensory and microbiological quality of fresh fish stored to different time periods, but, after drying, the quality difference was negligible. The results of this study show that storage of fish up to 48 h under experimental conditions at room temperature does not affect major microbiological quality and proximate composition of the final dried product.

  11. Deuterium plasma-material wall interactions. Final report, 1 May 1979-30 September 1981

    International Nuclear Information System (INIS)

    During the final year of this program we completed our study of plasma interactions with material surfaces. Analysis of unipolar arc damage on the microstructure of Ti-6Al-4V was the final part of the study of plasma-metal interactions. Unipolar arcing was found to be the most severe damage mechanism for this alloy and the degree of damage was very sensitive to the metal microstructure. ATJ-S graphite specimens were exposed to hot deuterium plasma and were examined for surface damage. The residual gas in the plasma device was studied using a monopole gas analyzer so as to determine the type and quantity of hydrocarbon species produced by the plasma-graphite interaction

  12. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop “From Computational Biophysics to Systems Biology (CBSB12)” which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  13. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments (Final Report)

    Science.gov (United States)

    This technical paper provides defensible approximations for what the depth of the biologically active zone, or “biotic zone” is within certain environments. The methods used in this study differ somewhat between Part 1 (Terrestrial Biotic Zone) and Part 2 (Aquatic Biotic Zone). ...

  14. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop From Computational Biophysics to Systems Biology (CBSB12) which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  15. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Mohamed E. Mahmoud

    2012-01-01

    Full Text Available Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker’s yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II sorption compared to blank active carbon providing a maximum sorption capacity of lead(II ion as 500 μmol g−1. Sorption processes of lead(II by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II concentration, and foreign ions. Lead(II sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0±3.0–5.0% by various carbonaceous-modified-bakers yeast biosorbents.

  16. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    Science.gov (United States)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  17. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an `aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10 nm, simultaneously combined with imaging in the electron microscope.

  18. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    International Nuclear Information System (INIS)

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18F, a pure positron emitter which is the product of the photonuclear reaction 19F(γ, n)18F. The simultaneous formation of some additional positron emitters, particularly 45Ti and 34mCl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  19. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  20. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  1. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  2. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    Science.gov (United States)

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials. PMID:27151190

  3. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  4. Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis.

    Science.gov (United States)

    Bonilla, M R; Stokes, J R; Gidley, M J; Yakubov, G E

    2015-02-01

    We present a novel Multi-Regime Analysis (MRA) routine for interpreting force indentation measurements of soft materials using atomic force microscopy. The MRA approach combines both well established and semi-empirical theories of contact mechanics within a single framework to deconvolute highly complex and non-linear force-indentation curves. The fundamental assumption in the present form of the model is that each structural contribution to the mechanical response acts in series with other 'mechanical resistors'. This simplification enables interpretation of the micromechanical properties of materials with hierarchical structures and it allows automated processing of large data sets, which is particularly indispensable for biological systems. We validate the algorithm by demonstrating for the first time that the elastic modulus of polydimethylsiloxane (PDMS) films is accurately predicted from both approach and retraction branches of force-indentation curves. For biological systems with complex hierarchical structures, we show the unique capability of MRA to map the micromechanics of live plant cells, revealing an intricate sequence of mechanical deformations resolved with precision that is unattainable using conventional methods of analysis. We recommend the routine use of MRA to interpret AFM force-indentation measurements for other complex soft materials including mammalian cells, bacteria and nanomaterials. PMID:25569139

  5. Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials$

    Institute of Scientific and Technical Information of China (English)

    Basavaiah Kanakapura n; Vamsi Krishna Penmatsa

    2016-01-01

    Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco-sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.

  6. Imaging material properties of biological samples with a Force Feedback Microscope

    CERN Document Server

    Costa, Luca; Newman, Emily; Zubieta, Chloe; Chevrier, Joel; Comin, Fabio

    2013-01-01

    Mechanical properties of biological samples have been imaged with a force feedback microscope. The force, force gradient and the dissipation are simultaneously measured quantitatively from solely the knowledge of the spring constant. The results are preliminary but demonstrate that the method can be used to measure material properties, it is robust and produce quantitative high force resolution measurements of interaction characteristics. The small stiffness and oscillation of the cantilever results in an vibrational energy much smaller than the thermal energy, reducing the interaction to a minimum. Because the lever is over-damped, the excitation frequency can be chosen arbitrarily.

  7. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  8. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  9. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  10. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    International Nuclear Information System (INIS)

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  11. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  12. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: Final report

    International Nuclear Information System (INIS)

    Stabilization/solidification technology is one of the most widely used techniques for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Cement-based products, commonly referred to as grouts, are the predominant materials of choice because of their low associated processing costs, compatibility with a wide variety of disposal scenarios, and ability to meet stringent processing and performance requirements. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % American Society for Testing and Materials (ASTM) Class F fly ash, and 4 wt % Type I-II-LA Portland cement. This blend is mixed with 106-AN at a mix ratio of 9 lb of dry-solids blend per gallon of waste. This report documents the final results of efforts at Oak Ridge National Laboratory in support of WHC's Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula

  13. Biological and clinical dosimetry, July 1, 1964 to December 31, 1984. Final report

    International Nuclear Information System (INIS)

    The goal was to develop systems for the determination of absorbed dose in biological research and clinical applications. The primary method under study is the local absorbed dose calorimeter. In addition, secondary dosimetric systems such as ionization chambers, chemical dosimeters and thermoluminescent dosimeters (TLD) are being developed and applied to provide an absolute basis for the evaluation and comparison of experiments, treatments and other procedures using radiation. In keeping with these objectives this project has accomplished significant advances in the following areas: (1) local absorbed dose calorimetry; (2) neutron dosimetry; (3) dosimetry of ultra-high intensity radiation sources; (4) solid state detector and germanium gamma camera program; (5) dosimetry for brachytherapy; and (6) ''non-isolated sensor'' calorimeters

  14. Final Report - Phylogenomic tools and web resources for the Systems Biology Knowledgebase

    Energy Technology Data Exchange (ETDEWEB)

    Sjolander, Kimmen [Univ. of California, Berkeley, CA (United States)

    2014-12-08

    The major advance during this last reporting period (8/15/12 to present) is our release of data on the PhyloFacts website: phylogenetic trees, multiple sequence alignments and other data for protein families are now available for download from http://phylogenomics.berkeley.edu/data/. This project as a whole aimed to develop high-throughput functional annotation systems that exploit information from protein 3D structure and evolution to provide highly precise inferences of various aspects of gene function, including molecular function, biological process, pathway association, Pfam domains, cellular localization and so on. We accomplished these aims by developing and testing different systems on a database of protein family trees: the PhyloFacts Phylogenomic Encyclopedia (at http://phylogenomics.berkeley.edu/phylofacts/ ).

  15. Postmarketing safety reports for human drug and biological products; electronic submission requirements. Final rule.

    Science.gov (United States)

    2014-06-10

    The Food and Drug Administration (FDA or we) is amending its postmarketing safety reporting regulations for human drug and biological products to require that persons subject to mandatory reporting requirements submit safety reports in an electronic format that FDA can process, review, and archive. FDA is taking this action to improve the Agency's systems for collecting and analyzing postmarketing safety reports. The change will help the Agency to more rapidly review postmarketing safety reports, identify emerging safety problems, and disseminate safety information in support of FDA's public health mission. In addition, the amendments will be a key element in harmonizing FDA's postmarketing safety reporting regulations with international standards for the electronic submission of safety information.

  16. Final Report - Phylogenomic tools and web resources for the Systems Biology Knowledgebase

    Energy Technology Data Exchange (ETDEWEB)

    Sjolander, Kimmen

    2014-11-07

    The major advance during this last reporting period (8/15/12 to present) is our release of data on the PhyloFacts website: phylogenetic trees, multiple sequence alignments and other data for protein families are now available for download from http://phylogenomics.berkeley.edu/data/. This project as a whole aimed to develop high-throughput functional annotation systems that exploit information from protein 3D structure and evolution to provide highly precise inferences of various aspects of gene function, including molecular function, biological process, pathway association, Pfam domains, cellular localization and so on. We accomplished these aims by developing and testing different systems on a database of protein family trees: the PhyloFacts Phylogenomic Encyclopedia (at http://phylogenomics.berkeley.edu/phylofacts/ ).

  17. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  18. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 00C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG)

  19. Biologic considerations in anatomic imaging with radionuclides. Final progress report, July 1974--June 1975

    International Nuclear Information System (INIS)

    An important task relating to anatomic imaging with radionuclides is the determination of factors which effect the use of imaging procedures. This is important to reduce radiation exposure in the population, to improve the efficacy of diagnostic imaging procedures and finally to provide a basis for evaluating the potential effects of proposed regulation of use rates. In this report we describe a methodology for obtaining clinical data relating to the use of the brain scan in an inner city teaching hospital. The development of a questionnaire suitable for use in a clinical setting and providing both prospective and retrospective data is presented. The results of the use of the questionnaire at the Johns Hopkins Hospital during a three month period in 1974 are shown and discussed. Some preliminary results from these data are given and a method for further analysis is indicated

  20. Assembling new technologies at the interface of materials science and biology

    Science.gov (United States)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA

  1. Biological conversion of synthesis gas. Final report, August 31, 1990--September 3, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Johnson, E.R.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    Based upon the results of this culture screening study, Rhodospirillum rubrum is recommended for biocatalysis of the water gas shift reaction and Chlorobium thiosulfatophilum is recommended for H{sub 2}S conversion to elemental sulfur. Both bacteria require tungsten light for growth and can be co-cultured together if H{sub 2}S conversion is not complete (required concentration of at least 1 ppM), thereby presenting H{sub 2} uptake by Chlorobium thiosulfatophilum. COS degradation may be accomplished by utilizing various CO-utilizing bacteria or by indirectly converting COS to elemental sulfur after the COS first undergoes reaction to H{sub 2} in water. The second alternative is probably preferred due to the low expected concentration of COS relative to H{sub 2}S. Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. Rhodospirillum rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}O {yields} CO{sub 2} + H{sub 2}. Chlorobium thiosulfatophilum is also a photosynthetic anaerobic bacteria, and converts H{sub 2}S and COS to elemental sulfur.

  2. Final Technical Report - Use of Systems Biology Approaches to Develop Advanced Biofuel-Synthesizing Cyanobacterial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Pakrasi, Himadri [Washington Univ., St. Louis, MO (United States)

    2016-09-01

    The overall objective of this project was to use a systems biology approach to evaluate the potentials of a number of cyanobacterial strains for photobiological production of advanced biofuels and/or their chemical precursors. Cyanobacteria are oxygen evolving photosynthetic prokaryotes. Among them, certain unicellular species such as Cyanothece can also fix N2, a process that is exquisitely sensitive to oxygen. To accommodate such incompatible processes in a single cell, Cyanothece produces oxygen during the day, and creates an O2-limited intracellular environment during the night to perform O2-sensitive processes such as N2-fixation. Thus, Cyanothece cells are natural bioreactors for the storage of captured solar energy with subsequent utilization at a different time during a diurnal cycle. Our studies include the identification of a novel, fast-growing, mixotrophic, transformable cyanobacterium. This strain has been sequenced and will be made available to the community. In addition, we have developed genome-scale models for a family of cyanobacteria to assess their metabolic repertoire. Furthermore, we developed a method for rapid construction of metabolic models using multiple annotation sources and a metabolic model of a related organism. This method will allow rapid annotation and screening of potential phenotypes based on the newly available genome sequences of many organisms.

  3. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  4. Final Report: Biological and Synthetic Nanostructures Controlled at the Atomistic Level

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, A; van Buuren, T

    2007-02-21

    Nanotechnology holds great promise for many application fields, ranging from the semiconductor industry to medical research and national security. Novel, nanostructured materials are the fundamental building blocks upon which all these future nanotechnologies will be based. In this Strategic Initiative (SI) we conducted a combined theoretical and experimental investigation of the modeling, synthesis, characterization, and design techniques which are required to fabricate semiconducting and metallic nanostructures with enhanced properties. We focused on developing capabilities that have broad applicability to a wide range of materials and can be applied both to nanomaterials that are currently being developed for nanotechnology applications and also to new, yet to be discovered, nanomaterials. During this 3 year SI project we have made excellent scientific progress in each of the components of this project. We have developed first-principles techniques for modeling the structural, electronic, optical, and transport properties of materials at the nanoscale. For the first time, we have simulated nanomaterials both in vacuum and in aqueous solution. These simulation capabilities harness the worldleading computational resources available at LLNL to model, at the quantum mechanical level, systems containing hundreds of atoms and thousands of electrons. Significant advances in the density functional and quantum Monte Carlo techniques employed in this project were developed to enable these techniques to scale up to simulating realistic size nanostructured materials. We have developed the first successful techniques for chemically synthesizing crystalline silicon and germanium nanoparticles and nanowires. We grew the first macroscopic, faceted superlattice crystals from these nanoparticles. We have also advanced our capabilities to synthesize semiconductor nanoparticles using physical vapor deposition techniques so that we are now able to control of the size, shape and

  5. Final Report: Scintillator Materials for Medical Applications, December 1, 1997 - November 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lempicki, A.; Brecher, C.; Wojtowicz, A.J.; Szupryczynski, P.

    2000-05-01

    From the very beginning of our program we regarded the understanding of the scintillation mechanism as our primary mission. If in addition this understanding could lead to the discovery of a new material, so much the better. When we began this work some nine years ago, the theoretical basis for the scintillation phenomenon was in disarray. The initial and final steps were reasonably well characterized, but there was no consensus on the crucial intermediate, the transfer of energy from the lattice to the emitting center. In the over 40 publications that resulted from this program, we demonstrated that despite the highly insulating nature of the hosts and the great magnitude of the band gap, the primary means of transport is through mobile charge carriers and their sequential capture by the emitting center. Although radical at the time, this picture is now generally accepted throughout the field. Subsequently, we also recognized the critical role that trapping centers localized at lattice defects can play in the process, not merely as passive sources of loss but as active participants in the kinetics. In this sense shallow traps can wreak more havoc than deep ones, impeding the rate by which carriers can reach the emitting centers and seriously slowing the resulting decay. And we established low-temperature thermoluminescence as a comprehensive tool for quantizing these effects. As for new and better materials, our work also had an impact. We were among the first to recognize the potential of LuAlO{sub 3} (lutetium aluminum perovskite, or LuAP) as a detector for PET applications. Although this material has not supplanted LuSiO{sub 5} (lutetium oxysilicate, or LSO) in terms of light output or absence of afterglow, LuAP still exhibits by far the highest figure of merit (light output divided by decay time) of any scintillator material currently known. Our work has also bought into stark view the dismaying realization of just how improbable it is that a material will

  6. SynTec Final Technical Report: Synthetic biology for Tailored Enzyme cocktails

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Janine [Novozymes, Inc., Davis, CA (United States); Teter, Sarah [Novozymes, Inc., Davis, CA (United States)

    2016-06-30

    Using a novel enzyme screening method inspired by synthetic biology, Novozymes developed new technology under SynTec which allows for more rapidly tailoring of enzyme cocktails. The methodology can be applied to specific feedstocks, and or coupled to address a specific hydrolytic conversion process context. Using combinatorial high throughput screening of libraries of enzyme domains, we can quickly assess which combination of catalytic modules delivers the best performance for a specific condition. To demonstrate the effectiveness of the screening process, we measured performance of the output catalytic cocktail compared to CTec3/HTec3. SynTec benchmark cocktail - blend of Cellic® CTec3 and HTec3. The test substrate was - ammonia fiber expansion pretreated corn stover (AFEX™ PCS).CTec3/HTec3 was assayed at the optimal pH and temperature, and also in the absence of any pH adjustment. The new enzyme cocktail discovered under SynTec was assayed in the absence of any pH adjustment and at the optimal temperature. Conversion is delivered by SynTec enzyme at significant dose reduction relative to CTec3/HTec3 at the controlled pH optimum, and without titrant required to maintain pH, which delivers additional cost savings relative to current state of the art process. In this 2.5 year $4M project, the team delivered an experimental cocktail that significantly outperformed CTec3/HTec3 for a specific substrate, and for specific hydrolysis conditions. As a means of comparing performance improvement delivered per research dollar spent, we note that SynTec delivered a similar performance improvement to the previous award, in a shorter time and with fewer resources than for the previously successful DOE project DECREASE, a 3.5 year, $25M project, though this project focused on a different substrate and used different hydrolysis conditions. The newly implemented technology for rapid sourcing of new cellulases and hemicellulases from nature is an example of Novozymes

  7. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    Science.gov (United States)

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  8. Why should we respect the privacy of donors of biological material?

    Science.gov (United States)

    Tännsjö, Torbjörn

    2011-02-01

    Why should we respect the privacy of donors of biological material? The question is answered in the present article in general philosophical terms from the point of view of an ethics of honour, a libertarian theory of rights, a view of respect for privacy based on the idea that autonomy is of value in itself, and utilitarianism respectively. For different reasons the ethics of honour and the idea of the value of autonomy are set to one side. It surfaces that the moral rights theory and utilitarianism present conflicting answers to the question. The main thrust of the argument is that there is no way of finding an overlapping consensus, so politicians have to take decisions that are bound to be controversial in that they can be questioned on reasonable philosophical grounds.

  9. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10-9 to 10-8g, of Cu in the range of 10-12 to 10-10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB)

  10. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  11. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy. PMID:27459699

  12. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  13. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g-1. The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  14. Evaluation of analytical methods for fluorine in biological and related materials.

    Science.gov (United States)

    Venkateswarlu, P

    1990-02-01

    During the past two decades, some major pitfalls in fluorine analysis have been recognized and overcome. Therefore, it is important that facts be separated from fallacies in published literature on levels and forms of fluorine (ionic, bound, covalent, etc.) in biological materials, in order that correct perceptions of physiological, biochemical, and toxicological aspects of inorganic as well as organic fluorine compounds can be formed. Trace amounts of inorganic fluoride in biological samples can now be accurately determined with the fluoride electrode either directly or following diffusion, adsorption, or reverse extraction of fluoride (when necessary). The aluminum monofluoride molecular absorption technique provides an excellent rapid method for determination of trace amounts of inorganic fluoride (in the absence of organic fluorine). Fluorine in most organic fluorine compounds is not available for distillation, diffusion, or reverse-extraction. The sample needs to be ashed (open ashing) or combusted (oxygen flask, oxygen bomb, pyrohydrolysis) for covalently bound fluorine to be converted to fluoride ions. This can now be readily accomplished at room temperature by the reductive cleavage of the C-F bond with the sodium biphenyl reagent. Some recommendations for future research have been made. PMID:2179310

  15. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-01-01

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  16. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  17. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  18. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  19. Who Should Change Biology Education: An Analysis of the Final Report on the Vision and Change in Undergraduate Biology Education Conference

    OpenAIRE

    Kuddus, Ruhul H.

    2013-01-01

    Biological sciences have become the frontiers of new discoveries, major tools of solving local and global problems and creators of new employments. The high rate of new discoveries in biological sciences; new advances in cognitive sciences, learning research, computing and informatics; enhanced fusion of biological sciences and other natural sciences; and the requirement of the learners of the digital generation have presented a multitude of challenges to biology teaching and learning. In mee...

  20. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    Science.gov (United States)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.

    2014-09-01

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  1. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  2. Biological reference materials for quality control of elemental composition analytical data

    International Nuclear Information System (INIS)

    Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA. (author)

  3. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    International Nuclear Information System (INIS)

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode. (paper)

  4. Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion

    1993-08-01

    This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

  5. Influence of gamma irradiation on the deterioration of reactor pressure vessel materials and on reactor dosimetry measurements. Final report

    International Nuclear Information System (INIS)

    Radiation embrittlement of pressure vessel steel in mixed neutron-gamma fields is mostly determined by neutrons, but in some cases also by gamma-radiation. Depending on the reactor type, gamma radiation can influence evaluations of lead factors of surveillance specimens, effect the interpretation of results of irradiation experiments and finally, it can result in changed pressure vessel lifetime evaluations. The project aimed at the evaluation of the importance of gamma radiation for RPV steel damage for several types of light-water reactors. Absolute neutron and gamma fluence rate spectra had been calculated for the Russian PWR types VVER-440 and two core loading variants of VVER-1000, for a German 1300 MW PWR and a German 900 MW BWR. Based on the calculated spectra several flux integrals and radiation damage parameters were derived for the region of the azimuthal flux maxima in the mid-planes for different radial positions between core and biological shield, especially, at the inner and outer surfaces of the PV walls, at the (1/4)-PV-thickness and at the surveillance positions. Fissionable materials are often used as activation detectors for neutron fluence measurements. To get the real value the analysis demands to take into account the gamma induced fissions. Therefore, the part of these fissions in the total number of fissions was estimated for the detector reactions 237Np(n,f) and 238U(n,f) in the calculated neutron/gamma fields. It has been found that considerable corrections of the neutron fluence measurements can be necessary, especially in case of 238U(n,f). Most of the calculations were performed using a three-dimensional synthesis of 2D/1D-flux distributions obtained by the SN-code DORT with the BUGLE-96T group cross-section library. (orig.)

  6. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Jill Trewhella

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently

  7. Synthesis and biological incorporation of icons into macromolecules for NMR study. Final report, June 1, 1977--May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Grant, D.M.; Horton, W.J.

    1978-05-31

    Carbon-13 enrichment synthesis and incorporation into three important biological systems have been carried out to provide materials for carbon-13 magnetic resonance studies. These systems include antibody-labeled haptens, labeled t-RNA and 5S-RNA molecules, and pyridoxal-5'-phosphate-labeled substrate mixtures. The synthesis phase of the work has been completed in all three cases, and the NMR studies completed on all but the antibody-hapten system which is still in process having been absorbed into other supported projects. Publications are now in preparation for the RNA and pyridoxal work. Preliminary results on the antibody-haptens work are encouraging as signals of antibody absorbed haptens have been observed but the results are still not yet conclusive.

  8. Review of the management of materials research and development in the Department of Energy. Final report

    International Nuclear Information System (INIS)

    The Materials Working Group of DOE findings and recommendations of a management nature to improve the handling of materials R and D within DOE are presented. The special role of materials in the development of new energy technologies is provided

  9. Study of non aqueous reprocessing methods. Final progress report. [Container materials for pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Teitel, R. J.; Luderer, J. E.; Henderson, T. M.

    1978-11-17

    The problems associated with container materials for selected pyrochemical processes and process containment conditions are reviewed. A rationale for container materials selection is developed. Candidate process container materials are presented, and areas warranting further development are identified. 14 tables.

  10. Environmental routes for platinum group elements to biological materials--a review.

    Science.gov (United States)

    Ek, Kristine H; Morrison, Gregory M; Rauch, Sebastien

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust. The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  11. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  12. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    Science.gov (United States)

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  13. Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials

    Science.gov (United States)

    Schmid, Thomas; Sebesta, Aleksandar; Stadler, Johannes; Opilik, Lothar; Balabin, Roman M.; Zenobi, Renato

    2010-02-01

    Biological materials can be highly heterogeneous at the nanometer scale. The investigation of nanostructures is often hampered by the low spatial resolution (e.g. spectroscopic techniques) or very little chemical information (e.g. atomic force microscopy (AFM), scanning tunneling microscopy (STM)) provided by analytical techniques. Our research focuses on combined instruments, which allow the analysis of the exactly same area of a sample by complementary techniques, such as AFM and Raman spectroscopy. Tip-enhanced Raman spectroscopy (TERS) combines the high spatial resolution of AFM or STM with the chemical information provided by Raman spectroscopy. The technique is based on enhancement effects known from surface-enhanced Raman scattering (SERS). In TERS the enhancing metallic nanostructure is brought to the sample by an AFM or STM tip. With a TERS-active tip, enhanced Raman signals can be generated from a sample area as small as 10-50 nm in diameter. AFM analysis of bacterial biofilms has demonstrated their heterogeneity at the nanometer scale, revealing a variety of nanostructures such as pili, flagella, and extracelullar polymers. TERS measurements of the biopolymers alginate and cytochrome c have yielded spectroscopic fingerprints even of such weak Raman scatterers, which in future can allow their localization in complex matrices. Furthermore, biofilms of the bacterium Halomonas meridiana were studied, which was found to be involved in the generation of the mineral dolomite. Only combined AFM-Raman analysis was able to identify the nanoglobules found in laboratory cultures of H. meridiana as dolomite nanoparticles. Our combined setups are and will be applied to the investigation of biofilms, fish spermatozoa as well as biological membranes.

  14. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    Science.gov (United States)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  15. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  16. Biological inspiration in optics and photonics: harnessing nature's light manipulation strategies for multifunctional optical materials (Conference Presentation)

    Science.gov (United States)

    Kolle, Mathias; Sandt, Joseph D.; Nagelberg, Sara N.; Zarzar, Lauren D.; Kreysing, Moritz; Vukusic, Peter

    2016-03-01

    The precise control of light-matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties. This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that

  17. 3-d Brownian dynamics simulations of the smallest units of an active biological material

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Paudyal, Nabina; Adeli Koudehi, Maral

    Motor proteins generate stress in a cytoskeletal network by walking on one strand of the network while being attached to another one. A protein walker in contact with two elements of the network may be considered the smallest unit of an active biological material. In vitro experiments, mathematical modeling and computer simulations have provided important insights into active matter on large and on very small length and time scales. However, it is still difficult to model the effects of local environment and interactions at intermediate scales. Recently, we developed a coarse-grained, three-dimensional model for a motor protein transporting cargo by walking on a substrate. In this work, we simulate a tethered motor protein pulling a substrate with elastic response. As the walker progresses, the retarding force due to the substrate tension increases until contact fails. We present simulation results for the effect of motor-protein activity on the tension in the substrate and the effect of the retarding force on the processivity of the molecular motor.

  18. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  19. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  20. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Ding, Li

    has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  1. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States)

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage. To help address this need, we developed a new, bio-inspired catalytic synthesis method that is low-cost, operating at low temperature and without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications. We first combined molecular genetics and materials science to elucidate the molecular mechanism by which a novel family of proteins that we discovered. We showed that these “silicatein” proteins and their biomimetic analogs can be used to simultaneously catalyze and structurally direct the synthesis, at low temperature, of silica, silicone polymers, and a wide variety of crystalline metal oxide semiconductors – materials with which biology had never built structures before. We successfully translated the biomolecular mechanism of synthesis that we discovered to a robust new methodology, without the use of organic molecules, capable of producing nanostructurally controlled metal oxide and related semiconductors for improved efficiency of energy generation, transduction and storage. The method we developed uses vapor diffusion of a catalyst through a gas-liquid interface to provide vectorially controlled catalysis, at low temperature, of synthesis from molecular precursors that require hydrolysis. The result is a novel low-temperature and environmentally benign method for the nanofabrication of a wide range of metal oxide, metal hydroxide and metal phosphate semiconductors, in unique and potentially useful crystal morphologies - some of which could never have been made before - with significantly enhanced electronic performance. The novelty

  2. DOE Final Technical Report (2009-2016): "Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers"

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia [University of Missouri-Columbia; Lever, Susan [University of Missouri-Columbia; Robertson, J. David [University of Missouri-Columbia

    2016-10-04

    This is the final technical report for DOE grant DE-SC-0002040, which was entitled "Research Projects for Interrogations of Biological Systems: Training for the Development of Novel Radiotracers". Included are the students and postdoctoral fellows trained, the publications, dissertations, presentations, and other deliverables for this project.

  3. Mastery of (U,Pu)C carbide fuel: From raw materials to final characteristics

    International Nuclear Information System (INIS)

    theoretical density. They contain residual oxygen as impurity in varying amounts, depending on the fabrication conditions, and above the upper specified limit. The residual oxygen content decreases when the open porosity increases (fig. 2). For an open porosity higher than 40%, relatively low levels of oxygen, between 1000 and 3000 ppm, can be obtained, even if the raw carbide powder has a high oxygen content (sintering classically leads to a significant reduction in the oxygen content). The use of new oxide precursors, whose synthesis is based on the co-conversion of actinides [2], may simplify the manufacturing process by reducing the number of process steps, and may avoid the additional oxygen contamination of the final product as well as the radiation exposure of the operators. Faster reaction rates during carbothermic reduction could be achieved, as well as complete conversion of oxides to carbide at relatively low temperatures so as to keep plutonium volatilization at a reasonably low level. So, (U,Pu)O2 or even precursors obtained by direct incorporation of carbon graphite or a carbon molecule in the structure of the mixed oxalate could be used as starting materials instead of UO2 and PuO2. (authors)

  4. Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials

    International Nuclear Information System (INIS)

    This report focuses on analytical reference materials which have been developed for use in connection with the determination of toxic and essential trace elements in biomedical and health-related environmental samples. Data are reported on 60 biological and 40 environmental (non-biological) reference materials from 11 suppliers. Certified concentration values (or their equivalents) and non-certified concentration values (or information values) are presented in various tables which are intended to help the user select a reference material that matches as closely as possible (i.e. with respect to matrix type and concentration of the element of interest) the ''real'' samples that are to be analysed. These tables have been generated from a database characterized by the following parameters: total number of reference materials=100; total number of elements recorded=69; total number of concentration values recorded=1771. Also included in the report is information (where available) on the cost of each material, the unit weight or volume supplied, and the minimum weight of material recommended for analysis. (author)

  5. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    Science.gov (United States)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  6. Removal of Exogenous Materials from the Outer Portion of Frozen Cores to Investigate the Ancient Biological Communities Harbored Inside.

    Science.gov (United States)

    Barbato, Robyn A; Garcia-Reyero, Natàlia; Foley, Karen; Jones, Robert; Courville, Zoe; Douglas, Thomas; Perkins, Edward; Reynolds, Charles M

    2016-01-01

    The cryosphere offers access to preserved organisms that persisted under past environmental conditions. In fact, these frozen materials could reflect conditions over vast time periods and investigation of biological materials harbored inside could provide insight of ancient environments. To appropriately analyze these ecosystems and extract meaningful biological information from frozen soils and ice, proper collection and processing of the frozen samples is necessary. This is especially critical for microbial and DNA analyses since the communities present may be so uniquely different from modern ones. Here, a protocol is presented to successfully collect and decontaminate frozen cores. Both the absence of the colonies used to dope the outer surface and exogenous DNA suggest that we successfully decontaminated the frozen cores and that the microorganisms detected were from the material, rather than contamination from drilling or processing the cores. PMID:27403572

  7. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112

  8. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  9. Biological test methods for the ecotoxicological characterization of wastes. Final report; Biologische Testerverfahren zur oekotoxikologischen Charakterisierung von Abfaellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Roland [Bundesanstalt fuer Materialforschung, Berlin (Germany); Donnevert, Gerhild [Fachhochschule Giessen-Friedberg (Germany). FB MNI; Roembke, Joerg [ECT Oekotoxikologie GmbH, Floersheim am Main (Germany)

    2007-11-15

    battery the acceptance rate varied between 74.1% (Algae test) and 92.6% (Daphnia test). Methodologically, no problems occurred but further guidance on moisture determination in the terrestrial tests as well as details concerning reference testing and data evaluation for several tests are needed. Independently which test system is considered, SOI always caused the lowest effects and WOO was most toxic, while the EC50 values of INC show an intermediate toxicity. Among the aquatic tests, daphnids and one algal species were the most sensitive ones, while plants were always more sensitive than earthworms in the solid waste samples. Based on the test results from additional tests proposals for the modification of the existing basic test battery could be made. For example, the earthworm acute test could be replaced by another soil invertebrate test with higher sensitivity. Further work performed in parallel to the ring test improves waste testing considerably (e.g. the use of artificial soil as control substrate). A comparison of the ring test results with literature data published so far revealed a good agreement. The results of this ring test support confirm that a combination of a battery of biological tests and chemical residue analysis is needed for an ecotoxicological characterization of wastes. With small modifications proposed in this report the basic test battery is considered to be well suitable for the hazard and risk assessment of wastes. Further, probably multi-variate evaluation of the ring test results will improve the identification of those tests most qualified for the ecotoxicological characterization of wastes. Finally, the experiences made in the ring test support also the proposals made in CEN guideline 14735 (2005) concerning the performance of such tests. (orig.)

  10. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  11. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  12. Thermodynamic analysis of chemical compatibility of several reinforcement materials with niobium aluminides. Final contractor report

    International Nuclear Information System (INIS)

    Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified

  13. EDITORIAL: Nanotechnology at the interface of cell biology, materials science and medicine Nanotechnology at the interface of cell biology, materials science and medicine

    Science.gov (United States)

    Engel, Andreas; Miles, Mervyn

    2008-09-01

    The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep protein-protein and protein-nucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopy—a technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting

  14. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D. [Sandia National Laboratories, Livermore, CA; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H. [Sandia National Laboratories, Livermore, CA

    2014-01-01

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  15. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Akpalu, Yvonne A

    2010-06-30

    Polyhydroxyalkanotes (PHAs), a group of newly developed, commercially available biopolymers, and their composites have the potential to replace petroleum-based amorphous and semicrystalline polymers currently in use for consumer packaging, adhesives, and coating applications and to have significant advantages in medical applications such as tissue engineering. While the potential of PHAs is recognized in the literature and has even been realized in some cases, knowledge of these systems is decades behind that of synthetic polymers. Composites based on PHAs, furthermore, are just emerging in the research community. We argue that widespread adoption of nano-enhanced PHA materials can only be achieved through a proper characterization of the nanofiller morphology and its impact on the polymer matrix. Our goal is to build a robust understanding of the structure-processing relationships of PHAs to make it possible to achieve fundamental control over the final properties of these biopolymers and their bionanocomposites and to develop cost-effective manufacturing technologies for them. With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have performed a systematic study of the influence of cooling rate on the thermal properties and morphology of linear PHAs (PHB Mw = 690,000 g/mol; PHBV Mw = 407,000 g/mol, 8 mol % HV) and branched (PHBHx, Mw = 903, 000 g/mol, 7.2 mol % Hx) copolymers. Structure-property relations for silica/PHBHx nanocomposites were also investigated. Our studies show that simple two-phase composite models do not account for the molecular weight dependent enhancement in the modulus. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Since the mechanical properties of polymer nanocomposites can be affected by many factors

  16. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  17. Technical appendix for the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    The appendixes contain information on alarm levels for detection of theft, computer simulation of theft detection capabilities, benefits and liabilities related to real-time material control, cost analysis, and impact of collocated facilities on the real-time material control concept

  18. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  19. Development of radiative-cooling materials. Final technical report: FY 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Work on research and development on glazing and selective emitter materials that will enhance day and night sky radiative cooling is described. The emphasis is on glazing development with a secondary interest in the appropriate selective emitter. The testing focused on the individual material properties. (MHR)

  20. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  1. A common basis for facilitated legitimate exchange of biological materials proposed by the European Culture Collections' Organisation

    Directory of Open Access Journals (Sweden)

    Dagmar Fritze

    2009-12-01

    Full Text Available Being charged with the task of accessioning and supplying of living microbiological material, microbial culture collections are institutions that play a central role between the interests of a variety of user communities. On the one side are the providers of living microbiological material, such as individual scientists, institutions and countries of origin and on the other side are the various kinds of recipients/users of cultures of microorganisms from academia and industry. Thus, providing access to high quality biological material and scientific services while at the same time observing donor countries' rights, intellectual property rights, biosafety and biosecurity aspects poses demanding challenges. E.g. donor countries rights relate to Article 15 of the Convention on Biological Diversity: "Contracting parties …. recognize the sovereign rights of states over their natural resources …. shall facilitate access to resources … and not impose restrictions that run counter to the aims of the Convention. Access to natural resources shall be by mutually agreed terms and subject to prior informed consent ..." The use of a proposed standard contract by culture collections is discussed as a way of contractually safeguarding the existing research commons, while observing the new rights established in the Convention on Biological Diversity as well as other existing and new legislation impacting on the accessibility of living microbial material.

  2. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  3. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  4. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  5. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holcombe, C.E. Jr.; Kovach, L.

    1981-03-01

    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.

  6. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States); Bai, Zhaojun [Univ. of California, Davis, CA (United States); Ceperley, David [Univ. of Illinois, Urbana, IL (United States); Cai, Wei [Stanford Univ., CA (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Marzari, Nicola [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pickett, Warren [Univ. of California, Davis, CA (United States); Spaldin, Nicola [Univ. of California, Santa Barbara, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  7. Separation Scheme for the Determination of Nine Elements in Biological Material

    International Nuclear Information System (INIS)

    A separation scheme is presented for the determination of nine trace elements in biological samples that give rise to long-lived gamma-emitting isotopes by neutron irradiation, namely silver, molybdenum, mercury, gold, chromium, cobalt, selenium, iron and zinc. The organic material is destroyed by combustion with oxygen in a flask according to Schöniger in the presence of 100 μg of carrier of each element. The ignition is electrical and provides an easy and safe method for burning the samples and avoiding losses of volatile elements. The combustion products are collected in HNO3-H2O2 - solution. Carrier yields of at least 98% were obtained in tracer experiments, except for gold and silver. At high temperatures these elements apparently form an Au-Pt and Ag-Pt alloy with the platinum combustion catalyst. Boiling the platinum sample holder with a few millilitres of aqua regia results in a quantitative recovery of both elements. The HNO3-H2O2 solution is evaporated to dryness and re dissolved in 2N HF. A number of trace elements are adsorbed on a Dowex 1-X8 column and eluted successively with 9N HCl, 1.2N HCl, 8N HNO3 + 4N NH4NO3 and 10% thiourea. A quantitative séparation is thus obtained of Ag, Mo, Hg and Au. Cr, Co, Se, Fe and Zn are not absorbed in 2N HF. This eluate is adsorbed on a second Dowex 1-X8 column in ION HCl and eluated successively with ION HCl, 3N HCl, 0.4N HCl and H2O. Fractions of Cr, Co + Se, Fe and Zn are obtained. A quantitative separation of Co from Se can be achieved on Dowex 50W-X4 in HCl. The volumes in which the individual elements are quantitatively collected are smaller than 30 ml. Consequently a relatively high counting efficiency can be achieved in a 25-ml well-type crystal. Quantitative recovery for all elements is obtained except for mercury and gold. Mercury losses occur on evaporating the HNO3-H2O2 mixture. As a suitable method for the determination of the mercury yield, dithizone titration was chosen. The yield of gold is

  8. Solar-collector-materials exposure to the IPH site environment. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morris, V.L.

    1982-01-01

    In-situ environmental exposure tests were conducted at nine proposed intermediate-temperature Industrial Process Heat (IPH) sites. Three types of reflector materials were evaluated for survivability at the nine sites: second-surface silvered glass, aluminized acrylic FEK-244 film on aluminumsubstrate and Alzak (electropolished aluminum) on aluminium substrate. Black chrome absorber material and low-iron float glass were evaluated for thermal, photochemical, and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material was evaluated for changes in solar absorptivity and emissivity, and the float glass was monitored for changes in transmissivity. Surface and subsurface defects on all materials were examined microscopically and, where deemed of note, were documented photographically.

  9. Final environmental statement on the transportation of radioactive material by air and other modes

    International Nuclear Information System (INIS)

    An assessment is presented of the environmental impact from transportation of shipments of radioactive material into, within, and out of the United States. It is intended to serve as background material for a review by the United States Nuclear Regulatory Commission (NRC) of regulations dealing with transportation of radioactive materials. The impetus for such a review results not only from a general need to examine regulations to ensure their continuing consistency with the goal of limiting radiological impact to a level that is as low as reasonably achievable, but also from a need to respond to current national discussions of the safety and security aspects of nuclear fuel cycle materials. Chapters are included on regulations governing the transportation of radioactive materials, radiological effects, transport impact under normal conditions, impacts of transportation accidents, alternatives, and security and safeguards. A standard shipments model is also included along with a demographic model, excerpts from federal regulations, data on Pu, Population dose formulas, a list of radioactive material incidents, accident analysis methodology, and an analysis of risk assessment sensitivity

  10. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  11. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  12. "Capping Off" the Development of Graduate Capabilities in the Final Semester Unit for Biological Science Students: Review and Recommendations

    Science.gov (United States)

    Firn, Jennifer

    2015-01-01

    Biology is the most rapidly evolving scientific field of the 21st century. Biology graduates must be able to integrate concepts and collaborate outside their discipline to solve the most pressing questions of our time, e.g. world hunger, malnutrition, climate change, infectious disease and biosecurity. University educators are attempting to…

  13. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  14. BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS

    Directory of Open Access Journals (Sweden)

    E. A. Nemets

    2013-01-01

    Full Text Available Aim. To study the ability of hospital-associated strains isolated from the biological substrates of patients oper- ated on under extracorporeal circulation, to form biofilms on the surface of medical materials and products. Materials and methods. The formation of biofilms of strains of Staphylococcus aureus, Serratia liquefaciens, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. isolated from the biological substrates of patients operated on under extracorporeal circulation, on different surfaces (politetraftorotilen, medical poly- ethylene, Polyoxybutirate-to-valerate, silicone, polyvinyl chloride, was studied by a modified method for the surface of the medical materials and products. Results. The influence of the material nature, as well as hydrophi- lization of the surface, on the ability of hospital-associated strains, isolated from the biological substrates of pa- tients operated on under extracorporeal circulation, to form biofilms is studied. It is shown that that certain strains exhibit an increased tendency to biofilm formation on more hydrophobic surfaces, e. g., Acinetobacter spp. At the same time the activity of Staphylococcus aureus on silicon surface (hydrophobic surface is minimal. Other strains almost equally form biofilms on hydrophilic and hydrophobic surfaces e.g. Serratia liquefaciens. It was also shown that the surface hydrophilization of PEG to 50% for all the studied strains leads to dramatic reduc- tion of biofilm formation. Conclusion. The tendency to form biofilms of a particular hospital-associated strain is individual and depends on the nature of the medical material and physical-chemical characteristics of its surface. Hydrophilization of the surface of the medical material is accompanied by a lowered risk of biofilm formation. 

  15. Optimization of biological phosphorus and ammonia removal in a combined fixed and suspended growth wastewater treatment system: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This project was conducted to optimize design and operational criteria for enhanced biological phosphorus removal and nitrification of ammonia in the fixed growth reactor-suspended growth reactor (FGR-SGR) process. The research completed the investigation of optimum hydraulic retention times for biological phosphorus removal in both the unaerated and aerated phases of the suspended growth components of the FGR-SGR system, including an assessment of the possibility of reducing suspended growth aeration requirements by using oxidized forms of nitrogen rather than dissolved oxygen for biological phosphorus uptake; investigated the effects on biological phosphorus removal and nitrification of varying the internal recycle flow rates; and investigated the optimum solids retention time, or the optimum operating mixed liquor suspended solids concentration, in the suspended growth component of the system for biological phosphorus removal and nitrification-denitrification.

  16. Report on intercomparison run SNR-1 for the determination of trace elements in synthetic resin simulating biological material

    International Nuclear Information System (INIS)

    A synthetic resin, SNR-1, simulating biological material and containing homogeneously distributed trace amounts of As, Au, Br, Cr, Cs, Hg, La, Mn, Rb, Sb, Se and Sr, was made available to 16 laboratories in the form of 50 mg - pellets. Various methods for the quantitative determination of these elements (and, in some cases, also of impurities) including neutron activation analysis, and neutron activation analysis with radio-chemical analysis were used in an interlaboratory comparative study. The results are tabulated

  17. Effect of weight fraction of different constituent elements on the total mass attenuation coefficients of biological materials

    Indian Academy of Sciences (India)

    Karamjit Singh; Charanjeet Singh; Parjit S Singh; Gurmel S Mudahar

    2002-07-01

    The mass attenuation coefficients, m, of biological materials have been studied as a function of weight fraction of constituent elements (hydrogen, carbon, oxygen and nitrogen). A considerable change in m is seen only in low energy region whereas no change is observed with the increasing percentage of constituent elements in high energy region up to 10 MeV. The results have been presented in graphical form.

  18. Determination of selenium in biological materials by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS)

    OpenAIRE

    Galgan, Vera

    2007-01-01

    The selenium (Se) poor environment in the Scandinavian countries focused the interest on the development of an analytical method with high capacity, sensitivity, low limit of detection, including automated wet digestion, automated analysis and computer aided calculation. To facilitate the choice of an appropriate analytical method, procedures for determination in biological materials were discussed. The most frequently used sample-preparation procedures and various analytical techniques were ...

  19. Materials of the discussion about the final examination of high school students (RPCDE, April 13, 2005)

    OpenAIRE

    103-111,

    2005-01-01

    How to stop reporting false grades on final examinations is one of the most complicated problems of our education. A discussion at a meeting of the Russian Public Council on the Development of Education (RPCDE) is perhaps the first professional discussion of this serious problem, which has both moral and socio-political aspects. Why do teachers choose to falsify the results of their own work, why are students unable to become sufficiently proficient in the state curriculum? Is the latter too ...

  20. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 3: Final presentation material

    Science.gov (United States)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    Charts used in the Final Phase 1 Oral Briefing at Kennedy Space Center on April 6, 1987, and to the Space Transportation Architecture Study (SPAS) Interim Program Review (IPS-5) held at MSFC on April 8, 1987, are contained. Topics discussed include: identification of existing or new technologies to reduce cost; management approaches; recommendations for research or development of specific technology for future use; and identification of new management techniques.

  1. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McCay, T.D.; Boss, W.H. [ed.; Dahotre, N. [and others

    1996-12-01

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  2. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Chelikowsky, James R. [University of Texas at Austin

    2014-04-14

    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plus Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.

  3. Neutron Spectrometry for Identification of filler material in UXO - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary

    2007-09-12

    Unexploded ordnance (UXO)-contaminated sites often include ordnance filled with inert substances that were used in dummy rounds. During UXO surveys, it is difficult to determine whether ordnance is filled with explosives or inert material (e.g., concrete, plaster-of-paris, wax, etc.) or is empty. Without verification of the filler material, handling procedures often necessitate that the object be blown in place, which has potential impacts to the environment, personnel, communities and survey costs. The Department of Defense (DoD) needs a reliable, timely, non-intrusive and cost-effective way to identify filler material before a removal action. A new technology that serves this purpose would minimize environmental impacts, personnel safety risks and removal costs; and, thus, would be especially beneficial to remediation activities.

  4. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  5. Development of New Didactic Materials for Teaching Science and Biology: The Importance of the New Education Practices

    Directory of Open Access Journals (Sweden)

    Camila O. Arent

    2009-01-01

    Full Text Available Problem statement: The creativity of teachers in the planning process of their classes for teaching science and biology may be an instigator to promote and stimulate learning. The science should be something that awakens curiosity in students to make learning pleasurable and increase their interest. The aim this research was to develop didactic materials for to help the teaching-learning process in the content of science and biology. Especially, those content about systematic that can not be very exciting and bring some difficulty for the involvement of students. Approach: Inspired in the Atlantic forest, which extends along the Brazilian coast and offers a diverse ecosystem, were created some materials that enable the interaction of teacher with students, which were: "memory of the Atlantic forest", "unmasking the Atlantic forest” and a “set of transparencies”. The first is composed of 25 cards each containing an image of a species of fauna or flora of the Atlantic forest, popular and scientific name. Complete the material, 25 letters with specific characteristics of each species. The second is a panel with the illustration of the incompleteness of the Atlantic forest ecosystem, featuring 10 pictures of animals that are hidden between the two sides of the panel and asked for 10 letters, which were answered to complete the ecosystem. The third is a set of transparencies containing information on the Atlantic, maps and data on the fauna and flora. The latter should be used to perform a preliminary discussion on the biodiversity of the Atlantic. Results: Results showed that these materials facilitate learning, as well as linking images of known species with their respective characteristics, makes the class interesting by providing the effective interaction of the group. Conclusion/Recommendation: These materials were used and well accepted by students of the course of biological science in the

  6. Executive summary of the special safeguards study on material control and accounting systems. Final report

    International Nuclear Information System (INIS)

    This report assesses the feasibility of real-time systems applied to mixed-oxide fuel rod fabrication. Their interaction with other material control and accounting measures are considered. Economics, effectiveness, and acceptance factors are discussed. A cost-benefit evaluation is made and recommendations given for safeguards improvements

  7. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.

    1993-08-01

    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  8. Improvement of the fracture toughness in the PWR pressurizer surgeline material (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Lee, Bong Sang; Oh, Yong Jun; Yoon, Ji Hyun; Oh, Jong Myung; Park, Buk Gyun; Kim, Ju Hak; Kuk Il Hyun; Byun, Taek Sang [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-12-01

    Fracture toughness property of PWR surgeline pipe materials is one of the most important factor for Leak Before Break(LBB) analysis. In order to improve fracture toughness of the surgeline material (SA312-TP347 stainless steel), base on the evaluation and analysis of the commercial TP347 alloys, eleven TP347 model alloys were designed and manufactured. Tensile and fracture resistance properties of the model alloys, as well as microstructure, were evaluated. It is concluded that the nitrogen shall be added more than 0.1% for high tensile property and the carbon shall be in the range of 0.02 to 0.04% for high fracture resistance. In addition, four TP316N stainless steels were manufactured and evaluated to find out the applicability as a candidate material for PWR surgeline pipe. As a conclusion, TP316N stainless steels had an excellent property to be used for surgeline piping materials, substituting the present TP347 stainless steels. (author). 11 refs., 50 figs., 12 tabs.

  9. A Model for Producing and Sharing Instructional Materials in Veterinary Medicine. Final Report.

    Science.gov (United States)

    Ward, Billy C.; Niec, Alphonsus P.

    This report describes a study of factors which appear to influence the "shareability" of audiovisual materials in the field of veterinary medicine. Specific factors addressed are content quality, instructional effectiveness, technical quality, institutional support, organization, logistics, and personal attitudes toward audiovisuals. (Author/CO)

  10. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  11. Final report on CCQM-K79: Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous matrix

    Science.gov (United States)

    Hein, Sebastian; Philipp, Rosemarie; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza

    2013-01-01

    -weighted generalized distance regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. On the basis of leave-one-out cross-validation, all of the assigned values for all 27 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the very wide range of ethanol mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). The median of the absolute values of the %D for the participating NMIs is less than 0.05% with a median U95(%D) of less than 1%. These results demonstrate that the participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for ethanol in aqueous media and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  13. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy

  14. Development and characterization of semiconductor materials by ion beams. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    This CRP was recommended by the Consultants meeting on Ion Beam Techniques Applied to Semiconductor and Related Advanced Materials, held in April 1997 in Vienna. The consultants proposed to have a CRP in the field of application of MeV ion beams for the development and characterization of semiconductor materials. The CRP was approved and a first RCM was held in Vienna between 2-5 June 1998, in order to stimulate ideas and to promote collaborations among CRP participants. The goals and practical outcomes of the CRP were defined and several specific topics were identified including: optoelectronic characterization of semiconductor materials and devices by ion microbeams, characterization of thin films, defect transformations in semiconductors, light element analysis. One important recommendation was that sample exchanges among different laboratories be strongly encouraged. The participants presented individual activities on their projects, all subjects of research were identified and linked with approved individual projects. Collaboration among the participants was discussed and established. Some modifications to work plans were adopted. As proposed during the first RCM, the final RCM was held at the Ruder Boskovic Institute, Zagreb, Croatia, between 25 and 29 September 2000, with the purpose of reviewing/discussing the results achieved during the course of the CRP and to prepare a draft of the final report and associated publication. This document contains summary of the CRP and ten individual reports presented by participants. Each of the reports has been indexed separately

  15. Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Paul [University of Wisconsin, Madison

    2013-07-24

    We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.

  16. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Dingreville, Remi Philippe Michel; Voth, Thomas Eugene; Furnish, Michael David

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  17. Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, D.C.; Gaines, G.B.; Sliemers, F.A.; Kistler, C.W.; Igou, R.D.

    1976-07-21

    Available information defining the state of the art of encapsulation materials and processes for terrestrial photovoltaic devices and related applications were collected and analyzed. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for low-cost, long-life terrestrial photovoltaic arrays manufactured by automated, high-volume processes. The criteria for consideration of the encapsulation systems were based on the goals for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total array price less than $500/kW, and a production capacity of 5 x 10/sup 5/ kW/yr. (WDM)

  18. Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Corral, Erica L. (University of Arizona, Tucson, AZ); Miller, James Edward; Walker, Luke S. (University of Arizona, Tucson, AZ); Evans, Lindsey R.

    2012-05-01

    This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

  19. Hydrogel modified materials surfaces for the ERDA artificial heart. Final report

    International Nuclear Information System (INIS)

    This report summarizes a series of studies on the suitability of silicone surgical grafts. The studies performed include an evaluation of vena cava rings to study thrombogenicity of grafted polymer coatings, the interaction of platelets with radiation grafted polymers, an in vitro evaluation of knitted dacron artery sections, the tissue compatibility of HEMA-EMA copolymers, the in vitro cell adhesion to polymeric materials, and the use of the ESCA technique for determining HEMA/EMA ratios

  20. Hydrogel modified materials surfaces for the ERDA artificial heart. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.S.

    1978-09-14

    This report summarizes a series of studies on the suitability of silicone surgical grafts. The studies performed include an evaluation of vena cava rings to study thrombogenicity of grafted polymer coatings, the interaction of platelets with radiation grafted polymers, an in vitro evaluation of knitted dacron artery sections, the tissue compatibility of HEMA-EMA copolymers, the in vitro cell adhesion to polymeric materials, and the use of the ESCA technique for determining HEMA/EMA ratios.

  1. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  2. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    International Nuclear Information System (INIS)

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF6 releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger

  3. Biological methods for increasing the biogas yield of livestock waste. Final report; Biologiske metoder til foroegelse af husdyrgoednings biogaspotentiale. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Mladenovska, Z.; Ahring, B.K.

    2001-01-01

    Danish full-scale biogas plants operate with manure as a primary substrate, of which cattle manure represents a significant fraction. Conversion of the lignocellulosic fibre fraction of manure was shown to be the rate-degrading step of the anaerobic digestion. The aim of this project was to investigate if the biological methods, such as bioaugmentation of the reactor with specific anaerobic, hydrolytic bacteria would improve hydrolysis of fibres and result in an increase of the methane yield of cattle manure. Results of this study showed, that there is a potential for an increase of the methane yield of manure by inoculating the fibre-containing substrate with cellulose- and alkaliphilic xylane-hydrolyzing bacterial cultures. The highest increase of methane yield in batch experiment was obtained at 37 deg. C and 68 deg. C, while the effect at 55 deg. C was poor. Direct inoculation of a mesophilic reactor with Clostridium cellulovorans (DSM 3052) was not successful. The fate of the organism, followed by 16S rRNA probing, proved that DSM 3052 was not a member of the indigenous microflora, and that the active population of DSM 3052 could not be established within the reactor. On the other hand, inoculation of a reactor with our own isolate, a new clostridial strain, Clostridium sp. SA 14, resulted in a significant increase of the methane yield from 220 ml CH{sub 4}/g VS up to 330 ml CH{sub 4}/g VS. However, during the continuous reactor operation in the period of one retention time, the effect was reduced and finally disappeared. Therefore, it would be necessary in the future to develop a new strategy for establishment of this strain within the reactor environment. Anaerobic digestion of manure was also studied in a two-step process, where manure was first hydrolyzed at 68 deg. C, and thereafter digested in a conventional methanogenic step at 55 deg. C. Investigation from batch experiment resulted in a 24%- increase in methane yield for the two-step digestion compared

  4. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy.

    Science.gov (United States)

    Broaders, Kyle E; Cohen, Joel A; Beaudette, Tristan T; Bachelder, Eric M; Fréchet, Jean M J

    2009-04-01

    Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.

  5. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    International Nuclear Information System (INIS)

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: (1) Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen; (2) Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure; (3) Hydrogen storage material made from activated PEEK

  6. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Kleinhammes, Alfred

    2011-07-11

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from

  7. Characterizing the emissivity of materials under dynamic compression (final report for LDRD project 79877)

    International Nuclear Information System (INIS)

    Temperature measurements are crucial to equation of state development, but difficult to perform reliably. In the case of infrared pyrometry, a large uncertainty comes from the fact that sample emissivity (the deviation from a blackbody) is unknown. In this project, a method for characterizing the emissivity of shocked materials was developed. By coupling infrared radiation from the National Synchrotron Light Source to a gas gun system, broad spectrum emissivity changes were studied to a peak stress of 8 GPa. Emissivity measurements were performed on standard metals (Al, Cr, Cu, and Pt) as well as a high emissivity coating developed at Sandia

  8. Potential of the PIGE method in the analysis of biological and mineral materials

    International Nuclear Information System (INIS)

    A possible application of the PIGE method for the analysis of the biological and mineral samples has been tested using a 3.5 MeV Van de Graaff accelerator. The limits of detection of 4 mg/kg for fluorine, 10 mg/kg for aluminium and 200 mg/kg for phosphorus were achieved with a 3.15 MeV proton beam (8 mm in diameter, 20 nA current and 1000 s irradiation time). The PIGE method was found to be a suitable method for the determination of fluorine in the samples analyzed. With this technique, total fluorine in the sample can be quantitated without any chemical treatment. In the analysis of the phosphorus in thick biological samples, PIGE can compete with PIXE and is probably less sensitive to matrix effects and spectra fitting, which may bring about a higher accuracy of the results

  9. Removal of Review and Reclassification Procedures for Biological Products Licensed Prior to July 1, 1972. Final rule.

    Science.gov (United States)

    2016-02-12

    The Food and Drug Administration (FDA, the Agency, or we) is removing two regulations that prescribe procedures for FDA's review and classification of biological products licensed before July 1, 1972. FDA is taking this action because the two regulations are obsolete and no longer necessary in light of other statutory and regulatory authorities established since 1972, which allow FDA to evaluate and monitor the safety and effectiveness of all biological products. In addition, other statutory and regulatory authorities authorize FDA to revoke a license for biological products because they are not safe and effective, or are misbranded. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation. PMID:26878738

  10. X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source. Final report

    International Nuclear Information System (INIS)

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02-11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials

  11. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    OpenAIRE

    Palagi, Stefano; Jager, Edwin; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to i...

  12. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    OpenAIRE

    Inutan, Ellen D.; Trimpin, Sarah

    2012-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or adde...

  13. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2008-07-01

    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  14. Republic of Lithuania national energy strategy. Vol. 2: Background material for strategy development. Final report

    International Nuclear Information System (INIS)

    Volume II presents supplementary Background Material collected and analysed during the course of the project. Volume II consists of two parts: PART A (Sources and Methods) and PART B (Special Sub sector Issues). PART A contains seven chapters. The subject of Chapter 1 is to integrate the material of this volume into the analytical approach as a whole and to give an outline of the tools applied in the Strategy development. Reference data provided in Chapter 2 summarizes the information as to the past energy consumption and the future economic development. Chapter 3 compiles basic parameters and assumptions with regard to energy forms, costs, the economic development as laid down for use in the project. Chapter 4 discusses in detail the projection of energy demand. Chapter 5 draws up the Projects under consideration. Chapter 6 presents key results of energy scenario computations, and Chapter 7 provides energy scenario indicators and assessment information. PART B of this Volume II contains full reports regarding topics, which have only briefly been addressed in Volume I. (author).[Data

  15. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  16. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  17. Long term test of buffer material. Final Report on the pilot parcels

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Eriksen, Trygve E; Jansson, Mats; Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden); Pedersen, Karsten; Motamedi, Mehrdad [Goeteborg Univ. (Sweden); Rosborg, Bo [Studsvik Material AB, Nykoeping (Sweden)

    2000-12-01

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading

  18. Long term test of buffer material. Final Report on the pilot parcels

    International Nuclear Information System (INIS)

    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading processes, with

  19. Determination and Certification of Multielements in 6 Biological Reference Materials by NAA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Food safety has been a problem of global concern. The insufficient availability of certificated reference materials (CRM) used for food analysis has resulted in a lack of internal quality control in food

  20. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  1. High power laser and materials investigation. Final report, 31 July 1978-28 October 1979

    International Nuclear Information System (INIS)

    This is a combined study of resonant pumped solid state lasers as fusion drivers, and the development of crystalline optical materials suitable for propagation of the high peak powers associated with laser fusion research. During this period of study the concept of rare gas halide lasers was first demonstrated by the lasing of Tm:YLF at 453 nm pumped by the 353 nm energy of XeF. Excited stata densities of 5 x 1018 cm-3 have been attained and spectroscopic measurements show that up to 60% of the pump energy can be converted into useful stored energy. Alternative lasers and pumping schemes are also discussed. In all cases the potential RGH/SS systems are evaluated in respect to internal efficiency and heat loading

  2. Space station needs, attributes and architectural options study. Briefing material: Final review and executive summary

    Science.gov (United States)

    1983-01-01

    Advantages and disadvantages were assessed for configuration options for a modular 14' diameter space station, a modular aft cargo carrier and a shuttle derived vehicle. Early, intermediate, and mature configurations were defined as well as power requirements, heat rejection, hydrazine usage, and the external scavenging concept. Subsystems were analyzed for propulsion, attitude control, data processing, and communications. Areas of uncertainties, associated costs and benefits, and the cost by phase of the modular and shuttle derived vehicle configurations were identified. Technologies assessed included solar vs nuclear; gravity gradient vs active control; heat pipe radiators vs fluid loops; distributed processors vs centralized, and modular vs shuttle derived configuration. It was determined that the early space station architecture should include: (1) reusable OTV with aerobraking; (2) TMS with telepresence services; (3) OTV/TMS refueling and servicing capability; and (4) attached research laboratories for life sciences and materials processing.

  3. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  4. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  5. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Tingle, W. [Dept. of Environment, Health, and Natural Resources, Raleigh, NC (United States). Div. of Radiation Protection

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ``Applications for the Use of Sealed Sources in Portable Gauging Devices,`` and in NMSs Policy and guidance Directive 2-07, ``Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.`` This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications.

  6. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    International Nuclear Information System (INIS)

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ''Applications for the Use of Sealed Sources in Portable Gauging Devices,'' and in NMSs Policy and guidance Directive 2-07, ''Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.'' This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications

  7. Neutrons, deuteration and synchrotron X-rays for the study of biology and advanced materials: A match made in atoms..

    International Nuclear Information System (INIS)

    Together, the Australian Synchrotron in Melbourne and the OPAL research reactor, at the Bragg Institute in Sydney represent Australia's largest ever investment in scientific infrastructure. Both facilities commenced operation in 2007, have passed through their infancy and adolescence to take their place amongst the rank of top-flight international user facilities. Far from middle-aged, these two vibrant landmark facilities (each with 10 operational beamlines) and along with the National Deuteration Facility at ANSTO have provided transformational research capabilities for the Australian scientific community. Although modest in size compared to the well-established international competition, both institutions are producing excellent amounts of high-quality research with the Bragg Institute and the Australian Synchrotron generating more than 200 and 450 peer-reviewed publications per annum respectively. At first glance both synchrotron and neutron sources show similar scientific profiles, encompassing an extremely wide range of disciplines: materials, chemistry, biology, condensed matter physics, nanotechnology, engineering, geosciences, archaeology and studies relating to cultural heritage. Common to both are advanced capabilities for the study of atomic and molecular structure, as well as operational studies of functional materials under a diverse range of extreme environments. A more forensic examination however reveals fundamental differences in their DNA. While the biological, pharmaceutical and medical research communities drive substantial capability development and research outcomes at the Australian Synchrotron, neutron scattering and molecular deuteration at the Bragg Institute provides a focus for studies in soft condensed matter, physical and inorganic chemistry, solid state physics and crystallography. Although their respective probes are generated from different parts of the atom and interact with matter in fundamentally different ways, my

  8. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Science.gov (United States)

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material. PMID:15804666

  9. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2014. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  10. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  11. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-01-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  12. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg(2+) Ions.

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E; Dhawale, Dattatray S; Subramaniam, Vishnu P; Strounina, Ekaterina; Sathish, Clastinrusselraj I; Yamaura, Kazunari; Cooper-White, Justin J; Vinu, Ajayan

    2016-01-01

    We introduce "sense, track and separate" approach for the removal of Hg(2+) ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg(2+) ions with a high precision but also adsorb and separate a significant amount of Hg(2+) ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg(2+) ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  13. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-02-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery.

  14. Biological induced corrosion of materials II: New test methods and experiences from mir station

    Science.gov (United States)

    Klintworth, R.; Reher, H. J.; Viktorov, A. N.; Bohle, D.

    1999-09-01

    During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware. Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s). Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems. For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach. Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.

  15. Optics of Biological Particles

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  16. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E.; Connor, Stephen T.; Peters, Craig H.

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949 mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to (1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and (2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS

  17. Microbiological titration of proteins and of single amino acid content in biological materials without purification and hydrolysis.

    Science.gov (United States)

    Puppo, S; Morpurgo, G; Nardi, S; Conti, G

    1978-04-01

    A method is described for the microbiological determination of the protein content of biological materials. This method can also be adopted to titrate the concentration of a single amino acid in the protein and has the following advantages: (1) titration can be done without purification and hydrolysis of proteins; (2) the titration graph is a straight line between 25 and 800 microgram/ml; (3) protein values agree with those obtained using the Kjeldhal method; and (4) each mutant requiring one amino acid may be used to titrate the concentration of a single amino acid of the protein. The leucine content of various kinds of flour was measured with this system.

  18. Effect of some botanical materials on certain biological aspects of the house fly, Musca domestica L

    Directory of Open Access Journals (Sweden)

    Nabawy A. I. Elkattan, Khalafalla S. Ahmed, Saadya M. Elbermawy and Rabab

    2011-04-01

    Full Text Available The effects of Lantana camara (leaves, Pelargonium zonale (leaves, Cupressus macrocarpa (leaves, Cyperus rotundus (whole plant and Acacia nilotica (seeds powders on some biological aspects of house fly, M. domestica L. were tested. The effects of three lethal concentrations LC25, LC50 and LC75 on the larval duration, pupation percent, pupal weight, pupal duration, adult emergence percent, sex ratio, adult longevity, and fecundity were determined. The induced malformed larvae, pupae and adults were recorded and photographed. The powders of the five plants were found to have promising effects in controlling this insect.

  19. The use of a single technique for the separation and determination of actinides in biological materials

    International Nuclear Information System (INIS)

    For the radiotoxicological survey of workers exposed to different types of alpha-emitting contaminants, a procedure was developed which permits the estimate of Th, Pa, U, Np, Pu, Am and Cm in biological samples with a single technique. The radionuclides are extracted on a column by tri-n-octylphosphine oxide and separated by elution at different pH values. Afterwards, the quantitative determinations are done by physical methods (alpha counting or spectrometry). In the case of an accident it is possible to use a simplification of the procedure (extraction in a beaker) for checks. A procedure for the rapid determination of actinides in faeces and in nasal secretions is described

  20. The use of Compton suppression spectrometers for trace element studies in biological materials.

    Science.gov (United States)

    Rossbach, M; Zeisler, R; Woittiez, J R

    1990-01-01

    A straightforward method for demonstrating the powerful background reduction of Compton suppression spectrometers for neutron activation purposes is presented. The shorter acquisition time needed in Anti-Compton mode (A/C on) for peaks of appropriate counting statistics, compared to normal gamma counting (A/C off), allows a much higher sample throughput, thus compensating for the higher cost of the instrument. Two examples of artificial mixtures of radionuclides demonstrate the drastic time saving for measurement of monoenergetic decaying isotopes. The comparison of results from three different instruments proves the general usefulness of Compton suppression spectrometers for Neutron Activation Analysis of biological samples. PMID:1704771

  1. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  2. Biological impact tests on complex hydrides used as hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Kiyobayashi, T.; Kuriyama, N. [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Tokoyoda, K. [R and D Center, Taiheiyo Cement Corporation, 2-4-2 Osaku, Sakura, Chiba 285-8655 (Japan); Matsumoto, M. [Materials Department, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2010-10-15

    The mutagenicity of a series of the light element hydrides (containing NaAlH{sub 4}, Mg(NH{sub 2}){sub 2}, LiBH{sub 4}, etc.) was examined by evaluating the frequency of mutation in bacterial DNAs. Although some materials were suspected to be slightly mutagenic, their effect was much less malignant than that of well-known potent mutagens. The hydrides exhibited high cytotoxicity, rather than mutagenicity. A Mg(NH{sub 2}){sub 2}-related material was also subjected to a series of toxicity tests on aqueous organisms, i.e., algae, water fleas and fish. The result suggests that the material is as toxic as alkaline metal hydroxides, such as NaOH and KOH. (author)

  3. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. (Battelle Marine Research Lab., Sequim, WA (United States))

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  4. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    International Nuclear Information System (INIS)

    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE

  5. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S.; McGuire, S.A.

    1997-02-01

    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE.

  6. High-temperature cementing materials for completion of geothermal wells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalyoncu, R.S.; Snyder, M.J.

    1981-05-01

    Several portland cement types, oil well cements, and various additives and admixtures were evaluated during the course of development of a number of promising compositions suitable for geothermal applications. Among the cements and various materials considered were portland cement Types I, III, and V; oil well cement Classes G, H, and J; and additives such as silica flour, blast furnace slags, pozzolan, hydrated lime, perlite, and aluminum phosphate. Properties of interest in the study were thickening time, compressive strength, cement-to-metal bond strength, and effects of the cements on the corrosion of steel well casings. Testing procedures and property data obtained on a number of compositions are presented and discussed. Several cementing compositions comprised of Class J oil well cement, pozzolan, blast furnace slags, and silica flour were found to possess properties which appear to make them suitable for use in geothermal well completions. Five of the promising cementing compositions have been submitted to the National Bureau of Standards for additional testing.

  7. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  8. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  9. Graphene: One Material, Many Possibilities—Application Difficulties in Biological Systems

    Directory of Open Access Journals (Sweden)

    Marta Skoda

    2014-01-01

    Full Text Available Energetic technologies, nanoelectronics, biomedicine including gene therapy, cell imaging or tissue engineering are only few from all possible applications for graphene, the thinnest known carbon configuration and a basic element for other more complicated, better discovered and widely used nanostructures such as graphite, fullerenes and carbon nanotubes. The number of researches concerning graphene applications is rising every day which proves the great interest in its unique structure and properties. Ideal pristine graphene sheet presents a flat membrane of unlimited size with no imperfections while in practice we get different flakes with irregular edges and structural defects which influence the reactivity. Nanomaterials from graphene family differ in size, shape, layer number, lateral dimension, surface chemistry and defect density causing the existence of graphene samples with various influence on biological systems. Whether graphene induces cellular stress and activates apoptosis, or on the contrary facilitates growth and differentiation of the cells depends on its structure, chemical modifications and the growth process. A certain number of in vitro studies has indicated cytotoxic effects of graphene while the other show that it is safe. The diversity of the samples and methods of the production make it impossible to establish clearly the biological impact of graphene.

  10. 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories.

    Science.gov (United States)

    2012-04-01

    Third Edition [Formula: see text] [Box: see text] Printed with permission from the International Society for Biological and Environmental Repositories (ISBER) © 2011 ISBER All Rights Reserved Editor-in-Chief Lori D. Campbell, PhD Associate Editors Fay Betsou, PhD Debra Leiolani Garcia, MPA Judith G. Giri, PhD Karen E. Pitt, PhD Rebecca S. Pugh, MS Katherine C. Sexton, MBA Amy P.N. Skubitz, PhD Stella B. Somiari, PhD Individual Contributors to the Third Edition Jonas Astrin, Susan Baker, Thomas J. Barr, Erica Benson, Mark Cada, Lori Campbell, Antonio Hugo Jose Froes Marques Campos, David Carpentieri, Omoshile Clement, Domenico Coppola, Yvonne De Souza, Paul Fearn, Kelly Feil, Debra Garcia, Judith Giri, William E. Grizzle, Kathleen Groover, Keith Harding, Edward Kaercher, Joseph Kessler, Sarah Loud, Hannah Maynor, Kevin McCluskey, Kevin Meagher, Cheryl Michels, Lisa Miranda, Judy Muller-Cohn, Rolf Muller, James O'Sullivan, Karen Pitt, Rebecca Pugh, Rivka Ravid, Katherine Sexton, Ricardo Luis A. Silva, Frank Simione, Amy Skubitz, Stella Somiari, Frans van der Horst, Gavin Welch, Andy Zaayenga 2012 Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research INTERNATIONAL SOCIETY FOR BIOLOGICAL AND ENVIRONMENTAL REPOSITORIES (ISBER) INTRODUCTION T he availability of high quality biological and environmental specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens that will enable their future use. Sharing successful strategies for accomplishing this goal is one of the driving forces for the International Society for Biological and Environmental Repositories (ISBER). For more information about ISBER see www.isber.org . ISBER's Best Practices for Repositories (Best Practices) reflect the collective experience of its members and has received broad input from other repository professionals. Throughout this document

  11. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  12. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  13. Application of phase-change materials in passive solar systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sliwkowski, J.

    1979-01-01

    The Institute of Energy Conversion of the University of Delaware has designed and constructed a modular, hybrid passive solar energy collection and storage unit called the Thermal Wall Panel. The Thermal Wall Panel uses the concept of energy storage in phase change materials combined with direct solar gain. In the winter of 1977-78, the Thermal Wall Panel was tested at Solar One, the Institute's solar house and laboratory. The key results and conclusions from this testing and analysis program include the following: (1) Based on measurements, a Thermal Wall Panel with movable nighttime insulation (R = 6.80) between the storage components and the outside can retain and deliver as heat an average of 45 percent of the sun's energy which falls on it during the day. (2) Based on calculations, a 120 square foot wall can provide about 25 percent of the heating needs of a 1100 square foot house. Analysis indicates that when the Thermal Wall Panel (R = 6.00 nighttime insulation) is combined with other direct gain passive solar energy systems as large, south-facing windows, 56 percent of a home's heating needs can be provided. (3) A Thermal Wall Panel can be installed into a typical home in the Mid-Atlantic Region for an incremental cost of from $6 to $8 per square foot beyond the cost of the normal wall and pay for itself in 5 to 9 years at 1978 energy costs. Also, the Thermal Wall Panel does not require any additional foundation support. (4) A computer model has been developed for the Thermal Wall Panel which shows good agreement with predicted and measured performance. Based on these results, it is recommended that full-scale testing of the system be initiated at multiple sites in the Mid-Atlantic Region.

  14. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  15. Synthesis of Precision for the Certification of Phosphorus in Biological Materials by INAA

    DEFF Research Database (Denmark)

    Damsgaard, E.; Heydorn, K.

    1987-01-01

    The β-emitter32P was used to determine total phosphorus by INAA in Skim Milk Powder RM 63, a material now certified by the EEC Bureau of Reference (BCR). Samples and comparator were irradiated in the Danish reactor DR 3. One month later the samples were dissolved in water and aliquots counted...

  16. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  17. Reproductive Biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme (Bivalvia: Unionidae): final report

    OpenAIRE

    O'Brien, Christine

    1997-01-01

    A study on the reproductive biology of Amblema neislerii, Elliptoideus sloatianus, Lampsilis subangulata, Medionidus penicillatus, and Pleurobema pyriforme was conducted from May 1995 to May 1997. The objectives of this study were as follows: 1) determine period of gravidity for each of the five mussel species, 2) determine host fish via laboratory experiments, 3) test whether unionid glochidia will transform on a nonidingenous fish, and 4) describe the glochidial morp...

  18. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell Response to Carboxylated Nanocellulose.

    Science.gov (United States)

    Hua, Kai; Rocha, Igor; Zhang, Peng; Gustafsson, Simon; Ning, Yi; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2016-03-14

    This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials. PMID:26886265

  19. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon

    2008-05-15

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  20. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  1. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  2. Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper.

    Science.gov (United States)

    Jordaan, Donrich W

    2016-06-17

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or her body) to participate on an altruistic basis, while the researchers and the investors in the research can gain commercially from the research? In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research via a proposed new statutory right to the intellectual property emanating from such research. In order to stimulate debate on this important issue of social justice, this article responds to the position of Mahomed et al. by focusing on two main points: Firstly, I contend that Mahomed et al. fail to make a convincing argument in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of the binary poles of altruism v. profitsharing, and suggest that should healthcare public policy ever move away from altruism, various non-monetary forms of benefit-sharing by research participants should be considered.

  3. Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper.

    Science.gov (United States)

    Jordaan, Donrich W

    2016-07-01

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or her body) to participate on an altruistic basis, while the researchers and the investors in the research can gain commercially from the research? In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research via a proposed new statutory right to the intellectual property emanating from such research. In order to stimulate debate on this important issue of social justice, this article responds to the position of Mahomed et al. by focusing on two main points: Firstly, I contend that Mahomed et al. fail to make a convincing argument in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of the binary poles of altruism v. profitsharing, and suggest that should healthcare public policy ever move away from altruism, various non-monetary forms of benefit-sharing by research participants should be considered. PMID:27384358

  4. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  5. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  6. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  7. Large-scale photonic neural networks with biology-like processing elements: the role of electron-trapping materials

    Science.gov (United States)

    Farhat, Nabil H.; Wen, Zhimin

    1995-08-01

    Neural networks employing pulsating biology-oriented integrate-and-fire (IF) model neurons, that can exhibit synchronicity (phase-locking), bifurcation, and chaos, have features that make them potentially useful for learning and recognition of spatio-temporal patterns, generation of complex motor control, emulating higher-level cortical functions like feature binding, separation of object from background, cognition and other higher-level functions; all of which are beyond the ready reach of nonpulsating sigmoidal neuron networks. The spiking nature of biology-oriented neural networks makes their study in digital hardware impractical. Prange and Klar convincingly argued that the best way of realizing such networks is through analog CMOS technology rather than digital hardware. They showed, however, that the number of neurons one can accommodate on a VLSI chip limited to a hundred or so, even when submicron CMOS technology is used, because of the relatively large size of the neuron/dendrite cell. One way of reducing the size of neuron/dendrite cell is to reduce the structural complexity of the cell by realizing some of the processes needed in the cell's operation externally to the chip and by coupling these processes to the cell optically. Two such processes are the relaxation mechanism of the IF neuron and dendritic-tree processing. We have shown, by examining the blue light impulse response of electron trapping materials (ETMs) used under simultaneous infrared and blue light bias, that these materials offer features that can be used in realizing both the optical relaxation and synapto-dendritic response mechanisms. Experimental results demonstrating the potential of this approach in realizing dense arrays of biology-oriented neuron/dendrite cells will be presented, focusing on the concept and design of ETM-based image intensifier as new enabling technology.

  8. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    International Nuclear Information System (INIS)

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×102 LM−1 and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies

  9. Diretrizes nacionais para biorrepositório e biobanco de material biológico humano Brazilian guidelines for biorepositories and biobanks of human biological material

    Directory of Open Access Journals (Sweden)

    Gabriela Marodin

    2013-02-01

    Full Text Available OBJETIVO: Caracterizar a construção participativa e democrática das Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa, baseada nos princípios éticos da dignidade humana, da autonomia, da beneficência, da justiça e da precaução. MÉTODOS: Para a elaboração do documento formou-se um grupo de trabalho interdisciplinar Bioética considerando os seguintes critérios: experiência na operacionalização de biobancos, Biobancos representatividade regional, tipo de material biológico acondicionado e especialistas em Biorrepositório bioética. Participaram, também, membros da Agência Nacional de Vigilância Sanitária Diretrizes - Anvisa, pela competência regulatória e da Comissão Nacional de Ética em Pesquisa - Conep, enquanto controle social. RESULTADOS: O documento, baseado nos preceitos éticos, legais e técnicos, apresenta os conceitos, as atividades, finalidades e diferenças entre biorrepositórios e biobancos, as formas de consentimento do sujeito, além de outros aspectos permeados pela preocupação do uso adequado da informação. As Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa contém 39 artigos, dispostos em cinco capítulos. CONCLUSÃO: A importância de uma regulamentação surge da reflexão ética, considerando a moral, e tendo como norteador os aspectos legais, os quais se traduzem em um documento que não se esgota em si mesmo. A dinamicidade da ciência sempre nos remete à mudança de paradigmas, que podem ir além das legislações existentes.OBJECTIVE: To characterize the participatory and democratic creation of the Brazilian guidelines for biorepositories and biobanks of human biological material with the purpose of research based on the ethical principles of human dignity, autonomy, beneficence, justice, and precaution. METHODS: An interdisciplinary work group was constituted to

  10. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    Science.gov (United States)

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  11. Biological properties of a thermally crosslinked gelatin film as a novel anti-adhesive material: Relationship between the biological properties and the extent of thermal crosslinking.

    Science.gov (United States)

    Tsujimoto, Hiroyuki; Tanzawa, Ayumi; Miyamoto, Hiroe; Horii, Tsunehito; Tsuji, Misaki; Kawasumi, Akari; Tamura, Atsushi; Wang, Zhen; Abe, Rie; Tanaka, Shota; Yamanaka, Kouki; Matoba, Mari; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Suzuki, Shuko; Morita, Shinichiro; Ikada, Yoshito; Hagiwara, Akeo

    2015-10-01

    In order to prevent postoperative adhesion and the related complications, a thermally crosslinked gelatin (TCG) film was developed and the basic biological properties were examined, paying special attention to the relationship between these properties and the extent of crosslinking of the film. The gelatin films crosslinked thermally for five different time periods (0, 1, 3, 8, and 14 hours) were developed and the following tests were performed. Regarding the material characterization of the films, the water content, the water solubility, and the enzymatic degradation for collagenase were found to be closely related to the duration of thermal crosslinking. In an in vitro study conducted to examine the cell growth of fibroblasts cultured on the films, the degree of cell growth, except no crosslinked film, was less than that observed in the control group, thus suggesting that such effects of the films on fibroblast cell growth may be related with their anti-adhesive effects. In in vivo tests, the films crosslinked for longer time periods (3, 8, and 14 hours) were retained for longer after being implanted into the abdominal cavity in rats and showed a significant anti-adhesive effect in the rat cecum adhesion models, indicating that the biodegradability and anti-adhesive effects of the TCG films depend on the duration of thermal crosslinking. In order to develop useful and effective anti-adhesive gelatin film, it is very important to optimize duration of the thermal crosslinking. PMID:25449656

  12. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  13. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

    Directory of Open Access Journals (Sweden)

    Ingi Agnarsson

    Full Text Available BACKGROUND: Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? METHODOLOGY: We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini, which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2 suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3, with some samples reaching 520 MJ/m(3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. CONCLUSIONS: Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web

  14. Final Programme and Abstracts. COST Action CM0603 Free Radicals in Chemical Biology (CHEMBIORADICAL) Joint Working Group

    International Nuclear Information System (INIS)

    The main objective of the Action is to promote a chemical biology approach for the investigation of free radical pathways. Chemical reactivity and molecular libraries are the start of a multidisciplinary research context 'from small molecules to large systems', culminating in the biological complexity. The Action aims at improving communication and exchange among neighbouring scientific fields, such as chemistry with several domains of life sciences, specifically addressing the real barrier consisting of specialist language and tools. Four working groups address the formation, reactivity and fate of free radicals involving bio-molecules, such as unsaturated lipids, aromatic-, cyclic- and sulphur-containing amino acid residues, sugar and base moieties of nucleic acids. Tasks concern the role of free radicals in normal cell metabolism and in damages, defining structural and functional modifications, in the framework of physiologically and pathologically related processes relevant to human quality of life and health. In the programme are involved 19 universities and research institutions from nearly all European countries. The research programme of the group has been carried and is still continued based on close bilateral collaboration with many foreign laboratories from Europe, USA (Notre Dame Radiation Laboratory) and Chile

  15. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E. [Sandia National Labs., Albuquerque, NM (United States). Nanostructure and Semiconductor Physics Dept.; Gourley, M.F. [Washington Hospital Center, DC (United States); Bellum, J. [Coherent Technologies, Boulder, CO (United States)

    1997-08-01

    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  16. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  17. Optical standing-wave artifacts in reflection-absorption FTIR microspectroscopy of biological materials

    International Nuclear Information System (INIS)

    Reflection-absorption spectra obtained with an infrared microscope should yield the same absorption coefficients as direct micro-transmission measurements as long as the correct effective sample thickness is used, but in practice, severe optical artifacts can complicate the spectra. Using deposited protein gel fdms as a homogenous model for biological cell-like samples, we demonstrate the effect of standing-wave interference of the IR beam at the reflective substrate surface which dramatically and systematically alters the absorbance intensity across the spectrum as a function of sample thickness. To explain the observed spectral artifacts, we simulate the optical standing-wave for the focussed IR beam, and insert the parameters into an existing standing-wave absorption theory. By introducing an additional term to the theory representing a component of the standing-wave resonant with the film thickness, the data are accurately reproduced, and the relative band intensities can be corrected to the direct transmission values. This approach may be generally applicable in reflection-absorption experiments to obtain reliable absorbance spectra of homogenous samples even when the sample thickness is larger than the IR wavelength.

  18. Determination of copper, molybdenum and selenium in biological reference materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186). Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias. (orig.)

  19. Physico-chemical characterization and biological evaluation of two fibroin materials.

    Science.gov (United States)

    Motta, Antonella; Segnana, Paola; Verin, Lucia; La Monica, Silvia; Fumarola, Claudia; Bucci, Giovanna; Gussago, Francesca; Cantoni, Anna Maria; Ampollini, Luca; Migliaresi, Claudio

    2014-11-01

    Silk fibroin fibres from two different sources, Bombyx mori pure-breed silkworms and polyhybrid cross-bred silkworm cocoons, were treated with formic acid under planar stirring conditions to prepare non-woven nets. The treatment partially dissolved the fibres, which bound together and formed a non-woven micrometric net with fibres coated by a thin layer of low molecular weight fibroin matrix. The starting fibres, net materials and fibroin coating layer were characterized in terms of amino acid composition, molecular weight and calorimetric properties. In vitro cell culture tests with rat fibroblasts were performed to investigate cell proliferation, morphology and spreading. Moreover, host-rat fibroblasts were preseeded on the afore-mentioned nets and implanted in the thorax of rats for histological analysis. In spite of the chemical differences between the two starting fibroins, the response of the said materials in vitro and in vivo were very similar. These results suggest that the outcome is likely correlated with the modification of the processing technique; that during the formation of the net, a thin gel layer of similar amino acid composition was formed on the fibroin fibres.

  20. Fractional derivatives in the transport of drugs across biological materials and human skin

    Science.gov (United States)

    Caputo, Michele; Cametti, Cesare

    2016-11-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, because of its inhomogeneous nature, yielding a diffusion rate and a drug solubility strongly dependent on the local position across the membrane itself. These problems are particularly strengthened in composite structures of a considerable thickness like, for example, the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we propose a generalization of the diffusion model based on Fick's 2nd equation by substituting a diffusion constant by means of the memory formalism approach (diffusion with memory). In particular, we employ two different definitions of the fractional derivative, i.e., the usual Caputo fractional derivative and a new definition recently proposed by Caputo and Fabrizio. The model predictions have been compared to experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug, and 4-cyanophenol, a test chemical model compound. Moreover, we have also considered water penetration across human stratum corneum and the diffusion of an antiviral agent employed as model drugs across the skin of male hairless rats. In all cases, a satisfactory good agreement based on the diffusion with memory has been found. However, the model based on the new definition of fractional derivative gives a better description of the experimental data, on the basis of the residuals analysis. The use of the new definition widens the applicability of the fractional derivative to diffusion processes in highly heterogeneous systems.

  1. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges

  2. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  3. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties.

    Directory of Open Access Journals (Sweden)

    Leslie John Ray Foster

    Full Text Available Chitosan is a biomaterial with a range of current and potential biomedical applications. Manipulation of chitosan degree of deacetylation (DDA to achieve specific properties appears feasible, but studies investigating its influence on properties are often contradictory. With a view to the potential of chitosan in the regeneration of nerve tissue, the influence of DDA on the growth and health of olfactory ensheathing cells (OECs was investigated. There was a linear increase in OEC proliferation as the DDA increased from 72 to 85%. This correlated with linear increases in average surface roughness (0.62 to 0.78 μm and crystallinity (4.3 to 10.1% of the chitosan films. Mitochondrial activity and membrane integrity of OECs was significantly different for OECs cultivated on chitosan with DDAs below 75%, while those on films with DDAs up to 85% were similar to cells in asynchronous growth. Apoptotic indices and cell cycle analysis also suggested that chitosan films with DDAs below 75% were cytocompatible but induced cellular stress, while OECs grown on films fabricated from chitosan with DDAs above 75% showed no significant differences compared to those in asynchronous growth. Tensile strength and elongation to break varied with DDA from 32.3 to 45.3 MPa and 3.6 to 7.1% respectively. DDA had no significant influence on abiotic and biotic degradation profiles of the chitosan films which showed approximately 8 and 20% weight loss respectively. Finally, perceived patterns in property changes are subject to change based on potential variations in DDA analysis. NMR examination of the chitosan samples here revealed significant differences depending upon which peaks were selected for integration; 6 to 13% in DDA values within individual samples. Furthermore, differences between DDA values determined here and those reported by the commercial suppliers were significant and this may also be a source of concern when selecting commercial chitosans for

  4. Isotope ratio analysis of lead in biological materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICP-MS) allowed 0.2-0.3% imprecision (1 sigma) in 204Pb/206Pb 207Pb/'206Pb, and 208Pb/206Pb measurements at the 20-100 ppb level, which was precise enough to detect some of the isotopic variations observed in nature. Mass discrimination could be corrected within ±0.5% of the true value by periodical analysis of standard reference material of known lead isotopic composition. As a separation method for lead in human bone, which contains enormous amounts of calcium and phosphorus, anion exchange of the Pb-Br complex was found to be effective. Lead isotope ratios in bone, measured by ICP-MS after separation, were consistent with those measured by thermal ionization mass spectrometry. Hair matrix did not have any influence on the accuracy and precision of the analysis; a digested sample could be directly analyzed and this offered rapid sample throughput. Preliminary data on lead isotope ratios in bone and hair from prehistoric and contemporary Japanese are presented. (author)

  5. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  6. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.

    Science.gov (United States)

    Mulopo, Jean; Schaefer, L

    2015-01-01

    This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation. PMID:26038932

  7. Aspects of accuracy and precision in the determination of As and Sb in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Aspects of accuracy and precision on the analysis of As and Sb in biological materials using neutron activation with post-irradiation separation are discussed. The separation technique is based on hydride generation. The average yield is over 98% for As and over 95% for Sb, but differences between samples necessitate a yield determination for each sample. Both radiotracers and reactivation have been applied and their practical use for yield correction is discussed. Under optimised conditions, As in NBS SRM 1577A has been analysed to be 45.5 ± 0.7 μg/kg (N = 4), while the Sb-content points to 2.3 ± 1.0 μg/kg (N = 11). 3 figs.; 20 refs.; 5 tabs

  8. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  9. Studies on Elemental Contents of Some Biological and Environmental Materials Using Nuclear And Atomic Techniques

    International Nuclear Information System (INIS)

    The elemental concentration values of 31 elements in the fertilizer samples, have been determined by applying a sensitive nondestructive analytical techniques such as INAA. It has also shown enough sensitivity to determine the concentrations of several trace and rare earth elements, The concentration values of elements were compared with the corresponding elements obtained by the ICP-MS and XRF techniques, for the same samples. Phosphorus fertilizers contain varying amounts of heavy metals and other rare earth elements as contaminants from either phosphate rock ores or other ingredients used in the phosphate fertilizer industry. As some heavy metals are potentially harmful to human health, attention is being given to its avenues of entry into the human food chain. Uptake of such elements by plants consumed directly or indirectly by humans is one avenue of entry, so the effects of heavy metal contaminants in phosphate fertilizers are of concern. Commercial fertilizers have been used for decades and will probably continue to be used for many decades to come. Hence, even low annual accumulations may finally build up undesired concentrations in soil, especially where fertilizers with high heavy metal or rare earth element concentrations are used.Thus, a total of three synthetic and natural eye-liner samples of known origin that are commercially available in the Egyptian market were analyzed using Energy Dispersive X-ray (EDX), Atomic Absorption Mass Spectroscopy (AA-MS) and elemental analysis using Thermal Neutron Activation Technique (TNAT) for the natural one in powder form. It was found that lead (>86%) represents the main hazardous element in the natural eye-liner from African sources. Aluminum and Antimony were also found in the later sample in considerable concentration 0.92% and 0.71% respectively. For the synthetic two samples from French and American sources, the major hazardous element found to be Carbon in high concentration 94% and 52% respectively. The

  10. Purchase of a PhosphorImager System for plant biology research. Final progress report, July 1992--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, A.O.

    1993-10-01

    Eight DOE supported plant biologists at the University of California-Berkeley were awarded funds ($163,000) for purchase of a Phosphorlmager System to improve the speed, sensitivity, resolution, and quantitation of radioactive data processing and analysis. These funds were used to purchase a Molecular Dynamics Phosphorlmager System consisting of the phosphorlmager, a densitometer, and high resolution storage phosphor screens that have extremely high trapping and storage capacity for energy emitted from isotopes used for biological research such as {sup 32}P, {sup 14}C, {sup 35}S, and {sup 125}I. Software provided with the package permits analysis of the data in several unique ways that are not currently feasible With other methods for analysis. The University of California has purchased additional computer hardware (A MacIntosh Quadra 800 Computer) and has upgraded an IBM computer Mod6l PS2-486 linked with on-line and on off-line workstations via ethernet systems for analysis of data. Data files can also be converted to a TIFF format suitable for graphic analysis and image production on the MacIntosh computer. The system is providing unique advantages for quantitation of data over extremely wide ranges of isotope levels and provides the ability to analyze and manipulate data over wide ranges of sensitivity not previously available with previously used methods of isotope quantitation.

  11. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  12. A biological/chemical process for reduced waste and energy consumption, Caprolactam production: Phase 1, Select microorganisms and demonstrate feasibility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    St.Martin, E.J.

    1995-08-01

    A novel biological/chemical process for converting cyclohexane into caprolactam was investigated. Microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. The proposed bioprocess would be more energy efficient and reduce byproducts and wastes that are generated by the current chemical process. We have been successful in isolating from natural soil and water samples two microorganisms that can utilize cyclohexane as a sole source of carbon and energy for growth. These microorganisms were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants are being developed. These blocked-mutants will be used to convert cyclohexane into caprolactone but, because of the block, be unable to metabolize the caprolactone further and excrete it as a final end product.

  13. ELECTRON PARAMAGNETIC RESONANCE IN BIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Androes, G.M.; Calvin, Melvin.

    1961-08-15

    A review of the theories of electron paramagnetic resonance in biology is presented, including a discussion of the nature of the physical observation, followed by examples of materials of biological interest. Iq discussing these examples, information is presented in terms of the nature of the starting material under observation rather than the nature of the magnetic entities observed. The examples proceed from the simpler molecules of biological interest (metabolites, vitamins, cofactors) into the more complex materials (polymers, proteins, nucleic acids) toward cellular organelles (mitochondria, chloroplasts) and, finally, to whole cells, organisms and organs. The observation of photoinduced unpaired electrons in photosynthetic material is described and the various parameters controlling it are discussed. The basic observation is interpreted in terms of a primary photophysical act of quantum conversion.

  14. Applications - Some Influences of Engineering Ideas on Biology Being the fifth in a series of essays on the materials of nature

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent

    2006-01-01

    Ideas from engineering have helped the understanding of biological organisms for thousands of years. However, the mechanical aspects of biological materials and structures can, if properly interpreted and analysed, lead to a deeper understanding of the biology of organisms. Such an approach, although always current in some form, is nevertheless subject to the vagaries of fashion and the availability of analytical techniques. At present we are in a period of upturn. Areas of interest are deployable structures (applications in aerospace), palaeontology (how little do we need to know in order to create a credible biosphere) and food science (we need a rational approach to the mechanics of food).

  15. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰).

  16. Effect of Video Triggering During Conventional Lectures on Final Grades of Dental Students in an Oral Biology Course: A Two-Year Retrospective Study.

    Science.gov (United States)

    Farooq, Imran; Al-Jandan, Badr A

    2015-12-01

    The aim of this study was to analyze the effect of the inclusion of video triggers in conventional face-to-face lectures on the final grades of dental students in an oral biology course. The study consisted of two groups of students taking the course in two academic years at a dental school in Saudi Arabia: group 1, 2013-14 (control); and group 2, 2014-15. The total sample comprised 163 students (n=163; group 1: 71 and group 2: 92). Group 1 received lectures without any videos, whereas group 2 received lectures that included two to three videos of one to five minutes in duration with triggering effect (a video was shown every 10-15 minutes into the lecture). The final examination grades of the students were accessed retrospectively, and the data were compared with a chi-square test. The results confirmed that a higher number of students who received video triggering during lectures (group 2) performed better than their counterparts who did not receive video triggers (group 1); the difference was statistically significant (p<0.05). Among the group 2 students, 26% achieved a grade of A, and 37% achieved a grade of B. In contrast, only 7% of the group 1 students obtained a grade of A, and 31% achieved a grade of B. These results suggest that video triggers may offer an advantage over conventional methods and their inclusion in lectures can be a way to enhance students' learning.

  17. Requirements for Foreign and Domestic Establishment Registration and Listing for Human Drugs, Including Drugs That Are Regulated Under a Biologics License Application, and Animal Drugs. Final rule.

    Science.gov (United States)

    2016-08-31

    The Food and Drug Administration (FDA) is amending its regulations governing drug establishment registration and drug listing. These amendments reorganize, modify, and clarify current regulations concerning who must register establishments and list human drugs, human drugs that are also biological products, and animal drugs. The final rule requires electronic submission, unless waived in certain circumstances, of registration and listing information. This rulemaking pertains to finished drug products and to active pharmaceutical ingredients (APIs) alone or together with one or more other ingredients. The final rule describes how and when owners or operators of establishments at which drugs are manufactured or processed must register their establishments with FDA and list the drugs they manufacture or process. In addition, the rule makes certain changes to the National Drug Code (NDC) system. We are taking this action to improve management of drug establishment registration and drug listing requirements and make these processes more efficient and effective for industry and for us. This action also supports implementation of the electronic prescribing provisions of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) and the availability of current drug labeling information through DailyMed, a computerized repository of drug information maintained by the National Library of Medicine. PMID:27580511

  18. Utilization of liquid human wastes and introduction into the material cycling in biological life-support systems

    Science.gov (United States)

    Kovaleva, N. P.>; Ushakova, S. A.; Gribovskaya, I. V.; Kudenko, U. A.

    The possibilities of step-by-step utilization of liquid human wastes in biological life-support systems on long-functioning space stations have been considered in this work. Utilization involves "wet" urine incineration with hydrogen peroxide at normal pressure and 90 - 95°C temperature, urease-enzymic decomposition of urine and biological desalination in the higher plant link. The soybean flour was used as a source of urease. Growing soya plants as a component of the higher plant link would give a steady source of urease to the system. To decompose urea (9-15g) contained in 1l of incinerated urine we used 0.5 - 1 g of soy flour. The duration of hydrolysis of daily urea excreted by a human is 70 - 95 hours. It is supposed that ammonia excreted in the reaction of urea decomposition will be processed by nitrifying bacteria. The concentration of total nitrogen in urine after urea hydrolysis and removal of ammonia formed during the reaction constituted 0.6 - 1.2 g/l. Further biological desalination was carried out in the higher plant link, for that the edible salt-accumulating halophytes Salicornia europaea were used. To grow this plant under the aqueous culture conditions, the urine was additionally mineralized at 180 °C after incineration and decomposition of urea. The process of additional mineralization was related to the necessity of removal of organic materials and nitrogen residues, which higher concentration under the aqueous culture conditions has negative effect on plants. The volume of the nutrient solution for growing 6 plants of Salicornia europaea was 1.5 l (daily norm of urine excreted by human), the planting area was 0.032 m2. By the end of vegetation the productivity and mineral composition of Salicornia europaea plants were analyzed. The productivity of plants grown on liquid human wastes (the experiment) practically was not different from the productivity of plants grown on the mineral solution with sodium chloride (checkout). In experimental

  19. Válvula mecânica em carbono, de disco basculante, com revestimento de material biológico: princípios e desenvolvimento Pivoting disc carbon mechanical valve covered with biological material: principles and development

    Directory of Open Access Journals (Sweden)

    Hélio Pereira de Magalhães

    1995-12-01

    Full Text Available INTRODUÇÃO: após estudo experimental de implante de material biológico e carbono em átrio esquerdo e aorta, foi desenvolvida uma nova prótese, primeira válvula de carbono feita inteiramente no País. A finalidade foi conseguir uma válvula de sistema mecânico durável, de boa aceitação orgânica para facilitar a cicatrização a partir do anel e isolar o máximo de material sintético da corrente sangüínea; o objetivo é conseguir menores índices de morbidade e mortalidade, alterando a história natural da prótese mecânica em relação a trombose, tromboembolismo, reoperações e menor uso de anticoagulante. MATERIAL E MÉTODOS: a válvula é do tipo disco basculante perfurado, fabricada em Carbolite (carbono polimérico endurecido. O anel apresenta haste com pino central para guiar e reter a movimentação do disco, batente e dois pinos para limitação do grau de abertura. O anel tem perfurações para fixação do material biológico (pericárdio e veia. O conjunto é colocado entre dois anéis lisos acoplados revestidos de Poliéster com aba de sutura externa. O batente tem aspecto denteado, formando plataformas onde se apoia o disco e entre os dentes existe continuidade do revestimento biológico. A prótese é toda revestida, exceto o pino, o disco, as plataformas do batente e a face interna do orifício menor. A prótese foi testada em duplicador de pulso em teste equivalente a dez anos, sem desgaste aparente com disco de carbono e poliacetal. Cada prótese, antes do implante, é testada individualmente durante cinco dias a 1.000 pulsações por minuto com pressão média de 12 cmHg. Então, é feita limpeza, esterilização, revestimento de material biológico processado em glicerina, montagem e esterilização final em formol ou gás ETO (conservação em glicerina. Existem 7 pacientes mitrais em observação com tempo médio de 7,8 meses (mínimo de 4 meses e máximo de 13 meses, sendo mantidos com anticoagulação oral

  20. Application of X ray fluorescence techniques for the determination of hazardous and essential trace elements in environmental and biological materials

    International Nuclear Information System (INIS)

    Full text: The utilization of X ray fluorescence (XRF) technique for the determination of trace element concentrations in environmental and biological samples is presented. The analytical methods used include energy dispersive X ray fluorescence (EDXRF), total reflection X ray fluorescence (TXRF), micro-beam X ray fluorescence and direct in situ X-ray fluorescence analysis. The measurements have been performed with X ray tube- and radioisotope-based energy dispersive X ray fluorescence spectrometers. Both liquid nitrogen- and thermo electrically-cooled silicon detectors were utilized in the analysis. Samples analysed include soil, water, plant material, and airborne particulate matter collected on filters. Depending on the technique and the investigated elements, the above-mentioned samples were analysed either directly or indirectly (after decomposing the sample in a mineralization process or/and chemical preconcentration procedure). The achieved detection limits for different techniques, established by measuring appropriate reference standards, are presented. The utilization of the micro-beam XRF technique for studying element distribution in heterogeneous samples and investigating the 3D- and 2D-morphology of minute samples by means of computerized X ray absorption and X ray fluorescence tomography is described. The different X ray techniques have their unique advantages. The micro-beam X ray fluorescence set-up has an advantage of producing very well collimated primary X ray beam (by means of X ray capillary optics the beam is collimated down to about 15 μm in diameter), in front of which the analysed sample can be precisely positioned, providing local information about the sample composition. TXRF technique has its leading edge in analysis of liquid samples, and as a reference method for a conventional bulk EDXRF analysis of heterogeneous materials such as air particulates collected on filter where the particle size effects can seriously influence the

  1. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  2. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  3. 纤维素生物活性材料的种类及应用%The types and application of cellulosic Materials with biological activity

    Institute of Scientific and Technical Information of China (English)

    柳春; 宁玉娟; 史磊; 蓝丽; 陈专; 吕旷

    2013-01-01

    纤维素的功能化一直是人们研究的热点,近年来又涌现出一批以纤维素为基准的具有生物性的活性材料。文章主要论述了以纤维素为基准的细菌纤维素、复合材料、纤维素硫酸钠材料等具有生物活性材料的种类与应用。%Cellulose functional materials has been a challenge for researchers, this year has emerged a group of cellulose as the biological function of the substrate material. This paper summarizes the types and application of the bacterial cellulose, cellulose-based, composite materials, and sodium cellulose with biological materials.

  4. [Simultaneous determination of tributyltin and its metabolites, dibutyltin and monobutyltin, in biological materials by capillary gas chromatography].

    Science.gov (United States)

    Ohhira, S; Matsui, H

    1989-05-01

    Determination of tributyltin and its metabolites, dibutyltin and monobutyltin, in biological materials was made by capillary gas chromatography (C-GC) using a flame photometric detector (FPD). Butyltin compounds (BuTC) were extracted (as bromides) from tissue homogenates with hydrobromic acid and ethyl acetate. These compounds were converted to pentyl derivatives with pentyl Grignard reagent and then analysed by C-GC. The recoveries of each BuTC added to tissues were 96-99% for monobutyltin, 87-93% for dibutyltin and 90-93% for tributyltin. The detection limit of BuTC was 4-5 pg as tin. This method was applied to the analysis of BuTC in the liver and kidney of rats orally administered tributyltin chloride. Time course of three BuTC showed that the maximum value appeared 24 h after administration of the tin compound, which was followed by a rapid decrease. The order of the concentration of BuTC in both organs was dibutyltin greater than tributyltin greater than monobutyltin. The rate of dealkylation was more rapid in liver than in kidney. PMID:2795985

  5. Material transport by tyred vehicles in coal mines. Final report; Logistica del transporto di materiale tramite mezzi gommati in miniere di carbone. Rapporto finale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The research was carried out at the Monte Sinni mine, a sub-bituminous coal mine located in the south west of Sardinia (Italy). The aim of the research has been to develop a control system for materials flow and for the traffic of the tyred vehicles designed specifically for coal mines. In particular, it has been tried to simulate control of each materials supply step starting from the surface stores to the working sites and vice-versa. The hardware has been supplied by Montan-Forschung (Germany) and the software has been produced by Tele Data Software in Cagliari (Italy). Instrumentation is made up by two physically separated parts. The first has been designed to control the run of the trolley truck and allows the exchange of both data and voice between the driver and a main receiving station. The second controls the run of each transport unit by means of data bearing tags (TPD) which are provided with a fixed numerical identification code and are attached to the units. The transport cycle is controlled by the operating software installed on a personal computer that operates as a `main station`. The control-system of the materials flow has given satisfactory results that have allowed the research to achieve its aims. The future application of the system in the mine will bring about certain advantages also by an economic point of view, mostly due to reduction of the materials supply times, as well as the impossibility of shunting mistakes and miscarriages of the load or part of it.

  6. Mass-spectrometric identification of primary biological particle markers: indication for low abundance of primary biological material in the pristine submicron aerosol of Amazonia

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2011-07-01

    Full Text Available The abundance of marker compounds for primary biological particles in submicron aerosol was investigated by means of aerosol mass spectrometry. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker peaks were identified. The identified marker peaks were compared with mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the Central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker peaks places upper limits of 7.5 % for amino acids and 5.6 % for carbohydrates on the contribution of primary biological aerosol particles (PBAPs to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m−3. Carbohydrates and protein amino acids make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAPs mass fraction of about 20 % to the submicron organic aerosol.

  7. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  8. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  9. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  10. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  11. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  12. Development of Course Content Materials For Training Research and Research Related Personnel to Appraise Research Critically. Final Report.

    Science.gov (United States)

    Millman, Jason; Gowin, D. Bob

    A description of the development of the print materials to improve the ability of learners to appraise critically educational research is provided in this report. The completed materials consist of the following: an introductory statement about the nature of criticism, a statement about the contents of the materials and suggestions for use, and…

  13. X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science.

    Science.gov (United States)

    Marmiroli, B; Amenitsch, H

    2012-10-01

    The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.

  14. Preparation of Literacy Materials for Women in Rural Areas: Final Report of a Regional Workshop on the Preparation of Literacy Follow-Up Materials in Asia and the Pacific (7th, Kathmandu, Nepal, October 17-26, 1989).

    Science.gov (United States)

    Asian Cultural Centre for UNESCO, Tokyo (Japan).

    The main objective of the seventh regional workshop was to provide training experience to participants from Unesco member states in the development of instructional neo-literate materials and the expansion of participation in literacy activities to the needs of the rural people, particularly women. The final report begins with an account of the…

  15. Automated extraction of DNA from reference samples from various types of biological materials on the Qiagen BioRobot EZ1 Workstation

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Jørgensen, Mads; Hansen, Anders Johannes;

    2009-01-01

    We have validated and implemented a protocol for DNA extraction from various types of biological materials using a Qiagen BioRobot EZ1 Workstation. The sample materials included whole blood, blood from deceased, buccal cells on Omni swabs and FTA Cards, blood on FTA Cards and cotton swabs......, and muscle biopsies. The DNA extraction was validated according to EN/ISO 17025 for the STR kits AmpFlSTR« Identifiler« and AmpFlSTR« Yfiler« (Applied Biosystems). Of 298 samples extracted, 11 (4%) did not yield acceptable results. In conclusion, we have demonstrated that extraction of DNA from various types...... of biological material can be performed quickly and without the use of hazardous chemicals, and that the DNA may be successfully STR typed according to the requirements of forensic genetic investigations accredited according to EN/ISO 17025...

  16. The prevalence of new psychoactive substances in biological material - a three-year review of casework in Poland.

    Science.gov (United States)

    Adamowicz, Piotr; Gieroń, Joanna; Gil, Dominika; Lechowicz, Wojciech; Skulska, Agnieszka; Tokarczyk, Bogdan

    2016-01-01

    New psychoactive substances (NPS) pose a challenge for forensic and clinical toxicologists, as well as for legislators. We present our findings from cases where NPS have been detected in biological material. During the three-year period 2012-2014 we found NPS in 112 cases (out of 1058 analyzed), with 75 cases in 2014 alone. The prevalence of all NPS (15.1-17.6%) was similar to amphetamine alone that was detected in 15.1-16.5% of cases. The new drugs found belonged to the following classes: cathinones (88%), synthetic cannabinoids (5%), phenethylamines (3%), piperazines and piperidines (3%), arylalkylamines (1%) and other (1%). The drugs detected were (in the order of decreased frequency): 3-MMC (50), α-pyrrolidinopentiophenone (α-PVP) (23), pentedrone (16), 3',4'-methylenedioxy-α-pyrrolidinobutyrophenone (MDPBP) (12), synthetic cannabinoid UR-144 (7), ethcathinone (5), mephedrone (5), methylenedioxypyrovalerone (MDPV) (4), 4-methylethcathinone (4-MEC) (3), buphedrone (3), desoxypipradrol (2-DPMP) (3), methylone (2) and 2C-B (2). In single cases, 2-methylmethcathinone (2-MMC), 2C-P, eutylone, 25I-NBOMe, meta-chlorophenylpiperazine (mCPP), ephedrone, methiopropamine (MPA), and 5-(2-aminopropyl)benzofuran (5-APB) were found. One NPS was the sole agent in 35% of all cases, and two or more NPS were present in 19% of cases. NPS (one or more) with other conventional drugs (like amphetamines, cannabinoids, cocaine, and benzodiazepines) were detected in most (65%) of the cases. NPS were very often detected in the blood of drivers which was a challenge for toxicologists due to a lack of data on their influence on psychomotor performance. A review of concentrations showed a wide range of values in different types of cases, especially driving under the influence of drugs (DUID) and intoxication.

  17. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  18. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials

    International Nuclear Information System (INIS)

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth's surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system's data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  19. Development of Research Infrastructure in Nevada for the Exploitation of Hyperspectral Image Data to Address Proliferation and Detection of Chemical and Biological Materials.

    Energy Technology Data Exchange (ETDEWEB)

    James V. Taranik

    2007-12-31

    This research was to exploit hyperspectral reflectance imaging technology for the detection and mapping variability (clutter) of the natural background against which gases in the atmosphere are imaged. The natural background consists of landscape surface cover composed of consolidated rocks, unconsolidated rock weathering products, soils, coatings on rock materials, vegetation, water, materials constructed by humans, and mixtures of the above. Human made gases in the atmosphere may indicate industrial processes important to detecting non-nuclear chemical and biological proliferation. Our research was to exploit the Visible and Near-Infrared (NIR) and the Short-wave Infrared (SWIR) portions of the electromagnetic spectrum to determine the properties of solid materials on the earth’s surface that could influence the detection of gases in the Long-Wave Infrared (LWIR). We used some new experimental hyperspectral imaging technologies to collect data over the Non-Proliferation Test and Evaluation Center (NPTEC) located on the Nevada Test Site (NTS). The SpecTIR HyperSpecTIR (HST) and Specim Dual hyperspectral sensors were used to understand the variability in the imaged background (clutter), that detected, measured, identified and mapped with operational commercial hyperspectral techniques. The HST sensors were determined to be more experimental than operational because of problems with radiometric and atmospheric data correction. However the SpecTIR Dual system, developed by Specim in Finland, eventually was found to provide cost-effective hyperspectral image data collection and it was possible to correct the Dual system’s data for specific areas. Batch processing of long flightlines was still complex, and if comparison to laboratory spectra was desired, the Dual system data still had to be processed using the empirical line method. This research determined that 5-meter spatial resolution was adequate for mapping natural background variations. Furthermore, this

  20. Program biotechnology 2000. Annual report 1990. Biological process engineering, enzyme technology, cell biology, genetic research, plant-breeding, renewable raw materials. Programm Biotechnologie 2000. Jahresbericht 1990. Bioverfahrenstechnik, Enzymtechnologie, Zellbiologie, Genforschung, Pflanzenzuechtung, Nachwachsende Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A brief summary of the results of the Federal Government's program biotechnology 2000 and the system of promoting appropriate activities is followed by a detailed survey of funded projects. The main part contains descriptions of the various projects under defined areas of promotion. The material is subdivided into indexes: project number index, syndicate project index, index with names of firms. The publication closes with an organizational chart of the PT BEO (project-administering organization biology, energy, ecology). (UA).

  1. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  2. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  3. Research of the optical properties of solar-reflective materials subjected to accelerated and nonaccelerated exposure tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, R A

    1980-10-01

    Research on candidate reflective materials for use in solar thermal power applications is reported. The candidate materials have been subjected to exposure tests conducted previously at the Phoenix, Arizona test site. The samples have been exposed to each of three test conditions - one non-accelerated and two different accelerated tests (nominally 8 suns). Post-exposure optical measurements of spectral reflectance were then conducted for the exposure test samples. Reflectance specularity data for the subject materials are obtained from optical measurements performed by Battelle-PNL. Summarized is an investigation of the accumulated reflectance data for correlations using three of the various materials included in the exposure test sample set. (LEW)

  4. Influence of cubic texture intensity of hot rolled ferritic non-oriented electrical steels on the microstructure and texture in the final processed material

    Science.gov (United States)

    Stöcker, A.; Schneider, J.; Scholze, T.; Franke, A.; Hermann, H.; Kawalla, R.

    2015-04-01

    The magnetic properties of non-oriented electrical steels are determined by the microstructure and texture of the material. Besides optimum grain size (microstructure) for low values of specific magnetic losses, a high intensity of θ-fibre texture and low intensity of γ-fibre and α-fibre texture is desirable. Each of the processing steps influences the intensity of the θ-fibre in the final processed material. In this paper the interplay of the various processing steps on the intensity of the θ-fibre is regarded for ferritic Iron-Silicon steels with 2.4 wt.% Si and 3.0 wt.% Si.

  5. Application of game theory to nuclear material accounting. Final report, 1 April 1977-3 January 1978

    International Nuclear Information System (INIS)

    An approach based upon the theory of games is presented that determines an optimal alarm threshold for detecting unauthorized or deliberate diversion of nuclear material based upon material accounting data. A mathematical model is developed, solved, and applied to a generic nuclear facility. By considering a malevolent diverter as a basic ingredient of the analysis, this approach offers advantages over conventional statistical hypothesis testing. The results show that periodic inventories and appropriate interpretation of MUF (Material Unaccounted For) can provide a high assurance for indicating diversion in a nuclear material safeguards situation. The optimal policy is to select the alarm threshold by a mixed strategy rather than a pre-set single fixed value. Procedures for doing this are presented in the report. With this approach, MUF data by itself may be more useful in indicating possible unauthorized diversion of special nuclear material

  6. 动物源性生物材料残留DNA的定量检测法%Quantification of Residues DNA in Animal-derived Biological Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    徐丽明; 邵安良; 赵艳红

    2012-01-01

    动物源性生物材料的残留DNA定量检测是产品脱细胞处理过程是否彻底,以及免疫原性风险是否得到有效控制的重要产品技术指标之一.目前,国际上还没有针对这类材料的残留DNA检测方法.本研究设计了动物源性生物材料的残留DNA定量检测三步法,即固体生物材料的蛋白酶K消化,DNA纯化和荧光染色法DNA测定,在整个实验过程中增加了回收率实验,经过回收率曲线方程校正后得到最终检测结果.实验过程中的磁珠法DNA纯化步骤的优化设计保证了较好的回收率,同时满足了准确性和精密度.该实验方法经验证,其检测灵敏度达到6.25 ng/每份样品,回收率样品DNA含量在3.125~100 ng以及25~400 ng范围内线性良好,其回收率曲线R2>0.99.此方法保证了生物材料中微量或痕量DNA检测的科学性和可信性.%Quantification of residual DNA in animal-derived biological scaffold materials is one of technical specifications for evaluating decellularization process and immunotoxicity risk. Up to now, there have been no standard methods available for quantification of residues DNA in animal-derived biological scaffold materials. In this study, a three-step method, including proteinase K digestion, DNA purification and determination of DNA using fluorescence assay, was designed for residual DNA quantification. A parallel recovery experiment of standard DNA using the same protocol to test article determination was used for adjusting final results of residuul DNA amount. DNA purification based on magnetic beads enabled the experiments to get high accuracy and repeatability. The validation experiment showed that the three-step method had high sensitivity up to 6. 25ng of DNA per sample with good linearity (recover-y curve R2>0. 99) in the concentration range of 3. 125-100ng, and 25-400ng per sample. This method is useful for determining micro or trace amount DNA remained in the biomaterials.

  7. Small-Angle Neutron Scattering (SANS) Facility at BATAN for Nanostructure Studies in Materials Science and Biology

    Science.gov (United States)

    Putra, E. Giri Rachman

    2010-01-01

    structure of n-dodecyl-β-D-maltoside (β-DMS) core-shell micelle has been revealed by applying a contrast variation, H2O/D2O mixture. Preliminary investigation of globular protein on folding-unfolding, protein denaturation and protein self-assembly studies is being performed. It can be concluded that SMARTer, a 36 m SANS BATAN spectrometer becomes a major tool for structural investigations in the effective length scale of 1-100 nm in materials science and biology.

  8. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.; Linton, P.J.

    1984-07-01

    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The aboveground portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.

  9. Final environmental impact statement, interim management of nuclear materials, Savannah River Site, Aiken, South Carolina (DOE/EIS-0220)

    International Nuclear Information System (INIS)

    This document evaluates the potential environmental impacts of alternatives for the stabilization of nuclear materials currently stored at various locations on the Savannah River Site (SRS). These materials remain from past defense-related production, testing, and other activities at the SRS and from chemical separations and related activities that DOE suspended in 1992. The EIS analyzes the following alternatives: Continuing Storage (No Action), Processing to Metal, Processing to Oxide, Blending Down to Low Enriched Uranium, Processing and Storage for Vitrification in the Defense Waste Processing Facility, Vitrification (F-Canyon), and Improving Storage. The preferred alternatives cover a combination of these in relation to the different types of material

  10. Research at and Operation of the Materials Science Beamline (X-11) at the National Synchrotron Light Source. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, Dale E.

    2003-10-15

    This is the final report for DOE DE-FG02-89ER45384. An overview of the operational history and status of beamline X-11A at the end of the contract period, and a brief review of the core science program at NCSU and the scientific results of X-11A since the last progress report is also presented.

  11. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials; Eskalation des Terrors? Ueber das Anschlagsrisiko mit chemischen, biologischen, radiologischen und nuklearen Waffen oder Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    Nass, Jens

    2010-07-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  12. Mathematical methods in material science and large scale optimization workshops: Final report, June 1, 1995-November 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Minnesota Univ., Minneapolis, MN (United States). Inst. for Mathematics and Its Applications

    1996-12-01

    The summer program in Large Scale Optimization concentrated largely on process engineering, aerospace engineering, inverse problems and optimal design, and molecular structure and protein folding. The program brought together application people, optimizers, and mathematicians with interest in learning about these topics. Three proceedings volumes are being prepared. The year in Materials Sciences deals with disordered media and percolation, phase transformations, composite materials, microstructure; topological and geometric methods as well as statistical mechanics approach to polymers (included were Monte Carlo simulation for polymers); miscellaneous other topics such as nonlinear optical material, particulate flow, and thin film. All these activities saw strong interaction among material scientists, mathematicians, physicists, and engineers. About 8 proceedings volumes are being prepared.

  13. Final Report on Evaluating Residual Stresses and Internal Defects in Nuclear Materials at the Opal Reactor at ANSTO, Australia

    International Nuclear Information System (INIS)

    This project is concerned with developing capabilities in characterizing materials of relevance to the nuclear energy sector with neutron beams. A number of measurements were; residual stress measurements on a fusion first wall candidate composite material and a Zircaloy vessel which contains the cold neutron source. Texture measurements were made on 3 Zircaloy samples from reactor components. Planned SANS measurements were not possible as the instrument was not available. The neutron imaging instrument Dingo was constructed, commissioned, and is now operating. (author)

  14. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  15. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  16. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min−1, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g−1 under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample

  17. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of the final pool of harvested material or samples of each subculture of cells used to prepare the... completed product or samples of the final pool of harvested material or samples of each subculture of cells... cells or each subculture of primary cells used to prepare a biological product shall be shown free...

  18. 生物质电厂电气主接线的选择%Electrical Main Wiring Selection in Biological Material Power Plant

    Institute of Scientific and Technical Information of China (English)

    张彦昌; 石巍; 张超

    2012-01-01

    Due to the distribution and transportation cost limit in biological material power plant, the capacity is generally not too large, its internal electrical main wiring type is flexible and various. Introduction was made to the plan of the power plant connect-in system, the selection measures of generator voltage and high-voltage used by plant, and the setting principle of generator outlet circuit breakers. Two kinds of electrical main wiring in biological material power plant were compared and analyzed from the reliability and economy aspects, thus the optimized plan was obtained to provide reference for design and study in biological material power plant.%生物质发电厂容量由于受燃料分布及运输成本限制,容量一般不大,其内部电气主接线型式灵活多变。介绍了电厂接入系统的方案、发电机电压及高压厂用电压的选择措施,以及发电机出口断路器的设置原则。从可靠性和经济性两方面对生物质电厂的两种电气主接线进行对比分析,进而得出优选方案,供生物质电厂设计与研究参考。

  19. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft. Final report, 1 December 1991-31 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Starke, E.A. Jr.

    1996-05-01

    This is the final report of the study `Aluminum-Based Materials for high Speed Aircraft` which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX with Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  20. PORE-SCALE MODELING OF BIOLOGICAL CLOGGING DUE TO AGGREGATE EXPANSION: A MATERIAL MECHANICS APPROACH. (R828772)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Review of the sorption of radionuclides on the bedrock of Haestholmen and on construction and backfill materials of a final repository for reactor wastes

    International Nuclear Information System (INIS)

    Imatran Voima Oy (IVO) has plans to build a final repository for reactor wastes in the bedrock of the nuclear power plant site at Haestholmen, Loviisa. This report summarizes the sorption studies of radionuclides in Finnish bedrock performed at the Department of Radiochemistry, University of Helsinki. The values of mass distribution ratios, Kd, and surface distribution ratios, Ka; of carbon, calsium, Zirconium, niobium, cobalt, nickel, strontium, cesium, uranium, plutonium, americium, thorium, chlorine, iodine and technetium are surveyed. Special attention is paid to the sorption data for construction and backfill materials of rector waste repository and the bedrock of Haestholmen. Safety assessment of a repository includes calculations of migration of the waste element in construction materials and backfill in the nearfield and in bedrock. Retardation by sorption of waste nuclides compared to groundwater flow is described by using distribution ratios between solid materials and water. (orig.)

  2. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, Rajendra [Univ. of Washington, Seattle, WA (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States); Henager, Chuck [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  3. Contaminant Area Aquaculture Program. Determination of the chemical suitability of a dredged material containment area for aquaculture. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E.

    1990-12-01

    This concerns use of dredged material containment areas (DMCA) for aquaculture, specifically for production of a crop intended for human consumption. New DMCA's used only periodically for dredged material disposal could be managed to produce valuable crops. Previous studies conducted by the Corps of Engineers, including one where shrimp was raised at a DMCA, and others relating to the effects of sediment contaminants on aquatic organisms, are reviewed. The literature indicated that most dredged material is uncontaminated and that many sediment constituents such as metal are relatively unavailable to aquatic animals; DMCAs containing parts-per-million levels of organic contaminants such as pesticides, polychlorinated biphenyls, or petroleum hydrocarbons should not be used for aquaculture without extensive testing.

  4. 合成生物学与微生物遗传物质的重构%Synthetic biology and rearrangements of microbial genetic material

    Institute of Scientific and Technical Information of China (English)

    梁泉峰; 王倩; 祁庆生

    2011-01-01

    作为一门新兴学科的合成生物学已经展现出巨大的科学价值和应用前景.近年来已经发表了多篇综述文章,从不同角度对合成生物学进行了总结和论述.文章首次对合成生物学和微生物遗传学之间的关系进行了阐述,同时介绍了合成生物学在微生物遗传物质的重构方面最近的研究进展,包括微生物遗传物质的合成、设计和精简,遗传元件的标准化和遗传线路的模块化.也探讨了合成生物学与微生物遗传工程的关系.%As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  5. Synchrotron Studies of Narrow Band and Low-Dimensional Materials. Final Report for July 1, 1990 --- December 31, 2002

    International Nuclear Information System (INIS)

    This report summarizes a 12-year program of various kinds of synchrotron spectroscopies directed at the electronic structures of narrow band and low-dimensional materials that display correlated electron behaviors such as metal-insulator transitions, mixed valence, superconductivity, Kondo moment quenching, heavy Fermions, and non-Fermi liquid properties

  6. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pingyun

    2014-01-10

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  7. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.

    1978-05-01

    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  8. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  9. Investigating Teacher Learning Supports in High School Biology Curricular Programs to Inform the Design of Educative Curriculum Materials

    Science.gov (United States)

    Beyer, Carrie J.; Delgado, Cesar; Davis, Elizabeth A.; Krajcik, Joseph

    2009-01-01

    Reform efforts have emphasized the need to support teachers' learning about reform-oriented practices. Educative curriculum materials are one potential vehicle for promoting teacher learning about these practices. Educative curriculum materials include supports that are intended to promote both student "and" teacher learning. However, little is…

  10. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    OpenAIRE

    Edward T Mee; Preston, Mark D.; Minor, Philip D.; ,; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtai...

  11. Safety analysis report, packages. Drath and Schrader Double Lidded Drum (packaging of fissile and other radioactive materials). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chalfant, G.G. (comp.)

    1985-07-01

    The preceding Safety Analysis Report - Packages qualifies the Drath and Schrader Double Lidded Drum (see appendix E) as a Department of Transportation DOT 7A Type A packaging and/or ''Type A'' foreign made packaging. The allowable contents shall be: in solid form; non-fissile or exempt fissile material (as defined by 49 CFR 173.453); less than 700 pounds (318 kg) in weight; equal to or less than the A/sub 1/ or A/sub 2/ quantities of radioactive material as appropriate (see 49 CFR 173.435 for tables of A/sub 1//A/sub 2/ values); and hydrogen gas generation in radioactive waste shall be limited to a maximum of 2-1/2% and total gas pressure limited to 5 psig. Package marking shall be as specified in 49 CFR 178.350-3 or as specified by the foreign country of origin.

  12. Safety analysis report, packages. Drath and Schrader Double Lidded Drum (packaging of fissile and other radioactive materials). Final report

    International Nuclear Information System (INIS)

    The preceding Safety Analysis Report - Packages qualifies the Drath and Schrader Double Lidded Drum (see appendix E) as a Department of Transportation DOT 7A Type A packaging and/or ''Type A'' foreign made packaging. The allowable contents shall be: in solid form; non-fissile or exempt fissile material (as defined by 49 CFR 173.453); less than 700 pounds (318 kg) in weight; equal to or less than the A1 or A2 quantities of radioactive material as appropriate (see 49 CFR 173.435 for tables of A1/A2 values); and hydrogen gas generation in radioactive waste shall be limited to a maximum of 2-1/2% and total gas pressure limited to 5 psig. Package marking shall be as specified in 49 CFR 178.350-3 or as specified by the foreign country of origin

  13. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  14. Investigation of metal fluoride thermal energy storage materials: availability, cost, and chemistry. Final report, July 15, 1976--December 15, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Eichelberger, J.L.

    1976-12-01

    Storage of thermal energy in the 400 to 1000/sup 0/C range is attracting increasing consideration for use in solar power, central power, vehicular, and commercial process systems. This study investigates the practicality of using metal fluorides as the heat storage medium. The projected availability of metal fluorides has been studied and is shown to be adequate for widespread thermal storage use. Costs are projected and discussed in relation to thermal energy storage applications. Phase diagrams, heats of fusion, heat capacities, vapor pressures, toxicity, stability, volume changes, thermal conductivities, fusion kinetics, corrosion, and container materials of construction for a wide range of fluorides have been examined. Analyses of these data in consideration of thermal energy storage requirements have resulted in selection of the most cost-effective fluoride mixture for each of 23 temperature increments between 400 and 1000/sup 0/C. Thermo-physical properties of these 23 materials are presented. Comparison of fluoride with non-fluoride materials shows that the fluorides are suitable candidates for high temperature applications on the bases of cost, heat capacity/unit volume, heat capacity/unit weight, corrosive properties, and availability.

  15. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    International Nuclear Information System (INIS)

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear

  16. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  17. Nuclear Energy Plant Optimization (NEPO) final report on aging and condition monitoring of low-voltage cable materials.

    Energy Technology Data Exchange (ETDEWEB)

    Assink, Roger Alan; Gillen, Kenneth Todd; Bernstein, Robert

    2005-11-01

    This report summarizes results generated on a 5-year cable-aging program that constituted part of the Nuclear Energy Plant Optimization (NEPO) program, an effort cosponsored by the U. S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The NEPO cable-aging effort concentrated on two important issues involving the development of better lifetime prediction methods as well as the development and testing of novel cable condition-monitoring (CM) techniques. To address improved life prediction methods, we first describe the use of time-temperature superposition principles, indicating how this approach improves the testing of the Arrhenius model by utilizing all of the experimentally generated data instead of a few selected and processed data points. Although reasonable superposition is often found, we show several cases where non-superposition is evident, a situation that violates the constant acceleration assumption normally used in accelerated aging studies. Long-term aging results over extended temperature ranges allow us to show that curvature in Arrhenius plots for elongation is a common occurrence. In all cases the curvature results in a lowering of the Arrhenius activation energy at lower temperatures implying that typical extrapolation of high temperature results over-estimates material lifetimes. The long-term results also allow us to test the significance of extrapolating through the crystalline melting point of semi-crystalline materials. By utilizing ultrasensitive oxygen consumption (UOC) measurements, we show that it is possible to probe the low temperature extrapolation region normally inaccessible to conventional accelerated aging studies. This allows the quantitative testing of the often-used Arrhenius extrapolation assumption. Such testing indicates that many materials again show evidence of ''downward'' curvature (E{sub a} values drop as the aging temperature is lowered) consistent with the limited

  18. Genetic relationship of organic bases of the quinoline and isoquinoline series from lignite semicoking tars with the initial biological material

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Podshibyakin, S.I.; Domogatskii, V.V.; Shvykin, A.Y.; Shavyrina, O.A.; Chilachava, K.B. [Leo Tolstoy State Pedagog University, Tula (Russian Federation)

    2002-07-01

    The genetic relationship of quinoline and isoquinoline compounds present in semicoking tars of Kimovsk lignites (near-Moscow fields) with the initial vegetable material is discussed. Transformation pathways of the native compounds in the course of lignite formation are suggested.

  19. Study on the safety during transport of radioactive materials. Pt. 4. Events during transport. Final report work package 6

    International Nuclear Information System (INIS)

    This report presents the results from a data collection and an evaluation of the safety significance of events in the transportation of radioactive material by all modes on public routes in Germany. Systems for reporting and evaluation of the safety significance of events encountered in the transport of radioactive material are a central element in monitoring and judging the adequacy and effectiveness of the transport regulations and their underlying safety philosophy, this allows for revision by experience feedback (lessons learned). The nationwide survey performed covering the period from the mid 1990s through 2013 identified and analysed a total of 670 transport events varying in type and severity. The vast majority of recorded transport events relate to minor deviations from the provisions of the transport regulations (e.g. improper markings and error in transport documents) or inappropriate practices and operational procedures resulting in material damage of packages and equipment such as handling incidents. Severe traffic accidents and fires represented only a small fraction (ca. 3 percent) of the recorded transport events. Four transport events were identified in the reporting period to have given rise to environmental radioactive releases. Three transport events have reportedly resulted in minor radiation exposures to the transport personnel; in one case an exposure in excess of the statutory annual dose limit for the public seems possible. Based on the EVTRAM scale, with seven significance levels, the broad majority of transport events has been classified as ''non-incidents'' (Level 0) and ''events without affecting the safety functions of the package'' (Level 1). On the INES scale most transport events would be classified as events with ''no safety significance'' (Below Scale/Level 0). The survey results show no serious deficiencies in the transport of radioactive material, supporting the

  20. Investigation of the use of coal waste as raw material for the production of aluminum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, L.; Schieder, T.; Belsky, M.

    1980-11-01

    Coal wastes, containing on the average 25% Al/sub 2/O/sub 3/, represent an important domestic raw material potential for the aluminium industry. Reliable data on the occurrence and composition of wastes from major coal mining areas in the Federal Republic of Germany were collected. The behavior of wastes during extraction with acids was investigated. Possible uses of residual silica are outlined. There exist basic process concepts for the extraction of alumina from the wastes, using experience in the processing of kaolinite. However, transfer to a technical scale requires several years of further development. (ESA)

  1. Assessment of state and local notification requirements for transportation of radioactive and other hazardous materials. Final report

    International Nuclear Information System (INIS)

    State and local laws requiring notification for shipments of radioactive and other hazardous materials have become increasingly common and controversial during the last decade. Such laws are seen by their proponents as essential for planning and emergency response, while their opponents view them as unnecessary and intrusive. The debate over the value of notification requirements has often been hampered by the lack of information about the extent and nature of these laws. The report is intended to present factual information about notification laws in order to facilitate more informed discussion

  2. Research & Development of Materials/Processing Methods for Continuous Fiber Ceramic Composites (CFCC) Phase 2 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Szweda, A.

    2001-01-01

    The Department of Energy's Continuous Fiber Ceramic Composites (CFCC) Initiative that begun in 1992 has led the way for Industry, Academia, and Government to carry out a 10 year R&D plan to develop CFCCs for these industrial applications. In Phase II of this program, Dow Corning has led a team of OEM's, composite fabricators, and Government Laboratories to develop polymer derived CFCC materials and processes for selected industrial applications. During this phase, Dow Corning carried extensive process development and representative component demonstration activities on gas turbine components, chemical pump components and heat treatment furnace components.

  3. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  4. Materials development for waste-to-energy plants. New materials for overlay welding. Final report; Udvikling af materialer til affaldsforbraending - Nye materialer til overlagssvejsning. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Skat Tiedje, N.

    2010-07-01

    This part of the project was to develop a method for rapid benchmarking of new alloys for overlay welding and to apply the method in combination with thermodynamic modeling of microstructures in welded Ni-based alloys. Based on these analyses new, improved alloys were to be developed to be produced in the laboratory and tested using the benchmarking method. Accelerated electrochemical tests proved to be difficult, and the method that was chosen was unreliable. There were two reasons for this. 1: It was difficult to obtain stable experimental conditions in the measuring cell. 2: The sample geometry and various uncontrolled chemical reactions within the welding and in the salt melt surface. The problems of achieving stability turned out to be an Achilles' heel in this part of the project, and it was the cause of significant delays. Thermodynamic modeling gave a number of interesting results, including the coupling between the content of iron and carbon and in terms of how the various alloying elements segregate in the material. The method alone does not tell anything about the risk of corrosion. Here the coupling to the electrostatic experiments were missing which should give information about the phases of greatest importance for corrosion. Calculations of the chemical equilibrium between the alloying elements, oxygen, and chlorine show that all metals react with both chlorine and oxygen at 450 to 500 deg. C. Oxides are the most stable reaction products viz. that once they are formed, they do not participate in further chemical reactions. (LN)

  5. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  6. Investigation of laser-induced pre-breakdown material modifications. Final report, September 15, 1977--March 14, 1979

    International Nuclear Information System (INIS)

    A new mechanism is presented for dielectric breakdown of wide gap materials in intense fields of photons having wavelengths in the visible region of the electromagnetic spectrum. It is based on multiphoton generation of free carriers and energy deposition from the photon field to the lattice via electron--photon--phonon collision processes. This laser breakdown model represents an alternative to the so-called avalanche ionization mechanism. It is further demonstrated that laser pulses with peak fluxes below the single-shot threshold for both bulk and surface damage of sodium chloride crystals modify the properties of this material. As a result of multiphoton exciton generation primary defects are formed which lead to intense directional emission of neutral halogen and alkali atoms. As a consequence, the crystal surface is severely perturbed. The technique of thermally stimulated exoemission of particles to assess the degree of surface pertubation after laser exposure was developed. Ongoing experiments present for the first time evidence that the single-shot laser surface damage threshold decreases with laser-induced surface perturbation

  7. A rheometer for measuring the material moduli for granular solids. Final report, August 7, 1990--February 6, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, K.R.

    1998-03-01

    A great many industrial processes involve interaction between solids and fluids (i.e. gases or liquids). Combustion, gasification of solid fuels, shales or solid wastes, drying of particles, calcining, particle heating, regenerative heat exchangers, oxidation or reduction of ores, metal surface treatments and catalytic and thermal cracking are some of such processes. Solids and fluids serve different roles and several combinations of solids and fluids can arise in a practical situation. Thus, when considering processes or plants it is necessary to be clear as to the particular purpose served by the fluids and the solids. Heating and drying of solids, for example, involve heat and mass transfer only, whereas combustors, gasifiers etc. have the additional complication of chemical reactions which have to be carried out simultaneously with heat and mass transfer. Again, there are many processes where just the flow of granular particles take place, for example, the flow of food grain, coal or sand particles through bin, silo, hoppers, chutes, conveyor belts, inclined planes etc. In most of these cases, a theoretical modeling of the process requires a complete and thorough understanding of the phenomena involved and constitutive modeling of the constituents along with the usual balance laws. In a process, where both a fluid and a solid constituents are involved, it is essential to model both the constituents such that the models accurately describes the characteristics of the constituent concerned. While there are many different models available for fluids, the models for granular materials lack from an understanding of the material parameters.

  8. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  9. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    International Nuclear Information System (INIS)

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys

  10. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  11. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    International Nuclear Information System (INIS)

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  12. Development of light materials for hydrogen storage. Final report - summary; Udvikling af lette materialer til brintlagring. Slutrapport - sammenfatning

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-15

    The most compact technique to store hydrogen is the metal hydride technique. With this, hydrogen is stored more compact than in liquid form, and it occurs in many instances reversibly at pressures close to the atmospheric pressure. There is though a serious obstacle to many uses of the technique, namely the weight. Most metal hydrides only store 1-2 weight percent hydrogen at moderate temperatures, while there for mobile applications is a demand for 5-10 %. The goal of the present project was to develop new effective materials for hydrogen storage based on light elements. One promising candidate for this is NaAlH{sub 4}, which is known to store hydrogen reversibly in the temperature range 150-200 deg. C with a hydrogen weight capacity of 4-7.5 %.The kinetics of the absorption and desorption of hydrogen in this material when doped with titanium have been shown to improve dramatically yielding it viable for practical applications. In the present project the kinetics were examined by neutron scattering and computer simulations. Here, the kinetic barrier for desorption of hydrogen in NaAlH{sub 4} was found to be reduced to 1/3 when titanium is added, thus giving an explanation for the effectiveness of titanium doping of NaAlH{sub 4}. Experimentally,a result of the project was a dramatic lowering of the desorption temperature by mixing with the compound LiBH{sub 4}. LiBH{sub 4} was also examined in combination with BCC metals, which also proved to lower the desorption temperature. Other, new materials were examined with regard to their use for hydrogen storage, such as the Li-Si-N and Li-AI-N systems. Li{sub 5}SiN{sub 3} was synthesized from Li{sub 3}N and Si by ball milling under nitrogen pressure, and the compound was shown to take up 4 wt%H{sub 2}. Most of this could be desorbed under the reaction conditions (below300 deg. C), thus showing partly reversibility. A related compound, Li{sub 2}SiN{sub 2}, proved to be able to take up nearly 5 wt% (close to the assumed

  13. Final report of the Buffer Mass Test - Volume 3: Chemical and physical stability of the buffer materials

    International Nuclear Information System (INIS)

    The Buffer Mass Test offered a possibility to investigate whether chemical changes took place in the smectite component at heating to 125 degrees C for about one year. The alterations that could possibly take place were a slight charge change in the crystal lattice with an associated precipitation of silica compounds, and a tendency of illite formation. The analysis showed that there were indications of both but to such a slight extent that the processes could not have affected the physical properties, which was also demonstrated by determining the swelling pressure and the hydraulic conductivity. The BMT also showed that the erodibility of bentonite-based buffer materials is less than or about equal to what can be expected on theoretical grounds. (author)

  14. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  15. Development of materials for solid state electrochemical sensors and fuel cell applications. Final report, September 30, 1995--December 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bobba, R.; Hormes, J.; Young, V.; Baker, J.A.

    1995-12-31

    The intent of this project was two fold: (1) to develop new ionically conducting materials for solid state gas phase sensors and fuel cells and (2) to train students and create an environment conducive to Solid State Ionics research at Southern University. The authors have investigated the electrode-electrolyte interfacial reactions, defect structure and defect stability in some perovoskite type solid electrolyte materials and the effect of electrocatalyst and electrolyte on direct hydrocarbon and methanol/air fuel cell performance using synchrotron radiation based Extended X-ray Absorption Spectroscopy (EXAFS), surface analytical and Impedance Spectroscopic techniques. They have measured the AC impedance and K edge EXAFS of the entire family of rare earth dopants in Cerium Oxide to understand the effect of dopants on the conductivity and its impact on the structural properties of Cerium Oxide. All of the systems showed an increase in the conductivity over undoped ceria with ceria doped Gd, Sm and Y showing the highest values. The conductivity increased with increasing ionic radius of the dopant cation. The authors have measured the K edge of the EXAFS of these dopants to determine the local structural environment and also to understand the nature of the defect clustering between oxygen vacancies and trivalent ions. The analysis and the data reduction of these complex EXAFS spectra is in progress. Where as in the DOWCs, the authors have attempted to explore the impact of catalyst loadings on the performance of direct oxidation of methanol fuel cells. Their initial measurements on fuel cell performance characteristics and EXAFS are made on commercial membranes Pt/Ru/Nafion 115, 117 and 112.

  16. Radiochemical method for the simultaneous determination of 233U, 236U, 237Np, 236Pu, 238Pu, and 239Pu in biological materials

    International Nuclear Information System (INIS)

    A radiochemical method has been developed for the determination of multiple isotopes of uranium, neptunium, and plutonium in biological materials. The elements are separated from the other sample constituents and from each other by anion exchange in halide media. Their recoveries are monitored by isotopic diluents. The amounts of the analyte and diluent isotopes of each element are measured alpha spectrometrically. The interelemental separation factors are generally greater than 102, and the recovery of each element ranges from 60% to 90%. 4 references, 1 table

  17. Long term test of buffer material at the Aespoe HRL, LOT project. Final report on the A0 test parcel

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Sanden, Torbjoern; Faelth, Billy (Clay Technology AB, Lund (Sweden)); Jansson, Mats; Eriksen, Trygve E.; Svaerdstroem, Kjell (KTH Royal Inst. of Technology, Stockholm (Sweden)); Rosborg, Bo (Studsvik AB, Nykoeping (Sweden); Rosborg Consulting, Nykoeping (Sweden)); Muurinen, Arto (VTT, Espoo (Finland))

    2011-02-15

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, could be expected to produce minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory are focused on identifying and quantifying any mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks to a total diameter of 30 cm as well as temperature, total pressure, water pressure and humidity sensors. In each test parcel, an electrical heater placed inside the copper tube is used to simulate the heat generation from the decaying spent fuel. Three test parcels (S1 to S3) have been exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and three parcels (A1 to A3) to adverse conditions (maximum temperature below approx140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (> 5 years) and long term tests (> 10 years). The present report concerns an additional short term test, thereby the designation A0, which was exposed to adverse conditions for approximately 1.5 years. Cu-coupons, 134Cs and 57Co tracers and specific chemical agents were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at the test site and the bentonite material was sampled for specified analyses. The main aspects of the various tests and analyses

  18. Long term test of buffer material at the Aespoe HRL, LOT project. Final report on the A0 test parcel

    International Nuclear Information System (INIS)

    In the Swedish repository concept for nuclear waste (KBS-3 concept), the spent nuclear fuel will be stored in copper canisters surrounded by compacted bentonite. The decaying power of the fuel will increase the temperature in the repository which, in combination with the uptake of ground-water, could be expected to produce minor mineralogical changes in the bentonite. The ongoing LOT test series at the Aespoe Hard Rock Laboratory are focused on identifying and quantifying any mineralogical alterations in the bentonite exposed to typical repository-like conditions. Further, buffer-related processes concerning copper corrosion, cation transport, and bacterial survival/activity are studied. In total, the LOT project includes seven test parcels, which contain a central Cu-tube surrounded by cylindrical bentonite blocks to a total diameter of 30 cm as well as temperature, total pressure, water pressure and humidity sensors. In each test parcel, an electrical heater placed inside the copper tube is used to simulate the heat generation from the decaying spent fuel. Three test parcels (S1 to S3) have been exposed to standard KBS-3 conditions (maximum temperature below 100 deg C) and three parcels (A1 to A3) to adverse conditions (maximum temperature below ∼140 deg C). Both the standard and the adverse test series include short term tests (1 to 2 years), medium term tests (> 5 years) and long term tests (> 10 years). The present report concerns an additional short term test, thereby the designation A0, which was exposed to adverse conditions for approximately 1.5 years. Cu-coupons, 134Cs and 57Co tracers and specific chemical agents were placed in the bentonite at defined positions. After field exposure, the entire test parcel was released from the rock by overlapping percussion drilling and wire sawing. The parcel was lifted and divided at the test site and the bentonite material was sampled for specified analyses. The main aspects of the various tests and analyses may

  19. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  20. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)