WorldWideScience

Sample records for biological functions exhibited

  1. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  2. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    A Look of Hope Islam Mahmoud Sweity From 19 to 30 June 2017 CERN Meyrin, Main Building Islam Mahmoud Sweity Islam Mahmoud Sweity was born in 1997 at Beit Awwa, Palestine. She is currently following a course to get an Art diploma of Painting at the college of Fine Arts at An-Najah National University under the supervision of Esmat Al As'aad. Her portraits, landscapes and still life paintings are full of life and shining colours. Charged of emotional empathy they catch the attention of the viewer and are reminding us that life is beautiful and worth living in spite of all difficulties we have to go through. She participated in many exhibitions and has exposed her drawings in 2015 at CERN and in France in the framework of the exhibition "The Origin“, and in 2017 in the Former Yugoslav Republic of Macedonia, Palestina and Jordan. In this exhibition the oil paintings made in the past year will be presented. For more information : staff.association@cern.ch | T&eacu...

  3. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    Encounters Hanne Blitz From February 1st to 12th 2016 CERN Meyrin, Main Building What is our reaction to a first encounter with a tourist attraction? Contemporary Dutch painter Hanne Blitz captures visitors' responses to art and architecture, sweeping vistas and symbolic memorials. Encounters, a series of oil paintings curated specially for this CERN exhibition, depicts tourists visiting cultural highlights around the world. A thought-provoking journey not to be missed, and a tip of the hat to CERN's large Hadron Collider.

  4. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

      Parallels vision Astronomical subjects which evoke extrasensory kinetic visions Alberto Di Fabio From 8 to 10 October, CERN Meyrin, Main Building In the framework of Italy@cern, the Staff Association presents Alberto Di Fabio. Di Fabio’s work is inspired by the fundamental laws of the physical world, as well as organic elements and their interrelation. His paintings and works on paper merge the worlds of art and science, depicting natural forms and biological structures in vivid colour and imaginative detail. For all additional information: staff.association@cern.ch | Tel: 022 767 28 19

  5. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Sintropie Flavio Pellegrini From 13 to 24 March 2017 CERN Meyrin, Main Building Energia imprigionata - Flavio Pellegrini. The exhibition is composed by eleven wood artworks with the expression of movement as theme. The artworks are the result of harmonics math applied to sculpture. The powerful black colour is dominated by the light source, generating reflexes and modulations. The result is a continuous variation of perspective visions. The works generate, at a first approach, an emotion of mystery and incomprehension, only a deeper contemplation lets one discover entangling and mutative details, evidencing the elegance of the lines and letting the meaning emerge. For more information : staff.association@cern.ch | Tél: 022 766 37 38

  6. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  7. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  8. Stable functional networks exhibit consistent timing in the human brain.

    Science.gov (United States)

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate

  9. The biological function of consciousness

    Science.gov (United States)

    Earl, Brian

    2014-01-01

    This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159

  10. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers.

    Science.gov (United States)

    Kelly, Aubrey M; Hiura, Lisa C; Saunders, Alexander G; Ophir, Alexander G

    2017-09-01

    to parental behavior. Identifying neural mechanisms that exhibit functional plasticity can elucidate one way in which animals are able to shift behavior on relatively short timescales in order to exhibit the most context-appropriate and adaptive behaviors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients.

    Science.gov (United States)

    Varella, Rafael B; Zalona, Ana Carolina J; Diaz, Nuria C; Zalis, Mariano G; Santoro-Lopes, Guilherme

    2018-01-02

    BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bio-inspired composites with functionally graded platelets exhibit enhanced stiffness.

    Science.gov (United States)

    Tapse, Sanjay; S, Anup

    2017-11-09

    Unidirectional composites inspired from biological materials such as nacre, are composed of stiff platelets arranged in a staggered manner within a soft matrix. Elaborate analyses have been conducted on the aforementioned composites and they are found to have excellent mechanical properties like stiffness, strength and fracture toughness. The superior properties exhibited by these composites have been proved to be the result of its unique structure. An emerging development in the field of composite structures is Functionally Graded Composites(FGC), whose properties vary spatially and possess enhanced thermo-mechanical properties. In this paper, the platelets are functionally graded with its Young's Modulus varying parabolically along the length. Two different models - namely, Tension Shear Chain Model and Minimisation of Complementary Energy Model have been employed to obtain the stiffness of the overall composite analytically. The effect of various parameters that define the composite model such as overlapping length between any two neighbouring platelets, different gradation parameters and platelet aspect ratio on the overall mechanical properties have been studied. Composites with functionally graded platelets are found to possess enhanced stiffness (upto 14% higher) for certain values of these parameters. The obtained solutions have been validated using Finite Element Analysis. Bio-inspired composites with functionally graded platelets can be engineered for structural applications, such as in automobile, aerospace and aircraft industry, where stiffness plays a crucial role. © 2017 IOP Publishing Ltd.

  13. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  14. Structure and function in biology

    International Nuclear Information System (INIS)

    Hirs, C.H.W.

    1976-01-01

    A summary is given of the history of the developments of structural chemistry in biology beginning with the work of the bacteriologist Ehrlich leading to a comprehensive examination of the influence of size and configuration on the interaction between specific antibodies and side-chain determinants. Recent developments include the recognition of a higher order of specificity in the interaction of proteins with one another

  15. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Zakhidov, E.A.; Zakhidova, M.A.; Kasymdzhanov, M.A.; Kurbanov, S.S.; Nematov, Sh.K.; Khabibullaev, P.K.

    2005-01-01

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  16. Metacognition: computation, biology and function

    Science.gov (United States)

    Fleming, Stephen M.; Dolan, Raymond J.; Frith, Christopher D.

    2012-01-01

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746

  17. Functional biology of sympatric krill species

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel

    2016-01-01

    Here we compare the functional biology of the sympatric krill species, Meganyctiphanes norvegica and Thysanoessa inermis. For M. norvegica, we investigated functional responses on diatoms and copepods, together with prey size spectra on plankton ,400 mm and copepods in the size range 500–3220 mm...

  18. Functional Analysis and Treatment of Human-Directed Undesirable Behavior Exhibited by a Captive Chimpanzee

    Science.gov (United States)

    Martin, Allison L.; Bloomsmith, Mollie A.; Kelley, Michael E.; Marr, M. Jackson; Maple, Terry L.

    2011-01-01

    A functional analysis identified the reinforcer maintaining feces throwing and spitting exhibited by a captive adult chimpanzee ("Pan troglodytes"). The implementation of a function-based treatment combining extinction with differential reinforcement of an alternate behavior decreased levels of inappropriate behavior. These findings further…

  19. Biological pacemakers in canines exhibit positive chronotropic response to emotional arousal

    NARCIS (Netherlands)

    Shlapakova, Iryna N.; Nearing, Bruce D.; Lau, David H.; Boink, Gerard J. J.; Danilo, Peter; Kryukova, Yelena; Robinson, Richard B.; Cohen, Ira S.; Rosen, Michael R.; Verrier, Richard L.

    2010-01-01

    Biological pacemakers based on the HCN2 channel isoform respond to beta-adrenergic and muscarinic stimulation, suggesting a capacity to respond to autonomic input. The purpose of this study was to investigate autonomic response to emotional arousal in canines implanted with murine HCN2-based

  20. 2010 Joint Chemical Biological Radiological Nuclear (CBRN) Conference and Exhibition (BRIEFING CHARTS)

    Science.gov (United States)

    2010-06-24

    Engineering 714a Tex -Shield, Inc. 508a The JGW Group 403a The JGW Group 407 The JGW Group 412 The JGW Group 514a The JGW Group 310 The JGW Group 409 The JGW...Army Dugway Proving Ground 301 USAA 1024a Utilis USA 7 W.L. Gore & Associates, Inc. 913 Exhibits Pavilion 264’x164’ 273-10x10 booths, 15-20x20

  1. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    Directory of Open Access Journals (Sweden)

    Lorena M Coronado

    Full Text Available The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  2. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  3. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves.

    Science.gov (United States)

    McGregor, Christopher G A; Kogelberg, Heide; Vlasin, Michal; Byrne, Guerard W

    2013-05-01

    Current biological heart valves (BHVs) contain the major xenogeneic antigen Gal. Recipient anti-Gal antibody binding to such an implanted BHV may contribute to valve degeneration. The study aim was to compare, by implantation in non-human primates, the immune consequences of BHVs from Gal-positive wild-type (WT) pigs and those from alpha-galactosyltransferase knockout (GTKO) pigs. Recipients were immunized prior to implant with keyhole limpet hemocyanin (KLH) conjugated to alphaGal to match the anti-Gal levels and isotypes found in humans. Stented glutaraldehyde-fixed BHVs from WT (n = 4) and GTKO (n = 3) pigs were commercially manufactured and implanted in the mitral position in non-human primates. Recipients were treated with enoxaparin (1 mg/kg b.i.d.) for five weeks which was tapered, and then discontinued. Serum antibody levels to Gal and KLH were measured using ELISA. Overall anti-Gal and anti-KLH antibody levels were decreased in both WT and GTKO BHV recipients after implantation. Serum anti-Gal IgG levels in GTKO BHV recipients fell rapidly within one month, matching the loss of anti-KLH reactivity. There was no significant difference in retention of anti-KLH antibody between the groups. WT BHV recipients retained significantly elevated levels of anti-Gal IgG during the first year post implant. Area under the curve analysis showed that anti-Gal IgG was significantly increased in the WT BHV group compared to GTKO BHV recipients (p < 0.01). Persistent and significantly (p < 0.01) elevated levels of anti-Gal IgG were observed in WT but not GTKO BHV non-human primate recipients, and indicated a continuing BHV-specific immune stimulation to the alphaGal antigen. These data support the hypothesis that the clinical use of Gal-positive xenogeneic bioprosthetic materials can induce an anti-Gal antibody response. Bioprosthetic devices prepared from GTKO pig tissue would eliminate immune stimulation to this major xenoreactive antigen, which may reduce the potential of

  4. Marine Carotenoids: Biological Functions and Commercial Applications

    Directory of Open Access Journals (Sweden)

    José M. Vega

    2011-03-01

    Full Text Available Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.

  5. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  6. Mouse Dach2 mutants do not exhibit gross defects in eye development or brain function.

    Science.gov (United States)

    Davis, Richard J; Pesah, Yakov I; Harding, Mark; Paylor, Richard; Mardon, Graeme

    2006-02-01

    Drosophila dachshund is a critical regulator of eye, brain, and limb formation. Vertebrate homologs, Dach1 and Dach2, are expressed in the developing retina, brain, and limbs, suggesting functional conservation of the dachshund/Dach gene family. Dach1 mutants die postnatally, but exhibit grossly normal development. Here we report the generation of Dach2 mutant mice. Although deletion of Dach2 exon 1 results in abrogation of RNA expression, Dach2 mutants are viable and fertile. Histochemical analysis reveals grossly normal Dach2 mutant eye development. In addition, a battery of neurological assays failed to yield significant differences in behavior between Dach2 mutants and controls. We discuss these findings in the light of published observations of DACH2 mutations in the human population. Finally, to test the functional conservation hypothesis, we generated Dach2; Dach1 double mutant mice. Dach double mutants die after birth, similar to Dach1 homozygotes. However, unlike Drosophila dachshund mutants that lack eyes and exhibit leg truncations, the eyes and limbs of Dach double mutants are present, suggesting differences between Dach and dachshund gene function during embryonic eye and limb formation.

  7. Biological pathways and genetic mechanisms involved in social functioning

    NARCIS (Netherlands)

    Ordonana, J.R.; Bartels, M.; Boomsma, D.I.; Cella, D.; Mosing, M.; Oliveira, J.R.; Patrick, D.L.; Veenhoven, R.; Wagner, G.G.; Sprangers, M.A.G.

    2013-01-01

    Purpose: To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants

  8. Scavenger Receptor CD163 and Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Gabriela Onofre

    2009-01-01

    Full Text Available CD163 is a member of scavenger receptor super family class B of the first subgroup. It is mapped to the region p13 on chromosome 12. Five different isoforms of CD163 have been described, which differ in the structure of their cytoplasmic domains and putative phosporylation sites. This scavenger receptor is selectively expressed on cells of monocytes and macrophages lineage exclusively. CD163 immunological function is essentially homeostatic. It also has other functions because participates in adhesion to endothelial cells, in tolerance induction and tissues regeneration. Other very important function of CD163 is the clearance of hemoglobin in its cell-free form and participation in anti-inflammation in its soluble form, exhibiting cytokine-like functions. We review the biological functions of CD163 which have been discovered until now. It seems apparent from this review that CD163 scavenger receptor can be used as biomarker in different diseases and as a valuable diagnostic parameter for prognosis of many diseases especially inflammatory disorders and sepsis.

  9. Structure and biological functions of fungal cerebrosides

    Directory of Open Access Journals (Sweden)

    Barreto-Bergter Eliana

    2004-01-01

    Full Text Available Ceramide monohexosides (CMHs, cerebrosides are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.

  10. JMJD1C Exhibits Multiple Functions in Epigenetic Regulation during Spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Ryusuke Nakajima

    Full Text Available Jmjd1C is one of the Jmjd1 family genes that encode putative demethylases against histone H3K9 and non-histone proteins and has been proven to play an indispensable role in mouse spermatogenesis. Here, we analyzed a newly-bred transgenic mouse strain carrying a Jmjd1C loss-of-function allele in which a β-geo cassette was integrated into the intron of the Jmjd1C locus. Jmjd1C gene-trap homozygous testes exhibited malformations in postmeiotic processes and a deficiency in the long-term maintenance of undifferentiated spermatogonia. Some groups of spermatids in the homozygous testis showed abnormal organization and incomplete elongation from the first wave of spermatogenesis onwards. Moreover, histone H4K16 acetylation, which is required for the onset of chromatin remodeling, appeared to be remarkably decreased. These effects may not have been a result of the drastic decrease in gene expression related to the events but instead may have been due to the lack of interaction between JMJD1C and its partner proteins, such as MDC1 and HSP90. Additionally, significant decreases in Oct4 expression and NANOG- and OCT4-expressing spermatogonia were found in the Jmjd1C homozygous mature testis, suggesting that JMJD1C may participate in the maintenance of spermatogonial stem cell self-renewal by up-regulating Oct4 expression. These results indicate that JMJD1C has multiple functions during spermatogenesis through interactions with different partners during the spermatogenic stages.

  11. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  12. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  13. Function-Based Algorithms for Biological Sequences

    Science.gov (United States)

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  14. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages.

    Directory of Open Access Journals (Sweden)

    Kees Meijer

    Full Text Available BACKGROUND: Obesity promotes inflammation in adipose tissue (AT and this is implicated in pathophysiological complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Although based on the classical hypothesis, necrotic AT adipocytes (ATA in obese state activate AT macrophages (ATM that then lead to a sustained chronic inflammation in AT, the link between human adipocytes and the source of inflammation in AT has not been in-depth and systematically studied. So we decided as a new hypothesis to investigate human primary adipocytes alone to see whether they are able to prime inflammation in AT. METHODS AND RESULTS: Using mRNA expression, human preadipocytes and adipocytes express the cytokines/chemokines and their receptors, MHC II molecule genes and 14 acute phase reactants including C-reactive protein. Using multiplex ELISA revealed the expression of 50 cytokine/chemokine proteins by human adipocytes. Upon lipopolysaccharide stimulation, most of these adipocyte-associated cytokines/chemokines and immune cell modulating receptors were up-regulated and a few down-regulated such as (ICAM-1, VCAM-1, MCP-1, IP-10, IL-6, IL-8, TNF-α and TNF-β highly up-regulated and IL-2, IL-7, IL-10, IL-13 and VEGF down-regulated. In migration assay, human adipocyte-derived chemokines attracted significantly more CD4+ T cells than controls and the number of migrated CD4+ cells was doubled after treating the adipocytes with LPS. Neutralizing MCP-1 effect produced by adipocytes reduced CD4+ migration by approximately 30%. CONCLUSION: Human adipocytes express many cytokines/chemokines that are biologically functional. They are able to induce inflammation and activate CD4+ cells independent of macrophages. This suggests that the primary event in the sequence leading to chronic inflammation in AT is metabolic dysfunction in adipocytes, followed by production of immunological mediators by these adipocytes, which is then exacerbated by

  15. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  16. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... limitation to the development of effective CBC is due to a failure to adequately direct biological control services to achieve suppression of the target pests. By considering the performance of these and other components of CBC within the context of an integrated system, we believe that the limiting factors...... with intensive crop production will conserve natural enemies, thus contributing to pest suppression. The abundance and diversity of natural enemies increases in response to a variety of conservation measures, including plant and habitat diversification, a reduction in cropping intensity, and increased landscape...

  17. Functionalized apertures for the detection of chemical and biological materials

    Science.gov (United States)

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  18. Functionalized Nanodiamonds for Biological and Medical Applications.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2015-02-01

    Nanodiamond is a promising material for biological and medical applications, owning to its relatively inexpensive and large-scale synthesis, unique structure, and superior optical properties. However, most biomedical applications, such as drug delivery and bio-imaging, are dependent upon the precise control of the surfaces, and can be significantly affected by the type, distribution and stability of chemical funtionalisations of the nanodiamond surface. In this paper, recent studies on nanodiamonds and their biomedical applications by conjugating with different chemicals are reviewed, while highlighting the critical importance of surface chemical states for various applications.

  19. Explaining Biological Functionality: Is Control Theory Enough ...

    African Journals Online (AJOL)

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  20. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  1. Functional synchronization of biological rhythms in a tritrophic system.

    Science.gov (United States)

    Zhang, Sufang; Wei, Jianing; Guo, Xiaojiao; Liu, Tong-Xian; Kang, Le

    2010-06-10

    In a tritrophic system formed by a plant, an herbivore and a natural enemy, each component has its own biological rhythm. However, the rhythm correlations among the three levels and the underlying mechanisms in any tritrophic system are largely unknown. Here, we report that the rhythms exhibited bidirectional correlations in a model tritrophic system involving a lima bean, a pea leafminer and a parasitoid. From the bottom-up perspective, the rhythm was initiated from herbivore feeding, which triggered the rhythms of volatile emissions; then the rhythmic pattern of parasitoid activities was affected, and these rhythms were synchronized by a light switch signal. Increased volatile concentration can enhance the intensity of parasitoid locomotion and oviposition only under light. From the top-down perspective, naive and oviposition-experienced parasitoids were able to utilize the different volatile rhythm information from the damaged plant to locate host leafminers respectively. Our results indicated that the three interacting organisms in this system can achieve rhythmic functional synchronization under a natural light-dark photoperiod, but not under constant light or darkness. These findings provide new insight into the rhythm synchronization of three key players that contribute to the utilization of light and chemical signals, and our results may be used as potential approaches for manipulating natural enemies.

  2. Functional synchronization of biological rhythms in a tritrophic system.

    Directory of Open Access Journals (Sweden)

    Sufang Zhang

    Full Text Available In a tritrophic system formed by a plant, an herbivore and a natural enemy, each component has its own biological rhythm. However, the rhythm correlations among the three levels and the underlying mechanisms in any tritrophic system are largely unknown. Here, we report that the rhythms exhibited bidirectional correlations in a model tritrophic system involving a lima bean, a pea leafminer and a parasitoid. From the bottom-up perspective, the rhythm was initiated from herbivore feeding, which triggered the rhythms of volatile emissions; then the rhythmic pattern of parasitoid activities was affected, and these rhythms were synchronized by a light switch signal. Increased volatile concentration can enhance the intensity of parasitoid locomotion and oviposition only under light. From the top-down perspective, naive and oviposition-experienced parasitoids were able to utilize the different volatile rhythm information from the damaged plant to locate host leafminers respectively. Our results indicated that the three interacting organisms in this system can achieve rhythmic functional synchronization under a natural light-dark photoperiod, but not under constant light or darkness. These findings provide new insight into the rhythm synchronization of three key players that contribute to the utilization of light and chemical signals, and our results may be used as potential approaches for manipulating natural enemies.

  3. Printable Bioelectronics To Investigate Functional Biological Interfaces.

    Science.gov (United States)

    Manoli, Kyriaki; Magliulo, Maria; Mulla, Mohammad Yusuf; Singh, Mandeep; Sabbatini, Luigia; Palazzo, Gerardo; Torsi, Luisa

    2015-10-19

    Thin-film transistors can be used as high-performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to high-performance low-cost bioelectronic sensing devices that are potentially very useful for point-of-care applications. Among others, electrolyte-gated transistors are of interest as they can be operated as capacitance-modulated devices, because of the high capacitance of their charge double layers. Specifically, it is the capacitance of the biolayer, being lowest in a series of capacitors, which controls the output current of the device. Such an occurrence allows for extremely high sensitivity towards very weak interactions. All the aspects governing these processes are reviewed here. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  5. Functional diversity exhibits a diverse relationship with area, even a decreasing one

    Science.gov (United States)

    Karadimou, Elpida K.; Kallimanis, Athanasios S.; Tsiripidis, Ioannis; Dimopoulos, Panayotis

    2016-01-01

    The relationship between species richness and area is one of the few well-established laws in ecology, and one might expect a similar relationship with functional diversity (FD). However, only a few studies investigate the relationship between trait-based FD and area, the Functional Diversity - Area Relationship (FDAR). To examine FDAR, we constructed the species accumulation curve and the corresponding FD curve. We used plant diversity data from nested plots (1–128 m2), recorded on the Volcanic islands of Santorini Archipelagos, Greece. Six multidimensional FD indices were calculated using 26 traits. We identified a typology of FDARs depending on the facet of FD analyzed: (A) strongly positive for indices quantifying the range of functional traits in the community, (B) negative correlation for indices quantifying the evenness in the distribution of abundance in the trait space, (C) no clear pattern for indices reflecting the functional similarity of species and (D) idiosyncratic patterns with area for functional divergence. As area increases, the range of traits observed in the community increases, but the abundance of traits does not increase proportionally and some traits become dominant, implying a reliance on some functions that may be located in either the center or the periphery of the trait space. PMID:27752086

  6. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    Science.gov (United States)

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  7. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration.

    Science.gov (United States)

    Eekhoff, Jeremy D; Fang, Fei; Kahan, Lindsey G; Espinosa, Gabriela; Cocciolone, Austin J; Wagenseil, Jessica E; Mecham, Robert P; Lake, Spencer P

    2017-11-01

    Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.

  8. A dynamic model for functional mapping of biological rhythms.

    Science.gov (United States)

    Fu, Guifang; Luo, Jiangtao; Berg, Arthur; Wang, Zhong; Li, Jiahan; Das, Kiranmoy; Li, Runze; Wu, Rongling

    2011-01-01

    Functional mapping is a statistical method for mapping quantitative trait loci (QTLs) that regulate the dynamic pattern of a biological trait. This method integrates mathematical aspects of biological complexity into a mixture model for genetic mapping and tests the genetic effects of QTLs by comparing genotype-specific curve parameters. As a way of quantitatively specifying the dynamic behavior of a system, differential equations have proven to be powerful for modeling and unraveling the biochemical, molecular, and cellular mechanisms of a biological process, such as biological rhythms. The equipment of functional mapping with biologically meaningful differential equations provides new insights into the genetic control of any dynamic processes. We formulate a new functional mapping framework for a dynamic biological rhythm by incorporating a group of ordinary differential equations (ODE). The Runge-Kutta fourth order algorithm was implemented to estimate the parameters that define the system of ODE. The new model will find its implications for understanding the interplay between gene interactions and developmental pathways in complex biological rhythms.

  9. Analysis of longitudinal cracked two-dimensional functionally graded beams exhibiting material non-linearity

    Directory of Open Access Journals (Sweden)

    Victor Rizov

    2017-07-01

    Full Text Available An analytical study of longitudinal fracture in two-dimensional functionally graded cantilever beam configurations is carried-out with taking into account the non-linear behavior of material. A longitudinal crack is located arbitrary along the beam cross-section height. The material is functionally graded along the width as well as along the height of beam. The external loading consists of a bending moment applied at the free end of lower crack arm. Fracture is studied in terms of the strain energy release rate by considering the beam complementary strain energy. The solution derived is verified by analyzing the longitudinal crack with the help of the J-integral. The distribution of J-integral value along the crack front is studied. The effects of crack location, material gradients and non-linear behavior of material on the fracture are elucidated. The analysis reveals that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of two-dimensional functionally graded materials.

  10. Evidence for a Role of Executive Functions in Learning Biology

    Science.gov (United States)

    Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela

    2014-01-01

    Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…

  11. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available Ofd1 is a newly identified causative gene for Retinitis pigmentosa (RP, a photoreceptor degenerative disease. This study aimed to examine Ofd1 localization in retina and further to investigate its function in photoreceptor degeneration models. Ofd1 localization in rat retina was examined using immunofluorescence. N-methyl-N-nitrosourea (MNU-induced rats and Royal College of Surgeons (RCS rats were used as photoreceptor degeneration models. The expression pattern of Ofd1, other ciliary associated genes and Wnt signaling pathway genes were examined in rat models. Furthermore, pEGFP-Ofd1-CDS and pSUPER-Ofd1-shRNA were constructed to overexpress and knockdown the expression level in 661W and R28 cells. MNU was also used to induce cell death. Cilia formation was observed using immunocytochemistry (ICC. Reactive oxygen species (ROS were detected using the 2', 7'-Dichlorofluorescin diacetate (DCFH-DA assay. Apoptosis genes expression was examined using qRT-PCR, Western blotting and fluorescence-activated cell sorting (FACS. Ofd1 localized to outer segments of rat retina photoreceptors. Ofd1 and other ciliary proteins expression levels increased from the 1st and 4th postnatal weeks and decreased until the 6th week in the RCS rats, while their expression consistently decreased from the 1st and 7th day in the MNU rats. Moreover, Wnt signaling pathway proteins expression was significantly up-regulated in both rat models. Knockdown of Ofd1 expression resulted in a smaller population, shorter length of cell cilia, and lower cell viability. Ofd1 overexpression partially attenuated MNU toxic effects by reducing ROS levels and mitigating apoptosis. To the best of our knowledge, this is the first study demonstrating Ofd1 localization and its function in rat retina and in retinal degeneration rat models. Ofd1 plays a role in controlling photoreceptor cilium length and number. Importantly, it demonstrates a neuroprotective function by protecting the photoreceptor

  12. Two homologous EF-G proteins from Pseudomonas aeruginosa exhibit distinct functions.

    Science.gov (United States)

    Palmer, Stephanie O; Rangel, Edna Y; Hu, Yanmei; Tran, Alexis T; Bullard, James M

    2013-01-01

    Genes encoding two proteins corresponding to elongation factor G (EF-G) were cloned from Pseudomonas aeruginosa. The proteins encoded by these genes are both members of the EFG I subfamily. The gene encoding one of the forms of EF-G is located in the str operon and the resulting protein is referred to as EF-G1A while the gene encoding the other form of EF-G is located in another part of the genome and the resulting protein is referred to as EF-G1B. These proteins were expressed and purified to 98% homogeneity. Sequence analysis indicated the two proteins are 90/84% similar/identical. In other organisms containing multiple forms of EF-G a lower degree of similarity is seen. When assayed in a poly(U)-directed poly-phenylalanine translation system, EF-G1B was 75-fold more active than EF-G1A. EF-G1A pre-incubate with ribosomes in the presence of the ribosome recycling factor (RRF) decreased polymerization of poly-phenylalanine upon addition of EF-G1B in poly(U)-directed translation suggesting a role for EF-G1A in uncoupling of the ribosome into its constituent subunits. Both forms of P. aeruginosa EF-G were active in ribosome dependent GTPase activity. The kinetic parameters (K M) for the interaction of EF-G1A and EF-G1B with GTP were 85 and 70 μM, respectively. However, EF-G1B exhibited a 5-fold greater turnover number (observed k cat) for the hydrolysis of GTP than EF-G1A; 0.2 s(-1) vs. 0.04 s(-1). These values resulted in specificity constants (k cat (obs)/K M) for EF-G1A and EF-G1B of 0.5 x 10(3) s(-1) M(-1) and 3.0 x 10(3) s(-1) M(-1), respectively. The antibiotic fusidic acid (FA) completely inhibited poly(U)-dependent protein synthesis containing P. aeruginosa EF-G1B, but the same protein synthesis system containing EF-G1A was not affected. Likewise, the activity of EF-G1B in ribosome dependent GTPase assays was completely inhibited by FA, while the activity of EF-G1A was not affected.

  13. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Céline Sabatel

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.

  14. Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functional and genetic diversity.

    Science.gov (United States)

    da Silva, Krisle; Cassetari, Alice de Souza; Lima, Adriana Silva; De Brandt, Evie; Pinnock, Eleanor; Vandamme, Peter; Moreira, Fatima Maria de Souza

    2012-06-01

    Forty-eight Burkholderia isolates from different land use systems in the Amazon region were compared to type strains of Burkholderia species for phenotypic and functional characteristics that can be used to promote plant growth. Most of these isolates (n=46) were obtained by using siratro (Macroptilium atropurpureum - 44) and common bean (Phaseolus vulgaris - 2) as the trap plant species; two isolates were obtained from nodules collected in the field from Indigofera suffruticosa and Pithecellobium sp. The evaluated characteristics were the following: colony characterisation on "79" medium, assimilation of different carbon sources, enzymatic activities, solubilisation of phosphates, nitrogenase activity and antifungal activity against Fusarium oxysporium f. sp. phaseoli. Whole cell protein profiles, 16S rRNA, gyrB, and recA gene sequencing and multilocus sequence typing were used to identify the isolates. The isolates showed different cultural and biochemical characteristics depending on the legume species from which they were obtained. Except for one isolate from I. suffruticosa, all isolates were able to solubilise calcium phosphate and present nitrogenase activity under free-living conditions. Only one isolate from common beans, showed antifungal activity. The forty four isolates from siratro nodules were identified as B. fungorum; isolates UFLA02-27 and UFLA02-28, obtained from common bean plants, were identified as B. contaminans; isolate INPA89A, isolated from Indigofera suffruticosa, was a close relative of B. caribensis but could not be assigned to an established species; isolate INPA42B, isolated from Pithecellobium sp., was identified as B. lata. This is the first report of nitrogenase activity in B. fungorum, B. lata and B. contaminans. Copyright © 2012. Published by Elsevier GmbH.

  15. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  16. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  17. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  18. The functioning and behaviour of biological parents of children ...

    African Journals Online (AJOL)

    Parenting a child with ADHD may intensify parental stress through functional impairment notwithstanding the diagnosis of ADHD. Methods: Eighty-one biological parents of children diagnosed with attention-deficit/ hyperactivity disorder were screened using self-reporting measurements. ADHD self-report scale (ASRS-V 1.1) ...

  19. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here differe...

  1. Venom Proteins from Parasitoid Wasps and Their Biological Functions

    Science.gov (United States)

    Moreau, Sébastien J. M.; Asgari, Sassan

    2015-01-01

    Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies. PMID:26131769

  2. Neuroscience in the era of functional genomics and systems biology.

    Science.gov (United States)

    Geschwind, Daniel H; Konopka, Genevieve

    2009-10-15

    Advances in genetics and genomics have fuelled a revolution in discovery-based, or hypothesis-generating, research that provides a powerful complement to the more directly hypothesis-driven molecular, cellular and systems neuroscience. Genetic and functional genomic studies have already yielded important insights into neuronal diversity and function, as well as disease. One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic, genomic and phenotypic data sets, and the development of tools for data integration and mining. Methods for network analysis and systems biology offer the promise of integrating these multiple levels of data, connecting molecular pathways to nervous system function.

  3. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function

    Science.gov (United States)

    Horowitz, Scott; Trievel, Raymond C.

    2012-01-01

    Carbon-oxygen (CH···O) hydrogen bonding represents an unusual category of molecular interactions first documented in biological structures over 4 decades ago. Although CH···O hydrogen bonding has remained generally underappreciated in the biochemical literature, studies over the last 15 years have begun to yield direct evidence of these interactions in biological systems. In this minireview, we provide a historical context of biological CH···O hydrogen bonding and summarize some major advancements from experimental studies over the past several years that have elucidated the importance, prevalence, and functions of these interactions. In particular, we examine the impact of CH···O bonds on protein and nucleic acid structure, molecular recognition, and enzyme catalysis and conclude by exploring overarching themes and unresolved questions regarding unconventional interactions in biomolecular structure. PMID:23048026

  4. Knowledge base and functionality of concepts of some Filipino biology teachers in five biology topics

    Science.gov (United States)

    Barquilla, Manuel B.

    2018-01-01

    This mixed research, is a snapshot of some Filipino Biology teachers' knowledge structure and how their concepts of the five topics in Biology (Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics) functions and develops inside a biology classroom. The study focuses on the six biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and the other three (3) are under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilized classroom discourses, concept maps, interpretative case-study method, bracketing method, and concept analysis for qualitative part; the quantitative part uses a nonparametric statistical tool, Kendall's tau Coefficient for determining relationship and congruency while measures of central tendencies and dispersion (mean, and standard deviation) for concept maps scores interpretation. Knowledge Base of Biology teachers were evaluated by experts in field of specialization having a doctorate program (e.g. PhD in Genetics) and PhD Biology candidates. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. The evaluation of teachers' knowledge base by experts indicated that teachers' knowledge of (65%) is lower than the minimum (75%) recommended by ABD-el-Khalick and Boujaoude (1997). Thus, the experts believe that content knowledge of the teachers is hardly adequate for their teaching assignment. Moreover, the teachers in this study do not systematically use reallife situation to apply the concepts they teach. They can identify concepts too abstract for their student; however, they seldom use innovative ways to bring the discussion to their students' level of readiness and

  5. Using functional genetics to understand breast cancer biology.

    Science.gov (United States)

    Ashworth, Alan; Bernards, Rene

    2010-07-01

    Genetic screens were for long the prerogative of those that studied model organisms. The discovery in 2001 that gene silencing through RNA interference (RNAi) can also be brought about in mammalian cells paved the way for large scale loss-of-function genetic screens in higher organisms. In this article, we describe how functional genetic studies can help us understand the biology of breast cancer, how it can be used to identify novel targets for breast cancer therapy, and how it can help in the identification of those patients that are most likely to respond to a given therapy.

  6. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...

  7. Exhibit Engineering

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    of tools and processes to guide the design of educational science exhibits. The guiding paradigm for this development is design-based research, which is characterised by an iterative cycle of design, enactment, and analysis. In the design phase, an educational intervention is planned and carried out based......) a synthesis of the findings from the first two studies with findings from the literature to generate two types of results: a coherent series of suggestions for a design iteration of the studied exhibit as well as a more general normative model for exhibit engineering. Finally, another perspective......Science museums define the objectives of their exhibitions in terms of visitor learning outcomes. Yet, exhibit designers lack theoretical and empirical research findings on which to base the creation of such educational environments. Here, this shortcoming is addressed through the development...

  8. The pregnant mouse uterus exhibits a functional kisspeptin/KISS1R signaling system on the day of embryo implantation.

    Science.gov (United States)

    Fayazi, Mehri; Calder, Michele; Bhattacharya, Moshmi; Vilos, George A; Power, Stephen; Babwah, Andy V

    2015-09-18

    Expression of kisspeptin (protein) and Kiss1r (mRNA) was recently documented in the mouse uterus on D4 of pregnancy (the day of embryo implantation) suggesting that the uterine-based kisspeptin (KP)/kisspeptin receptor (KISS1R) signaling system regulates embryo implantation. Despite this important suggestion, it was never demonstrated that the uterus actually exhibits a functional KP/KISS1R signaling system on D4 of pregnancy. Thus, the goal of this study was to determine whether a functional KP/KISS1R signaling system exists in the mouse uterus on D4 of pregnancy. Since kisspeptin/KISS1R signaling triggers the phosphorylation of the mitogen-activated protein kinases p38 and ERK1/2, through immunohistochemical analyses, we determined whether exogenously administered kisspeptin could trigger p38 and ERK1/2 phosphorylation in the uterus on D4 of pregnancy. The results clearly demonstrated that kisspeptin could and that its effects were mediated via KISS1R. Additionally, the robust kisspeptin-triggered response was observed in the pregnant uterus only. Finally, it was demonstrated that on D4 of pregnancy the Kiss1 null uterus expresses functional KISS1R molecules capable of mediating the effects of kisspeptin. These results lead us to conclude that on D4 of pregnancy, the mouse uterus expresses a functional KP/KISS1R signaling system strengthening the possibility that this signaling system regulates embryo implantation. These findings strengthen the rationale for determining whether such a functional system exists in the uterus of the human female and if so, what role it might play in human pregnancy.

  9. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  10. Harnessing systems biology approaches to engineer functional microvascular networks.

    Science.gov (United States)

    Sefcik, Lauren S; Wilson, Jennifer L; Papin, Jason A; Botchwey, Edward A

    2010-06-01

    Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

  11. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  12. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  13. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  14. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here different...... light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...... of displayed people, connecting the attitudes and science of the past with both our (continued) modern fascination with ‘the exotic’, and contemporary language and popular culture. As such, it will be of interest to scholars of sociology, anthropology and history working in the areas of gender and sexuality...

  15. Human Exhibitions

    DEFF Research Database (Denmark)

    Andreassen, Rikke

    From 1870s to 1910s, more than 50 exhibitions of so-called exotic people took place in Denmark. Here large numbers of people of Asian and African origin were exhibited for the entertainment and ‘education’ of a mass audience. Several of these exhibitions took place in Copenhagen Zoo. Here different...... ‘villages’ constructed in the middle of the zoo hosted men, women and children, who sometimes stayed for months, performing their ‘daily lives’ for the thousands and thousands of curious Danes. While such shows occurred frequently in European cities in the late nineteenth and early twentieth centuries...... light on the staging of exhibitions, the daily life of the exhibitees, the wider connections between shows across Europe and the thinking of the time on matters of race, science, gender and sexuality. A window onto contemporary racial understandings, the book presents interviews with the descendants...

  16. Systemic Modeling of Biological Functions in Consideration of Physiome Project

    Science.gov (United States)

    Minamitani, Haruyuki

    Emerging of the physiome project provides various influences on the medical, biological and pharmaceutical development. In this paper, as an example of physiome research, neural network model analysis providing the conduction mechanisms of pain and tactile sensations was presented, and the functional relations between neural activities of the network cells and stimulus intensity applied on the peripheral receptive fields were described. The modeling presented here is based on the various assumptions made by the results of physiological and anatomical studies reported in the literature. The functional activities of spinothalamic and thalamocortical cells show a good agreement with the physiological and psychophysical functions of somatosensory system that are very instructive for covering the gap between physiologically and psychophysically aspects of pain and tactile sensation.

  17. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  18. Stroke Survivors Scoring Zero on the NIH Stroke Scale Score Still Exhibit Significant Motor Impairment and Functional Limitation

    Directory of Open Access Journals (Sweden)

    Brittany Hand

    2014-01-01

    Full Text Available Objective. To determine the National Institutes of Health Stroke Scale’s (NIHSS’s association with upper extremity (UE impairment and functional outcomes. Design. Secondary, retrospective analysis of randomized controlled trial data. Setting. Not applicable. Participants. 146 subjects with stable, chronic stroke-induced hemiparesis. Intervention. The NIHSS, the UE Fugl-Meyer (FM, and the Arm Motor Ability Test (AMAT were administered prior to their participation in a multicenter randomized controlled trial. Main Outcome Measures. The NIHSS, FM, and AMAT. Results. The association between the NIHSS and UE impairment was statistically significant (P=-0.204;p=0.014 but explained less than 4% of the variance among UE FM scores. The association between NIHSS total score and function as measured by the AMAT was not statistically significant (P=-0.141;p=0.089. Subjects scoring a “zero” on the NIHSS exhibited discernible UE motor deficits and varied scores on the UE FM and AMAT. Conclusion. While being used in stroke trials, the NIHSS may have limited ability to discriminate between treatment responses, even when only a relatively narrow array of impairment levels exists among patients. Given these findings, NIHSS use should be restricted to acute stroke studies and clinical settings with the goal of reporting stroke severity.

  19. Stroke Survivors Scoring Zero on the NIH Stroke Scale Score Still Exhibit Significant Motor Impairment and Functional Limitation.

    Science.gov (United States)

    Hand, Brittany; Page, Stephen J; White, Susan

    2014-01-01

    Objective. To determine the National Institutes of Health Stroke Scale's (NIHSS's) association with upper extremity (UE) impairment and functional outcomes. Design. Secondary, retrospective analysis of randomized controlled trial data. Setting. Not applicable. Participants. 146 subjects with stable, chronic stroke-induced hemiparesis. Intervention. The NIHSS, the UE Fugl-Meyer (FM), and the Arm Motor Ability Test (AMAT) were administered prior to their participation in a multicenter randomized controlled trial. Main Outcome Measures. The NIHSS, FM, and AMAT. Results. The association between the NIHSS and UE impairment was statistically significant (P = -0.204; p = 0.014) but explained less than 4% of the variance among UE FM scores. The association between NIHSS total score and function as measured by the AMAT was not statistically significant (P = -0.141; p = 0.089). Subjects scoring a "zero" on the NIHSS exhibited discernible UE motor deficits and varied scores on the UE FM and AMAT. Conclusion. While being used in stroke trials, the NIHSS may have limited ability to discriminate between treatment responses, even when only a relatively narrow array of impairment levels exists among patients. Given these findings, NIHSS use should be restricted to acute stroke studies and clinical settings with the goal of reporting stroke severity.

  20. Functional annotation of chemical libraries across diverse biological processes.

    Science.gov (United States)

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  1. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    Science.gov (United States)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  2. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  3. Diffusion of innovations dynamics, biological growth and catenary function

    Science.gov (United States)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  4. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  5. Functions of MicroRNAs in Cardiovascular Biology and Disease

    Science.gov (United States)

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  6. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    Science.gov (United States)

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 araispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. © The Author 2014. Published by Oxford University Press.

  8. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  9. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  10. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  11. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    Science.gov (United States)

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  12. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  13. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  15. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals.

    Science.gov (United States)

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications.

  16. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2013-04-01

    Full Text Available Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.

  17. Sirtuins in mammals: insights into their biological function

    Science.gov (United States)

    MICHAN, Shaday; SINCLAIR, David

    2009-01-01

    Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1–7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases. PMID:17447894

  18. Biosynthesis and biological functions of terpenoids in plants.

    Science.gov (United States)

    Tholl, Dorothea

    2015-01-01

    Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.

  19. Formation of Autapse Connected to Neuron and Its Biological Function

    Directory of Open Access Journals (Sweden)

    Chunni Wang

    2017-01-01

    Full Text Available Autapse is a specific synapse connected to the neuron via close loop, and its functional adjusting is described by applying time-delayed feedback on the membrane potential of the neuron. This paper discussed the possible formation mechanism and biological function of autapse connection on neurons. We believe that the formation and growth of autapse connected to neuron can be associated with injury on axon and blocking in signal transmission; thus auxiliary loop is developed to form an autapse. When autapse is set up, it can propagate the signals and change the modes of electrical activities under self-adaption. Based on the cable neuron model, the injury on axon is generated by poisoning and blocking in ion channels (of sodium; thus the conductance of ion channels are changed to form injury-associated defects. Furthermore, auxiliary loop with time delay is designed to restore and enhance signal propagation by setting different time delays and feedback gains. The numerical studies confirmed that appropriate time delay and feedback gain in electric or chemical autapse can help signal (or wave generated by external forcing propagation across the blocked area. As a result, formation of autapse could be dependent on the injury of neuron and further enhances the self-adaption to external stimuli.

  20. A Feasibility Study of the IMRT Optimization with Pseudo-Biologic Objective Function

    International Nuclear Information System (INIS)

    Yi, Byong Yong; Cho, Sam Ju; Ahn, Seung Do; Kim, Jong Hoon; Choi, Eun Kyung; Chang, Hye Sook; Kwon, Soo Il

    2001-01-01

    The pseudo-biologic objective function has been designed for the IMRT optimization. The RTP Tool Box (RTB) was used for this study. The pseudo-biologic function is similar to the biological objective function in mathematical shape, but uses physical parameters. The concepts of the TCI (Target Coverage Index) and the OSI (Organ Score Index) have been introduced for the target and the normal organs, respectively. The pseudo-biologic objective function s has been defined using these TCI and OSI's. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. These results revealed the feasibility of the pseudo-biologic function as an IMRT objective function

  1. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements

    International Nuclear Information System (INIS)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-01-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s −1 and a longitudinal stiffening rate as high as 2 N (mm s) −1 . Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm. (paper)

  2. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  3. hCG: Biological Functions and Clinical Applications.

    Science.gov (United States)

    Nwabuobi, Chinedu; Arlier, Sefa; Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-09-22

    Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.

  4. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  5. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.

    Science.gov (United States)

    Sarkar, Debarghya; Tao, Jun; Wang, Wei; Lin, Qingfeng; Yeung, Matthew; Ren, Chenhao; Kapadia, Rehan

    2018-02-27

    Neuromorphic or "brain-like" computation is a leading candidate for efficient, fault-tolerant processing of large-scale data as well as real-time sensing and transduction of complex multivariate systems and networks such as self-driving vehicles or Internet of Things applications. In biology, the synapse serves as an active memory unit in the neural system and is the component responsible for learning and memory. Electronically emulating this element via a compact, scalable technology which can be integrated in a three-dimensional (3-D) architecture is critical for future implementations of neuromorphic processors. However, present day 3-D transistor implementations of synapses are typically based on low-mobility semiconductor channels or technologies that are not scalable. Here, we demonstrate a crystalline indium phosphide (InP)-based artificial synapse for spiking neural networks that exhibits elasticity, short-term plasticity, long-term plasticity, metaplasticity, and spike timing-dependent plasticity, emulating the critical behaviors exhibited by biological synapses. Critically, we show that this crystalline InP device can be directly integrated via back-end processing on a Si wafer using a SiO 2 buffer without the need for a crystalline seed, enabling neuromorphic devices that can be implemented in a scalable and 3-D architecture. Specifically, the device is a crystalline InP channel field-effect transistor that interacts with neuron spikes by modification of the population of filled traps in the MOS structure itself. Unlike other transistor-based implementations, we show that it is possible to mimic these biological functions without the use of external factors (e.g., surface adsorption of gas molecules) and without the need for the high electric fields necessary for traditional flash-based implementations. Finally, when exposed to neuronal spikes with a waveform similar to that observed in the brain, these devices exhibit the ability to learn without the

  6. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    Science.gov (United States)

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  7. Purified Bacillus anthracis Lethal Toxin Complex Formed in Vitro and During Infection Exhibits Functional and Biological Activity

    National Research Council Canada - National Science Library

    Panchal, Rekha G; Halverson, Kelly M; Ribot, Wilson; Lane, Douglas; Kenny, Tara

    2005-01-01

    .... Purified LF complexed with PA63 heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage...

  8. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  9. Few items in the thyroid-related quality of life instrument ThyPRO exhibited differential item functioning

    DEFF Research Database (Denmark)

    Watt, Torquil; Groenvold, Mogens; Hegedüs, Laszlo

    2014-01-01

    To evaluate the extent of differential item functioning (DIF) within the thyroid-specific quality of life patient-reported outcome measure, ThyPRO, according to sex, age, education and thyroid diagnosis.......To evaluate the extent of differential item functioning (DIF) within the thyroid-specific quality of life patient-reported outcome measure, ThyPRO, according to sex, age, education and thyroid diagnosis....

  10. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function.

    Science.gov (United States)

    Therien, J P Daniel; Baenziger, John E

    2017-03-27

    Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.

  11. Membrane Binding of Recoverin: From Mechanistic Understanding to Biological Functionality

    Czech Academy of Sciences Publication Activity Database

    Timr, S.; Pleskot, Roman; Kadlec, J.; Kohagen, M.; Magarkar, A.; Jungwirth, P.

    2017-01-01

    Roč. 3, č. 8 (2017), s. 868-874 ISSN 2374-7943 Institutional support: RVO:61389030 Keywords : recoverin * membrane * myristoyl Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Cell biology Impact factor: 7.481, year: 2016

  12. The EORTC computer-adaptive tests measuring physical functioning and fatigue exhibited high levels of measurement precision and efficiency

    NARCIS (Netherlands)

    Petersen, M.A.; Aaronson, N.K.; Arraras, J.I.; Chie, W.C.; Conroy, T.; Costantini, A.; Giesinger, J.M.; Holzner, B.; King, M.T.; Singer, S.; Velikova, G.; de Leeuw, I.M.; Young, T.; Groenvold, M.

    2013-01-01

    Objectives: The European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group is developing a computer-adaptive test (CAT) version of the EORTC Quality of Life Questionnaire (QLQ-C30). We evaluated the measurement properties of the CAT versions of physical functioning (PF)

  13. The EORTC computer-adaptive tests measuring physical functioning and fatigue exhibited high levels of measurement precision and efficiency

    DEFF Research Database (Denmark)

    Petersen, Morten Aa; Aaronson, Neil K; Arraras, Juan I

    2013-01-01

    The European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group is developing a computer-adaptive test (CAT) version of the EORTC Quality of Life Questionnaire (QLQ-C30). We evaluated the measurement properties of the CAT versions of physical functioning (PF...

  14. The EORTC computer-adaptive tests measuring physical functioning and fatigue exhibited high levels of measurement precision and efficiency

    NARCIS (Netherlands)

    Petersen, M.A.; Aaronson, N.K.; Arraras, J.I.; Chie, W.C.; Conroy, T.; Constantini, A.; Giesinger, J.M.; Holzner, B.; King, M.T.; Singer, S.; Velikova, G.; Verdonck-de Leeuw, I.M.; Young, T.; Groenvold, M.

    2013-01-01

    Objectives The European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Group is developing a computer-adaptive test (CAT) version of the EORTC Quality of Life Questionnaire (QLQ-C30). We evaluated the measurement properties of the CAT versions of physical functioning (PF)

  15. FIVA : Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes

    NARCIS (Netherlands)

    Blom, E.J.; Bosman, D.W.; van Hijum, S.A F T; Breitling, R.; Tijsma, L.; Silvis, R.; Roerdink, J.B.T.M.; Kuipers, O.P.

    2007-01-01

    FIVA (Function Information Viewer and Analyzer) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software assists in functional profiling of large sets of genes and generates a comprehensive overview of affected

  16. Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Maria Simak

    Full Text Available The great amount of gene expression data has brought a big challenge for the discovery of Gene Regulatory Network (GRN. For network reconstruction and the investigation of regulatory relations, it is desirable to ensure directness of links between genes on a map, infer their directionality and explore candidate biological functions from high-throughput transcriptomic data. To address these problems, we introduce a Boolean Function Network (BFN model based on techniques of hidden Markov model (HMM, likelihood ratio test and Boolean logic functions. BFN consists of two consecutive tests to establish links between pairs of genes and check their directness. We evaluate the performance of BFN through the application to S. cerevisiae time course data. BFN produces regulatory relations which show consistency with succession of cell cycle phases. Furthermore, it also improves sensitivity and specificity when compared with alternative methods of genetic network reverse engineering. Moreover, we demonstrate that BFN can provide proper resolution for GO enrichment of gene sets. Finally, the Boolean functions discovered by BFN can provide useful insights for the identification of control mechanisms of regulatory processes, which is the special advantage of the proposed approach. In combination with low computational complexity, BFN can serve as an efficient screening tool to reconstruct genes relations on the whole genome level. In addition, the BFN approach is also feasible to a wide range of time course datasets.

  17. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  18. Magnetite nanostructures functionalized with cytostatic drugs exhibit great anti-tumoral properties without application of high amplitude alternating magnetic fields.

    Science.gov (United States)

    Voicu, Georgeta; Crică, Livia Elena; Fufă, Oana; Moraru, Lavinia Iuliana; Popescu, Roxana Cristina; Purcel, Gabriela; Stoilescu, Miruna Codruta; Grumezescu, Alexandru Mihai; Bleotu, Coralia; Holban, Alina Maria; Andronescu, Ecaterina

    2014-01-01

    Here, we report the synthesis, characterization and the impact of magnetite nanoparticles functionalized with cytostatic drugs, epirubicin (Epi) and fludarabine (Flu) (Fe3O4@Epi, Fe3O4@Flu) prepared by chemical co-precipitation method on tumoral cells in vitro. The average diameter of the resulted particles was about 4 nm for both Fe3O4@Epi and for Fe3O4@Flu. These bioactive nanostructured materials proved to significantly enhance the antitumor effect of tested cytostatic drugs in vitro. The most significant result was obtained in the case of Epi, where the tested magnetite nanostructured material enhanced the cytotoxic effect of this drug with more than 50%.

  19. Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features.

    Science.gov (United States)

    Umemoto, Naoyuki; Kanda, Yuka; Ohnuma, Takayuki; Osawa, Takuo; Numata, Tomoyuki; Sakuda, Shohei; Taira, Toki; Fukamizo, Tamo

    2015-04-01

    A class V (glycoside hydrolase family 18) chitinase from the cycad Cycas revoluta (CrChiA) is a plant chitinase that has been reported to possess efficient transglycosylation (TG) activity. We solved the crystal structure of CrChiA, and compared it with those of class V chitinases from Nicotiana tabacum (NtChiV) and Arabidopsis thaliana (AtChiC), which do not efficiently catalyze the TG reaction. All three chitinases had a similar (α/β)8 barrel fold with an (α + β) insertion domain. In the acceptor binding site (+1, +2 and +3) of CrChiA, the Trp168 side chain was found to stack face-to-face with the +3 sugar. However, this interaction was not found in the identical regions of NtChiV and AtChiC. In the DxDxE motif, which is essential for catalysis, the carboxyl group of the middle Asp (Asp117) was always oriented toward the catalytic acid Glu119 in CrChiA, whereas the corresponding Asp in NtChiV and AtChiC was oriented toward the first Asp. These structural features of CrChiA appear to be responsible for the efficient TG activity. When binding of the inhibitor allosamidin was evaluated using isothermal titration calorimetry, the changes in binding free energy of the three chitinases were found to be similar to each other, i.e. between -9.5 and -9.8 kcal mol(-1) . However, solvation and conformational entropy changes in CrChiA were markedly different from those in NtChiV and AtChiC, but similar to those of chitinase A from Serratia marcescens (SmChiA), which also exhibits significant TG activity. These results provide insight into the molecular mechanism underlying the TG reaction and the molecular evolution from bacterial chitinases to plant class V chitinases. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  20. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  1. Taming Membranes : Functional Immobilization of Biological Membranes in Hydrogels

    NARCIS (Netherlands)

    Kusters, Ilja; Mukherjee, Nobina; de Jong, Menno R.; Tans, Sander; Kocer, Armagan; Driessen, Arnold J. M.

    2011-01-01

    Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally

  2. Cell biology and functional dynamics of the mammalian sperm surface

    NARCIS (Netherlands)

    Gadella, B.M.|info:eu-repo/dai/nl/115389873; Luna, C.

    2014-01-01

    Theriogenology has now a 40-year rich history on covering sperm biological aspects with a special emphasis on farm and husbandry animals. The major and most influential of these contributions will be placed into an evolutionary perspective of ongoing and intriguing progresses made in this field.

  3. Th17 Cells Exhibit Antitumor Effects in MDS Possibly through Augmenting Functions of CD8+ T Cells.

    Science.gov (United States)

    Li, Jing; Yue, Lanzhu; Wang, Huaquan; Liu, Chunyan; Liu, Hui; Tao, Jinglian; Qi, Weiwei; Wang, Yihao; Zhang, Wei; Fu, Rong; Shao, Zonghong

    2016-01-01

    Th17 cells are a newly found subset of distinct CD4+ Th effector cells' family and are found to play an important role in cancers. Myelodysplastic syndromes (MDS) are a common malignant hematological disease. Here, we showed that both the percentage and the function of Th17 cells were elevated in low-risk MDS while being decreased in high-risk MDS. Levels of upstream molecules of Th17 cells, IL-6 and IL-23, were higher in low-risk MDS but lower in high-risk MDS patients. The abnormal percentage of Th17 cells was closely related to clinical parameters including karyotype, morphologic blast percentage of bone marrow, peripheral absolute neutrophil count, and hemoglobin concentration. Furthermore, expression rates of perforin and granzyme B in BM CD3+CD8+ cells (cytotoxic T lymphocyte, CTL) positively correlated with levels of IL-17 but negatively correlated with BM blast percentage and could be significantly increased after stimulation with human recombinant IL-17 (rhIL-17). Our results suggested that Th17 cells might play an antitumor effect in the pathogenesis of MDS through IL-17/CTL pathway.

  4. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  5. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  6. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.

    Science.gov (United States)

    Dong, Hua; Cao, Xiaodong; Li, Chang Ming

    2009-07-01

    In this paper, we report the synthesis of a carboxyl-functionalized polypyrrole derivative, a poly(pyrrole-N-propanoic acid) (PPPA) film, by electrochemical polymerization, and the investigation of its basic properties via traditional characterization techniques such as confocal-Raman, FTIR, SEM, AFM, UV-vis, fluorescence microscopy, and contact-angle measurements. The experimental data show that the as-prepared PPPA film exhibits a hydrophilic nanoporous structure, abundant -COOH functional groups in the polymer backbone, and high fluorescent emission under laser excitation. On the basis of these unique properties, further experiments were conducted to demonstrate three potential applications of the PPPA film in chemical and biological sensors: a permeable and permselective membrane, a membrane with specific recognition sites for biomolecule immobilization, and a fluorescent conjugated polymer for amplification of fluorescence quenching. Specifically, the permeability and permselectivity of ion species through the PPPA film are detected by means of rotating-disk-electrode voltammetry; the specific recognition sites on the film surface are confirmed with protein immobilization, and the amplification of fluorescence quenching is measured by the addition of a quenching agent with fluorescence microscopy. The results are in good agreement with our expectations.

  7. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    OpenAIRE

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-01-01

    Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been report...

  8. An overview of the applicability of functional diversity in Biological Conservation

    OpenAIRE

    Freitas, J. R.; Mantovani, W.

    2017-01-01

    Abstract Functional diversity is increasingly pointed as a useful approach to reach Biological Conservation goals. Here, we provide an overview of the functional diversity approach status in the Biological Conservation field. We sought for peer-reviewed papers published over a period of twenty years (from 1994 to 2014). First we used the general topic “functional diversity” and then refined our search using the key-word “conservation”. We have identified the conservation strategies addressed,...

  9. Different vitamin D receptor agonists exhibit differential effects on endothelial function and aortic gene expression in 5/6 nephrectomized rats.

    Science.gov (United States)

    Wu-Wong, J Ruth; Li, Xinmin; Chen, Yung-Wu

    2015-04-01

    Endothelial dysfunction, common in chronic kidney disease (CKD), significantly increases cardiovascular disease risk in CKD patients. This study investigates whether different vitamin D receptor agonists exhibit different effects on endothelial function and on aortic gene expression in an animal CKD model. The 5/6 nephrectomized (NX) rat was treated with or without alfacalcidol (0.02, 0.04 and 0.08μg/kg), paricalcitol (0.04 and 0.08μg/kg), or VS-105 (0.004, 0.01 and 0.16μg/kg). All three compounds at the test doses suppressed serum parathyroid hormone effectively. Alfacalcidol at 0.08μg/kg raised serum calcium significantly. Endothelial function was assessed by pre-contracting thoracic aortic rings with phenylephrine, followed by treatment with acetylcholine or sodium nitroprusside. Uremia significantly affected endothelial-dependent aortic relaxation, which was improved by all three compounds in a dose-dependent manner with alfacalcidol and paricalcitol exhibiting a lesser effect. DNA microarray analysis of aorta samples revealed that uremia impacted the expression of numerous aortic genes, many of which were normalized by the vitamin D analogs. Real-time RT-PCR analysis confirmed that selected genes such as Abra, Apoa4, Fabp2, Hsd17b2, and Hspa1b affected by uremia were normalized by the vitamin D analogs with alfacalcidol exhibiting less of an effect. These results demonstrate that different vitamin D analogs exhibit different effects on endothelial function and aortic gene expression in 5/6 NX rats. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  11. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  12. The lectins: properties, functions, and applications in biology and medicine

    National Research Council Canada - National Science Library

    Liener, Irvin E; Sharon, Nathan; Goldstein, Irwin J

    1986-01-01

    ... (Editors). The Enzymology of Post-Translational Modification of Proteins, Volume 1, 1980. Volume 2, 1985 W A I YIU CHEUNG (Editor). Calcium and Cell Function, Volume I: Calmodulin, 1980. Volume II, ...

  13. The Lectins: properties, functions, and applications in biology and medicine

    National Research Council Canada - National Science Library

    Liener, Irvin E; Sharon, Nathan; Goldstein, Irwin J; Goldstein, Irwin Joseph

    1986-01-01

    ... (Editors). The Enzymology of Post-Translational Modification of Proteins, Volume 1, 1980. Volume 2, 1985 W A I YIU CHEUNG (Editor). Calcium and Cell Function, Volume I: Calmodulin, 1980. Volume II, ...

  14. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  15. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  16. Biological markers for kidney injury and renal function in the intensive care unit

    NARCIS (Netherlands)

    Royakkers, A.A.N.M.

    2014-01-01

    The purpose of the investigations described in this thesis was to seek for answers to two relevant questions in ICUs in resource-rich settings, i.e., can new biological markers play a role in early recognition of AKI, and can new biological markers predict recovery of renal function in patients who

  17. Functional response of Xylocoris falvipes , a biological control agent ...

    African Journals Online (AJOL)

    The warehouse pirate bug Xylocoris falvipes is an opportunist predator of many stored product insect pests. Its functional response in relationship with variable densities of prey appears as the Holling\\'s type II model. The predator X. falvipes, collected within small holder granaries in Mayo Danay division in the far North ...

  18. Measuring the functional redundancy of biological communities: a quantitative guide

    Czech Academy of Sciences Publication Activity Database

    Ricotta, C.; de Bello, Francesco; Moretti, M.; Caccianiga, M.; Cerabolini, B. E. L.; Pavoine, S.

    2016-01-01

    Roč. 7, č. 11 (2016), s. 1386-1395 ISSN 2041-210X Institutional support: RVO:67985939 Keywords : absolute vs. relative measures * community structure * functional uniqueness Subject RIV: EH - Ecology, Behaviour Impact factor: 5.708, year: 2016

  19. Population biology of Streptococcus pneumoniae in West Africa: multilocus sequence typing of serotypes that exhibit different predisposition to invasive disease and carriage.

    Directory of Open Access Journals (Sweden)

    Eric S Donkor

    Full Text Available Little is known about the population biology of Streptococcus pneumoniae in developing countries, although the majority of pneumococcal infections occur in this setting. The aim of the study was to apply MLST to investigate the population biology of S. pneumoniae in West Africa.Seventy three invasive and carriage S. pneumoniae isolates from three West African countries including The Gambia, Nigeria and Ghana were investigated. The isolates covered seven serotypes (1, 3, 5, 6A, 11, 14, 23F and were subjected to multilocus sequence typing and antibiotic susceptibility testing.Overall, 50 different sequence types (STs were identified, of which 38% (29 were novel. The most common ST was a novel clone-ST 4012 (6.5%, and some clones including STs 913, 925, 1737, 2160 and 3310 appeared to be specific to the study region. Two STs including ST 63 and ST 4012 were associated with multiple serotypes indicating a history of serotype switching. ST 63 was associated with serotypes 3 and 23F, while ST 4012 was associated with serotypes 6A and 23. eBURST analyses using the stringent 6/7 identical loci definition grouped the 50 STs into 5 clonal complexes and 65 singletons, expressing a high level of genetic diversity among the isolates. Compared to the other serotypes, serotypes 1 and 5 isolates appeared to be more clonal. Internationally recognized antibiotic resistant clones of S. pneumoniae were generally absent in the population investigated and the only multidrug resistant isolate identified (1/66 belong to the Pneumocococcal Epidemiology Network clone ST 63.The pneumococcal population in West Africa is quite divergent, and serotypes that are common in invasive disease (such as serotypes 1 and 5 are more likely to be clonal than serotypes that are common in carriage.

  20. Population biology of Streptococcus pneumoniae in West Africa: multilocus sequence typing of serotypes that exhibit different predisposition to invasive disease and carriage.

    Science.gov (United States)

    Donkor, Eric S; Adegbola, Richard A; Wren, Brendan W; Antonio, Martin

    2013-01-01

    Little is known about the population biology of Streptococcus pneumoniae in developing countries, although the majority of pneumococcal infections occur in this setting. The aim of the study was to apply MLST to investigate the population biology of S. pneumoniae in West Africa. Seventy three invasive and carriage S. pneumoniae isolates from three West African countries including The Gambia, Nigeria and Ghana were investigated. The isolates covered seven serotypes (1, 3, 5, 6A, 11, 14, 23F) and were subjected to multilocus sequence typing and antibiotic susceptibility testing. Overall, 50 different sequence types (STs) were identified, of which 38% (29) were novel. The most common ST was a novel clone-ST 4012 (6.5%), and some clones including STs 913, 925, 1737, 2160 and 3310 appeared to be specific to the study region. Two STs including ST 63 and ST 4012 were associated with multiple serotypes indicating a history of serotype switching. ST 63 was associated with serotypes 3 and 23F, while ST 4012 was associated with serotypes 6A and 23. eBURST analyses using the stringent 6/7 identical loci definition grouped the 50 STs into 5 clonal complexes and 65 singletons, expressing a high level of genetic diversity among the isolates. Compared to the other serotypes, serotypes 1 and 5 isolates appeared to be more clonal. Internationally recognized antibiotic resistant clones of S. pneumoniae were generally absent in the population investigated and the only multidrug resistant isolate identified (1/66) belong to the Pneumocococcal Epidemiology Network clone ST 63. The pneumococcal population in West Africa is quite divergent, and serotypes that are common in invasive disease (such as serotypes 1 and 5) are more likely to be clonal than serotypes that are common in carriage.

  1. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70 Function

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    2017-07-01

    Full Text Available Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70 function. Heat shock protein 70 (Hsp70 are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  2. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    Science.gov (United States)

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  3. Biological Rhythms Workshop IB: neurophysiology of SCN pacemaker function.

    Science.gov (United States)

    Kuhlman, S J

    2007-01-01

    Pacemakers are functional units capable of generating oscillations that synchronize downstream rhythms. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is a circadian pacemaker composed of individual neurons that intrinsically express a near 24-hour rhythm in gene expression. Rhythmic gene expression is tightly coupled to a rhythm in spontaneous firing rate via intrinsic daily regulation of potassium current. Recent progress in the field indicates that SCN pacemaking is a specialized property that emerges from intrinsic features of single cells, structural connectivity among cells, and activity dynamics within the SCN. The focus of this chapter is on how Nature built a functional pacemaker from many individual oscillators that is capable of coordinating the daily timing of essential brain and physiological processes.

  4. Functional nanostructured platforms for chemical and biological sensing

    Science.gov (United States)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  5. Biological factors of natural and artificial ecosystems stable (unstable) functioning

    Science.gov (United States)

    Pechurkin, Nikolai S.

    The problem of sustainable development of humanity on Earth and the problem of supporting human life in space have the same scientific and methodological bases. The key to solve both problems is a long term maintenance of balanced material cycle. As a whole, natural or artificial ecosystems are to be more closed than open, but their elements (links of systems) are to be substantially open in interactions with each other. Prolonged stable interactions of different links have to have unique joint results - closed material cycling or biotic turnover. It is necessary to include, at least, three types of main links into any system to support real material cycling: producers, consumers, reducers. Producer links are now under studies in many laboratories. It is evident that the higher productivity of link, the lower link stability. Especially, it concerns with parasite impact to plants. As usual, artificial ecosystems are more simple (incomplete) than natural ecosystems, sometimes, they have not enough links for prolonged stable functioning. For example, life support system for space flight can be incomplete in consumer link, having only some crew persons, instead of interacting populations of consumers. As for reducer link, it is necessary to "organize" a special coordinated work of microbial biocenoses to fulfill proper cycling. Possible evolution of links, their self development is a matter of special attention for the maintenance of prolonged stable functioning. It's the most danger for systems with populations of quickly reproducing, so-called, R - strategists, according to symbols of logistic equation. From another side, quick reproduction of R - strategists is able to increase artificial ecosystems and their links functioning. After some damages of system, R - strategist's link can be quickly "self repaired" up to level of normal functioning. Some experimental data of this kind and mathematical models are to be discussed in the paper. This work is supported by

  6. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss.

  7. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-01

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  8. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  9. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  10. Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments

    DEFF Research Database (Denmark)

    Madadi, Hossein; Parizi, Emad Mohajeri; Allahyari, Hossein

    2011-01-01

    and a three-dimensional set-up with whole plants. In addition, the functional responses in two-dimensional set-ups towards cotton aphids and the pea aphids were compared. H. variegata exhibited a functional type II response to both cotton aphids and pea aphids irrespective of life stage and spatial scale...

  11. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  12. Biological Functions of the Secretome of Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Jan Tommassen

    2017-06-01

    Full Text Available Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.

  13. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  14. The 3-hydroxyacyl-CoA dehydratases HACD1 and HACD2 exhibit functional redundancy and are active in a wide range of fatty acid elongation pathways.

    Science.gov (United States)

    Sawai, Megumi; Uchida, Yukiko; Ohno, Yusuke; Miyamoto, Masatoshi; Nishioka, Chieko; Itohara, Shigeyoshi; Sassa, Takayuki; Kihara, Akio

    2017-09-15

    Differences among fatty acids (FAs) in chain length and number of double bonds create lipid diversity. FA elongation proceeds via a four-step reaction cycle, in which the 3-hydroxyacyl-CoA dehydratases (HACDs) HACD1-4 catalyze the third step. However, the contribution of each HACD to 3-hydroxyacyl-CoA dehydratase activity in certain tissues or in different FA elongation pathways remains unclear. HACD1 is specifically expressed in muscles and is a myopathy-causative gene. Here, we generated Hacd1 KO mice and observed that these mice had reduced body and skeletal muscle weights. In skeletal muscle, HACD1 mRNA expression was by far the highest among the HACDs However, we observed only an ∼40% reduction in HACD activity and no changes in membrane lipid composition in Hacd1 -KO skeletal muscle, suggesting that some HACD activities are redundant. Moreover, when expressed in yeast, both HACD1 and HACD2 participated in saturated and monounsaturated FA elongation pathways. Disruption of HACD2 in the haploid human cell line HAP1 significantly reduced FA elongation activities toward both saturated and unsaturated FAs, and HACD1 HACD2 double disruption resulted in a further reduction. Overexpressed HACD3 exhibited weak activity in saturated and monounsaturated FA elongation pathways, and no activity was detected for HACD4. We therefore conclude that HACD1 and HACD2 exhibit redundant activities in a wide range of FA elongation pathways, including those for saturated to polyunsaturated FAs, with HACD2 being the major 3-hydroxyacyl-CoA dehydratase. Our findings are important for furthering the understanding of the molecular mechanisms in FA elongation and diversity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent.

    Science.gov (United States)

    Grimes, Kelly M; Barefield, David Y; Kumar, Mohit; McNamara, James W; Weintraub, Susan T; de Tombe, Pieter P; Sadayappan, Sakthivel; Buffenstein, Rochelle

    2017-12-01

    The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.

  16. The Grass Might Be Greener: Medical Marijuana Patients Exhibit Altered Brain Activity and Improved Executive Function after 3 Months of Treatment

    Directory of Open Access Journals (Sweden)

    Staci A. Gruber

    2018-01-01

    Full Text Available The vast majority of states have enacted full or partial medical marijuana (MMJ programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT while undergoing functional magnetic resonance imaging (fMRI. We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it

  17. The reflection of life functional entailment and imminence in relational biology

    CERN Document Server

    Louie, A H

    2013-01-01

    A. H. Louie’s The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was ‘What is life?’; the theme of this sequel is “How do two life forms interact?” Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates ‘function dictates structure”, rather than ‘structure implies function’. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolis...

  18. [Comparison of biological functional assessment in intensity-modulated radiotherapy: two-dimensional study].

    Science.gov (United States)

    Dejean, C; Lemosquet, A; Lefkopoulos, D; Touboul, E

    2001-12-01

    Modulated intensity dose distributions are obtained by inverse planning. It requires an inversion algorithm and an objective function that can be physical or biological. The biological objective functions aim at quantifying the probability of the favourable end of the treatment. The inversion algorithm used is analytical and is based on the mathematical analysis of the singular values decomposition. It proposes as many solutions as there are elementary beams. From the Tumour Control Probability, Normal Tissue Complication Probabilities and complication free tumour control, three biological assessment functions of the proposed solutions are compared with the least square difference between the prescribed and obtained dose distributions. We used a simplified irradiation configuration: Brahme's dose prescription (2D modelling of a prostate) and 9 beams (1D). The choice by mean of biological criterion of the optimal solution makes it possible to increase the average dose in the tumour, so as its homogeneity compared to physical optimisation. Conversely, the organs at risk are then less protected. The laying down of relevant constraints makes it possible to obtain satisfactory dose distributions. Concerning the validity of the models and data used, some limitations appear. At present time, it seems to exclude the use in clinical routine of an only biological optimisation. The future availability of new biological data will allow the development and in particular the clinical use of biological optimisation.

  19. Sharing Structure and Function in Biological Design with SBOL 2.0.

    Science.gov (United States)

    Roehner, Nicholas; Beal, Jacob; Clancy, Kevin; Bartley, Bryan; Misirli, Goksel; Grünberg, Raik; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Densmore, Douglas; Gennari, John H; Wipat, Anil; Sauro, Herbert M; Myers, Chris J

    2016-06-17

    The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate.

  20. Evolutionary cell biology: functional insight from “endless forms most beautiful”

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G.; Dacks, Joel B.

    2015-01-01

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  1. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    Science.gov (United States)

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  2. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review.

    Science.gov (United States)

    Singh, Arashdeep; Sharma, Savita

    2017-09-22

    Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.

  3. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  4. An overview of the applicability of functional diversity in Biological Conservation.

    Science.gov (United States)

    Freitas, J R; Mantovani, W

    2017-10-23

    Functional diversity is increasingly pointed as a useful approach to reach Biological Conservation goals. Here, we provide an overview of the functional diversity approach status in the Biological Conservation field. We sought for peer-reviewed papers published over a period of twenty years (from 1994 to 2014). First we used the general topic "functional diversity" and then refined our search using the key-word "conservation". We have identified the conservation strategies addressed, the organism studied, and the continent of study site in each paper. Thirteen classes of conservation strategies were identified. Plants were the most commonly studied organism group and most study-sites were located in Europe. The functional diversity approach was introduced in the Biological Conservation field in the early 2000's and its inclusion in conservation strategies is broadly advised. However, the number of papers that operationalise such inclusion by developing models and systems is still low. Functional diversity responds differently and eventually better than other measures to changes in land use and management, which suggests that this approach can potentially better predict the impacts. More studies are needed to corroborate this hypothesis. We pointed out knowledge gaps regarding identification of the responses for functional diversity about urban impacts and in research on the level of management intensity of land needed to maintain functional diversity. We recommend the use of functional diversity measures to find ecological indicators. Future studies should focus on the development of functional diversity measures of other taxa beyond plants as well as test hypothesis in tropical ecosystems.

  5. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  6. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  7. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  8. Designing an exhibition

    DEFF Research Database (Denmark)

    Ingemann, Bruno

    2010-01-01

    is enveloped by the design process but also by the end product, which is an artefact. Design is much more than a given form that serves the function of an object. I will provide an illustrative case example focuses on the processes of developing the visual and symbolic design of a small poster exhibition...... by following the design-thinking processes in detail. The fundamental concept is an introverted analysis completed by giving one person two roles, that of designer and researcher. The result is a dialogue concerning the processual experience as a reflection-in-action. The contribution to a general core...

  9. Functional T lymphocyte immune deficiency in a population of homosexual men who do not exhibit symptoms of acquired immune deficiency syndrome.

    Science.gov (United States)

    Shearer, G M; Payne, S M; Joseph, L J; Biddison, W E

    1984-08-01

    To determine whether healthy homosexual men are immunologically impaired, peripheral blood leukocytes (PBL) from 20 male homosexuals were compared prospectively with PBL from 14 age-matched male heterosexual donors with respect to: (a) the capacity of their PBL to generate functional T cell immune responses in vitro; and (b) the content of total T cells and T cell subsets in their peripheral blood. The homosexual donors studied indicated moderate sexual life styles in that all but one of the donors had less than five current sexual partners. The percentages of OKT3+, OKT4+, and OKT8+ T cells were similar to those of heterosexual controls. T cell function was assessed by measuring cytotoxic T cell responses to influenza virus and to allogeneic cells. Approximately one-third of the homosexual donors consistently exhibited weak cytotoxic T lymphocyte (CTL) responses to influenza virus, whereas all of the heterosexual donors generated strong CTL responses to influenza. There was no correlation between the strength of CTL responsiveness to influenza virus and the strength of CTL responses to allogeneic cells. These results suggest that the influenza-specific CTL response may be a sensitive indicator of immunologic defects in asymptomatic homosexuals. If acquired immune deficiency syndrome results from an infectious agent, it remains to be seen if such immunosuppression predisposes to the infection, or if it reflects early consequences of infection.

  10. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus.

    Science.gov (United States)

    Chen, Xue; Truksa, Martin; Snyder, Crystal L; El-Mezawy, Aliaa; Shah, Saleh; Weselake, Randall J

    2011-02-01

    Brassica napus is an allotetraploid (AACC) formed from the fusion of two diploid progenitors, Brassica rapa (AA) and Brassica oleracea (CC). Polyploidy and genome-wide rearrangement during the evolution process have resulted in genes that are present as multiple homologs in the B. napus genome. In this study, three B. napus homologous genes encoding endoplasmic reticulum-bound sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) were identified and characterized. Although the three GPAT4 homologs share a high sequence similarity, they exhibit different expression patterns and altered epigenetic features. Heterologous expression in yeast further revealed that the three BnGPAT4 homologs encoded functional GPAT enzymes but with different levels of polypeptide accumulation. Complementation of the Arabidopsis (Arabidopsis thaliana) gpat4 gpat8 double mutant line with individual BnGPAT4 homologs suggested their physiological roles in cuticle formation. Analysis of gpat4 RNA interference lines of B. napus revealed that the BnGPAT4 deficiency resulted in reduced cutin content and altered stomatal structures in leaves. Our results revealed that the BnGPAT4 homologs have evolved into functionally divergent forms and play important roles in cutin synthesis and stomatal development.

  11. Parallel Exhibits: Combining Physical and Virtual Exhibits

    NARCIS (Netherlands)

    Lischke, L.; Dingler, T.; Schneegaß, S.; Schmidt, A.; van der Vaart, M.; Wozniak, P.; Gottlieb, H.; Szeląg, M.

    2014-01-01

    People have a special fascination for original physical objects, their texture, and visible history. However, the digitization of exhibits and the use of these data is a current challenge for museums. We believe that museums need to capitalize on the affordances of physical exhibits to help users

  12. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2012-12-01

    Full Text Available Abstract Background β-amyloid (Aβ accumulation is described as a hallmark of Alzheimer’s disease (AD. Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs, which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE, a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

  13. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  14. Myocardial function and effects of biologic therapy in patients with severe psoriasis

    DEFF Research Database (Denmark)

    Ahlehoff, O.; Hansen, P. R.; Gislason, G. H.

    2016-01-01

    function in patients with severe psoriasis who initiated biologic therapy. Methods Between November 1 2013 and May 31 2014 the study subjects underwent physical, laboratory and comprehensive echocardiographic examination at baseline and after 3 months of treatment. Pearson correlation coefficients...... and Student's t-test were applied to assess changes in diastolic function (defined as the E/e' ratio) and global longitudinal strain (GLS). Results Eighteen patients with severe psoriasis treated with biologic therapy with a mean follow-up of 85.6 ± 18.2 days were included. The patients had a baseline.......74). Likewise, no changes were seen in total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, estimated glomerular filtration rate and glycosylated haemoglobin. Conclusion In patients with severe psoriasis treatment with biologic therapy was associated with improved PASI...

  15. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology.

    Science.gov (United States)

    Panagiotopoulou, O

    2009-01-01

    A fundamental research question for morphologists is how morphological variation in the skeleton relates to function. Traditional approaches have advanced our understanding of form-function relationships considerably but have limitations. Strain gauges can only record strains on a surface, and the geometry of the structure can limit where they can be bonded. Theoretical approaches, such as geometric abstractions, work well on problems with simple geometries and material properties but biological structures typically have neither of these. Finite element analysis (FEA) is a method that overcomes these problems by reducing a complex geometry into a finite number of elements with simple geometries. In addition, FEA allows strain to be modelled across the entire surface of the structure and throughout the internal structure. With advances in the processing power of computers, FEA has become more accessible and as such is becoming an increasingly popular tool to address questions about form-function relationships in development and evolution, as well as human biology generally. This paper provides an introduction to FEA including a review of the sequence of steps needed for the generation of biologically accurate finite element models that can be used for the testing of biological and functional morphology hypotheses.

  16. Biological interpretation of genome-wide association studies using predicted gene functions

    NARCIS (Netherlands)

    Pers, Tune H.; Karjalainen, Juha M.; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R.; Yang, Jian; Lui, Julian C.; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K.; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S. N.; Hirschhorn, Joel N.; Franke, Lude; Chu, Audrey Y.; Estrada, Karol; Luan, Jian'an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L.; Croteau-Chonka, Damien C.; Day, Felix R.; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U.; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E.; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C.; Scherag, André; Vinkhuyzen, Anna A. E.; Winkler, Thomas W.; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B.; Feenstra, Bjarke; Feitosa, Mary F.; Fischer, Krista; Fraser, Ross M.; Goel, Anuj; Gong, Jian; Justice, E.; Kanoni, Stavroula; Kleber, Marcus E.; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Nalls, Michael A.; Nyholt, Dale R.; Palmer, Cameron D.; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S.; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Ärnlöv, Johan; Arscott, Gillian M.; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L.; Böttcher, Yvonne; Boyd, Heather A.; Bruinenberg, Marcel; Buckley, Brendan M.; Buyske, Steven; Caspersen, Ida H.; Chines, Peter S.; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E. Warwick; de Jong, A.; Deelen, Joris; Delgado, Graciela; Denny, Josh C.; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex S. F.; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E.; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S.; Grallert, Harald; Grammer, Tanja B.; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C. P. G. M.; Groves, Christopher J.; Haessler, Jeffrey; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L.; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K.; Hillege, Hans L.; Hlatky, Mark A.; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J.; Illig, Thomas; Isaacs, Aaron; James, Alan L.; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N.; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik K. E.; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L.; McKenzie, Colin A.; McLachlan, Stela; McLaren, Paul J.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L.; Morken, Mario A.; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W.; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Nöthen, Markus M.; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W.; Renstrom, Frida; Robertson, Neil R.; Rose, Lynda M.; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R.; Schunkert, Heribert; Scott, Robert A.; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H.; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V.; Stirrups, Kathleen; Stott, David J.; Stringham, Heather M.; Sundström, Johan; Swertz, Morris A.; Syvänen, Ann-Christine; Tayo, Bamidele O.; Thorleifsson, Gudmar; Tyrer, Jonathan P.; van Dijk, Suzanne; van Schoor, Natasja M.; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor V. A.; Vermeulen, Sita H.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R.; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Wright, Alan F.; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, I.; Bornstein, Stefan R.; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J.; Campbell, Harry; Caulfield, Mark J.; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S.; Crawford, Dana C.; Cupples, L. Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M.; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G.; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G.; Forrester, Terrence; Gansevoort, Ron T.; Gejman, Pablo V.; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W.; Hall, Alistair S.; Harris, Tamara B.; Hattersley, Andrew T.; Heath, Andrew C.; Hengstenberg, Christian; Hicks, Andrew A.; Hindorff, Lucia A.; Hingorani, Aroon D.; Hofman, Albert; Hovingh, G. Kees; Humphries, Steve E.; Hunt, Steven C.; Hypponen, Elina; Jacobs, Kevin B.; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M.; Kaprio, Jaakko; Kastelein, John J. P.; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kooner, Jaspal S.; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela A. F.; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C.; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L.; Montgomery, Grant W.; Morris, Andrew D.; Morris, Andrew P.; Murray, Jeffrey C.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Ouwehand, Willem H.; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P.; Price, Jackie F.; Qi, Lu; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schwarz, Peter E. H.; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R.; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P.; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W.; Assimes, Themistocles L.; Bochud, Murielle; Boehm, Bernhard O.; Boerwinkle, Eric; Bottinger, Erwin P.; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C.; Chanock, Stephen J.; Cooper, Richard S.; de Bakker, Paul I. W.; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Groop, Leif C.; Haiman, Christopher A.; Hamsten, Anders; Hayes, M. Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J. Wouter; Kaplan, Robert C.; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G.; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B.; Njølstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E.; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M.; Rivadeneira, Fernando; Rotter, Jerome I.; Saaristo, Timo E.; Saleheen, Danish; Schlessinger, David; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Zanen, Pieter; Deloukas, Panos; Heid, Iris M.; Lindgren, Cecilia M.; Mohlke, Karen L.; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S.; North, Kari E.; Strachan, David P.; Beckmann, Jacques S.; Berndt, Sonja I.; Borecki, Ingrid B.; McCarthy, Mark I.; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G.; van Duijn, Cornelia M.; Willer, Cristen J.; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth J. F.; Weedon, Michael N.; Ingelsson, Erik; O'Connell, Jeffrey R.; Abecasis, Goncalo R.; Chasman, Daniel I.; Goddard, Michael E.; Visscher, Peter M.; Frayling, Timothy M.

    2015-01-01

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated

  17. Application and Optimization of Biolog EcoPlates in Functional Diversity Studies of Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Xu Wenhuan

    2015-01-01

    Full Text Available The biological diversity contributes to many aspects of human well-being and ecosystem function, however, we have known very little about microbial diversity due to the limitations of appropriate methodology underneath it. The development of biotech have brought revolutionary progress in the study of microbial diversity in which Biolog required to pay a lot of attention due to its ability of reflecting the metabolic situation of living microbial communities and have used widely in the study of soil microbial communities. However, there are some controversies during its operation procedure and incubation process, handling large data during the analysis might have also caused trouble in the overall process. The approach based on uses of “absolute used”, “INDIRECT” function in Excel could greatly optimize the data analysis, and the increase of principle components in Principle Component Analysis (PCA were able to extract more information from original data. Besides, the method that through “Taylor” and “logic” transformation for original data before PCA analysis could achieve data analysis optimization. This paper have presented the applications and optimization of Biolog EcoPlates in studies of functional diversity of microbial communities, presented its inherent biases and prospects, provided some reference for the applications and popularization of Biolog EcoPlates for microbial study and finally, the results imply improving the knowledge of biotech in study of soil microbial functional diversity.

  18. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases

    DEFF Research Database (Denmark)

    Berrin, Jean-Guy; Rosso, Marie-Noëlle; Abou Hachem, Maher

    2017-01-01

    to starch, the main carbon storage reservoir. In this review, we focus on the identification of lytic polysaccharide monooxygenases (LPMOs) and their redox partners in fungal secretomes to highlight the biological functions of these remarkable enzyme systems and we discuss future trends related to LPMO...

  19. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement

    on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  20. MicroRNA functional network in pancreatic cancer: From biology to ...

    Indian Academy of Sciences (India)

    malignancy. [Wang J and Sen S 2011 MicroRNA functional network in pancreatic cancer: From biology to biomarkers of disease. J. Biosci. 36 481–491] ... aid in improving clinical management and therapeutic outcome for the patients. ..... 133a is a characteristic of pancreatic tissue and that a total of. 26 miRs are aberrantly ...

  1. The Middle Miocene ape Pierolapithecus catalaunicus exhibits extant great ape-like morphometric affinities on its patella: inferences on knee function and evolution.

    Science.gov (United States)

    Pina, Marta; Almécija, Sergio; Alba, David M; O'Neill, Matthew C; Moyà-Solà, Salvador

    2014-01-01

    The mosaic nature of the Miocene ape postcranium hinders the reconstruction of the positional behavior and locomotion of these taxa based on isolated elements only. The fossil great ape Pierolapithecus catalaunicus (IPS 21350 skeleton; 11.9 Ma) exhibits a relatively wide and shallow thorax with moderate hand length and phalangeal curvature, dorsally-oriented metacarpophalangeal joints, and loss of ulnocarpal articulation. This evidence reveals enhanced orthograde postures without modern ape-like below-branch suspensory adaptations. Therefore, it has been proposed that natural selection enhanced vertical climbing (and not suspension per se) in Pierolapithecus catalaunicus. Although limb long bones are not available for this species, its patella (IPS 21350.37) can potentially provide insights into its knee function and thus on the complexity of its total morphological pattern. Here we provide a detailed description and morphometric analyses of IPS 21350.37, which are based on four external dimensions intended to capture the overall patellar shape. Our results reveal that the patella of Pierolapithecus is similar to that of extant great apes: proximodistally short, mediolaterally broad and anteroposteriorly thin. Previous biomechanical studies of the anthropoid knee based on the same measurements proposed that the modern great ape patella reflects a mobile knee joint while the long, narrow and thick patella of platyrrhine and especially cercopithecoid monkeys would increase the quadriceps moment arm in knee extension during walking, galloping, climbing and leaping. The patella of Pierolapithecus differs not only from that of monkeys and hylobatids, but also from that of basal hominoids (e.g., Proconsul and Nacholapithecus), which display slightly thinner patellae than extant great apes (the previously-inferred plesiomorphic hominoid condition). If patellar shape in Pierolapithecus is related to modern great ape-like knee function, our results suggest that increased

  2. Two functional reticulocyte binding-like (RBL) invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes.

    Science.gov (United States)

    Semenya, Amma A; Tran, Tuan M; Meyer, Esmeralda Vs; Barnwell, John W; Galinski, Mary R

    2012-07-06

    Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL) proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb). Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II) exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into human cells.

  3. Two functional reticulocyte binding-like (RBL invasion ligands of zoonotic Plasmodium knowlesi exhibit differential adhesion to monkey and human erythrocytes

    Directory of Open Access Journals (Sweden)

    Semenya Amma A

    2012-07-01

    Full Text Available Abstract Background Plasmodium knowlesi is a monkey malaria species that is becoming a serious public health concern infecting hundreds and perhaps thousands of humans in Southeast Asia. Invasion of erythrocytes by merozoites entails a cascade of molecular interactions. One step involves the adhesion of Plasmodium reticulocyte binding-like (RBL proteins. Plasmodium knowlesi merozoites express only two RBL invasion ligands, known as Normocyte Binding Proteins (PkNBPXa and PkNBPXb. Methods Overlapping N-terminal regions of PkNBPXa and PkNBPXb were expressed in COS7 cells and tested for surface expression and adhesion to rhesus monkey erythrocytes. Subsequent tests to study specific receptor ligand interactions included adhesion to a panel of human and non-human primate erythrocytes, enzymatic treatment, and site directed mutagenesis. Results An N-terminal cysteine-rich region of PkNBPXb (PkNBPXb-II exhibited specific adhesion to rhesus monkey erythrocytes. Mutation of four of five cysteines in PkNBPXb-II interfered with its surface expression on COS7 cells, suggesting disulphide bond conformation is critical for intracellular trafficking. Binding of PkNBPXb-II was abolished when rhesus erythrocytes were pre-treated with chymotrypsin, but not trypsin or neuraminidase. PkNBPXb-II also bound other Old World monkey species and gibbon erythrocytes. However, erythrocytes from other primate species including humans did not bind to PkNBPXb-II or native PkNBPXb. Importantly, unlike PkNBPXb, PkNBPXa bound human erythrocytes, and this binding was independent of the Duffy blood group determinant. Conclusions The data reported here begins to clarify the functional domains of the P. knowlesi RBLs. A binding domain has been identified and characterized in PkNBPXb. Notably, this study demonstrates that unlike PkNBPXb, PkNBPXa can bind to human erythrocytes, suggesting that PkNBPXa may function as a ligand to enable the invasion of P. knowlesi merozoites into

  4. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  5. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  6. Develop Infrared Structural Biology for Probing Structural Dynamics of Protein Functions

    Science.gov (United States)

    Xie, Aihua; Kang, Zhouyang; Causey, Oliver; Liu, Charle

    2015-03-01

    Protein functions are carried out through a series of structural transitions. Lack of knowledge on functionally important structural motions of proteins impedes our understanding of protein functions. Infrared structural biology is an emerging technology with powerful applications for protein structural dynamics. One key element of infrared structural biology is the development of vibrational structural marker (VSM) database library that translates infrared spectroscopic signals into specific structural information. We report the development of VSM for probing the type, geometry and strength of hydrogen bonding interactions of buried COO- side chains of Asp and Glu in proteins. Quantum theory based first principle computational studies combined with bioinformatic hydrogen bond analysis are employed in this study. We will discuss the applications of VSM in mechanistic studies of protein functions. Infrared structural biology is expected to emerge as a powerful technique for elucidating the functional mechanism of a broad range of proteins, including water soluble and membrane proteins. This work is supported by OCAST HR10-078 and NSF DBI1338097.

  7. Application of Advanced Functional Maps to the Radiation Treatment Plan for Biological Clinical Target Volumes

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Jung, Won Gyun; Suh, Tae Suk; Lee, Jeong Woo; Ahn, Kook Jin

    2010-01-01

    Anatomical images including computerized tomography (CT) and T1-weighted magnetic resonance (T1-MR) images have been generally used to determine target volumes in radiation treatment plan (RTP). As only conventional images were referenced, tumors have tendency not to be enhanced by administrating agents depending on the tumor grade and patients. Recent advanced MR images, however, could guide physiologically and pathologically significant tumor characteristics. Furthermore, if the multi-functional images are employed, errors from using only one type of image will be complemented and distinct biological parameters can be applied as histological activity index. In this study, biological clinical target volumes (bCTVs) considered vascularity and cellularity can be determined based on multifunctional parametric maps using the in-house software for image registration and analysis. Using the developed software, rCBV and ADC maps were analyzed and bCTVs can be resolved considering vascularity and cellularity. In result, the bCTVs are exported on conventional images for biological RTP using image registration. Based on the multi-functional parametric maps of overlapped tumor regions, malignant sub-volumes can be determined. Multi-functional parametric maps would contribute to the detection of physiological and pathological tumor characteristics which are not be found in conventional images. They would reflect individual tumor biological characteristics to RTP for local tumor control.

  8. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    in modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A...... rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single...... into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment....

  9. Immune function parameters as markers of biological age and predictors of longevity

    Science.gov (United States)

    de Toda, Irene Martínez; Maté, Ianire; Vida, Carmen; Cruces, Julia; De la Fuente, Mónica

    2016-01-01

    Chronological age is not a good indicator of how each individual ages and thus how to maintain good health. Due to the long lifespan in humans and the consequent difficulty of carrying out longitudinal studies, finding valid biomarkers of the biological age has been a challenge both for research and clinical studies. The aim was to identify and validate several immune cell function parameters as markers of biological age. Adult, mature, elderly and long-lived human volunteers were used. The chemotaxis, phagocytosis, natural killer activity and lymphoproliferation in neutrophils and lymphocytes of peripheral blood were analyzed. The same functions were measured in peritoneal immune cells from mice, at the corresponding ages (adult, mature, old and long lived) in a longitudinal study. The results showed that the evolution of these functions was similar in humans and mice, with a decrease in old subjects. However, the long-lived individuals maintained values similar to those in adults. In addition, the values of these functions in adult prematurely aging mice were similar to those in chronologically old animals, and they died before their non-prematurely aging mice counterparts. Thus, the parameters studied are good markers of the rate of aging, allowing the determination of biological age. PMID:27899767

  10. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  11. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  13. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful.

  14. Digital collections and exhibits

    CERN Document Server

    Denzer, Juan

    2015-01-01

    Today's libraries are taking advantage of cutting-edge technologies such as flat panel displays using touch, sound, and hands-free motions to design amazing exhibits using everything from simple computer hardware to advanced technologies such as the Microsoft Kinect. Libraries of all types are striving to add new interactive experiences for their patrons through exciting digital exhibits, both online and off. Digital Collections and Exhibits takes away the mystery of designing stunning digital exhibits to spotlight library trea

  15. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  16. Form and function: Perspectives on structural biology and resources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  17. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

    Science.gov (United States)

    van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried

    2010-01-01

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression. PMID:20624957

  18. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    Science.gov (United States)

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  19. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  20. Form and function: Perspectives on structural biology and resources for the future

    International Nuclear Information System (INIS)

    Vaughan, D.

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs

  1. Ethics on Exhibit

    Science.gov (United States)

    Vick, Randy M.

    2011-01-01

    This article discusses ethical questions raised by an exhibition of work by an artist with a history of mental illness and the exhibition's relevance to art therapy and “outsider art” discourse on the subject. Considerations for how such an exhibit could be handled had the circumstances included an art therapist and art therapy client are…

  2. Discrimination? - Exhibition of posters

    OpenAIRE

    Jakimovska, Jana

    2017-01-01

    Participation in the exhibition with the students form the Art Academy. The exhibition consisted of 15 posters tackling the subjects of hate speech and discrimination. The exhibition happened thanks to the invitation of the Faculty of Law at UGD, and it was a part of a larger event of launching books on the aforementioned subjects.

  3. Microbialites and microbial communities: Biological diversity, biogeochemical functioning, diagenetic processes, tracers of environmental changes

    OpenAIRE

    Camoin, Gilbert; Gautret, Pascale

    2006-01-01

    Editorial; This special issue is dedicated to microbialites and microbial communities and addresses their biological diversity, their biogeochemical functioning, their roles in diagenetic processes and their environmental significance. It is the logical successor of the special issue that one of us edited after the workshop on “Microbial mediation in carbonate diagenesis” which was held in Chichilianne (France) in 1997 (Camoin, G., Ed., 1999. Microbial mediation in carbonate diagenesis. Sedim...

  4. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, Raymond S.

    2010-10-01

    Functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS) have previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems suggesting they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials biocompatibility and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e. blood, urine, etc.) As a result, thiol SAMMS was further analyzed to assess the material’s performance under a number of different biologically relevant conditions (i.e. variable pH and ionic strength) as well to gauge any potentially negative cellular effects resulting from interaction with the sorbent, such as cellular toxicity or possible chelation of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus non-toxic. As a result, it has been determined that organic ligand-functionalized nanoporous silica materials could be a valuable material for detoxification therapeutics and potentially other biomedical applications as needed.

  5. Biological rhythms, higher brain function, and behavior: Gaps, opportunities, and challenges.

    Science.gov (United States)

    Benca, Ruth; Duncan, Marilyn J; Frank, Ellen; McClung, Colleen; Nelson, Randy J; Vicentic, Aleksandra

    2009-12-11

    Increasing evidence suggests that disrupted temporal organization impairs behavior, cognition, and affect; further, disruption of circadian clock genes impairs sleep-wake cycle and social rhythms which may be implicated in mental disorders. Despite this strong evidence, a gap in understanding the neural mechanisms of this interaction obscures whether biological rhythms disturbances are the underlying causes or merely symptoms of mental disorder. Here, we review current understanding, emerging concepts, gaps, and opportunities pertinent to (1) the neurobiology of the interactions between circadian oscillators and the neural circuits subserving higher brain function and behaviors of relevance to mental health, (2) the most promising approaches to determine how biological rhythms regulate brain function and behavior under normal and pathological conditions, (3) the gaps and challenges to advancing knowledge on the link between disrupted circadian rhythms/sleep and psychiatric disorders, and (4) the novel strategies for translation of basic science discoveries in circadian biology to clinical settings to define risk, prevent or delay onset of mental illnesses, design diagnostic tools, and propose new therapeutic strategies. The review is organized around five themes pertinent to (1) the impact of molecular clocks on physiology and behavior, (2) the interactions between circadian signals and cognitive functions, (3) the interface of circadian rhythms with sleep, (4) a clinical perspective on the relationship between circadian rhythm abnormalities and affective disorders, and (5) the pre-clinical models of circadian rhythm abnormalities and mood disorders.

  6. Paul Langerhans: a prilgrim "traveling" from functional histology to marine biology.

    Science.gov (United States)

    Raica, Marius; Cimpean, Anca Maria

    2017-06-01

    The nineteenth century was the time of a real revolution in science and medicine. A lot of seminal discoveries in medicine and biology were done in this time, and many of them were coincident with the introduction of the compound microscope by Hermann van Deijl and the standard histological technique by Paul Ehrlich. The main tissue types and individual cells were characterized and originally classified more than hundred years ago, although less attention was paid to their basic functions. This was mainly due to the modality of tissue specimen processing that allowed particularly detailed descriptive studies. Even so, we can notice some attempts to correlate the structure with the function. The German scientist Paul Langerhans, well-known for the discovery of Langerhans islets of the pancreas and Langerhans cells from the epidermis, tried to change the conventional fate of morphological studies introducing in his works functional hypothesis based on traditional microscopic observations even from the beginning of his scientific career. Paul Langerhans was a complex personality of the second half of the nineteenth century, not only in medicine, but also in other fields of biology. In the present review, presented is the life and research activity of Paul Langerhans, not only because of the importance of his discoveries, but also for perspectives that were opened by these findings in unexpected fields of medicine and biology.

  7. Functional Genomics Uncover the Biology behind the Responsiveness of Head and Neck Squamous Cell Cancer Patients to Cetuximab.

    Science.gov (United States)

    Bossi, Paolo; Bergamini, Cristiana; Siano, Marco; Cossu Rocca, Maria; Sponghini, Andrea P; Favales, Federica; Giannoccaro, Marco; Marchesi, Edoardo; Cortelazzi, Barbara; Perrone, Federica; Pilotti, Silvana; Locati, Laura D; Licitra, Lisa; Canevari, Silvana; De Cecco, Loris

    2016-08-01

    To identify the tumor portrait of the minority of head and neck squamous cell carcinoma (HNSCC) patients with recurrent-metastatic (RM) disease who upon treatment with platinum-based chemotherapy plus cetuximab present a long-lasting response. The gene expression of pretreatment samples from 40 HNSCC-RM patients, divided in two groups [14 long-progression-free survival (PFS) and 26 short-PFS (median = 19 and 3 months, respectively)], was associated with PFS and was challenged against a dataset from metastatic colon cancer patients treated with cetuximab. For biologic analysis, we performed functional and subtype association using gene set enrichment analysis, associated biology across all currently available HNSCC signatures, and inferred drug sensitivity using data from the Cancer Genomic Project. The identified genomic profile exhibited a significant predictive value that was essentially confirmed in the single publicly available dataset of cetuximab-treated patients. The main divergence between long- and short-PFS groups was based on developmental/differentiation status. The long-PFS patients are characterized by basal subtype traits such as strong EGFR signaling phenotype and hypoxic differentiation, further validated by the significantly higher association with the hypoxia metagene. The short-PFS patients presented a strong activation of RAS signaling confirmed in an in vitro model of two isogenic HNSCC cell lines sensitive or resistant to cetuximab. The predicted drug sensitivity for all four EGFR inhibitors was higher in long- versus short-PFS patients (P range: biology behind response to platinum-based chemotherapy plus cetuximab in RM-HNSCC cancer and may have translational implications improving treatment selection. Clin Cancer Res; 22(15); 3961-70. ©2016 AACRSee related commentary by Chau and Hammerman, p. 3710. ©2016 American Association for Cancer Research.

  8. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......; and whether it is only bacteria or also fungi and /or extracellular enzymes. Also they vary in the functions tested and the number of functions. All three techniques were able to separate the soils according to land-use and biogeographical zone, however with different strengths. The MicroResp technique...

  9. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... for an increasing number of microorganisms. This has resulted in substantial research efforts in assigning function to all identified open reading frames - referred to as functional genomics. In both metabolic engineering and functional genomics there is a trend towards application of a macroscopic view on cell......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  10. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  11. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth

    Science.gov (United States)

    Bromage, Timothy G.; Idaghdour, Youssef; Lacruz, Rodrigo S.; Crenshaw, Thomas D.; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  12. Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities

    Directory of Open Access Journals (Sweden)

    Isganitis Timothy

    2006-02-01

    Full Text Available Abstract Background Existing biological databases support a variety of queries such as keyword or definition search. However, they do not provide any measure of relevance for the instances reported, and result sets are usually sorted arbitrarily. Results We describe a system that builds upon the complex infrastructure of the Biozon database and applies methods similar to those of Google to rank documents that match queries. We explore different prominence models and study the spectral properties of the corresponding data graphs. We evaluate the information content of principal and non-principal eigenspaces, and test various scoring functions which combine contributions from multiple eigenspaces. We also test the effect of similarity data and other variations which are unique to the biological knowledge domain on the quality of the results. Query result sets are assessed using a probabilistic approach that measures the significance of coherence between directly connected nodes in the data graph. This model allows us, for the first time, to compare different prominence models quantitatively and effectively and to observe unique trends. Conclusion Our tests show that the ranked query results outperform unsorted results with respect to our significance measure and the top ranked entities are typically linked to many other biological entities. Our study resulted in a working ranking system of biological entities that was integrated into Biozon at http://biozon.org.

  13. Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions

    Science.gov (United States)

    Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2015-10-01

    Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle.

  14. A Critical Role for Cysteine 57 in the Biological Functions of Selenium Binding Protein-1.

    Science.gov (United States)

    Ying, Qi; Ansong, Emmanuel; Diamond, Alan M; Yang, Wancai

    2015-11-18

    The concentration of selenium-binding protein1 (SBP1) is often lower in tumors than in the corresponding tissue and lower levels have been associated with poor clinical outcomes. SBP1 binds tightly selenium although what role selenium plays in its biological functions remains unknown. Previous studies indicated that cysteine 57 is the most likely candidate amino acid for selenium binding. In order to investigate the role of cysteine 57 in SBP1, this amino acid was altered to a glycine and the mutated protein was expressed in human cancer cells. The SBP1 half-life, as well as the cellular response to selenite cytotoxicity, was altered by this change. The ectopic expression of SBP1(GLY) also caused mitochondrial damage in HCT116 cells. Taken together, these results indicated that cysteine 57 is a critical determinant of SBP1 function and may play a significant role in mitochondrial function.

  15. The association between biological rhythms, depression, and functioning in bipolar disorder: a large multi-center study.

    Science.gov (United States)

    Pinho, M; Sehmbi, M; Cudney, L E; Kauer-Sant'anna, M; Magalhães, P V; Reinares, M; Bonnín, C M; Sassi, R B; Kapczinski, F; Colom, F; Vieta, E; Frey, B N; Rosa, A R

    2015-05-22

    We examined the relationship between biological rhythms and severity of depressive symptoms in subjects with bipolar disorder and the effects of biological rhythms alterations on functional impairment. Bipolar patients (n = 260) and healthy controls (n = 191) were recruited from mood disorders programs in three sites (Spain, Brazil, and Canada). Parameters of biological rhythms were measured using the Biological Rhythms Assessment in Neuropsychiatry (BRIAN), an interviewer administered questionnaire that assesses disruptions in sleep, eating patterns, social rhythms, and general activity. Multivariate analyses of covariance showed significant intergroup differences after controlling for potential confounders (Pillai's F = 49.367; df = 2, P biological rhythms disturbance, followed by patients with subsyndromal symptoms, euthymic patients, and healthy controls. Biological rhythms and HAMD scores were independent predictors of poor functioning (F = 12.841, df = 6, P biological rhythms disturbance. Biological rhythms disturbance was also an independent predictor of functional impairment. Although the directionality of this relationship remains unknown, our results suggest that stability of biological rhythms should be an important target of acute and long-term management of bipolar disorder and may aid in the improvement of functioning. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter

    2011-01-01

    ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...... and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily...

  17. Exhibition; Image display agency

    International Nuclear Information System (INIS)

    Normazlin Ismail

    2008-01-01

    This article touches on the role of Malaysian Nuclear Agency as nuclear research institutions to promote, develop and encourage the peaceful uses of nuclear technology in its agricultural, medical, manufacturing, industrial, health and environment for the development of the country running successfully. Maturity of Malaysian Nuclear Agency in dealing with nuclear technology that are very competitive and globalization cannot be denied. On this basis Malaysian Nuclear Agency was given the responsibility to strengthen the nuclear technology in Malaysia. One way is through an exhibition featuring the research, discoveries and new technology products of the nuclear technology. Through this exhibition is to promote the nuclear technology and introduce the image of the agency in the public eye. This article also states a number of exhibits entered by the Malaysian Nuclear Agency and achievements during the last exhibition. Authors hope that the exhibition can be intensified further in the future.

  18. Space physics exhibits underway

    Science.gov (United States)

    DeVito, M. Catherine

    AGU is planning a new space science exhibit for the Smithsonian Institution's National Air and Space Museum in Washington that will help visitors come to an understanding of space science as a comprehensive, interdisciplinary, and exciting field. The title of the exhibit is “Electric Space: Our Earth-Sun Environment.” The exhibit's five modules will include demonstrations of the effects of particle and field radiation on humans and satellites in space and on human technology on the ground. The project also includes a larger traveling version that will visit science and technology centers throughout the United States. The first exhibit is planned to open at the Air and Space Museum in late summer or early fall 1992, in time for International Space Year activities; the traveling exhibit will begin touring in early 1993.

  19. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  20. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  1. A Survey of Biology Teachers Use of Activity-Oriented, Laboratory Practical Exercises to Promote Functional Biology Education

    Directory of Open Access Journals (Sweden)

    Abigail Mgboyibo Osuafor

    2016-08-01

    Full Text Available A major goal of science education is fostering students’ intellectual competencies such as independent learning, problem-solving, decision-making and critical thinking. This goal can only be achieved when students are actively involved in the teaching-learning process through activity-based, practical-oriented instructional methods involving the use of laboratories. This study therefore, investigated the extent to which the biology teachers employ activity-oriented, laboratory/practical instructional methods in order to improve the learning outcome of their students. The descriptive survey involved 73 Biology teachers randomly selected from all the six education zones of Anambra state, Nigeria. Four research questions were posed and four hypotheses were formulated to guide the conduct of the study. A 32-item structured questionnaire which has reliability co-efficient of 0.82 was used to collect data. Data were analyzed using mean, standard deviation and t-tests. Results show that Biology teachers adopt practical-oriented strategies in teaching biology, conduct practical activities to a high extent, and perceive practical exercises as essential to effective teaching and learning of the subject. Provision of adequate number of laboratory materials, employment of adequate number of biology teachers, making provision for well designed laboratory activities in the curriculum and training of teachers on how to effectively combine theory with practical are some of the strategies that will encourage biology teachers to conduct practical lessons. There was no significant difference between male and female biology teachers in their responses to the different aspects investigated. Based on these findings, some recommendations were made that include that curriculum designers should incorporate guides for practical activities that go with each topic in the curriculum so as to encourage the teachers to teach theory with practical as a unified whole to

  2. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  3. Reconstruction of biological functions: novel implant concepts for cardiovascular, ophthal-mologic and otolaryngologic applications

    Directory of Open Access Journals (Sweden)

    Grabow Niels

    2017-09-01

    Full Text Available Biomedical engineering innovations towards the reconstruction of biological functions seek to improve the quality of patients’ lives. The coordinated research project “RESPONSE – Partnership for Innovation in Implant Technology” (BMBF program Twenty20 – Partnership for Innovation, 2014 - 2021 is focusing on the development of novel concepts for (i cardiovascular scaffolds, glaucoma and ENT stents, (ii transcatheter heart valves and venous valves, (iii polymeric implants and polymer/drug formulations. Current clinical paradigm shifts, fostered by the progress in implant technology and a growing global demand, frame the background for the joint research efforts of academia and industry in the RESPONSE consortium.

  4. The origin of neutron biological effectiveness as a function of energy

    Science.gov (United States)

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-01-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data. PMID:27654349

  5. The origin of neutron biological effectiveness as a function of energy

    Science.gov (United States)

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-09-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.

  6. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    Science.gov (United States)

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what

  7. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement

    trait composition and environmental variables (depth, sediment granulometry); ii) determine the relationship between traits and habitat type (EUNIS level 4); and iii) assess the relationships between trawling pressure (using data derived under BENTHIS; see Eigaard et al., this volume) and traits...... characteristics, have allowed us to better understand the interactions between the benthic fauna and their environment at a functional level. We present the initial findings of work conducted under the auspices of the EU-funded project ‘BENTHIS’ which aims to improve our understanding of the impacts of trawling...... on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  8. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project....... The presented research is based on this sensor structure and investigates its potential as a versatile biomarker detection platform by evaluating different functionalization approaches. The functionalization of the silicon sensor surface with organic molecules was investigated in detail to determine...... the suitability of different methods for the preparation of organic interfaces for protein attachment. Oxide-free silicon surfaces offer unique possibilities to create highly sensitive sensor surfaces for charge detection due to the lack of an insulating oxide layer, but the highly reactive surface presents...

  9. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project....... The presented research is based on this sensor structure and investigates its potential as a versatile biomarker detection platform by evaluating different functionalization approaches. The functionalization of the silicon sensor surface with organic molecules was investigated in detail to determine...... the suitability of different methods for the preparation of organic interfaces for protein attachment. Oxide-free silicon surfaces offer unique possibilities to create highly sensitive sensor surfaces for charge detection due to the lack of an insulating oxide layer, but the highly reactive surface presents...

  10. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  12. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2017-09-08

    RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.

  13. Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents.

    Science.gov (United States)

    Yempalla, Kushalava Reddy; Munagala, Gurunadham; Singh, Samsher; Kour, Gurleen; Sharma, Shweta; Chib, Reena; Kumar, Sunil; Wazir, Priya; Singh, G D; Raina, Sushil; Bharate, Sonali S; Khan, Inshad Ali; Vishwakarma, Ram A; Singh, Parvinder Pal

    2015-10-08

    Novel polar functionalities containing 6-nitro-2,3-dihydroimidazooxazole (NHIO) analogues were synthesized to produce a compound with enhanced solubility. Polar functionalities including sulfonyl, uridyl, and thiouridyl-bearing NHIO analogues were synthesized and evaluated against Mycobacterium tuberculosis (MTB) H37Rv. The aqueous solubility of compounds with MIC values ≤0.5 μg/mL were tested, and six compounds showed enhanced aqueous solubility. The best six compounds were further tested against resistant (Rif(R) and MDR) and dormant strains of MTB and tested for cytotoxicity in HepG2 cell line. Based on its overall in vitro characteristics and solubility profile, compound 6d was further shown to possess high microsomal stability, solubility under all tested biological conditions (PBS, SGF and SIF), and favorable oral in vivo pharmacokinetics and in vivo efficacy.

  14. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  15. Characterization and biological function of milk-derived miRNAs.

    Science.gov (United States)

    Golan-Gerstl, Regina; Elbaum Shiff, Yaffa; Moshayoff, Vardit; Schecter, Daniel; Leshkowitz, Dena; Reif, Shimon

    2017-10-01

    Breastfeeding is associated with reduced risk of infection, immune-mediated disorders, obesity, and even cancer. Recently it was found that breast milk contains a variety of microRNAs (miRNAs) in the skim and fat layer that can be transferred to infants, and appear to play important roles in those biological functions. This study applied next generation sequencing and quantitative real-time PCR analysis to determine the miRNA expression profile of the skim and fat fraction of human, goat, and bovine milk as well as infant formulas. Human and mammalian milk were found to contain known advantageous miRNAs in exosomes and also in the fat layer. These miRNAs are highly conserved in human, bovine and goat milk. However, they were not detected in several infant formulas. Further, miRNAs present in milk were able to enter normal and tumor cells and affect their biological functions. Following incubation of milk derived human miRNA with normal and cancer cells, the expression of miRNA-148a was upregulated and the expression of the DNA methyltransferase1 target gene of miRNA-148a was down regulated. These results reinforce previous findings on the importance of miRNA in breast milk. Future studies should concentrate on the addition of miRNA to infant formulas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. What will result from the interaction between functional and evolutionary biology?

    Science.gov (United States)

    Morange, Michel

    2011-03-01

    The modern synthesis has been considered to be wrongly called a "synthesis", since it had completely excluded embryology, and many other disciplines. The recent developments of Evo-Devo have been seen as a step in the right direction, as complementing the modern synthesis, and probably leading to a "new synthesis". My argument is that the absence of embryology from the modern synthesis was the visible sign of a more profound lack: the absence of functional biology in the evolutionary synthesis. I will consider the reasons for this absence, as well as the recent transformations which favoured a closer interaction between these two branches of biology. Then I will describe two examples of recent work in which functional and evolutionary questioning were tightly linked. The most significant part of the paper will be devoted to the transformation of evolutionary theory that can be expected from this encounter: a deep transformation, or simply an experimental confirmation of this theory? I will not choose between these two different possibilities, but will discuss some of the difficulties which make the choice problematic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.

    Science.gov (United States)

    Balakrishnan, Sri Kripa; Witcher, Michael; Berggren, Travis W; Emerson, Beverly M

    2012-01-01

    The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC) biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADP)ribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.

  18. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.

    Directory of Open Access Journals (Sweden)

    Sri Kripa Balakrishnan

    Full Text Available The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADPribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.

  19. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  20. Role of soil biology and soil functions in relation to land use intensity.

    Science.gov (United States)

    Bondi, Giulia; Wall, David; Bacher, Matthias; Emmet-Booth, Jeremy; Graça, Jessica; Marongiu, Irene; Creamer, Rachel

    2017-04-01

    The delivery of the ecosystem's functions is predominantly controlled by soil biology. The biology found in a gram of soil contains more than ten thousand individual species of bacteria and fungi (Torsvik et al., 1990). Understanding the role and the requirements of these organisms is essential for the protection and the sustainable use of soils. Soil biology represents the engine of all the processes occurring in the soil and it supports the ecosystem services such as: 1) nutrient mineralisation 2) plant production 3) water purification and regulation and 4) carbon cycling and storage. During the last years land management type and intensity have been identified as major drivers for microbial performance in soil. For this reason land management needs to be appropriately studied to understand the role of soil biology within this complex interplay of functions. We aimed to study whether and how land management drives soil biological processes and related functions. To reach this objective we built a land use intensity index (LUI) able to quantify the impact of the common farming practices carried out in Irish grassland soils. The LUI is derived from a detailed farmer questionnaire on grassland management practices at 38 farms distributed in the five major agro-climatic regions of Ireland defined by Holden and Brereton (2004). Soils were classified based on their drainage status according to the Irish Soil Information System by Creamer et al. (2014). This detailed questionnaire is then summarised into 3 management intensity components: (i) intensity of Fertilisation (Fi), (ii) frequency of Mowing (Mi) and (iii) intensity of Livestock Grazing (Gi). Sites were sampled to assess the impact of land management intensity on microbial community structure and enzyme behaviour in relation to nitrogen, phosphorus and carbon cycling. Preliminary results for enzymes linked to C and N cycles showed higher activity in relation to low grazing pressure (low Gi). Enzymes linked to P

  1. How biological soil crusts became recognized as a functional unit: a selective history

    Science.gov (United States)

    Lange, Otto L.; Belnap, Jayne

    2016-01-01

    It is surprising that despite the world-wide distribution and general importance of biological soil crusts (biocrusts), scientific recognition and functional analysis of these communities is a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phyto-sociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970’s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.

  2. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  3. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  4. HepG2/C3A 3D spheroids exhibit stable physiological functionality for at least 24 days after recovering from trypsination

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Magnone, Maria Chiara; Hansen, Line Visby

    2013-01-01

    Primary human hepatocytes are widely used as an in vitro system for the assessment of drug metabolism and toxicity. Nevertheless a cell system with higher stability of physiological functions is required for the investigation of drugs’ mode of action, pathway analyses and biomarkers evaluations. ...

  5. [The biological reaction of inflammation, methylglyoxal of blood plasma, functional and structural alterations in elastic type arteries at the early stage of hypertension disease].

    Science.gov (United States)

    Titov, V N; Dmitriev, V A; Oshchepkov, E V; Balakhonova, T V; Tripoten', M I; Shiriaeva, Iu K

    2012-08-01

    The article deals with studying of the relationship between biologic reaction of inflammation with glycosylation reaction and content of methylglyoxal in blood serum. The positive correlation between pulse wave velocity and content of methylglyoxal, C-reactive protein in intercellular medium and malleolar brachial index value was established. This data matches the experimental results concerning involvement of biological reaction of inflammation into structural changes of elastic type arteries under hypertension disease, formation of arteries' rigidity and increase of pulse wave velocity. The arterial blood pressure is a biological reaction of hydrodynamic pressure which is used in vivo by several biological functions: biological function of homeostasis, function of endoecology, biological function of adaptation and function of locomotion. The biological reaction of hydrodynamic (hydraulic) pressure is a mode of compensation of derangement of several biological functions which results in the very high rate of hypertension disease in population. As a matter of fact, hypertension disease is a syndrome of lingering pathological compensation by higher arterial blood pressure of the biological functions derangements occurring in the distal section at the level of paracrine cenoses of cells. The arterial blood pressure is a kind of in vivo integral indicator of deranged metabolism. The essential hypertension disease pathogenically is a result of the derangement of three biological functions: biological function of homeostasis, biological function of trophology - nutrition (biological reaction of external feeding - exotrophia) and biological function of endoecology. In case of "littering" of intercellular medium in vivo with nonspecific endogenic flogogens a phylogenetically earlier activation of biological reactions of excretion, inflammation and hydrodynamic arterial blood pressure occur. In case of derangement of biological function of homeostasis, decreasing of

  6. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function.

    Science.gov (United States)

    Yeats, Trevor H; Buda, Gregory J; Wang, Zhonghua; Chehanovsky, Noam; Moyle, Leonie C; Jetter, Reinhard; Schaffer, Arthur A; Rose, Jocelyn K C

    2012-02-01

    The cuticle covers the aerial epidermis of land plants and plays a primary role in water regulation and protection from external stresses. Remarkable species diversity in the structure and composition of its components, cutin and wax, have been catalogued, but few functional or genetic correlations have emerged. Tomato (Solanum lycopersicum) is part of a complex of closely related wild species endemic to the northern Andes and the Galapagos Islands (Solanum Sect. Lycopersicon). Although sharing an ancestor composition varied in the occurrence of wax esters and triterpenoid isomers. Using a Solanum habrochaites introgression line population, we mapped triterpenoid differences to a genomic region that includes two S. lycopersicum triterpene synthases. Based on known metabolic pathways for acyl wax compounds, hypotheses are discussed to explain the appearance of wax esters with atypical chain lengths. These results establish a model system for understanding the ecological and evolutionary functional genomics of plant cuticles. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  7. Functional T lymphocyte immune deficiency in a population of homosexual men who do not exhibit symptoms of acquired immune deficiency syndrome.

    OpenAIRE

    Shearer, G M; Payne, S M; Joseph, L J; Biddison, W E

    1984-01-01

    To determine whether healthy homosexual men are immunologically impaired, peripheral blood leukocytes (PBL) from 20 male homosexuals were compared prospectively with PBL from 14 age-matched male heterosexual donors with respect to: (a) the capacity of their PBL to generate functional T cell immune responses in vitro; and (b) the content of total T cells and T cell subsets in their peripheral blood. The homosexual donors studied indicated moderate sexual life styles in that all but one of the ...

  8. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function

    OpenAIRE

    Yeats, Trevor H.; Buda, Gregory J.; Wang, Zhonghua; Chehanovsky, Noam; Moyle, Leonie C.; Jetter, Reinhard; Schaffer, Arthur A.; Rose, Jocelyn K.C.

    2011-01-01

    The cuticle covers the aerial epidermis of land plants and plays a primary role in water regulation and protection from external stresses. Remarkable species diversity in the structure and composition of its components, cutin and wax, have been catalogued, but few functional or genetic correlations have emerged. Tomato (Solanum lycopersicum) is part of a complex of closely related wild species endemic to the northern Andes and the Galapagos Islands (Solanum Sect. Lycopersicon). Although shari...

  9. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1978-01-01

    Ludwig Mies van der Rohe is known primarily as an architect. However, he also designed chairs and tables. Discusses an exhibit held in New York City a few months ago which showed how well the famous architect achieved his goals in the area of furniture design. (Author/RK)

  10. EXHIBITION: Accelerated Particles

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  11. Exhibition in Sight

    Science.gov (United States)

    Wasserman, Burton

    1978-01-01

    One of the most offbeat exhibitions presented in the last several years was the widely celebrated Warhol-Wyeth duo show, "Portraits of Each Other", held at the Brandywine River Museum in Chadds Ford, Pennsylvania. Discusses their paintings and their diametrically different personalities. (Author/RK)

  12. Biological Function and Medicinal Research Significance of G-Quadruplex Interactive Proteins.

    Science.gov (United States)

    Qiu, Jun; Wang, Mingxue; Zhang, Yan; Zeng, Ping; Ou, Tian-Miao; Tan, Jia-Heng; Huang, Shi-Liang; An, Lin-Kun; Wang, Honggen; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2015-01-01

    G-quadruplexes are four-stranded DNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Accumulating studies have revealed that G-quadruplex structures are formed in vivo and play important roles in biological processes such as DNA replication, transcription, recombination, epigenetic regulation, meiosis, antigenic variation, and maintenance of telomeres stability. Mounting evidence indicates that a variety of proteins are capable of binding selectively and tightly to G-quadruplex and play essential roles in G-quadruplex-mediated regulation processes. Some of these proteins promote the formation or/and stabilization of G-quadruplex, while some other proteins act to unwind G-quadruplex preferentially. From a drug discovery perspective, many of these G-quadruplex binding proteins and/or their complexes with G-quadruplexes are potential drug targets. Here, we present a general summary of reported G-quadruplex binding proteins and their biological functions, with focus on those of medicinal research significance. We elaborated the possibility for some of these G-quadruplex binding proteins and their complexes with G-quadruplexes as potential drug targets.

  13. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology.

    Science.gov (United States)

    ul Hassan, Muhammad Naeem; Zainal, Zamri; Ismail, Ismanizan

    2015-08-01

    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  15. FUSE: a profit maximization approach for functional summarization of biological networks.

    Science.gov (United States)

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry

    2012-03-21

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  16. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  17. Biological conservation law as an emerging functionality in dynamical neuronal networks.

    Science.gov (United States)

    Podobnik, Boris; Jusup, Marko; Tiganj, Zoran; Wang, Wen-Xu; Buldú, Javier M; Stanley, H Eugene

    2017-11-07

    Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law-the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective.

  18. Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish.

    Science.gov (United States)

    Chekmenev, Eduard Y; Vollmar, Breanna S; Forseth, Kristen T; Manion, McKenna N; Jones, Shiela M; Wagner, Tim J; Endicott, RaeLynn M; Kyriss, Brandon P; Homem, Lorraine M; Pate, Michelle; He, Jing; Raines, Joshua; Gor'kov, Peter L; Brey, William W; Mitchell, Dan J; Auman, Ann J; Ellard-Ivey, Mary J; Blazyk, Jack; Cotten, Myriam

    2006-09-01

    We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from (15)N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are alpha-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. (15)N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.

  19. Restoration of voice function by using biological feedback in laryngeal and hypopharyngeal carcinoma patients

    Science.gov (United States)

    Choinzonov, E. L.; Balatskaya, L. N.; Chizhevskaya, S. Yu.; Meshcheryakov, R. V.; Kostyuchenko, E. Yu.; Ivanova, T. A.

    2016-08-01

    The aim of the research is to develop and introduce a new technique of post-laryngectomy voice rehabilitation of laryngeal and hypopharyngeal carcinoma patients. The study involves comparing and analyzing 82 cases of voice function restoration by using biological feedback based on mathematical modeling of voice production. The advantage of the modern technology-based method in comparison with the conventional one is proved. Restoration of voice function using biofeedback allows taking into account patient's abilities, adjusting parameters of voice trainings, and controlling their efficiency in real-time mode. The data obtained indicate that the new method contributes to the rapid inclusion of self-regulation mechanisms of the body and results in the overall success rate of voice rehabilitation in totally laryngectomized patients reaching 92%, which reduces the rehabilitation period to 18 days, compared to 86% and 38 days in the control group, respectively. Restoration of disturbed functions after successful treatment is an important task of rehabilitation and is crucial in terms of the quality of cancer patients' lives. To assess life quality of laryngeal cancer patients, the EORTC Quality of Life Core Questionnaire (QLQ-C30), and head and neck module (QLQ-H&N35) were used. The analyzed results proved that the technique of biofeedback voice restoration significantly improves the quality of life of laryngectomized patients. It allows reducing the number of disabled people, restoring patients' ability to work-related activities, and significantly improving social adaptation of these patients.

  20. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  1. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.

    Science.gov (United States)

    Dirocco, Daniel A; Dykstra, Kevin; Krska, Shane; Vachal, Petr; Conway, Donald V; Tudge, Matthew

    2014-05-05

    The direct CH functionalization of heterocycles has become an increasingly valuable tool in modern drug discovery. However, the introduction of small alkyl groups, such as methyl, by this method has not been realized in the context of complex molecule synthesis since existing methods rely on the use of strong oxidants and elevated temperatures to generate the requisite radical species. Herein, we report the use of stable organic peroxides activated by visible-light photoredox catalysis to achieve the direct methyl-, ethyl-, and cyclopropylation of a variety of biologically active heterocycles. The simple protocol, mild reaction conditions, and unique tolerability of this method make it an important tool for drug discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Translating inter-individual genetic variation to biological function in complex phenotypes

    DEFF Research Database (Denmark)

    Yadav, Rachita

    and phosphor-proteome in chemotherapy resistant breast cancer cell lines with high TIMP-1 gene expression. In summary, this thesis work demonstrates applications of various omic variations at different levels of complexity and their integration using systems biology based methodologies to associate them...... artificial neural network (ANN) based methodology of selecting genetic and clinical features with predictive power for childhood asthma. The goal of these studies is to understand the complex genetics of childhood asthma. The third part of this thesis (chapters 5 and 6) focuses on various mechanisms involved...... populations. Next, the second portion of this chapter describes a personalised genome study of an ancient genome which was conducted by calculating the genetic risk scores to unravel phenotypes. Appendix section (Chapter 8) comprises of an integrative functional analysis study of the changing proteome...

  3. [Historic and functional biology: the inadequacy of a system theory of evolution].

    Science.gov (United States)

    Regelmann, J P

    1982-01-01

    In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and

  4. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    Directory of Open Access Journals (Sweden)

    Mara Baldry

    Full Text Available Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization.

  5. Clinical, Functional, and Biological Correlates of Cognitive Dimensions in Major Depressive Disorder - Rationale, Design, and Characteristics of the Cognitive Function and Mood Study (CoFaM-Study).

    Science.gov (United States)

    Baune, Bernhard T; Air, Tracy

    2016-01-01

    Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers.

  6. Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam).

    Science.gov (United States)

    Senthilkumar, Rajendran; Yeh, Kai-Wun

    2012-01-01

    The initial investigation of the nature of the proteins in the tuber of sweet potato (Ipomoea batatas Lam.) revealed a globulin-designated "ipomoein," which was reported by Jones and Gersdorff, (1931). Later, "ipomoein" was renamed "sporamin" and was found to be a major storage protein that accounted for over 80% of the total protein in the tuberous root. To date, sporamin has been studied by a series of biochemical and molecular approaches. The first purification of sporamin into two major fractions, A and B, was successfully completed in 1985. Several characteristics of the protein, such as the diversification of the nucleotide sequences in the gene family, the protein structure, the biological functions of storage, defense, inhibitory activity and ROS scavenging, were identified. In the past decade, sporamin was classified as a Kunitz-type trypsin inhibitor, and its insect-resistance capability has been examined in transgenic tobacco and cauliflower plants, indicating the multiple functions of this protein has evolved to facilitate the growth and development of sweet potato. Sporamin is constitutively expressed in the tuberous root and is not normally expressed in the stem or leaves. However, this protein is expressed systemically in response to wounding and other abiotic stresses. These dual expression patterns at the transcriptional level revealed that the complex regulatory mechanism of sporamin was modulated by environmental stresses. The versatile functions of sporamin make this storage protein a good research model to study molecular evolution, regulatory mechanisms and physiological functions in plants. This review summarizes and discusses recent approaches and future perspectives in agricultural biotechnology. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain

    Science.gov (United States)

    Moran, Jennifer L.; Shifley, Emily T.; Levorse, John M.; Mani, Shyamala; Ostmann, Kristin; Perez-Balaguer, Ariadna; Walker, Dawn M.; Vogt, Thomas F.; Cole, Susan E.

    2009-01-01

    Tight regulation of Notch pathway signaling is important in many aspects of embryonic development. Notch signaling can be modulated by expression of fringe genes, encoding glycosyltransferases that modify EGF repeats in the Notch receptor. Although Lunatic fringe (Lfng) has been shown to play important roles in vertebrate segmentation, comparatively little is known regarding the developmental functions of the other vertebrate fringe genes, Radical fringe (Rfng) and Manic fringe (Mfng). Here we report that Mfng expression is not required for embryonic development. Further, we find that despite significant overlap in expression patterns, we detect no obvious synergistic defects in mice in the absence of two, or all three, fringe genes during development of the axial skeleton, limbs, hindbrain and cranial nerves. PMID:19479951

  8. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  9. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    Science.gov (United States)

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen

  10. Clinical, Functional, and Biological Correlates of Cognitive Dimensions in Major Depressive Disorder ? Rationale, Design, and Characteristics of the Cognitive Function and Mood Study (CoFaM-Study)

    OpenAIRE

    Baune, Bernhard T.; Air, Tracy

    2016-01-01

    Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and ...

  11. Re-evaluating concepts of biological function in clinical medicine: towards a new naturalistic theory of disease.

    Science.gov (United States)

    Chin-Yee, Benjamin; Upshur, Ross E G

    2017-08-01

    Naturalistic theories of disease appeal to concepts of biological function, and use the notion of dysfunction as the basis of their definitions. Debates in the philosophy of biology demonstrate how attributing functions in organisms and establishing the function-dysfunction distinction is by no means straightforward. This problematization of functional ascription has undermined naturalistic theories and led some authors to abandon the concept of dysfunction, favoring instead definitions based in normative criteria or phenomenological approaches. Although this work has enhanced our understanding of disease and illness, we need not necessarily abandon naturalistic concepts of function and dysfunction in the disease debate. This article attempts to move towards a new naturalistic theory of disease that overcomes the limitations of previous definitions and offers advantages in the clinical setting. Our approach involves a re-evaluation of concepts of biological function employed by naturalistic theories. Drawing on recent insights from the philosophy of biology, we develop a contextual and evaluative account of function that is better suited to clinical medicine and remains consistent with contemporary naturalism. We also show how an updated naturalistic view shares important affinities with normativist and phenomenological positions, suggesting a possibility for consilience in the disease debate.

  12. [Progress in sodium channelopathies and biological functions of voltage-gated sodium channel blockers].

    Science.gov (United States)

    Wang, Hongyan; Gou, Meng; Xiao, Rong; Li, Qingwei

    2014-06-01

    Voltage-gated sodium channels (VGSCs), which are widely distributed in the excitable cells, are the primary mediators of electrical signal amplification and propagation. They play important roles in the excitative conduction of the neurons and cardiac muscle cells. The abnormalities of the structures and functions of VGSCs can change the excitability of the cells, resulting in a variety of diseases such as neuropathic pain, epilepsy and arrhythmia. At present, some voltage-gated sodium channel blockers are used for treating those diseases. In the recent years, several neurotoxins have been purified from the venom of the animals, which could inhibit the current of the voltage-gated sodium channels. Usually, these neurotoxins are compounds or small peptides that have been further designed and modified for targeted drugs of sodium channelopathies in the clinical treatment. In addition, a novel cysteine-rich secretory protein (CRBGP) has been isolated and purified from the buccal gland of the lampreys (Lampetra japonica), and it could inhibit the Na+ current of the hippocampus and dorsal root neurons for the first time. In the present study, the progress of the sodium channelopathies and the biological functions of voltage-gated sodium channel blockers are analyzed and summarized.

  13. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  14. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  15. Dietary Polyphenols as Modulators of Brain Functions: Biological Actions and Molecular Mechanisms Underpinning Their Beneficial Effects

    Directory of Open Access Journals (Sweden)

    David Vauzour

    2012-01-01

    Full Text Available Accumulating evidence suggests that diet and lifestyle can play an important role in delaying the onset or halting the progression of age-related health disorders and to improve cognitive function. In particular, polyphenols have been reported to exert their neuroprotective actions through the potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning, and cognitive function. Despite significant advances in our understanding of the biology of polyphenols, they are still mistakenly regarded as simply acting as antioxidants. However, recent evidence suggests that their beneficial effects involve decreases in oxidative/inflammatory stress signaling, increases in protective signaling and neurohormetic effects leading to the expression of genes that encode antioxidant enzymes, phase-2 enzymes, neurotrophic factors, and cytoprotective proteins. Specific examples of such pathways include the sirtuin-FoxO pathway, the NF-κB pathway, and the Nrf-2/ARE pathway. Together, these processes act to maintain brain homeostasis and play important roles in neuronal stress adaptation and thus polyphenols have the potential to prevent the progression of neurodegenerative pathologies.

  16. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  17. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea

    OpenAIRE

    D?az-P?rez, Leopoldo; Rodr?guez-Zaragoza, Fabi?n Alejandro; Ortiz, Marco; Cupul-Maga?a, Am?lcar Lev?; Carriquiry, Jose D.; R?os-Jara, Eduardo; Rodr?guez-Troncoso, Alma Paola; Garc?a-Rivas, Mar?a del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity...

  18. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  19. Isolation of biologically functional RNA during programmed death of a colonial ascidian.

    Science.gov (United States)

    Chang, W T; Lauzon, R J

    1995-01-01

    The blastogenic (asexual) cycle of the colonial ascidian Botryllus schlosseri (Tunicata, Ascidiaceae) concludes in a cyclical phase of programmed cell and zooid death called takeover, in which all asexually derived adults die synchronously by apoptosis. The characterization of developmentally regulated genes whose expression patterns are selectively modulated during this process could pave the way to understand how this model organism dies. However, isolation of biologically functional RNA in this and other colonial ascidians with conventional phenol/chloroform-based procedures is hampered by extensive contamination of RNA preparations by pigments. Upon cell lysis, pigments that normally reside within specialized cells in the mantle wall of the adult are released and tightly associate with nucleic acids. Here, we report on the usefulness of a single-step RNA isolation method in which acid guanidinium isothiocyanate is used as an extraction medium, followed by preparative cesium chloride ultracentrifugation. This procedure successfully isolated biologically active, high-purity total RNA (OD260/OD280 = 1.9-2.1) from Botryllus colonies during takeover, as well as other species of colonial ascidians (Diplosoma macdonaldii, Botrylloides diegense) irrespective of pigmentation. Northern blot analysis performed with a 32P-labeled tunicate actin probe detected two polyadenylated transcripts of 1.5 and 1.7 kilobases in length from both growth phase and takeover colonies. Two-dimensional protein gel assays from in vitro translated mRNA preparations further revealed that specific transcripts were up-regulated during takeover, while others were repressed or down-regulated. Growth phase and takeover-specific cDNA libraries were constructed from pooled poly(A)+ RNA with a complexity of 1.0 x 10(7) and 1.2 x 10(7) recombinants respectively per 100 ng of cDNA before amplification.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age.

    Science.gov (United States)

    Reece, Albert Stuart; Norman, Amanda; Hulse, Gary Kenneth

    2017-01-01

    Amphetamine abuse is becoming more widespread internationally. The possibility that its many cardiovascular complications are associated with a prematurely aged cardiovascular system, and indeed biological organism systemically, has not been addressed. Radial arterial pulse tonometry was performed using the SphygmoCor system (Sydney). 55 amphetamine exposed patients were compared with 107 tobacco smokers, 483 non-smokers and 68 methadone patients (total=713 patients) from 2006 to 2011. A cardiovascular-biological age (VA) was determined. The age of the patient groups was 30.03±0.51-40.45±1.15 years. This was controlled for with linear regression. The sex ratio was the same in all groups. 94% of amphetamine exposed patients had used amphetamine in the previous week. When the (log) VA was regressed against the chronological age (CA) and a substance-type group in both cross-sectional and longitudinal models, models quadratic in CA were superior to linear models (both p<0.02). When log VA/CA was regressed in a mixed effects model against time, body mass index, CA and drug type, the cubic model was superior to the linear model (p=0.001). Interactions between CA, (CA) 2 and (CA) 3 on the one hand and exposure type were significant from p=0.0120. The effects of amphetamine exposure persisted after adjustment for all known cardiovascular risk factors (p<0.0001). These results show that subacute exposure to amphetamines is associated with an advancement of cardiovascular-organismal age both over age and over time, and is robust to adjustment. That this is associated with power functions of age implies a feed-forward positively reinforcing exacerbation of the underlying ageing process.

  1. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  2. Multi-functional photonic crystal sensors enabled by biological silica (Conference Presentation)

    Science.gov (United States)

    Wang, Alan X.

    2017-02-01

    Diatoms are microalgae found in every habitat where water is present. They produce 40% of the ocean's yearly production of organic carbon and 20% of the oxygen that we breathe. Their abundance and wide distribution make them ideal materials for a wide range of applications as living organisms. In our previous work, we have demonstrated that diatom biosilica with self-assembled silver nanoparticles (Ag NPs) can be used as ultra-sensitive, low-cost substrates for surface-enhanced Raman scattering (SERS) sensing. The enhancement comes from the photonic crystal enhancement of diatom frustules that could improve the hot-spots of Ag NPs. In this work, we report the unique micro-fluidic flow, analyte concentration effect, and thin layer chromatography (TLC) on diatom biosilica, which enables selection, separation, detection, and analysis of complex chemical and biological samples. Particularly, we show that the microscopic fluidic flow induced by the evaporation of liquid droplet can concentrate the analyte and achieve label-free sensing of single molecule detection of R6G and label-free sensing of 4.5×10-17g trinitrotoluene (TNT) from only 200 nano-liter solution. We also demonstrated a facile method for instant on-site separation and detection of analytes by TLC in tandem with SERS spectroscopy using high density diatom thin film. This lab-on-chip technology has been successfully applied for label-free detection of polycyclic aromatic hydrocarbons from human plasma and histamine from salmon fish. Our research suggests that such cost-effective, multi-functional photonic crystal sensors enabled by diatom biosilica opens a new route for lab-on-chip systems and possess significant engineering potentials for chemical and biological sensing.

  3. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.

    Science.gov (United States)

    Sarkar, Bibekananda; Kulharia, Mahesh; Mantha, Anil K

    2017-04-01

    Amino acid metabolism is a significant metabolic activity in humans, especially of sulphur-containing amino acids, methionine and cysteine (Cys). Cys is cytotoxic and neurotoxic in nature; hence, mammalian cells maintain a constant intracellular level of Cys. Metabolism of Cys is mainly regulated by two thiol dioxygenases: cysteine dioxygenase (CDO) and 2-aminoethanethiol dioxygenase (ADO). CDO and ADO are the only human thiol dioxygenases reported with a role in Cys metabolism and localized to mitochondria. This metabolic pathway is important in various human disorders, as it is responsible for the synthesis of antioxidant glutathione and is also for the synthesis of hypotaurine and taurine. CDO is the most extensively studied protein, whose high-resolution crystallographic structures have been solved. As compared to CDO, ADO is less studied, even though it has a key role in cysteamine metabolism. To further understand ADO's structure and function, the three-dimensional structures have been predicted from I-TASSER and SWISS-MODEL servers and validated with PROCHECK software. Structural superimposition approach using iPBA web server further confirmed near-identical structures (including active sites) for the predicted protein models of ADO as compared to CDO. In addition, protein-protein interaction and their association in patho-physiology are crucial in understanding protein functions. Both ADO and CDO interacting partner profiles have been presented using STRING database. In this study, we have predicted a 3D model structure for ADO and summarized the biological roles and the pathological consequences which are associated with the altered expression and functioning of ADO and CDO in case of cancer, neurodegenerative disorders and other human diseases. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  4. Smithsonian climate change exhibits

    Science.gov (United States)

    Kumar, Mohi

    2006-05-01

    Two new museum exhibits, ``Arctic: A Friend Acting Strangely'' and ``Atmosphere: Change is in the Air'' opened 15 April at the Smithsonian Institution's National Museum of Natural History in Washington, D.C., in partnership with the U.S. National Oceanic and Atmospheric Administration, NASA, and the U.S. National Science Foundation. In ``Arctic: A Friend Acting Strangely,'' anecdotes from indigenous polar people reveal how climate changes have affected life within the last 50 years. For example, as permafrost melts and sea ice shrinks, plant distributions and animal migration patterns are changing, severely affecting culture.

  5. Biological function evaluation and effects of laser micro-pore burn-denatured acellular dermal matrix.

    Science.gov (United States)

    Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang

    2018-03-01

    In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Ppore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated by laser

  6. Anniversary Exhibition. Nechvolodov.

    Directory of Open Access Journals (Sweden)

    - -

    2006-03-01

    Full Text Available On the 10th of August, 2005 in Tartu (the second biggest educational and cultural city in Estonia Stanislav Nechvolodov's exhibition was opened to show the 5-year cycle of his work, traditional for the author and his admirers. At the opening ceremony Nechvolodov said that the exhibition was the last one and appointed on his 70th anniversary.The architectural and building society in Irkutsk remembers Stanislav Nechvolodov as an architect working on dwelling and civil buildings in 1960-70s. Below are some extracts from the Estonian press.«Postimees» newspaper, December 1993. The interview «Expressionistic naturalist, conservative Nechvolodov» by journalist Eric Linnumyagi. He asks about all the details and describes the troubles experienced by Nechvolodov during the perestroika period in Estonia, for example: the Tartu University refused to install the sculpture of Socrat, the art school refused to engage him as an instructor, the sculpture of Socrat moved to Vrotzlav, Poland, and Nechvolodov moved to Poland to read lectures there.«Tartu» newspaper, November 2000. Mats Oun, artist, says in the article «Nechvolodov: a man of Renaissance»: «Nechvolodov works in Estonia, his works are placed in many local and foreign museums. Regardless some insignificant faults, he deserves a high estimation, and his manysided open exhibition can be an example for other artists. He is a man of Renaissance».

  7. Growth, density functional theory (DFT) and spectral studies on L-2-aminobutyric acid -biologically active material

    Science.gov (United States)

    Usha, C.; Santhakumari, R.; Meenakshi, R.; Jayasree, R.; Bhuvaneswari, M.

    2017-12-01

    Single crystal of L-2-aminobutyric acid (ABA) was grown from water by slow evaporation at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction studies. The grown crystal was subjected to FT-IR, FT-Raman, 1H NMR and 13C NMR spectral analyses to confirm the presence of functional group and molecular structure respectively. Thermal properties were investigated by thermogravimetric and differential thermal analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. The electronic charge distribution and reactivity of the molecules within the crystal were studied by HOMO and LUMO analysis and the molecular electrostatic potential (MEP) of the grown crystal was performed using the B3LYP method. The anti-bacterial activities of the crystal were performed by disk diffusion method against the standard bacteria E. coli. The crystal exhibits good anti-bacterial activity. Second harmonic generation efficiency of the powdered ABA crystal was tested using Nd:YAG laser and it is found to be ∼3.3 times that of potassium dihydrogen orthophosphate.

  8. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    Science.gov (United States)

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  9. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  10. Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents

    Directory of Open Access Journals (Sweden)

    Lamine Diamé

    2017-12-01

    Full Text Available Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world’s animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. The only missing point in this knowledge is the reasons underlying difference between the positive and negative effects of ants in tree cropping systems. This review article provides an overview of knowledge of the roles played by ants in orchards as functional elements, and on the potential of Oecophylla weaver ants as biological control agents. It also shows the potential and relevance of using ants as an agro-ecological diagnosis tool in orchards. Lastly, it demonstrates the potential elements which may determine the divergent negative and positive of their effects on cropping systems.

  11. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    Science.gov (United States)

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola

    2014-10-01

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation.

    Science.gov (United States)

    Dorniak, P; Bazer, F W; Spencer, T E

    2013-04-01

    This review integrates established and new information on the biological role of ovarian progesterone (P4) and interferon tau as well as conceptus- and endometrial-derived factors, PG and cortisol, in endometrial function and conceptus elongation during the periimplantation period of pregnancy in ruminants. Interferon tau is the maternal recognition of pregnancy signal that inhibits production of luteolytic pulses of PGF2α by the endometrium to maintain corpora lutea and their production of P4, the unequivocal hormone of pregnancy. Conceptus-endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in endometrial gene expression during pregnancy. Available results from studies in sheep support the idea that the individual, interactive, and coordinated actions of P4, interferon tau, PG, and cortisol regulate expression of elongation- and implantation-related genes in the endometrial epithelia and that P4 and PG are essential regulators of conceptus elongation. The outcome of these gene expression changes is alterations in endometrial secretions that govern conceptus elongation via effects on trophectoderm proliferation, migration, attachment, and adhesion. An increased knowledge of conceptus-endometrial interactions during early pregnancy in ruminants is necessary to understand and elucidate the causes of recurrent pregnancy loss and to provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.

  13. The biology and functional morphology of Macoma biota (Bivalvia: Tellinidae: Macominae

    Directory of Open Access Journals (Sweden)

    Pedro Ribeiro Piffer

    2011-06-01

    Full Text Available Macoma biota Arruda & Domaneschi, 2005, is a recently described species known only from the intertidal zone of Praia da Cidade, Caraguatatuba Bay, in the state of São Paulo, southeastern Brazil. The main purpose of the present paper is to describe the biology of M. biota, beginning with a detailed analysis of its anatomy and functional morphology and how these attributes are correlated with its habitat and life history. The morphology of the organs in the pallial cavity and their sorting devices indicate that this species has efficient mechanisms to process large amounts of particles that enter this cavity via the inhalant current. M. biota can rapidly select the material suitable for ingestion and direct the undesired excess to the rejection mantle tracts. These characteristics along with the siphon's behavior and the digestive tract configuration reveal that this species can be classified primarily as a deposit feeder, like other species of the genus; however, it can also behave as a suspension feeder, depending on the environmental conditions.

  14. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  15. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    soil biological classes). Physical soil characteristics remained unchanged after the first year from the earthworks and did not change under grass cover. Chemical analysis only indicated a significant effect of earthworks. Over the 2010-2013 period, the new vineyard showed a slight increase of TOC and total N contents; as compared to the old vineyard, it averaged lower TOC and total N, and higher CaCO3 contents, suggesting still evolving equilibrium conditions. Microarthropod analysis showed significant different abundances and communities' structures both by management system and by year, increasing where the land use pressure was reduced by permanent grass cover and along with the aging of vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis showed a different structure of eubacterial communities and a lower microbial activity in the new vineyard, especially during 2010-2012. In contrast, significant differences were not observed between the two vineyards in 2013, and grass cover effect was controversial. To sum up, the consequence of deep earthworks on chemical and biological properties were still evident after four years from planting and more time was needed to recover soil functions. Permanent grass cover did not always show a consistent positive effect.

  16. Normative values of functional competence, speed and lower body power for youth football players at different stages of biological maturity

    OpenAIRE

    Ryan, Desmond

    2016-01-01

    Professional football clubs place great emphasis on development of young players to attain first team squad membership, yet despite extensive research on senior teams there is limited knowledge the assessment of functional competence and the development of elite youth players (Brownlee, et al. 2015). This study aimed to assess normative values of functional competence, speed and lower body power for elite youth players at different stages of biological maturity as these factors have significa...

  17. Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects

    Science.gov (United States)

    Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects Schreinemachers DM, Ghio AJ, Cascio WE, Sobus JR. U.S. EPA, RTP, NC, USA Perchlorate (ClO4-), an environmental pollutant, is a known thyroid toxicant and...

  18. Poorer functionality is related to better quality of life response following the use of biological drugs: 6-month outcomes in a prospective cohort from the Public Health System (Sistema Único de Saúde), Minas Gerais, Brazil.

    Science.gov (United States)

    de Oliveira Junior, Haliton Alves; dos Santos, Jéssica Barreto; Acurcio, Francisco Assis; Almeida, Alessandra Maciel; Kakehasi, Adriana Maria; Alvares, Juliana; de Carvalho, Luis Fernando Duarte; Cherchiglia, Mariangela Leal

    2015-06-01

    We aim to analyze factors associated with the quality of life (QOL) response of individuals with rheumatic diseases treated by the Public Health System (Sistema Único de Saúde) with biological disease-modifying antirheumatic drugs (bDMARDs). Data from 428 patients using bDMARDs were collected using a standardized form at baseline and 6 months after the onset of treatment. The average reduction of the scores on EuroQol-five dimension was 0.11 ± 0.18 6 months after the onset of treatment with bDMARDs, denoting significant improvement of the participants' QOL. All the investigated types of disease exhibited significant improvement at the 6-month assessment, without any difference among them (p = 0.965). The participants with baseline poorest functionality and best QOL exhibited the best QOL outcomes after 6 months of treatment. Our study showed that the use of biological drugs induced considerable improvement in the participants' QOL.

  19. Overexpression and biological function of MEF2D in human pancreatic cancer.

    Science.gov (United States)

    Song, Zhiwang; Feng, Chan; Lu, Yonglin; Gao, Yong; Lin, Yun; Dong, Chunyan

    2017-01-01

    To explore the expression, clinical significance, biological function, and potential mechanism of MEF2D in pancreatic cancer, the expression of MEF2D in human pancreatic cancer tissues and corresponding adjacent normal tissues was analyzed through immunohistochemical staining. The association between MEF2D expression, clinicopathological parameters, overall survival, and disease-free survival was evaluated. Human pancreatic cancer cell lines BxPC-1 and SW1990 were selected to investigate the effect of MEF2D knockdown on cell proliferation, migration, and invasion. Western blot analysis was used to assess the effect of MEF2D expression on the Akt/GSK pathway, as well as the protein expression of cyclin B1, cyclin D1, matrix metalloprotein (MMP)-2, and MMP-9. Our results revealed that the expression of MEF2D was increased in pancreatic cancer tissues compared to adjacent normal tissues and the increased expression of MEF2D was associated with tumor size, histological differentiation, and TNM stage of pancreatic cancer patients. Moreover, the expression of MEF2D was an independent prognostic indicator for pancreatic cancer patients. In addition, knockdown of MEF2D in pancreatic cancer cells inhibited cell proliferation, migration, and invasion by down-regulating the protein expression of cyclin B1, cyclin D1, MMP-2, and MMP-9. Knockdown of MEF2D reduced the levels of phosphorylated Akt and GSK-3β. Our data indicated that MEF2D expression was increased in pancreatic cancer and was an independent molecular prognostic factor for pancreatic cancer patients. Furthermore, we showed that MEF2D controlled cell proliferation, migration, and invasion abilities in pancreatic cancer via the Akt/GSK-3β signaling pathway.

  20. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  1. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  2. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  3. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  4. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  5. Trypanosoma cruzi strains isolated from human, vector, and animal reservoir in the same endemic region in Mexico and typed as T. cruzi I, discrete typing unit 1 exhibit considerable biological diversity

    Directory of Open Access Journals (Sweden)

    María del Carmen Sánchez-Guillén

    2006-09-01

    Full Text Available In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H; vector (Triatoma barberi (RyC-V; and rodent reservoir (Peromyscus peromyscus (RyC-R. The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes. Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40% and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization

  6. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

    Science.gov (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S

    2018-04-01

    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets.

    Science.gov (United States)

    Chen, Z; Lönnberg, T; Lahesmaa, R

    2013-08-01

    Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions. © 2013 John Wiley & Sons Ltd.

  8. [THE FUNCTIONAL CONSTITUENT OF A BIOLOGICAL COMPONENT IN PROGRAMS FOR TRAINING SPECIALISTS IN THE AREA OF PARASITOLOGY FOR ACCREDITATION].

    Science.gov (United States)

    Dovgalev, A S; Astanina, S Yu; Andreeva, N D

    2015-01-01

    The paper considers the functional aspects of a biological component in programs for training specialists in the area of Parasitology for accreditation within the current enactments, including those on modernization of public health and additional professional education. The working program of the module "Fundamental Disciplines" has been used as an example to outline approaches to molding a medical parasitologist's capacity and readiness to solve professional tasks on the basis of knowledge of fundamental disciplines: biology, immunology, and medical geography. Education fundamentalization is shown to suggest more unsupervised work of a learner in the teaching process. The fundamental constituent of a biological component of the 'programs for training learners in the specialty of Parasitology for accreditation is shown in the interaction of all sections of this area with special and allied subjects.

  9. The cellular localization of autotaxin impacts on its biological functions in human thyroid carcinoma cells.

    Science.gov (United States)

    Seifert, Anja; Klonisch, Thomas; Wulfaenger, Jens; Haag, Friedrich; Dralle, Henning; Langner, Jürgen; Hoang-Vu, Cuong; Kehlen, Astrid

    2008-06-01

    Autotaxin (ATX/NPP2) shows a nucleotide pyrophosphatase/phosphodiesterase and lysophospholipase D (lysoPLD) activity and is a member of a family of structurally-related mammalian ecto-nucleotide pyrophosphate/phosphodiesterases (E-NPP1-3). ATX is unique among E-NPP as it is secreted and not membrane-bound as are NPP1 and -3. The ATX gene activity is significantly higher in undifferentiated anaplastic (UTC) as compared to follicular (FTC) and papillary thyroid carcinomas (PTC) or goiter tissues. ATX also enhances the motility of thyroid tumor cells. We bio-engineered stable transfectants of the human thyroid carcinoma cell line FTC-238 expressing either bioactively-secreted (sATX) or membrane-anchored ATX (mATX) to identify the biological functions of ATX which critically depend on the E-NPP member being secreted and provide insight into the effects of high local ATX concentrations and cellular responses. An increased cell motility was exclusively observed with FTC-238 sATX transfectants, whereas membrane-anchored ATX appeared to impair motility. We identified IL-1beta as an upstream suppressor of ATX expression in FTC-238, ATX-mediated motility in FTC-238 and stable transfectants, with IL-1beta having the strongest motility-suppressive effect on FTC-238 sATX clones. sATX and mATX strongly increased the anchorage-independent colony formation of FTC-238 but the size and number of colonies formed in the soft agar were significantly smaller in FTC-238 mATX versus the FTC-238 sATX clones. The cancer-testis antigen BAGE was identified as a novel target gene of ATX in FTC-238. Transcript levels for BAGE were 6-fold higher in FTC-238 mATX versus sATX clones. Increased BAGE transcript levels were also detected in tissues of patients with UTC versus FTC, PTC or goiter tissues. In summary, enhanced tumor cell motility and tumorigenic capacity critically depended on sATX in thyroid carcinoma cells. Irrespective of its compartmentalization, the cancer-testis antigen BAGE was

  10. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    Science.gov (United States)

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  11. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    Science.gov (United States)

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  12. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  13. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Directory of Open Access Journals (Sweden)

    Leopoldo Díaz-Pérez

    Full Text Available This study evaluated the relationship between the indices known as the Reef Health Index (RHI and two-dimensional Coral Health Index (2D-CHI and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  14. Biological oceanography, biogeochemical cycles, and pelagic ecosystem functioning of the east-central South Pacific Gyre: focus on Easter Island and Salas y Gómez Island

    Directory of Open Access Journals (Sweden)

    Peter von Dassow

    2014-10-01

    Full Text Available The Exclusive Economic Zone of Chile defined by Easter Island and Salas y Gómez Island is in the South Pacific Sub-tropical Gyre (SPSG, putting it at the center of the most oligotrophic and biomass poor waters in the world. Only 10 biological oceanographic expeditions have entered this zone in 105 years (19052010. We review key aspects of the plankton ecosystem and biogeochemical function relevant for the understanding of and conservation planning for marine environments. Plankton production is limited by lack of dissolved inorganic fixed nitrogen, not phosphorous. Higher organic nitrogen levels might be biologically unavailable. Short-term experiments suggested iron is not limiting, yet iron still likely limits nitrogen fixation, and thus production, at longer time scales, as the presence of nitrogen-fixers is exceptionally low compared to other ocean gyres. Plankton function is dominated by the smallest unicellular organisms, picoplankton (<3 μm in diameter. The SPSG represents a center of high biodiversity for picoplankton, as well as heterotrophic organisms such as tinntinids, siphonophores, and possibly amphipods, although data for key zooplankton, such as copepods, are lacking. Many groups exhibit negative relationships between diversity and total plankton biomass. High diversity might result from dispersal from a very large metacommunity and minimal competition within functional groups. Whether an island-mass effect causes a real or apparent increase in plankton biomass around Easter Island must be confirmed by high-resolution sampling in situ. Long-term threats to the planktonic ecosystem may include climate change-enhanced ocean stratification and plastic marine debris accumulation. Finally, priorities for future research are highlighted.

  15. Interactions Between Biological Cells and Layered Double Hydroxides: Towards Functional Materials.

    Science.gov (United States)

    Forano, Claude; Bruna, Felipe; Mousty, Christine; Prevot, Vanessa

    2018-03-08

    This review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials. The interactions between the two components are described with a peculiar attention to the adsorption, biocompatibilization, LDH layer internalization, antifouling and antimicrobial properties. The most significant achievements including authors' results, involving biological cells and LDH assemblies in waste water treatment, bioremediation and bioenergy generation are specifically addressed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantum chemical calculations predict biological function: The case of T cell receptor interaction with a peptide/MHC class I

    Science.gov (United States)

    Antipas, Georgios S. E.; Germenis, Anastasios

    2015-02-01

    A combination of atomic correlation statistics and quantum chemical calculations are shown to predict biological function. In the present study, various antigenic peptide-Major Histocompatibility Complex (pMHC) ligands with near-identical stereochemistries, in complexation with the same T cell receptor (TCR), were found to consistently induce distinctly different quantum chemical behavior, directly dependent on the peptide’s electron spin density and intrinsically expressed by the protonation state of the peptide’s N-terminus. Furthermore, the cumulative coordination difference of any variant in respect to the native peptide was found to accurately reflect peptide biological function and immerges as the physical observable which is directly related to the immunological end-effect of pMHC-TCR interaction.

  17. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.

    Science.gov (United States)

    Kouhsar, Morteza; Razaghi-Moghadam, Zahra; Mousavian, Zaynab; Masoudi-Nejad, Ali

    2016-09-01

    Detecting functional motifs in biological networks is one of the challenging problems in systems biology. Given a multiset of colors as query and a list-colored graph (an undirected graph with a set of colors assigned to each of its vertices), the problem is reduced to finding connected subgraphs, which best cover the multiset of query. To solve this NP-complete problem, we propose a new color-based centrality measure for list-colored graphs. Based on this newly-defined measure of centrality, a novel polynomial time algorithm is developed to discover functional motifs in list-colored graphs, using a greedy strategy. This algorithm, called CeFunMO, has superior running time and acceptable accuracy in comparison with other well-known algorithms, such as RANGI and GraMoFoNe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell......-degrading enzyme secreted by B. cinerea during infection of plants (Chapter 5). The results described resulted in valuable new knowledge regarding the role of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana documented in three published research papers, one manuscript and one...

  19. Thyroid Autoimmunity and Function after Treatment with Biological Antirheumatic Agents in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Bliddal, Sofie; Dinsen, Stina; Feldt-Rasmussen, Ulla

    2017-01-01

    With the increased pro-inflammatory response in both rheumatoid arthritis and thyroid autoimmune diseases, treatment with biological antirheumatic agents (BAAs) of the former may affect the course of the latter. In hepatitis C and cancer patients, treatment with biological agents substantially...... increases the risk of developing thyroid autoimmunity. As the use of BAAs in the treatment of rheumatoid arthritis is increasing, this review aimed to investigate if such use affected thyroid status in rheumatoid arthritis patients. We conducted a systematic literature search and included six studies...

  20. Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities

    Science.gov (United States)

    2016-10-01

    was to evaluate the effectiveness of a regenerative biologic scaffold, Biodesign ® 6-layer Plastic Surgery Matrix [Cook Biotech]; Premarket...planned to be enrolled and followed for a period of 1 year (12 months). This study had the intention to evaluate the effectiveness of Biodesign ®, a 6

  1. N-acylation of phosphatidylethanolamine and its biological functions in mammals

    DEFF Research Database (Denmark)

    Wellner, Niels; Diep, Thi Ai; Janfelt, Christian

    2013-01-01

    N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesiz...

  2. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function

    DEFF Research Database (Denmark)

    Ahmad, I.; Hoessli, D.C.; Gupta, Ramneek

    2007-01-01

    both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes...

  3. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    Science.gov (United States)

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour

  5. Exhibition

    CERN Document Server

    Staff Association

    2018-01-01

    Univers Du 9 au 20 avril 2018 | CERN Meyrin, Bâtiment principal Stéphanie Cousin Obsédée par les rêves, les mondes surréalistes et insolites, je m’empare de formes provenant des mes propres travaux photographiques ou d’images que je modifie et mixe. Je fais évoluer mes univers oniriques de femmes-animaux ainsi que mes espaces et natures imaginaires. Avec ma démarche artistique, je cherche à mettre en images nos rêves et nos cauchemars, l’irréel et le surréel, le mystique et les affres de notre inconscient. Je cherche à représenter tout ce qui sommeille au plus profond de nous-même à l’aide de symboles, parfois en utilisant des images de cultures ancestrales. Photographie-collage, je cherche à ajouter quelques notes à la définition de la photographie du 21ièm...

  6. Exhibition

    CERN Multimedia

    Staff Association

    2018-01-01

    Cosmos KOLI Du 15 au 26 janvier 2018 CERN Meyrin, Main Building (Nébuleuse d'Orion- KOLI) KOLI, Artiste confirmé, diplômé de l’Académie de Beaux Arts de Tirana, depuis 26 ans en Suisse, où il a participé à maintes expositions collectives et organisé 10 expositions privées avec  beaucoup de succès, s’exprime actuellement dans un bonheur de couleur et de matières qui côtoient des hautes sphères… le cosmos ! Gagnant d’un premier prix lors d’une exposition collective organisée par le consulat Italien, il s’est installé au bord du lac dans le canton de Vaud où il vit depuis maintenant déjà 13 ans. www.kolicreation.com Pour plus d’informations et demandes d’accès : staff.association@cern.ch | T&eacut...

  7. Exhibition

    CERN Multimedia

    Staff Association

    2011-01-01

    Jan Hladky, physicien de l'Institut de Physique de l'Académie des Sciences de la République tchèque, et membre de la collaboration Alice, expose ses œuvres au Bâtiment principal du 20 avril au 6 mai. Son exposition est dédiée aux victimes du séisme de Sendai. Des copies de ses œuvres seront mises en vente et les sommes récoltées seront versées au profit des victimes.

  8. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    La mosaïque ou quand détruire permet de construire Lauren Decamps Du 28 novembre au 9 décembre 2016 CERN Meyrin, Bâtiment principal Paysage d'Amsterdam - Lauren Decamps On ne doit jamais rien détruire qu'on ne soit sûr de pouvoir remplacer aussi avantageusement " écrivait Plutarque dans ses Œuvres morales du 1er siècle après JC. L'artiste mosaïste Lauren Decamps adhère à cette idée et tente à sa manière de donner une nouvelle vie à ses matériaux en les taillant puis les réassemblant, créant ainsi des œuvres abstraites et figuratives.

  9. Exhibition

    CERN Document Server

    Staff Association

    2018-01-01

    En dehors des frontières Maxence Piquet Du 2 au 11 mai 2018 | CERN Meyrin, Bâtiment principal Exposition de peinture d'un artiste autodidacte Maxence Piquet (signature artiste M-P), avec différentes techniques (acrylique, huile, fusain, collage...) et sur différents supports. Un art souvent brut et parfois provoquant, avec des touches expressionnistes et cubistes principale origine de son art. Des œuvres souvent vivent et colorées... Cette exposition est la première en dehors d ses frontières Lorraine et a pour but de faire voyager son art au regard du plus grand nombre . Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél: 022 766 37 38

  10. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Le Point Isabelle Gailland Du 20 février au 3 mars 2017 CERN Meyrin, Bâtiment principal La Diagonale - Isabelle Gailland. Au départ, un toujours même point minuscule posé au centre de ce que la toile est un espace. Une réplique d'autres points, condensés, alignés, isolés, disséminés construiront dans leur extension, la ligne. Ces lignes, croisées, courbées, déviées, prolongées, seront la structure contenant et séparant la matière des couleurs. La rotation de chaque toile en cours d'exécution va offrir un accès illimité à la non-forme et à la forme. Le point final sera l'ouverture sur différents points de vue de ce que le point et la ligne sont devenus une représentation pour l'œil et l'im...

  11. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    The Elementary Particles of Painting Alfonso Fratteggiani Bianchi and Ermanno Imbergamo From September 26 to October 7, 2016 CERN Meyrin, Main Building With intentions similar to those of CERN physicists, the artist Alfonso Fratteggiani Bianchi investigates the color pigment, studying its interaction with light and with the support on which it is deposited. He creates monochrome paintings by spreading the color pigment in the pure state on stones, without using glue or any other type of adhesive. With intentions similar to artists, the physicist Ermanno Imbergamo investigates the use of luminescent wavelength shifters, materials commonly used in Particle Physics, for art. He creates other monochrome artworks, which disclose further aspects of interaction among light, color pigments and support. For more information: staff.association@cern.ch | Tel: 022 767 28 19

  12. Exhibition

    CERN Document Server

    Staff Association

    2018-01-01

    Univers Du 9 au 20 avril 2018 | CERN Meyrin, Bâtiment principal Stéphanie Cousin Obsédée par les rêves, les mondes surréalistes et insolites, je m’empare de formes provenant des mes propres travaux photographiques ou d’images que je modifie et mixe. Je fais évoluer mes univers oniriques de femmes-animaux ainsi que mes espaces et natures imaginaires. Avec ma démarche artistique, je cherche à mettre en images nos rêves et nos cauchemars, l’irréel et le surréel, le mystique et les affres de notre inconscient. Je cherche à représenter tout ce qui sommeille au plus profond de nous-même à l’aide de symboles, parfois en utilisant des images de cultures ancestrales. Photographie-collage, je cherche à ajouter quelques notes à la définition de la photographie du 21iè...

  13. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Œuvres recentes Fabienne Wyler Du 6 au 17 février 2017 CERN Meyrin, Bâtiment principal L'escalier du diable B - aquarelle, encre de Chine XLV - Fabienne Wyler. En relation avec certains procédés d’écriture contemporaine (par ex. Webern ou certaines musiques conçues par ordinateur), les compositions picturales de Fabienne Wyler s’élaborent à partir de « modules » (groupes de quadrangles) qu’elle reproduit en leur faisant subir toutes sortes de transformations et de déplacements : étirements, renversements, rotations, effet miroir, transpositions, déphasages, superpositions, etc., et ceci à toutes les échelles. Au fil des œuvres sont apparues des séries intitulées, Bifurcations, Intermittences, Attracteurs étranges, Polyrythmies. Ces titres ont un lien &e...

  14. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Les vibrantes Patrick Robbe-Grillet Du 30 octobre au 10 novembre 2017 CERN Meyrin, Main Building Patrick Robbe-Grillet - Feux d'artifices Qui est Patrick Robbe-Grillet ? Artiste Franco-Suisse, né en 1968 à Genève. En recherche du sentiment de paix, autodidacte, après un séjour en Chine en 2000, puis au Japon en 2002, suivi d’un long questionnement, il trouve sa voie dans la peinture, élément libérateur de sa créativité et expression de sa sensibilité à fleur de peau. « La Chine m’a enseigné les courbes, les nuances. Le Japon, la ligne droite, la rigueur. » Vous avez su rendre visible l'invisible ! - commentaire de Monsieur Fawaz Gruosi Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  15. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Firmament des toiles Joëlle Lalagüe Du 6 au 16 juin 2017 CERN Meyrin, Bâtiment principal Phylaë Voyage - Joëlle Lalagüe. Each picture is an invitation for a cosmic trip. This is a whispering of soul, which comes from origins. A symphony of the world, some notes of love, a harmony for us to fly to infinity. Pour plus d’informations et demandes d'accès : staff.association@cern.ch | Tél: 022 766 37 38

  16. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Still Life Jérémy Bajulaz Du 25 septembre au 6 octobre 2017 CERN Meyrin, Main Building (Aubergine - Jérémy Bajulaz) Né en 1991 en Haute-Savoie, France. Diplômé de l'Ecole Emile Cohl à Lyon, Jérémy Bajulaz intègre en 2014 le programme d'artiste en résidence au Centre Genevois de Gravure Contemporaine. C'est là que son travail prendra corps, autour de la lumière et de ses vibrations aux travers de sujets comme le portrait et la nature morte, dans le souci de l'observation; le regard prenant une place importante dans le processus créatif. Lauréat 2017 du VII Premio AAAC, son travail a été présenté dans de nombreuses expositions collectives, en 2015 au Bâtiment d’Art Contemporain de Genève, en 2016 au 89e Salon de Lyon et du ...

  17. Exhibition

    CERN Multimedia

    Staff Association

    2014-01-01

    Energie sombre, matière noire J.-J. Dalmais - J. Maréchal Du 11 au 27 novembre 2014, CERN Meyrin, Bâtiment principal A l’image des particules atomiques qui ont tissé des liens pour créer la matière, deux artistes haut bugistes croisent leurs regards et conjuguent leurs expressions singulières pour faire naître une vision commune de l’univers, produit des forces primordiales. Les sculptures de Jean-Jacques Dalmais et les peintures de Jacki Maréchal se rencontrent pour la première fois et se racontent par un enrichissement mutuel la belle histoire de la Vie. Dialogue magique des œuvres en mouvement qui questionnent en écho l’énergie sombre et la matière noire. Cette harmonieuse confluence de jeux de miroir et de résonnance illumine de poésie et de sobriété l’espace expos&...

  18. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    COLORATION Sandra Duchêne From September 5 to 16, 2016 CERN Meyrin, Main Building La recherche de l’Universel. Après tout ! C’est de l’Amour ! What else to say ? …La couleur, l’ENERGIE de la vie…

  19. Exhibition

    CERN Document Server

    Staff Association

    2017-01-01

    Harmonie Nathalie Lenoir Du 4 au 15 septembre 2017 CERN Meyrin, Bâtiment principal Peindre est un langage. Le tracé du pinceau sur le lin en est l'expression. A qui appartient un tableau en définitive ? A celui qui l'a peint ? A celui qui le regarde ? A celui qui l'emporte ? La peinture est une émotion partagée... Laissez-vous projeter de l'autre côté de la toile, prenez un moment pour rêver, en harmonie avec les éléments, parce-que la peinture parle à votre âme… Pour plus d’informations et demandes d’accès : staff.association@cern.ch | Tél : 022 766 37 38

  20. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    Gaïa Manuella Cany Du 10 au 28 avril 2017 CERN Meyrin, Bâtiment principal Oiseau - Manuella Cany. Tableaux abstraits inspirés de vues satellites ou photos prises du ciel. Certains sont à la frontière du figuratif alors que d'autres permettent de laisser libre cours à son imagination. Aux détails infinis, ces tableaux sont faits pour être vus de loin et de près grâce à une attention toute particulière apportée aux effets de matières et aux couleurs le long de volutes tantôt nuancées tantôt contrastées.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  1. Exhibition

    CERN Multimedia

    Staff Association

    2017-01-01

    La couleur des jours oriSio Du 2 au 12 mai 2017 CERN Meyrin, Bâtiment principal oriSio - Motus Suite à un fort intérêt pour la Chine et une curiosité pour un médium très ancien, la laque ! Je réinterprète cet art à travers un style abstrait. Je présente ici des laques sur aluminium, travaillés au plasma et ensuite colorés à l’aide de pigments pour l’essentiel. Mes œuvres je les veux brutes, déchirées, évanescentes, gondolées, voire trouées mais avec une belle approche de profondeur de la couleur.   Pour plus d’informations : staff.association@cern.ch | Tél: 022 766 37 38

  2. Blebbishields and mitotic cells exhibit robust macropinocytosis.

    Science.gov (United States)

    Jinesh, Goodwin G; Kamat, Ashish M

    2017-03-01

    Cancer stem cells can survive and undergo transformation after apoptosis by initiating robust endocytosis. Endocytosis in-turn drives formation of serpentine filopodia, which promote construction of blebbishields from apoptotic bodies. However, the status and role of macropinocytosis in blebbishields is not known. Here, we show by scanning electron microscopy and by macropinocytosis assays that blebbishields exhibit robust macropinocytosis. Inhibiting dynamin-mediated endocytosis does not affect macropinocytosis in blebbishields or in mitotic cells. In addition, inhibiting macropinocytosis did not inhibit construction of blebbishields from apoptotic bodies. Thus, although apoptotic cancer stem cells exhibit robust macropinocytosis, macropinocytosis is not essential to generate blebbishields, although it may play other roles in blebbishield biology. © 2016 BioFactors, 43(2):181-186, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Biological Soil Crusts Influence Hydrologic Function Differently in Various Deserts And Future Climate and Land Use will Affect These Relationships

    Science.gov (United States)

    Belnap, J.; Wilcox, B.; Barger, N.; Herrick, J.; van Soyoc, M.

    2012-04-01

    Biological soil crusts (biocrusts) can completely cover plant interspaces in dryland regions, and can constitute 70% or more of the living ground cover. In these areas, where precipitation is low and soils have low fertility, native plants often rely on intact biological soil crusts to provide water and nutrient flow to the broadly scattered vegetation. In cool desert systems, well-developed biocrusts (dominated by lichens and mosses) roughen the soil surface, increasing residence time of surface water flow. This results in increased and relatively homogenous infiltration of water into the soils. Filaments associated with cyanobacteria, fungi, mosses and lichens increase aggregate formation and stabilize soils, thus reducing sediment production, with well-developed biocrusts conferring much more stability on soils than less developed cyanobacterial dominated biocrusts. In hot and hyper-arid desert systems, biocrusts are generally less developed and dominated by cyanobacteria. These biocrusts generally increase runoff from plant interspaces to downslope vegetation. While reduced infiltration may seem to be negative, it can actually be advantageous to the downslope plants, as they may require small watersheds above them to provide the needed amount of water and nutrients required for their growth. Thus, infiltration and nutrient additions are more heterogenous than in cool desert systems. Soil surface disturbance and climate change have the potential to dramatically alter the species composition and thereby function of biological soil crusts in different deserts. Compressional disturbances results in reduced cover and a loss of lichen and moss species. Changes in climate regimes, such as an increase in temperature or a shift in the amount, timing, or intensity of rainfall, will influence the composition and physiological functioning of biological soil crusts, as various crust components have different photosynthetic and respiration responses to temperature and

  4. Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications

    Directory of Open Access Journals (Sweden)

    Raquel Serrano García

    2018-01-01

    Full Text Available There is a great interest in the development of new nanomaterials for multimodal imaging applications in biology and medicine. Multimodal fluorescent-magnetic based nanomaterials deserve particular attention as they can be used as diagnostic and drug delivery tools, which could facilitate the diagnosis and treatment of cancer and many other diseases. This review focuses on the recent developments of magnetic-fluorescent nanocomposites and their biomedical applications. The recent advances in synthetic strategies and approaches for the preparation of fluorescent-magnetic nanocomposites are presented. The main biomedical uses of multimodal fluorescent-magnetic nanomaterials, including biological imaging, cancer therapy and drug delivery, are discussed, and prospects of this field are outlined.

  5. The Biology of Bioavailability: The Role of Functional Ecology in Exposure Processes

    Science.gov (United States)

    2017-01-30

    were assessed using polyethylene devices (PEDs) and provided a reasonable indicator of organism exposure but did not account for organisms with...predicting bioavailability, but could not account for divergent animal behavior between species and substrate types. ERDC/EL TR-17-2 3 1.4 Benefits...sediment horizon containing most of the biological activity (application of this ambiguous concept has proven to be very difficult to accomplish, in

  6. Estimation of relevant variables on high-dimensional biological patterns using iterated weighted kernel functions.

    Directory of Open Access Journals (Sweden)

    Sergio Rojas-Galeano

    2008-03-01

    Full Text Available The analysis of complex proteomic and genomic profiles involves the identification of significant markers within a set of hundreds or even thousands of variables that represent a high-dimensional problem space. The occurrence of noise, redundancy or combinatorial interactions in the profile makes the selection of relevant variables harder.Here we propose a method to select variables based on estimated relevance to hidden patterns. Our method combines a weighted-kernel discriminant with an iterative stochastic probability estimation algorithm to discover the relevance distribution over the set of variables. We verified the ability of our method to select predefined relevant variables in synthetic proteome-like data and then assessed its performance on biological high-dimensional problems. Experiments were run on serum proteomic datasets of infectious diseases. The resulting variable subsets achieved classification accuracies of 99% on Human African Trypanosomiasis, 91% on Tuberculosis, and 91% on Malaria serum proteomic profiles with fewer than 20% of variables selected. Our method scaled-up to dimensionalities of much higher orders of magnitude as shown with gene expression microarray datasets in which we obtained classification accuracies close to 90% with fewer than 1% of the total number of variables.Our method consistently found relevant variables attaining high classification accuracies across synthetic and biological datasets. Notably, it yielded very compact subsets compared to the original number of variables, which should simplify downstream biological experimentation.

  7. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    Science.gov (United States)

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Calibration of Biokinetic and Biological Parameters for a Groundwater Bioremediation Model using Heuristics and Function Approximation Optimization

    Science.gov (United States)

    Mugunthan, P.; Shoemaker, C. A.; Regis, R. G.

    2003-12-01

    Heuristics and function approximation optimization methods were applied in calibrating biological and biokinetic parameters for a computationally expensive groundwater bioremediation model for engineered reductive dechlorination of chlorinated ethenes. Multi-species groundwater bioremediation models that use monod type kinetics are often not amenable to traditional derivative based optimization due to stiff biokinetic equations. The performance of three heuristic methods, Stochastic Greedy Search (GS), Real Genetic Algorithm (RGA), Derandomized Evolution Strategy (DES), and, Function Approximation Optimization based on Radial Basis Function (FA-RBF) were compared on three-dimensional hypothetical and field problems. GS was implemented so as to perform a more global search. Optimization results on hypothetical problem indicated that FA-RBF performed statistically significantly better than heuristic based evolutionary algorithms at a 10% significance level. Further, this particular implementation of GS performed well and proved superior to RGA. These heuristic methods and FA-RBF, with the exception of RGA, were applied to calibrate biological and biokinetic parameters using treatability test data for enhanced bioremediation at a Naval Air Station in Alameda Point, CA. All three methods performed well and identified similar solutions. The approximate simulation times for the hypothetical and real problems were 7 min and 2.5 hours respectively. Calibration of such computationally expensive models by heuristic and function approximation methods appears promising.

  9. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  10. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  11. Self-assembly and stability of double rosette nanostructures with biological functionalities

    NARCIS (Netherlands)

    ten Cate, M.G.J.; Omerovic, Merdan; Oshovsky, G.; Crego Calama, Mercedes; Reinhoudt, David

    2005-01-01

    The syntheses of calix[4]arene dimelamines that are functionalized with alkyl, aminoalkyl, ureido, pyridyl, carbohydrate, amino acid and peptide functionalities, and their self-assembly with barbituric acid or cyanuric acid derivatives into well-defined hydrogen-bonded nanostructures are described.

  12. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    Science.gov (United States)

    Goto, Hiromasa

    2014-03-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms.

  13. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2014-01-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms

  14. Superclusters : a search for novel structures and functions of biological iron-sulfur clusters

    NARCIS (Netherlands)

    Arendsen, A.F.

    1996-01-01


    Iron sulfur (Fe-S) proteins are found in a variety of organisms. They usually function in electron transport, but they may also be involved in other functions like gene regulation and Lewis acid catalysis. The structure and spectroscopic properties of Fe-S clusters holding one, two,

  15. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint...... motions. Design/methodology/approach – Each joint is driven by a pair of virtual agonist-antagonist mechanism (VAAM, i.e., passive components). The muscle-like functions as well as the variable joint compliance are simply achieved by tuning the damping coefficient of the VAAM. Findings – With the VAAM...... or torque sensing systems; thereby capable of implementing the model on small legged robots driven by, e.g., standard servo motors. Thus, the VAAM minimizes hardware and reduces system complexity. From this point of view, the model opens up another way of simulating muscle behaviors on artificial machines...

  16. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz

    2016-01-01

    power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from......Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...

  17. Primary cell culture of Echinococcus granulosus developed from the cystic germinal layer: biological and functional characterization.

    Science.gov (United States)

    Albani, Clara M; Elissondo, María Celina; Cumino, Andrea C; Chisari, Andrea; Denegri, Guillermo M

    2010-09-01

    Cell cultures of parasitic helminths are an invaluable tool for investigations of basic biological processes, as well as for development of improved chemotherapeutic agents and molecular interactions between host and parasite. We carried out a simple and efficient methodology to isolate Echinococcus granulosus germinal cells which were maintained for at least 4 months while cultivated in the presence of reducing agents and hormones. Microscopic analysis of the primary cell culture revealed the presence of cells with similar Echinococcus germinal cell morphology and behaviour. Population doubling time was estimated at 48 h, showing a rapid division rate. To discard possible host contamination, the specificity of the primary culture was tested by nested PCR, analyzing mdh gene expression and obtaining only one product with the expected size. We also studied the expression of specific E. granulosus proteins in primary cell culture. The novel and systematized method described here constitutes a powerful tool for investigations in cystic echinococcosis on biochemical and biological aspects related to the life cycle of the parasite and mechanisms of host-parasite interactions. This method also constitutes a powerful tool for the design of more efficient therapeutic alternatives. Copyright (c) 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  18. MicroRNA functional network in pancreatic cancer: From biology to ...

    Indian Academy of Sciences (India)

    2011-06-07

    Jun 7, 2011 ... Cellular pathways; genetic network; microRNA; pancreatic cancer; tumorigenic transformation; 3' untranslated region ... components of the complex functional pathway networks controlling important cellular processes, such as proliferation, development, differentiation, stress response' and apoptosis.

  19. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  20. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    Science.gov (United States)

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology

    Science.gov (United States)

    Schmitz, L.

    2016-01-01

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. PMID:26977068

  2. Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: Grafting of polyphenols extracted from grape skin

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Polyphenols, as one of the most important family of phytochemicals protective substances from grape fruit, possess various biological activities and health-promoting benefits, for example: inhibition of some degenerative diseases, cardiovascular diseases and certain types of cancers, reduction of plasma oxidative stress and slowing aging. The combination of polyphenols and biomaterials may have good potential to reach good bioavailability and controlled release, as well as to give biological signaling properties to the biomaterial surfaces. In this research, conventional solvent extraction was developed for obtaining polyphenols from dry grape skins. The Folin&Ciocalteu method was used to determine the amount of total polyphenols in the extracts. Surface functionalization of two bioactive glasses (SCNA and CEL2) was performed by grafting the extracted polyphenols on their surfaces. The effectiveness of the functionalization was tested by UV spectroscopy, which analyzes the amount of polyphenols in the uptake solution (before and after functionalization) and on solid samples, and XPS, which analyzes the presence of phenols on the material surface.

  3. Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments

    Directory of Open Access Journals (Sweden)

    de Marco Ario

    2008-07-01

    Full Text Available Abstract Structural characterization of proteins used in biological experiments is largely neglected. In most publications, the information available is totally insufficient to judge the functionality of the proteins used and, therefore, the significance of identified protein-protein interactions (was the interaction specific or due to unspecific binding of misfolded protein regions? or reliability of kinetic and thermodynamic data (how much protein was in its native form?. As a consequence, the results of single experiments might not only become questionable, but the whole reliability of systems biology, built on these fundaments, would be weakened. The introduction of Minimal Information concerning purified proteins to add as metadata to the main body of a manuscript would render straightforward the assessment of their functional and structural qualities and, consequently, of results obtained using these proteins. Furthermore, accepted standards for protein annotation would simplify data comparison and exchange. This article has been envisaged as a proposal for aggregating scientists who share the opinion that the scientific community needs a platform for Minimum Information for Protein Functionality Evaluation (MIPFE.

  4. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology.

    Science.gov (United States)

    Price, S A; Schmitz, L

    2016-04-05

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. © 2016 The Author(s).

  5. Functional outcomes of posterior vaginal wall repair and prespinous colpopexy with biological small intestinal submucosal (SIS) graft.

    Science.gov (United States)

    Madhu, Chendrimada; Cooke, Joanna; Harber, Penelope; Holmes, David

    2014-10-01

    Surgical management of posterior vaginal wall prolapse has variable functional outcomes. Synthetic and biological grafts are used to improve outcomes and reduce failures. The objective of this study was to determine the functional outcomes and its implications on patient-reported quality of life of a technique of posterior vaginal wall repair and prespinous colpopexy with biological small intestinal submucosal (SIS) graft in the management of posterior vaginal wall prolapse. This prospective cohort study was conducted in a urogynaecology subspecialty center in the UK. Women with moderate degree rectocele or more, with or without other compartmental prolapse underwent posterior vaginal wall repair and prespinous colpopexy with SIS graft over a 3-year period. ICIQ vaginal symptoms questionnaires were used pre-operatively and at 6 months post-operatively to assess functional outcomes. The Wilcoxon signed R test was used to analyze the results. 50 women underwent posterior repair with SIS graft (27 with concomitant procedures). There was a statistically significant improvement (p SIS graft is an effective surgical option for managing women with posterior vaginal wall prolapse with or without other concomitant compartmental defects.

  6. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    Science.gov (United States)

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2013-01-01

    We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA) of these extracellular vesicles. Based on current data, these vesicular components play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with cancer development, progression and therapeutic failures. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, signal pathway activation through growth factor/receptor transfer, chemoresistance, and genetic exchange. These tumor-derived extracellular vesicles not only to represent a central mediator of the tumor microenvironment, but their presence in the peripheral circulation may serve as a surrogate for tumor biopsies, enabling real-time diagnosis and disease monitoring. PMID:23908664

  7. The origin, function and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    Directory of Open Access Journals (Sweden)

    Douglas D. Taylor

    2013-07-01

    Full Text Available We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA of these extracellular vesicles. Based on current data, these vesicular components play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with cancer development, progression and therapeutic failures. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, signal pathway activation through growth factor/receptor transfer, chemoresistance, and genetic exchange. These tumor-derived extracellular vesicles not only to represent a central mediator of the tumor microenvironment, but their presence in the peripheral circulation may serve as a surrogate for tumor biopsies, enabling real-time diagnosis and disease monitoring.

  8. Functional Nanomaterials with Aggregation-Induced Emission Characteristics: Synthesis, Properties and Biological Applications

    Science.gov (United States)

    Kwok, Tsz Kin

    Fluorescent nanomaterials have great promise in bioanalysis and biotechnological applications because of their unique optical properties, high surface-to-volume ratio, and surface-modifiable quality. The development of fluorescent biosensors with high sensitivity, selectivity, and biocompatibility is of critical importance because it offers a direct visualization tool for the detection of biological macromolecules and the monitoring of biological events in living systems. Most of the conventional organic fluorophores, however, suffer from the self-quenching problem at high concentration or in the aggregated state. Such aggregation-cause quenching (ACQ) effect has greatly limited the scope of their bio-applications. Recently, our group discovered such a system, in which luminogen aggregation plays a constructive, instead of destructive, role in the light-emitting process. We have termed this abnormal phenomenon as "aggregation-induced emission" (AIE) and identified the restriction of intramolecular rotation as the main cause of the AIE effect. Attracted by the intriguing phenomenon and its fascinating perspectives, we have launched a new program directed towards the development of new AIE materials and exploration of their biological applications. In this work, a series of water-soluble AIE luminogens are designed and synthesized. Hydrophilic groups such as amino and sulfonate groups are incorporated into the AIE structures to impart them with good water solubility. Being practically non-emissive in water, these AIE luminogens are induced to emit intensely when bound to biomacromolecules, such as heparin, protamine and albumins, through hydrophobic and electrostatic interactions. Such light-up property enables the quantitation and visualization of biomacromolecules in aqueous solution and in electrophoretic gels. Incorporation of cleavable hydrophilic bioconjugates into AIE luminogens can enhance the specificity of the bioprobes. The bioprobes are nonluminscent in

  9. A Tricky Trait: Applying the Fruits of the "Function Debate" in the Philosophy of Biology to the "Venom Debate" in the Science of Toxinology.

    Science.gov (United States)

    Jackson, Timothy N W; Fry, Bryan G

    2016-09-07

    The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  10. The World of Virtual Exhibitions

    Directory of Open Access Journals (Sweden)

    Irena Eiselt

    2013-09-01

    Full Text Available EXTENDED ABSTRACTSpecial collections of the National and University Library (NUK hide a lot of items of precious value. The Slovenian cultural heritage is stored on paper or on other media as a part of the library’s Manuscripts, Incunabula and Rare Books Collection, Old Prints Collection, Maps and Pictorial Collection, Music Collection, Ephemera Collection, Serials Collection, and Slovenian Diaspora Publications Collection. Only a small part of the treasures is temporary revealed to the public on special exhibitions. The idea of virtual exhibitions of library treasures was born in 2005. The library aimed to exhibit precious items of special collections of high historical or artistic value. In 2008 the first two virtual exhibitions were created in-house offering access to the rich collections of old postcards of Ljubljana at the beginning of 20th century kept in the Maps and Pictorial Collection of NUK. They were soon followed by other virtual exhibitions. At the beginning they were organised in the same way as physical exhibitions, afterwards different programs were used for creation of special effects (for ex. 3D wall. About two years ago it was decided that the creation of virtual exhibitions will be simplified. Files of digitised and borndigital library materials in jpg format are imported to MS PowerPoint 2010. Each jpg file is now formatted by adding a frame, a description … to the slides which are saved as jpg files. The last step is the import of jpg files into Cooliris application used for NUK web exhibitions. In the paper the virtual exhibition design and creation, the technical point of view and criteria for the selection of exhibition content are explained following the example of the virtual exhibitions the Old Postcards of Ljubljana, Photo Ateliers in Slovenia, a collection of photographs Four Seasons by Fran Krašovec and photos of Post-Earthquake Ljubljana in 1895.

  11. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    ) and by production of fast sinking carbon-rich faecal pellets. Hence, the large schools of krill greatly influence the pelagic food web and the flux of organic matter in the sea. However, knowledge of the distribution and feeding biology in krill from northern areas is scarce, although of importance to get a better...... understanding of the marine ecosystems and food webs. This thesis aimed to gain more knowledge of krill in northern hemisphere and to study their trophic position and grazing impact in a sub-Arctic fjord. The project investigated i) species and population composition of krill in the area of Godthåbsfjord, SW...... assumed to be the main grazers in marine ecosystems. This suggests that krill could be and are - in the case of Godthåbsfjord - important grazers that deserve more attention in future monitoring and research programs...

  12. synthesis and characterization of some poly functionalized heterocyclic derivatives of expected biological activity

    International Nuclear Information System (INIS)

    El-sayed, M.S.

    2001-01-01

    The present work was aimed and designed to fulfil The following objectives : 1- Continuation of the effort done by our research group in the field of chemistry of pyridinethione derivatives and their biological activities. 2- Synthesis of several new heterocyclic derivatives containing N and/or S using the laboratory available reagents. 3- Establishment of the structures of the newly synthesized heterocyclic compounds by the data of IR, 1 H-NMR, mass spectra in addition to the elemental analysis. 4- Synthesis of some of these heterocyclic derivatives via alternative routs and this used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives. 5- study of the most probable mechanisms leading to the formation of the new heterocyclic derivatives. 6- The antimicrobial activity of some of the newly synthesized heterocyclic derivatives was tested against several types of organisms

  13. Changes in number and function of the lymphocyte populations as a biological indicator for ionizing radiation

    International Nuclear Information System (INIS)

    Dehos, A.; Hinz, G.; Schwarz, E.R.

    1986-01-01

    Siegal and Siegal reported that the number of immunoglobulin producing cells, especially after higher doses of ionizing radiation on isolated mononuclear cells decreases considerably. However, if non-irradiated B cells are cultivated with irradiated (16 Gy) T cells, a significant increase of immunoglobulin production due to the non-irradiated B cells can be observed. Siegal and Siegal described a similar result when they combined and cultivated non-irradiated with irradiated mononuclear cells. The immunoglobulin producing cells decreased in a lower and increased in a higher dose range. The two results can be explained by the fact that Tg cells which act as suppressor cells are relatively sensitive to radiation while Tm cells which are helper cells in this test are relatively resistant. According to these results, B lymphocytes are the most sensitive of the lymphocyte subpopulations. The aim of the project is to clarify whether the mentioned effects are suitable for 'biological dosimetry'. (orig./MG)

  14. The biology and function of extracellular vesicles in nasopharyngeal carcinoma (Review).

    Science.gov (United States)

    You, Bo; Shan, Ying; Bao, Lili; Chen, Jing; Yang, Liu; Zhang, Qicheng; Zhang, Wei; Zhang, Zhenxin; Zhang, Jie; Shi, Si; You, Yiwen

    2018-01-01

    Extracellular vesicles are a heterogeneous group of membrane-enclosed vesicles, which play an important role in intercellular communication. Increasing number of studies have shown that tumor-derived extracellular vesicles might be involved in the transfer of oncogenic cargo (proteins, lipids, messenger RNA, microRNA, non-coding RNAs and DNA) through which cancer cells could shape the tumor microenvironment and influence tumor progression. Nasopharyngeal carcinoma-derived extracellular vesicles have also reported to facilitate tumor proliferation, metastasis and immune escape. Moreover, nasopharyngeal carcinoma-derived extracellular vesicles might serve as biomarkers for early diagnosis and therapeutic targets. The present review provides information on the biological and clinical significance of extracellular vesicles in tumors, especially in nasopharyngeal carcinoma.

  15. Biological aspects and life table of Uroleucon ambrosiae (Thomas, 1878 as a function of temperature

    Directory of Open Access Journals (Sweden)

    Auad Alexander Machado

    2003-01-01

    Full Text Available The aphid Uroleucon ambrosiae (Thomas is considered a pest of hidroponically-grown lettuce, but basic and applied information on its control are scarce in Brazil. The aim of this study was to determine the effect of different temperatures on biological aspects and life history of U. ambrosiae (Thomas developing on hydroponic lettuce (Lactuca sativa L. crop. Newly emerged nymphs were placed on 4-cm discs of hydroponic lettuce, var. Verônica, which were maintained on 5-cm Petri dishes, at temperatures of 15, 20 and 25ºC and 14 h photophase, and inside a greenhouse, within micro-cages at room temperature. The duration of development in all nymphal stages varied inversely to temperature. Nymphs maintained at 20ºC and 25ºC, had similar development period. However, at fluctuating greenhouse temperatures (daily mean = 21ºC, different results were obtained, which was also true for the pre-reproductive, reproductive and post-reproductive periods. Daily and total fertilities at 20ºC were better in comparison to the other treatments. The highest mortality rate of aphids occurred under greenhouse conditions. The production of 1.28 nymphs per female per day, the time needed for the population to double in size (TD=2.77days, and the intrinsic rate of population increase (r m=0.25, were similar for in insects maintained at 20 and 25ºC. On the other hand, time interval between generations (T and the net reproductive rate (Ro were higher at 20ºC. In the greenhouse, even though T was similar to laboratory conditions at 20 and 25ºC, the R0, r m and l parameters were lower and TD was higher. Based on biological aspects, fertility and life expectancy tables, constant temperature of 20ºC is the most suitable for U. ambrosiae.

  16. Protein variety and functional diversity: Swiss-Prot annotation in its biological context.

    Science.gov (United States)

    Boeckmann, Brigitte; Blatter, Marie-Claude; Famiglietti, Livia; Hinz, Ursula; Lane, Lydie; Roechert, Bernd; Bairoch, Amos

    2005-01-01

    We all know that the dogma 'one gene, one protein' is obsolete. A functional protein and, likewise, a protein's ultimate function depend not only on the underlying genetic information but also on the ongoing conditions of the cellular system. Frequently the transcript, like the polypeptide, is processed in multiple ways, but only one or a few out of a multitude of possible variants are produced at a time. An overview on processes that can lead to sequence variety and structural diversity in eukaryotes is given. The UniProtKB/Swiss-Prot protein knowledgebase provides a wealth of information regarding protein variety, function and associated disorders. Examples for such annotation are shown and further ones are available at http://www.expasy.org/sprot/tutorial/examples_CRB.

  17. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  18. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors.

    Science.gov (United States)

    Pi, Fengmei; Vieweger, Mario; Zhao, Zhengyi; Wang, Shaoying; Guo, Peixuan

    2016-01-01

    Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.

  19. In vitro biocompatibility assessment of functionalized magnetite nanoparticles: biological and cytotoxicological effects.

    Science.gov (United States)

    Mbeh, D A; França, R; Merhi, Y; Zhang, X F; Veres, T; Sacher, E; Yahia, L

    2012-06-01

    In the biomedical field, nanomaterials have the potential for use in the targeted delivery of drugs in the human body and in the diagnosis and therapy of certain diseases. In the category of targeted delivery, magnetite (Fe(3)O(4)) nanoparticles have received much attention. As with any similar new therapy, when such nanoparticles are functionalized with chemical groups designed to permit the specific attachment of drugs, cytotoxicological testing is necessary before moving to animal models. Here, we consider several variously functionalized magnetite nanoparticles, including those prepared with (1) a monolayer of oleic acid (Fe(3)O(4)@OA), which is subsequently converted to (2) a shell of amine-containing silane (Fe(3)O(4)@NH(2)), (3) a shell of silica (Fe(3)O(4)@SiO(2)), and (4) a shell of amine-containing silane over a shell of silica (Fe(3)O(4)@SiO(2)@NH(2)). These latter three functionalities were evaluated for biocompatibility, cellular morphology, mitochondrial function (MTT assay), lactate dehydrogenase membrane leakage (LDH assay), and proinflammatory potential through enzyme linked immunosorbent assay (ELISA) for interleukin 6 (IL-6). Controlled tests were performed over a period of 72 h, with results showing LDH leakage and abnormal Il-6 secretion at high concentrations (>50 μg/mL). The tests showed that, in addition to the surface characteristics of the nanoparticles, both the nutrient medium and the time of suspension before exposure to cells also contribute to nanoparticle cytotoxicity. Copyright © 2012 Wiley Periodicals, Inc.

  20. The fine-grained metaphysics of artifactual and biological functional kinds

    NARCIS (Netherlands)

    Carrara, M.; Vermaas, P.E.

    2008-01-01

    In this paper we consider the emerging position in metaphysics that artifact functions characterize real kinds of artifacts. We analyze how it can circumvent an objection by David Wiggins (Sameness and substance renewed, 2001, 87) and then argue that this position, in comparison to expert judgments,

  1. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer.

    Science.gov (United States)

    Fasano, Alessio

    2011-01-01

    The primary functions of the gastrointestinal tract have traditionally been perceived to be limited to the digestion and absorption of nutrients and to electrolytes and water homeostasis. A more attentive analysis of the anatomic and functional arrangement of the gastrointestinal tract, however, suggests that another extremely important function of this organ is its ability to regulate the trafficking of macromolecules between the environment and the host through a barrier mechanism. Together with the gut-associated lymphoid tissue and the neuroendocrine network, the intestinal epithelial barrier, with its intercellular tight junctions, controls the equilibrium between tolerance and immunity to non-self antigens. Zonulin is the only physiological modulator of intercellular tight junctions described so far that is involved in trafficking of macromolecules and, therefore, in tolerance/immune response balance. When the finely tuned zonulin pathway is deregulated in genetically susceptible individuals, both intestinal and extraintestinal autoimmune, inflammatory, and neoplastic disorders can occur. This new paradigm subverts traditional theories underlying the development of these diseases and suggests that these processes can be arrested if the interplay between genes and environmental triggers is prevented by reestablishing the zonulin-dependent intestinal barrier function. This review is timely given the increased interest in the role of a "leaky gut" in the pathogenesis of several pathological conditions targeting both the intestine and extraintestinal organs.

  2. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems.

    Science.gov (United States)

    Ruiz-Mirazo, Kepa; Briones, Carlos; de la Escosura, Andrés

    2017-04-01

    In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided. © 2017 The Authors.

  3. Biology, behaviour and functional response of Cydnocoris gilvus Brum. (Heteroptera: Reduviidae: Harpactorinae a predator of Tea Mosquito Bug (Helopeltis antonii Sign. on cashew in India

    Directory of Open Access Journals (Sweden)

    K.K. Srikumar

    2014-06-01

    Full Text Available Helopeltis spp. (Hemiptera: Miridae are major sucking pests of cashew (Anacardium occidentale L. in India. Cydnocoris gilvus Brum. (Heteroptera: Reduviidae: Harpactorinae is recorded as a potential predator of Helopeltis spp. Biology, mating behaviour and functional response of C. gilvus were studied by rearing in the laboratory (temperature 26-28 0C; relative humidity 89-94 % with wax moth, Galleria mellonella, larvae. Based on laboratory rearing, the fecundity was 56.33 eggs in 8.67 batches per female. The average stadial period was 37.3 days, with a maximum of 11 days for V instar and a minimum of 4.5 days for III instars. C. gilvus took 45.5 days to complete a generation. The innate capacity of natural increase was 0.07 with a gross reproduction of 67.8 females per female. The adult exhibited a pin and jab mode of predation in a sequence of actions. The sequential action of mating comprised arousal (1.32 min, approach (12.30 min, riding over (140.48 min and copulation (85.40 min. The predator responded to increasing prey density by killing more prey than at lower prey densities

  4. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity.

    Science.gov (United States)

    Majed, Nehreen; Chernenko, Tatyana; Diem, Max; Gu, April Z

    2012-05-01

    This study proposed and demonstrated the application of a new Raman microscopy-based method for metabolic state-based identification and quantification of functionally relevant populations, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in enhanced biological phosphorus removal (EBPR) system via simultaneous detection of multiple intracellular polymers including polyphosphate (polyP), glycogen, and polyhydroxybutyrate (PHB). The unique Raman spectrum of different combinations of intracellular polymers within a cell at a given stage of the EBPR cycle allowed for its identification as PAO, GAO, or neither. The abundance of total PAOs and GAOs determined by Raman method were consistent with those obtained with polyP staining and fluorescence in situ hybridization (FISH). Different combinations and quantities of intracellular polymer inclusions observed in single cells revealed the distribution of different sub-PAOs groups among the total PAO populations, which exhibit phenotypic and metabolic heterogeneity and diversity. These results also provided evidence for the hypothesis that different PAOs may employ different extents of combination of glycolysis and TCA cycle pathways for anaerobic reducing power and energy generation and it is possible that some PAOs may rely on TCA cycle solely without glycolysis. Sum of cellular level quantification of the internal polymers associated with different population groups showed differentiated and distributed trends of glycogen and PHB level between PAOs and GAOs, which could not be elucidated before with conventional bulk measurements of EBPR mixed cultures. © 2012 American Chemical Society

  5. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: crystal structure and biological functions.

    Science.gov (United States)

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-03-04

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.

  6. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  7. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    Science.gov (United States)

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  9. [Effects of ADAM28 on biological functions of human dental pulp stem cells].

    Science.gov (United States)

    Zhao, Zheng; Liu, Hong-chen; E, Ling-ling; Wang, Yi; Wang, Dong-sheng

    2010-06-01

    To investigate the effects of a disintegrin and metalloproteinase 28 (ADAM28) on proliferation, differentiation and apoptosis of human dental pulp stem cells (HDPSCs) and the possible mechanism. Firstly, HDPSCs were isolated and cultured in vitro and identified. ADAM28 eukaryotic expression plasmid was constructed via gene rebuilt technique and transfected into HDPSCs. Then MTT chromatometry, enzyme dynamics and flow cytometry (FCM) techniques were performed to detect the effects of ADAM28 on biological characteristics of HDPSCs. Immunocytochemical and image analysis techniques were used to determine the influence of ADAM28 on HDPSCs expressing dentin sialophosphoprotein (DSPP), bone sialoprotein (BSP) and osteopontin (OPN). Statistical significance was assessed by the Student-Newman-Keuls (SNK) test with SPSS 13.0 software package. ADAM28 eukaryotic plasmid was constructed and transfected into HDPSCs for 48 hours successfully. In ADAM28 eukaryotic plasmid group, proliferation activity and index of HDPSCs were lower than those of pcDNA3.1(+) group and untransfected group significantly.Alkaline phosphatase (ALP) secretion level and percentage of apoptotic cells went up remarkly. Significant difference was detected between eukaryotic plasmid group and other groups (P<0.05). The expression level of DSPP in HDPSCs elevated significantly (P<0.05). ADAM28 could inhibit HDPSCs proliferation, promote ALP secretion activity and DSPP expression in HDPSCs and induce HDPSCs apoptosis significantly.

  10. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    Science.gov (United States)

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  11. Bridging the molecular and biological functions of the oxysterol-binding protein family.

    Science.gov (United States)

    Pietrangelo, Antonietta; Ridgway, Neale D

    2018-03-13

    Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.

  12. Functionalization of Self-Organized Nanoparticles for Biological Targeting and Active Drug Release

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming

    Functional nanomaterials have attracted much attention due to the unique properties of these nanoconstructs. In recognition of the huge potential within this field, much research has been devoted to develop sophisticated nanoparticles for medical diagnostics, sensors, contrast agents, vaccines...... at the surface of the nanoconstructs, resulting in anionic nanoparticles with long circulation properties in xenograft HT1080 tumor‐bearing mice. Charge reversal by peptide hydrolysis was achieved in the presence of proteases, resulting in cationic particles which were readily internalized by cells in vitro...... of functionalized liposomes were slower than the solution phase counterpart and often far from quantitative. The effect of active targeting with 64Cu octreotate liposomes targeting the somatostatin receptor 2 was evaluated to improve tumor bioimaging for diagnostic applications, using positron emission tomography...

  13. Biological Chemistry and Functionality of Protein Sulfenic Acids and Related Thiol Modifications

    Science.gov (United States)

    Devarie-Baez, Nelmi O.; Silva Lopez, Elsa I.; Furdui, Cristina M.

    2016-01-01

    Selective modification of proteins at cysteine residues by reactive oxygen, nitrogen or sulfur species formed under physiological and pathological states is emerging as a critical regulator of protein activity impacting cellular function. This review focuses primarily on protein sulfenylation (-SOH), a metastable reversible modification connecting reduced cysteine thiols to many products of cysteine oxidation. An overview is first provided on the chemistry principles underlining synthesis, stability and reactivity of sulfenic acids in model compounds and proteins, followed by a brief description of analytical methods currently employed to characterize these oxidative species. The following chapters present a selection of redox-regulated proteins for which the -SOH formation was experimentally confirmed and linked to protein function. These chapters are organized based on the participation of these proteins in the regulation of signaling, metabolism and epigenetics. The last chapter discusses the therapeutic implications of altered redox microenvironment and protein oxidation in disease. PMID:26340608

  14. 2005 USSOCOM Chemical, Biological, Radiological Conference and Exhibition

    Science.gov (United States)

    2005-12-08

    SYSTEM [R-HoSS] CCS Capabilities MUNITIONS ANALYTICAL COMPLIANCE SUITE [MACS] ISO 14001 EMS Web-based ISO 14001 System reduces implementation time and...cost by 300-400 manhours ISO 14001 draws regulatory data (Air, Water, etc.) to expedite compliance, highlight conformance and reduce wastestreams...of Effort Between Local/State/Federal, COL Thomas D. Hook, USA, National Guard Bureau CBRN Detectors for Early Warning of CBRN Events in Transit

  15. When Biology & Physics Meet Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    Politicians have come to realize the necessity of uniting the efforts of scientists. This is clear from the address of the President of Georgia Eduard Shevardnadze to the JINR scientists: "The idea of collective participation in fundamental research is not only valuable per se. It is another opportunity for harmonious co-operation of representatives of different peoples and scientific schools in the single process of evolution of the world civilization."

  16. When Biology & Physics Meet Exhibition Science Bringing Nations Together

    CERN Multimedia

    1997-01-01

    Politicians have come to realize the necessity of uniting the efforts of scientists. This is clear from the address of the President of Georgia E Shevardnadze to the JINR scientists : "The idea of collective participation in fundamental research is not only valuable per se. It is another opportunity for harmonious co-operation of representatives of different peoples and scientific schools in the single process of evolution of the world civilisation".

  17. Surface functionalization of bioactive glasses with natural molecules of biological significance

    OpenAIRE

    Zhang, Xin

    2014-01-01

    Natural or artificial materials used for replacement or supplement the functions of living tissues, termed as biomaterials, may be bioinert (i.e. alumina and zorconia,) resorbable (i.e. tricalcium phosphate), bioactive (i.e. hydroxyapatite, bioactive glasses, and glass-ceramics) or porous for tissue ingrowth (i.e. hydroxyapatite-coated metals). Among all the biomaterials, bioactive glass and glass-ceramics are widely used in orthopedic and dental applications and are being developed for tissu...

  18. Intersection of transfer cells with phloem biology – broad evolutionary trends, function and induction

    Directory of Open Access Journals (Sweden)

    Felicity eAndriunas

    2013-07-01

    Full Text Available Transfer cells (TCs are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of

  19. Biological and functional diversity of bird communities in natural and human modified habitats in Northern Flank of Knuckles Mountain Forest Range, Sri Lanka

    OpenAIRE

    KALYA SUBASINGHE; AMILA P. SUMANAPALA

    2014-01-01

    Subasinghe K, Sumanapala AP. 2014. Biological and functional diversity of bird communities in natural and human modified habitats in Northern Flank of Knuckles Mountain Forest Range, Sri Lanka. Biodiversitas 15: 200-205. The Knuckles Mountain Forest Range (KMFR) has a complex mosaic of natural and human modified habitats and the contribution of these habitats to the biological and functional diversities has not been deeply studied. Present study investigated both of these diversities in five ...

  20. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    Science.gov (United States)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  1. The biological mechanisms and behavioral functions of opsin-based light detection by the skin

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    2016-08-01

    Full Text Available Light detection not only forms the basis of vision (via visual retinal photoreceptors, but can also occur in other parts of the body, including many non-rod/non-cone ocular cells, the pineal complex, the deep brain, and the skin. Indeed, many of the photopigments (an opsin linked to a light-sensitive 11-cis retinal chromophore that mediate color vision in the eyes of vertebrates are also present in the skin of animals such as reptiles, amphibians, crustaceans and fishes (with related photoreceptive molecules present in cephalopods, providing a localized mechanism for light detection across the surface of the body. This form of non-visual photosensitivity may be particularly important for animals that can change their coloration by altering the dispersion of pigments within the chromatophores (pigment containing cells of the skin. Thus, skin coloration may be directly color matched or tuned to both the luminance and spectral properties of the local background environment, thereby facilitating behavioral functions such as camouflage, thermoregulation, and social signaling. This review examines the diversity and sensitivity of opsin-based photopigments present in the skin and considers their putative functional roles in mediating animal behavior. Furthermore, it discusses the potential underlying biochemical and molecular pathways that link shifts in environmental light to both photopigment expression and chromatophore photoresponses. Although photoreception that occurs independently of image formation remains poorly understood, this review highlights the important role of non-visual light detection in facilitating the multiple functions of animal coloration.

  2. Photowalk Exhibition opens at Microcosm

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    The winning photographs from the 2010 Global Particle Physics Photowalk competition will go on display at Microcosm from 11 February to 2 April. The exhibition is part of a global photography event taking place over three continents, with Photowalk exhibitions opening simultaneously at Fermilab in the US, KEK in Japan and here at CERN.   DESY wire chamber - First place people's choice; second place global jury competition. Photographer: Hans-Peter Hildebrandt  If you were one of the 1,300 photography lovers who voted in last year’s Photowalk competition, this exhibition is your chance to see the winning entries in print. The exhibition will take place in the downstairs gallery of Microcosm, overlooking the garden. 15 photographs will be on display, with each of the laboratories that participated in Photowalk represented by their 3 winning entries. Among them will be the “people’s choice” sunburst photo of a particle detector at DESY (Photo 1), and...

  3. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

    Science.gov (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio

    2005-04-01

    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  4. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes.

    Science.gov (United States)

    Paatero, Ilkka; Casals, Eudald; Niemi, Rasmus; Özliseli, Ezgi; Rosenholm, Jessica M; Sahlgren, Cecilia

    2017-08-21

    Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH 2 -MSNs), polyethyleneimine (PEI-MSNs), succinic acid (SUCC-MSNs) or polyethyleneglycol (PEG-MSNs) functionalized MSNs. Toxicity was assessed by viability and cardiovascular function. NH 2 -MSNs, SUCC-MSNs and PEG-MSNs were well tolerated, 50 µg/ml PEI-MSNs induced 100% lethality 48 hours post fertilization (hpf). Dechoroniated embryos were more sensitive and 10 µg/ml PEI-MSNs reduced viability to 5% at 96hpf. Sensitivity to PEG- and SUCC-, but not NH 2 -MSNs, was also enhanced. Typically cardiovascular toxicity was evident prior to lethality. Confocal microscopy revealed that PEI-MSNs penetrated into the embryos whereas PEG-, NH2- and SUCC-MSNs remained aggregated on the skin surface. Direct exposure of inner organs by microinjecting NH 2 -MSNs and PEI-MSNs demonstrated that the particles displayed similar toxicity indicating that functionalization affects the toxicity profile by influencing penetrance through biological barriers. The data emphasize the need for careful analyses of toxicity mechanisms in relevant models and constitute an important knowledge step towards the development of safer and sustainable nanotherapies.

  5. Biological functions of hCG and hCG-related molecules

    Science.gov (United States)

    2010-01-01

    Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle. PMID:20735820

  6. Biological functions of hCG and hCG-related molecules

    Directory of Open Access Journals (Sweden)

    Cole Laurence A

    2010-08-01

    Full Text Available Abstract Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle.

  7. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  8. Globe exhibit wins international acclaim

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    The Globe’s “Universe of Particles” exhibition has recently received four prestigious awards for its avant-garde design. This external praise is great encouragement for the CERN exhibitions currently on the drawing board.   The Universe of Particles exhibition has won 4 awards for its avant-garde design. Back in 2008, the design company Atelier Brückner was presented with a challenge: to design the layout of a new permanent exhibition for CERN, one that would epitomize both the Organization and its research. The brief was concise but complex: the exhibit had to be symbolic of the Organization, use modern technology, engage and immerse visitors, and, preferably, use touch-screen technology. With the help of IArt, an interactive technology firm, and based on the content provided by CERN’s Education Group, Atelier Brückner developed the “Universe of Particles” exhibit as it is today. Its principal concept centred on the s...

  9. Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Thorwarth, Daniela [Tuebingen Univ. (Germany). Section for Biomedical Physics; Notohamiprodjo, Mike [Tuebingen Univ. (Germany). Dept. of Diagnostic and Interventional Radiology; Zips, Daniel; Mueller, Arndt-Christan [Tuebingen Univ. (Germany). Dept. of Radiation Oncology

    2017-05-01

    To increase tumour control probability (TCP) in prostate cancer a method was developed integrating multi-parametric functional and biological information into a dose painting treatment plan aiming focal dose-escalation to tumour sub-volumes. A dose-escalation map was derived considering individual, multi-parametric estimated tumour aggressiveness. Multi-parametric functional imaging (MRI, Choline-/PSMA-/FMISO-PET/CT) was acquired for a high risk prostate cancer patient with a high level of tumour load (cT3b cN0 cM0) indicated by subtotal involvement of prostate including the right seminal vesicle and by PSA-level >100. Probability of tumour presence was determined by a combination of multi-parametric functional image information resulting in a voxel-based map of tumour aggressiveness. This probability map was directly integrated into dose optimization in order to plan for inhomogeneous, biological imaging based dose painting. Histograms of the multi-parametric prescription function were generated in addition to a differential histogram of the planned inhomogeneous doses. Comparison of prescribed doses with planned doses on a voxel level was realized using an effective DVH, containing the ratio of prescribed vs. planned dose for each tumour voxel. Multi-parametric imaging data of PSMA, Choline and FMISO PET/CT as well as ADC maps derived from diffusion weighted MRI were combined to an individual probability map of tumour presence. Voxel-based prescription doses ranged from 75.3 Gy up to 93.4 Gy (median: 79.6 Gy), whereas the planned dose painting doses varied only between 72.5 and 80.0 Gy with a median dose of 75.7 Gy. However, inhomogeneous voxel-based dose prescriptions can only be implemented into a treatment plan until a certain level. Multi-parametric probability based dose painting in prostate cancer is technically and clinically feasible. However, detailed calibration functions to define the necessary probability functions need to be assessed in future

  10. The Functional Genomics Network in the evolution of biological text mining over the past decade.

    Science.gov (United States)

    Blaschke, Christian; Valencia, Alfonso

    2013-03-25

    Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications.

    Science.gov (United States)

    Dhar, Manoj K; Sharma, Munish; Bhat, Archana; Chrungoo, Nikhil K; Kaul, Sanjana

    2017-11-01

    Saffron is considered to be the costliest spice of the world. It has been regarded as highly valued medicinal plant in Ayurveda to treat various ailments. Over the past few years, considerable interest has developed in saffron because of its anticancer, antimutagenic, antioxidant and immunomodulatory properties. Saffron's colour, bitter taste and aroma are its three main and peculiar characteristics, which are conferred by three chemicals namely: crocin, picrocrocin and safranal, respectively. The present review focuses on recent research/progress made in saffron in the area of functional genomics and highlights the potential of several genes and transcription factors involved in carotenoid/apocarotenoid pathway and responsible for flavour and aroma of saffron. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Impact of AT2-receptor stimulation on vascular biology, kidney function, and blood pressure

    DEFF Research Database (Denmark)

    Danyel, L.A.; Schmerler, P.; Paulis, L.

    2013-01-01

    angiotensin II) and with relevance for blood pressure (BP) regulation or hypertensive end-organ damage. These data will include studies on vasodilation/vasoconstriction in isolated resistance arteries ex vivo, studies on kidney function, studies on vascular remodeling, and studies that measured the net effect...... of AT2R stimulation on BP in vivo. Current data indicate that although AT2R stimulation causes vasodilation ex vivo and promotes natriuresis, it does not alter BP levels in vivo acutely - at least as long as there is no additional low-dose blockade of AT1R. However, AT2R stimulation alone is able......, but that this new future drug class may be beneficial in combination with established antihypertensives for the treatment of hypertension with improved protection from end-organ damage....

  13. Venus Kinase Receptors: prospects in signalling and biological functions of these invertebrate receptors

    Directory of Open Access Journals (Sweden)

    Colette eDissous

    2014-05-01

    Full Text Available Venus Kinase Receptors (VKRs form a family of invertebrate receptor tyrosine kinases (RTKs initially discovered in the parasitic platyhelminth Schistosoma mansoni. VKRs are single transmembrane receptors which contain an extracellular Venus Flytrap (VFT structure similar to the ligand binding domain of G Protein Coupled Receptors of class C, and an intracellular Tyrosine Kinase domain close to that of Insulin Receptors. VKRs are found in a large variety of invertebrates from cnidarians to echinoderms, and are highly expressed in larval stages and in gonads, suggesting a role of these proteins in embryonic and larval development as well as in reproduction. Vkr gene silencing could demonstrate the function of these receptors in oogenesis as well as in spermatogenesis in Schistosoma .mansoni. VKRs are activated by amino-acids, and highly responsive to arginine. As many other RTKs, they form dimers when activated by ligands and induce intracellular pathways involved in protein synthesis and cellular growth, such as MAPK and PI3K/Akt/S6K pathways. VKRs are not present in vertebrates, nor in some invertebrate species. Questions remain open about the origin of this little-known RTK family in evolution and its role in emergence and specialization of Metazoa. What is the meaning of maintenance or loss of VKR in some phyla or species in terms of development and physiological functions? The presence of VKRs in invertebrates of economical and medical importance, such as pests, vectors of pathogens and platyhelminth parasites, and the implication of these RTKs in gametogenesis and reproduction processes are valuable reasons to consider VKRs as interesting targets in new programs for eradication/ control of pests and infectious diseases, with the main advantage in the case of parasite targeting that VKR counterparts are absent from the vertebrate host kinase panel.

  14. Biophysical analyses of human resistin: oligomer formation suggests novel biological function.

    Science.gov (United States)

    Aruna, Battu; Islam, Asimul; Ghosh, Sudip; Singh, Anil K; Vijayalakshmi, Malladi; Ahmad, Faizan; Ehtesham, Nasreen Z

    2008-11-25

    Resistin, a small secreted peptide initially identified as a link between obesity and diabetes in mice, was shown to be involved in mediating inflammation in humans. We had shown earlier that recombinant human resistin has a tendency to form aggregates by formation of inter/intramolecular disulfide linkages and that it undergoes a concentration-dependent conformational change in secondary structure from alpha-helical to beta-sheet form. Here we report that this change in secondary structural conformation is due to the increase in the oligomeric form of human resistin as a function of protein concentration. Gel filtration analysis under different conditions further demonstrated that recombinant human resistin exists as a mixture of oligomer and trimer but is converted to a mixture of monomer and oligomer in the presence of 100 mM NaCl. We show that while the trimeric form of human resistin is stable to urea-induced denaturation, it is highly susceptible to NaCl and NaF, indicating the importance of ionic interactions in stabilization of trimer. In addition, urea was able to destabilize the oligomers indicating the involvement of hydrophobic interactions in oligomerization. Ionic as well as hydrophobic interactions stabilize the monomeric human resistin. Our data suggest that human resistin exists predominantly as oligomer and trimer in vitro. The oligomeric form of human resistin shows more potent effect on stimulation of proinflammatory cytokines. Therefore, it is very tempting to propose that the structural conformation of resistin may be involved in maintaining the very fine balance in regulation of macrophage function for successful response to a variety of pathological conditions.

  15. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication.

    Science.gov (United States)

    Cousins, Emily; Nicholas, John

    2014-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.

  16. Insights into functional genes and taxonomical/phylogenetic diversity of microbial communities in biological heap leaching system and their correlation with functions.

    Science.gov (United States)

    Xiao, Yunhua; Liu, Xueduan; Liang, Yili; Niu, Jiaojiao; Zhang, Xian; Ma, Liyuan; Hao, Xiaodong; Gu, Yabin; Yin, Huaqun

    2016-11-01

    Although the taxonomical/phylogenetic diversity of microbial communities in biological heap leaching systems has been investigated, the diversity of functional genes was still unclear, and, especially, the differentiation and the relationships of diversity and functions of microbial communities in leaching heap (LH) and leaching solution (LS) were also still unclear. In our study, a functional gene array (GeoChip 5.0) was employed to investigate the functional gene diversity, and 16S rRNA gene sequencing was used to explore the taxonomical/phylogenetic diversity of microbial communities in LH and LS subsystems of Dexing copper mine (Jiangxi, China). Detrended correspondence analysis (DCA) showed that both functional gene structure and taxonomical/phylogenetic structure of microbial communities were significantly different between LH and LS. Signal intensities of genes, including genes for sulfur oxidation (e.g., soxB), metal homeostasis (e.g., arsm), carbon fixation (e.g., rubisco), polyphosphate degradation (e.g., ppk), and organic remediation (e.g., hydrocarbons) were significantly higher in LH, while signal intensities of genes for carbon degradation (e.g., amyA), polyphosphate synthesis (e.g., ppx), and sulfur reduction (e.g., dsrA) were significantly higher in LS. Further inspection revealed that microbial communities in LS and LH were dominated by Acidithiobacillus and Leptospirillum. However, rare species were relatively higher abundant in LH. Additionally, diversity index of functional genes was significantly different in LS (9.915 ± 0.074) and LH (9.781 ± 0.165), and the taxonomical/phylogenetic diversity index was also significantly different in LH (4.398 ± 0.508) and LS (3.014 ± 0.707). Functional tests, including sulfur-oxidizing ability, iron-oxidizing ability, and pyrite bioleaching ability, showed that all abilities of microbial communities were significantly stronger in LH than those in LS. Further studies found that most key genes (e

  17. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments.

  18. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  19. Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Directory of Open Access Journals (Sweden)

    Sonja Entringer

    2012-01-01

    Full Text Available Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition, on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.

  20. New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Alemany, Silvia; Ribasés, Marta; Vilor-Tejedor, Natàlia; Bustamante, Mariona; Sánchez-Mora, Cristina; Bosch, Rosa; Richarte, Vanesa; Cormand, Bru; Casas, Miguel; Ramos-Quiroga, Josep A; Sunyer, Jordi

    2015-09-01

    Attention deficit is one of the core symptoms of the attention-deficit/hyperactivity disorder (ADHD). However, the specific genetic variants that may be associated with attention function in adult ADHD remain largely unknown. The present study aimed to identifying SNPs associated with attention function in adult ADHD and tested whether these associations were enriched for specific biological pathways. Commissions, hit-reaction time (HRT), the standard error of HRT (HRTSE), and intraindividual coefficient variability (ICV) of the Conners Continuous Performance Test (CPT-II) were assessed in 479 unmedicated adult ADHD individuals. A Genome-Wide Association Study (GWAS) was conducted for each outcome and, subsequently, gene set enrichment analyses were performed. Although no SNPs reached genome-wide significance (P association with the CPT outcomes (P associated SNP was located in the SORCS2 gene (P = 3.65E-07), previously associated with bipolar disorder (BP), Alzheimer disease (AD), and brain structure in elderly individuals. We detected other genes suggested to be involved in synaptic plasticity, cognitive function, neurological and neuropsychiatric disorders, and smoking behavior such as NUAK1, FGF20, NETO1, BTBD9, DLG2, TOP3B, and CHRNB4. Also, several of the pathways nominally associated with the CPT outcomes are relevant for ADHD such as the ubiquitin proteasome, neurodegenerative disorders, axon guidance, and AD amyloid secretase pathways. To our knowledge, this is the first GWAS and pathway analysis of attention function in patients with persistent ADHD. Overall, our findings reinforce the conceptualization of attention function as a potential endophenotype for studying the molecular basis of adult ADHD. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function.

    Science.gov (United States)

    Bajaj, Jasmohan S; Cox, I Jane; Betrapally, Naga S; Heuman, Douglas M; Schubert, Mitchell L; Ratneswaran, Maiyuran; Hylemon, Phillip B; White, Melanie B; Daita, Kalyani; Noble, Nicole A; Sikaroodi, Masoumeh; Williams, Roger; Crossey, Mary M E; Taylor-Robinson, Simon D; Gillevet, Patrick M

    2014-11-15

    Proton pump inhibitors (PPI) have been associated with infectious complications in cirrhosis, but their impact on distal gut microbiota composition and function is unclear. We aimed to evaluate changes in stool microbiota composition and function in patients with cirrhosis and healthy controls after omeprazole therapy. Both 15 compensated cirrhotic patients and 15 age-matched controls underwent serum gastrin measurement, stool microbiota profiling with multitagged pyrosequencing, and urinary metabolic profiling with NMR spectroscopy to assess microbial cometabolites before/after a 14-day course of 40 mg/day omeprazole under constant diet conditions. Results before (pre) and after PPI were compared in both groups, compared with baseline by systems biology techniques. Adherence was >95% without changes in diet or MELD (model for end-stage liver disease) score during the study. Serum gastrin concentrations significantly increased after PPI in cirrhosis (pre 38.3 ± 35.8 vs. 115.6 ± 79.3 pg/ml P microbiota change was seen in both controls and cirrhosis after omeprazole (QIIME P microbiota shift and functional change in the distal gut in patients with compensated cirrhosis that could set the stage for bacterial overgrowth. Copyright © 2014 the American Physiological Society.

  2. Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology.

    Science.gov (United States)

    Donner, Erica; Punshon, Tracy; Guerinot, Mary Lou; Lombi, Enzo

    2012-04-01

    Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus for phytoremediation, crop biofortification and food security research. Recent advances in X-ray focussing optics and fluorescence detection have greatly improved the potential to use synchrotron techniques in plant science research. With use of methods such as micro X-ray fluorescence mapping, micro computed tomography and micro X-ray absorption near edge spectroscopy, metal(loids) can be imaged in vivo in hydrated plant tissues at submicron resolution, and laterally resolved metal(loid) speciation can also be determined under physiologically relevant conditions. This article focuses on the benefits of combining molecular biology and synchrotron-based techniques. By using molecular techniques to probe the location of gene expression and protein production in combination with laterally resolved synchrotron techniques, one can effectively and efficiently assign functional information to specific genes. A review of the state of the art in this field is presented, together with examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. The article concludes with a summary of the technical challenges still remaining for synchrotron-based hard X-ray plant science research, particularly those relating to subcellular level research.

  3. Application of Symmetry Adapted Function Method for Three-Dimensional Reconstruction of Octahedral Biological Macromolecules

    Directory of Open Access Journals (Sweden)

    Songjun Zeng

    2010-01-01

    Full Text Available A method for three-dimensional (3D reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N =0.1,0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.

  4. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    Science.gov (United States)

    Michaelian, K.

    2012-08-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  5. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  6. Biological functions of selenium and its potential influence on Parkinson's disease

    Directory of Open Access Journals (Sweden)

    JOEL H. ELLWANGER

    2016-01-01

    Full Text Available ABSTRACT Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.

  7. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2012-08-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  8. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  9. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    Science.gov (United States)

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Recent insights into the biological functions of liver fatty acid binding protein 1

    Science.gov (United States)

    Wang, GuQi; Bonkovsky, Herbert L.; de Lemos, Andrew; Burczynski, Frank J.

    2015-01-01

    Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency). PMID:26443794

  11. Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions.

    Science.gov (United States)

    Hark, Amy T; Vlachonasios, Konstantinos E; Pavangadkar, Kanchan A; Rao, Sumana; Gordon, Hillary; Adamakis, Ioannis-Dimosthenis; Kaldis, Athanasios; Thomashow, Michael F; Triezenberg, Steven J

    2009-02-01

    Histone acetylation is an example of covalent modification of chromatin structure that has the potential to regulate gene expression. Gcn5 is a prototypical histone acetyltransferase that associates with the transcriptional coactivator Ada2. In Arabidopsis, two genes encode proteins that resemble yeast ADA2 and share approximately 45% amino acid sequence identity. We previously reported that plants harboring a T-DNA insertion in the ADA2b gene display a dwarf phenotype with developmental defects in several organs. Here we describe T-DNA insertion alleles in the ADA2a gene, which result in no dramatic growth or developmental phenotype. Both ADA2a and ADA2b are expressed in a variety of plant tissues; moreover, expression of ADA2a from a constitutive promoter fails to complement the ada2b-1 mutant phenotype, consistent with the hypothesis that the two proteins have distinct biochemical roles. To further probe the cellular roles of ADA2a and ADA2b, we studied the response of the transcriptional coactivator mutants to abiotic stress. Although ada2b seedlings display hypersensitivity to salt and abscisic acid and altered responses to low temperature stress, the responses of ada2a seedlings to abiotic stress generally parallel those of wildtype plants. Intriguingly, ada2a;ada2b double mutant plants display an intermediate, gcn5-like phenotype, suggesting that ADA2a and ADA2b each work independently with GCN5 to affect genome function in Arabidopsis.

  12. Structure and Biological Function of the RNA Pyrophosphohydrolase BdRppH from Bdellovibrio bacteriovorus

    Energy Technology Data Exchange (ETDEWEB)

    Messing, S.; Gabelli, S; Liu, Q; Celesnik, H; Belasco, J; Pineiro, S; Amzel, L

    2009-01-01

    Until recently, the mechanism of mRNA decay in bacteria was thought to be different from that of eukaryotes. This paradigm changed with the discovery that RppH (ORF176/NudH/YgdP), an Escherichia coli enzyme that belongs to the Nudix superfamily, is an RNA pyrophosphohydrolase that initiates mRNA decay by cleaving pyrophosphate from the 5?-triphosphate. Here we report the 1.9 A resolution structure of the Nudix hydrolase BdRppH from Bdellovibrio bacteriovorus, a bacterium that feeds on other Gram-negative bacteria. Based on the structure of the enzyme alone and in complex with GTP-Mg2+, we propose a mode of RNA binding similar to that of the nuclear decapping enzyme from Xenopus laevis, X29. In additional experiments, we show that BdRppH can indeed function in vitro and in vivo as an RNA pyrophosphohydrolase. These findings set the basis for the identification of possible decapping enzymes in other bacteria.

  13. RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Lluis Morey

    2013-01-01

    Full Text Available The Polycomb repressive complex 1 (PRC1 is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs, two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive. At the molecular level, Cbx7 is necessary for recruitment of Ring1B to chromatin, whereas RYBP enhances the PRC1 enzymatic activity. Genes occupied by RYBP show lower levels of Ring1B and H2AK119ub and are consequently more highly transcribed than those bound by Cbx7. At the functional level, we show that genes occupied by RYBP are primarily involved in the regulation of metabolism and cell-cycle progression, whereas those bound by Cbx7 predominantly control early-lineage commitment of ESCs. Altogether, our results indicate that different PRC1 subtypes establish a complex pattern of gene regulation that regulates common and nonoverlapping aspects of ESC pluripotency and differentiation.

  14. The need for the incorporation of phylogeny in the measurement of biological diversity, with special reference to ecosystem functioning research.

    Science.gov (United States)

    King, Ian

    2009-01-01

    Defining and measuring biodiversity is an important research area in biology, with very interesting theoretical and applied aspects. Numerous definitions have been proposed, and these definitions of biodiversity influence how it is measured. From the still commonly used measure of species diversity, through higher taxon diversity, molecular measures, ecological measures and indicator taxa, these measures have as their fundamental shortcoming the lack of an explicit consideration of the evolutionary context represented by phylogenies. Attempts have been made to incorporate phylogenetic considerations into measuring biodiversity, but more hypothesis-driven research needs to be done. A specific case study is presented of how this added emphasis on phylogeny-based biodiversity measurement can influence the way in which research is directed and hypotheses are generated. The elucidation of the relationship of biodiversity to ecosystem functioning is a very timely concern with the unarguable loss of biodiversity this planet is experiencing, whichever way biodiversity is measured.

  15. Exhibition - Mathematics, A Beautiful Elsewhere

    CERN Multimedia

    2011-01-01

    From 21 October 2011 to 18 March 2012, the Fondation Cartier pour l’art contemporain will present the exhibition Mathematics: A Beautiful Elsewhere, an exhibition developed in association with the Institut des Hautes Études Scientifiques (IHÉS) and under the patronage of UNESCO. For this unprecedented event, the foundation invited mathematicians to work with artists with whom it has previously worked to create an exhibition that allows visitors to see, hear, do, interpret and think about mathematics. By bringing mathematics into its premises, the Fondation Cartier is itself undergoing the “sudden change of scenery” described by mathematician Alexandre Grothendieck. More information is available here. Fondation Cartier pour l’art contemporain 261, boulevard Raspail 75014 Paris http://fondation.cartier.com Private Visit For professors, researchers and all the staff of Mathematics departments...

  16. Cu(II) coordination chemistry of patellamide derivatives: possible biological functions of cyclic pseudopeptides.

    Science.gov (United States)

    Comba, Peter; Dovalil, Nina; Gahan, Lawrence R; Haberhauer, Gebhard; Hanson, Graeme R; Noble, Christopher J; Seibold, Björn; Vadivelu, Prabha

    2012-02-27

    Two synthetic derivatives of the naturally occurring cyclic pseudooctapeptides patellamide  A-F and ascidiacyclamide, that is, H(4)pat(2), H(4)pat(3), as well as their Cu(II) complexes are described. These cyclic peptide derivatives differ from the naturally occurring macrocycles by the variation of the incorporated heterocyclic donor groups and the configuration of the amino acids connecting the heterocycles. The exchange of the oxazoline and thiazole groups by dimethylimidazoles or methyloxazoles leads to more rigid macrocycles, and the changes in the configuration of the side chains leads to significant differences in the folding of the cyclic peptides. These variations allow a detailed study of the various possible structural changes on the chemistry of the Cu(II) complexes formed. The coordination of Cu(II) with these macrocyclic species was monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric (UV/Vis) and circular dichroic (CD) titrations, and electron paramagnetic resonance (EPR) spectroscopy. Density functional theory (DFT) calculations and molecular mechanics (MM) simulations have been used to model the structures of the Cu(II) complexes and provide a detailed understanding of their geometric preferences and conformational flexibility. This is related to the Cu(II) coordination chemistry and the reactivity of the dinuclear Cu(II) complexes towards CO(2) fixation. The variation observed between the natural and various synthetic peptide systems enables conclusions about structure-reactivity correlations, and our results also provide information on why nature might have chosen oxazolines and thiazoles as incorporated heterocycles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [The biological function of L-carnitine and its content in the particular food examples].

    Science.gov (United States)

    Rospond, Bartłomiej; Chłopicka, Joanna

    2013-01-01

    The aim of this article is to provide information about L-carnitine, its physiological role in the human body and its content in some foods. This chemical compound is mainly synthesized in the liver, kidney and brain and is composed of two aminoacids, lyzine and metionine. L-carnitine regulates the level of acylo-CoA and CoA in the mitochondium and cytozolum, and it provides acetyl moieties for the biosythesis of acetocholine. L-carnitine plays a vital function in the metabolism of lipids and it carries long-chain fatty acids into mitochondria for beta-oxidation. An increase of the amount of L-carnitine in the human body may lead to reduction and inhibition of production of fatty tissue. Despite the fact that human body can synthesise L-carnitine, about 80% of this chemical compound is delivered by food. It is crucial, especially for people who are on a slimming diet, to choose products rich in L-carnitine because this compound may potentially reduce the body weight. Animal by-products contain the highest amount of L-carnitine, and these are, e.g , kangaroo meat (637 mg), horse meat (423mg), beef (139 mg per 100 g of dry weight). The amount of L-carnitine in milk products may range from 1,4 to 42,8 mg per 100 g of dry matter. Vegetables and fruits are products which contain less than 5 mg of L-carnitine per 100 g of dry matter. Lipids are also very low in L-carnitine, e.g sunflower oil is free from this compound. It is worth mentioning that mushrooms are richer in L-carnitine than plants. The amount of L-carnitine (53 mg/100 g dry matter) in pleureotus ostreatus equals approximately 100 g of minced pork.

  18. Identification of biological functions and gene networks regulated by heat stress in U937 human lymphoma cells.

    Science.gov (United States)

    Furusawa, Yukihiro; Tabuchi, Yoshiaki; Wada, Shigehito; Takasaki, Ichiro; Ohtsuka, Kenzo; Kondo, Takashi

    2011-08-01

    Although cancer cells exposed to temperatures >42.5°C undergo cell death as the temperature rises, exposure of up to 42.5°C induces slight or no cytotoxicity. The temperature of 42.5°C is, therefore, well known to be the inflection point of hyperthermia. To better understand the molecular mechanisms underlying cellular responses to heat stress at temperatures higher and lower than the inflection point, we carried out global scale microarray and computational gene expression analyses. Human leukemia U937 cells were incubated at 42°C or 44°C for 15 min and cultured at 37°C for 0-6 h. Apoptosis accompanied by the activation of caspase-3 and DNA fragmentation was only observed in cells treated with heat stress at 44°C, but not at 42°C. Although a large number of genes were differentially expressed by a factor of 2.0 or greater, we found substantial differences with respect to the biological functions and gene networks of the genes differentially expressed at the two temperatures examined. Interestingly, we identified temperature-specific gene networks that were considered to be mainly associated with cell death or cellular compromise and cellular function and maintenance at 44°C or 42°C, respectively, by using the Ingenuity pathway analysis tools. These findings provide the molecular basis for a further understanding of the mechanisms of the biological changes that are responsive to heat stress in human lymphoma cells.

  19. Synthesis, Characterization and Functionalization of Polymeric Nanoparticles and Investigation of the Interaction with Biological Systems

    International Nuclear Information System (INIS)

    Bleul, Regina

    2015-01-01

    One of the main goals of nanomedicine is to improve the treatment of hazardous diseases whose conventional therapy often has serious side effects. The vision is to create a theranostic drug delivery system which is capable of safely transporting therapeutic cargo through the body to a targeted site of disease at which point the drug is released. Furthermore, it is desirable to track the carrier in real time which would allow for a personal adjustment of the therapy. Studies on the behavior of nanoparticulate substances in a physiological environment form the basis for the possibility to successfully develop a drug carrier system. In the present work, polymeric nanoparticles with different morphologies were prepared by the controlled self-assembly of amphiphilic block copolymers. The nanoparticles were subsequently characterized and their interactions with human cells and serum proteins investigated. A cytotoxicity study with spherical and cylindrical micelles as well as vesicular structures was carried out and showed a dependency of cytotoxic effects on the geometry and size of the nanoparticles. The agglomeration behavior of various polymeric nanoparticles in the presence of serum proteins was also studied. Highly uniform polymeric vesicles were continuously manufactured in a micromixer based device and in situ loading with different components was performed. In this way, dual loaded vesicles with the anticancer drug camptothecin and a high amount of hydrophobic iron oxide nanoparticles were produced. When tested in vitro, these drug-loaded vesicles showed an increased cytotoxic activity against the cancer cell line PC-3 when compared to the free drug. Specific cellular uptake in PC-3 cancer cells was demonstrated with flow cytometry and confocal laser scanning microscopy after functionalization with a cancer cell specific targeting peptide and an additional fluorescent label. Magnetic characterization of the iron oxide-loaded vesicles also confirmed the potential

  20. Learning from Exhibitions: Chuck Close.

    Science.gov (United States)

    Johnson, Mark M.

    1998-01-01

    Discusses the artwork of Chuck Close, who is well known for his over-sized portraits of fellow artists and anonymous sitters, and the exhibition of his work that premiered at New York's Museum of Modern Art before traveling to other cities in the United States. (CMK)

  1. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data.

    Science.gov (United States)

    Vazquez-Vilar, Marta; Quijano-Rubio, Alfredo; Fernandez-Del-Carmen, Asun; Sarrion-Perdigones, Alejandro; Ochoa-Fernandez, Rocio; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2017-02-28

    Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Origins of biological function in DNA and RNA hairpin loop motifs from replica exchange molecular dynamics simulation.

    Science.gov (United States)

    Swadling, Jacob B; Ishii, Kunihiko; Tahara, Tahei; Kitao, Akio

    2018-01-31

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) have remarkably similar chemical structures, but despite this, they play significantly different roles in modern biology. In this article, we explore the possible conformations of DNA and RNA hairpins to better understand the fundamental differences in structure formation and stability. We use large parallel temperature replica exchange molecular dynamics ensembles to sample the full conformational landscape of these hairpin molecules so that we can identify the stable structures formed by the hairpin sequence. Our simulations show RNA adopts a narrower distribution of folded structures compared to DNA at room temperature, which forms both hairpins and many unfolded conformations. RNA is capable of forming twice as many hydrogen bonds than DNA which results in a higher melting temperature. We see that local chemical differences lead to emergent molecular properties such as increased persistence length in RNA that is weakly temperature dependant. These discoveries provide fundamental insight into how RNA forms complex folded tertiary structures which confer enzymatic-like function in ribozymes, whereas DNA retains structural motifs in order to facilitate function such as translation of sequence.

  3. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells

    Directory of Open Access Journals (Sweden)

    Dimitriades-Schmutz Beatrice

    2009-02-01

    Full Text Available Abstract Background The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6 and the neurotrophin (NT Nerve Growth Factor (NGF for neuronal differentiation. Results The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes. A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold, regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold, growth differentiation factor 15 (GDF15; 80-fold, platelet-derived growth factor alpha (PDGFA; 69-fold, growth hormone releasing hormone (GHRH; 30-fold, adenylate cyclase activating polypeptide (PACAP; 20-fold and hepatocyte growth factor (HGF; 5-fold. NGF recruits GDF15 (131-fold, transforming growth factor beta 1 (TGFB1; 101-fold and brain-derived neurotrophic factor (BDNF; 89-fold. Both stimuli activate growth-associated protein 43 (GAP-43 indicating that PC12 cells undergo substantial neuronal differentiation. Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold and early growth response 1 (Egr1/Zif268; 3-fold known to play key roles in neuronal differentiation. Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell

  4. Molecular dynamics simulation studies of transmembrane transport of chemical components in Chinese herbs and the function of platycodin D in a biological membrane

    Directory of Open Access Journals (Sweden)

    Shufang Yang

    2017-04-01

    Conclusion: The Martini force field was successfully applied to the study of the interaction between herbal compounds and a biological membrane. By combining the dynamics equilibrium morphology, the distribution of drugs inside and outside the biomembrane, and the interaction sites of drugs on the DPPC bilayer, factors influencing transmembrane transport of drugs were elucidated and the function of platycodin D in a biological membrane was reproduced.

  5. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    Science.gov (United States)

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related

  6. Structural and functional investigations of biological catalysts for optimization of solar-driven H II production systems

    Science.gov (United States)

    King, Paul W.; Svedruzic, Drazenka; Cohen, Jordi; Schulten, Klaus; Seibert, Michael; Ghirardi, Maria L.

    2006-08-01

    Research efforts to develop efficient systems for H II production encompass a variety of biological and chemical approaches. For solar-driven H II production we are investigating an approach that integrates biological catalysts, the [FeFe] hydrogenases, with a photoelectrochemical cell as a novel bio-hybrid system. Structurally the [FeFe] hydrogenases consist of an iron-sulfur catalytic site that in some instances is electronically wired to accessory iron-sulfur clusters proposed to function in electron transfer. The inherent structural complexity of most examples of these enzymes is compensated by characteristics desired for bio-hybrid systems (i.e., low activation energy, high catalytic activity and solubility) with the benefit of utilizing abundant, less costly non-precious metals. Redesign and modification of [FeFe] hydrogenases is being undertaken to reduce complexity and to optimize structural properties for various integration strategies. The least complex examples of [FeFe] hydrogenase are found in the species of photosynthetic green algae and are being studied as design models for investigating the effects of structural minimization on substrate transfer, catalytic activity and oxygen sensitivity. Redesigning hydrogenases for effective use in bio-hybrid systems requires a detailed understanding of the relationship between structure and catalysis. To achieve better mechanistic understanding of [FeFe] hydrogenases both structural and dynamic models are being used to identify potential substrate transfer mechanisms which are tested in an experimental system. Here we report on recent progress of our investigations in the areas of [FeFe] hydrogenase overexpression, minimization and biochemical characterization.

  7. Digital genotyping of macrosatellites and multicopy genes reveals novel biological functions associated with copy number variation of large tandem repeats.

    Science.gov (United States)

    Brahmachary, Manisha; Guilmatre, Audrey; Quilez, Javier; Hasson, Dan; Borel, Christelle; Warburton, Peter; Sharp, Andrew J

    2014-06-01

    Tandem repeats are common in eukaryotic genomes, but due to difficulties in assaying them remain poorly studied. Here, we demonstrate the utility of Nanostring technology as a targeted approach to perform accurate measurement of tandem repeats even at extremely high copy number, and apply this technology to genotype 165 HapMap samples from three different populations and five species of non-human primates. We observed extreme variability in copy number of tandemly repeated genes, with many loci showing 5-10 fold variation in copy number among humans. Many of these loci show hallmarks of genome assembly errors, and the true copy number of many large tandem repeats is significantly under-represented even in the high quality 'finished' human reference assembly. Importantly, we demonstrate that most large tandem repeat variations are not tagged by nearby SNPs, and are therefore essentially invisible to SNP-based GWAS approaches. Using association analysis we identify many cis correlations of large tandem repeat variants with nearby gene expression and DNA methylation levels, indicating that variations of tandem repeat length are associated with functional effects on the local genomic environment. This includes an example where expansion of a macrosatellite repeat is associated with increased DNA methylation and suppression of nearby gene expression, suggesting a mechanism termed "repeat induced gene silencing", which has previously been observed only in transgenic organisms. We also observed multiple signatures consistent with altered selective pressures at tandemly repeated loci, suggesting important biological functions. Our studies show that tandemly repeated loci represent a highly variable fraction of the genome that have been systematically ignored by most previous studies, copy number variation of which can exert functionally significant effects. We suggest that future studies of tandem repeat loci will lead to many novel insights into their role in modulating

  8. Reproductive function and biological dosimetry prospective study of young thyroid differentiated cancer patients treated with I-131

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Taja, M.R.; Radl, A.; Chebel, Graciela; Fadel, Ana Maria; Gutierrez, Silvia; Normandi, Eduardo; Levalle, Oscar; Kundt, Miriam

    2011-01-01

    The administration of I-131 in the management of differentiated thyroid cancer (DTC) is a well established practice. As the spermatogonia is highly sensitive to radiation, large doses of internal radiation could result in adverse effects on reproductive function such as oligo/azoospermia and infertility. During spermiogenesis, mammalian chromatin undergoes replacement of nuclear histones by protamines, which yields a DNA sixfold more highly condensed in spermatozoa than in mitotic chromosomes. The structure of this highly packaged chromatin shows a low binding capacity for several fluorochromes and dyes such as chromomycin A3 (CMA3). The aim of this study is to assess the correlation between reproductive function (endocrine and exocrine testicular function, and levels of CMA3 stainability) and biological dosimetry in a prospective study of 4 young DTC patients treated with I-131. In this context, a background level of CMA3 binding in mature human sperm was established. It revealed a variable accessibility of CMA3 to the DNA that is dependant on packaging quality and thus, indicative of protamine deficiency. The identification of altered stainability suggests DNA damage as well as epigenetic effects, which may be indicators of male infertility. Transient impairment of spermatogenesis associated with an increase in FSH, an altered spermiogram and even azoospermia was observed after the administration of cumulative activities. Overall, testosterone levels were preserved, except in one case, which presented a drastically diminished value associated with an increase in LH level. As peripheral blood lymphocytes and spermatogonia have equivalent radiosensitivity (interphase death) we hypothesize that the knowledge of DNA damage recovery in peripheral lymphocytes could correlate with spermatogonia recovery and with FSH evolution. (authors)

  9. Reproductive function and biological dosimetry prospective study of young thyroid differentiated cancer patients treated with I-131

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Radl, Analia; Chebel, Graciela; Fadel, Ana M.; Gutierrez, Silvia; Normandi, Eduardo; Levalle, Oscar; Kundt, Miriam

    2008-01-01

    Full text: The administration of I-131 in the management of differentiated thyroid cancer (DTC) is a well established practice. As the spermatogonia is highly sensitive to radiation, large doses of internal radiation could result in adverse effects on reproductive function such as oligo/azoospermia and infertility. During spermiogenesis, mammalian chromatin undergoes replacement of nuclear histones by protamines, which yields a DNA sixfold more highly condensed in spermatozoa than in mitotic chromosomes. The structure of this highly packaged chromatin shows a low binding capacity for several fluoro chromes and dyes such as chromo mycin A 3 (CMA 3 ). The aim of this study is to assess the correlation between reproductive function (endocrine and exocrine testicular function, and levels of CMA 3 stainability) and biological dosimetry in a prospective study of 4 young DTC patients treated with I-131. In this context, a background level of CMA 3 binding in mature human sperm was established. It revealed a variable accessibility of CMA 3 to the DNA that is dependant on packaging quality and thus, indicative of protamine deficiency. The identification of altered stainability suggests DNA damage as well as epigenetic effects, which may be indicators of male infertility. Transient impairment of spermatogenesis associated with an increase in FSH, an altered spermiogram and even azoospermia was observed after the administration of cumulative activities. Overall, testosterone levels were preserved, except in one case, which presented a drastically diminished value associated with an increase in LH level. As peripheral blood lymphocytes and spermatogonia have equivalent radiosensitivity (interphase death) we hypothesize that the knowledge of DNA damage recovery in peripheral lymphocytes could correlate with spermatogonia recovery and with FSH evolution. Therefore, a prospective study on the decline of unstable chromosome aberrations is being conducted, considering the damage

  10. "Big Science" exhibition at Balexert

    CERN Multimedia

    2008-01-01

    CERN is going out to meet those members of the general public who were unable to attend the recent Open Day. The Laboratory will be taking its "Big Science" exhibition from the Globe of Science and Innovation to the Balexert shopping centre from 19 to 31 May 2008. The exhibition, which shows the LHC and its experiments through the eyes of a photographer, features around thirty spectacular photographs measuring 4.5 metres high and 2.5 metres wide. Welcomed and guided around the exhibition by CERN volunteers, shoppers at Balexert will also have the opportunity to discover LHC components on display and watch films. "Fun with Physics" workshops will be held at certain times of the day. Main hall of the Balexert shopping centre, ground floor, from 9.00 a.m. to 7.00 p.m. Monday to Friday and from 10 a.m. to 6 p.m. on the two Saturdays. Call for volunteers All members of the CERN personnel are invited to enrol as volunteers to help welcom...

  11. Mobile Technologies in Museum Exhibitions

    Directory of Open Access Journals (Sweden)

    Sandra Medić

    2014-10-01

    Full Text Available In order to be up–to–date and give visitors a memorable and unique experience, museums are including usage of digital technologies in their exhibitions. Even though museums in Serbia are very important part of tourism offer, they still have traditional settings that are poorly interpreted. The majority of them have a scientific and historical review which is unattractive for various target groups of visitors and for museums it’s important to continually try out new ways in interpretation of their settings. Because technology continues to rapidly change the way we communicate, cultural institutions should adapt to new ways of communication with their visitors. This paper examines mobile technologies that can be used in museums to give visitors a different experience and transfer the knowledge innovatively. In that way it will be presented the modern concept of presentation of museum exhibitions, focusing on usage of mobile devices through mobile applications and QR codes. The paper provides the broad understanding of usage mobile technologies in museum exhibitions with its advantages and limitations. The research results can help the museums management to improve interpretation and communication with visitors and enrich the visitor experience.

  12. CLINICAL AND FUNCTIONAL ASSESSMENT OF THE BIOLOGICAL PROSTHESIS “ASPIRE” FOR SURGICAL CORRECTION OF MITRAL VALVE DISEASE

    Directory of Open Access Journals (Sweden)

    S. G. Esin

    2015-01-01

    Full Text Available Aim: To assess clinical and functional efficacy of implanted biological prosthesis “ASPIRE” (manufactured by Vascutek for correction of mitral valve disease.Materials and methods: From October 2008 to December 2013, biological prostheses “ASPIRE” (Vascutek were implanted to 34 patients with mitral valve disease (mean age 63.59 ± 4.96 years, 79.4% female. From these, 24 patients had mitral stenosis and 10 patients had mitral insufficiency. 73.5% of all patients had heart failure Strazhesko-Vasilenko IIA grade and 85.3% of patients had chronic heart failure NYHA III. Isolated mitral valve replacement was performed only in 8 (23.5% of patients. In 22 (64.7% of cases mitral valve replacement was combined with tricuspid valvuloplasty in various modifications. Duration of cardiopulmonary bypass and of aortic clamping was 88.09 ± 25.95 and 65.68 ± 25.51 minutes, respectively. Before and after surgery all patients underwent echocardiographic assessment and clinical assessment of their general status.Results: In-hospital mortality was 5.88% (n = 2 and was related to multiorgan failure in the early postoperative period. All 32 (94.12% surviving patients improved with decrease or complete disappearance of heart failure. Postoperative complications were typical for cardiac surgery. There were no episodes of embolism, structural dysfunction, thrombosis of the prosthesis and endocarditis of the prosthesis in the early postoperative period. Pressure gradients across prosthetic valves were not high and corresponded to good clinical and hemodynamic results in the early postoperative period.Conclusion: Taking into account good immediate results of mitral valve replacement, as well as no need in lifelong anticoagulation in patients with multiple concomitant disorders, implantation of the biological prosthesis “ASPIRE” (Vascutek could become a procedure of choice for correction of valve abnormalities in patients above 65 years. For more comprehensive

  13. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents

    Directory of Open Access Journals (Sweden)

    Lara-Martínez LA

    2017-10-01

    Full Text Available Luis A Lara-Martínez,1 Felipe Massó,2 Eduardo Palacios González,3 Isabel García-Peláez,4 Alejandra Contreras–Ramos,5 Mahara Valverde,6 Emilio Rojas,6 Felipe Cervantes-Sodi,7 Salomón Hernández-Gutiérrez1 1Department of Molecular Biology, School of Medicine, Universidad Panamericana, Mexico City, Mexico; 2Department of Physiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico; 3Department of Microscopy, Ultra High Resolution Electron Microscopy Laboratory, Instituto Mexicano del Petróleo, Mexico City, Mexico; 4Department of Embryology, Medicine Faculty, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; 5Department of Developmental Biology Research and Experimental Teratogenicity, Children’s Hospital of Mexico, Federico Gomez, Mexico City, Mexico; 6Department of Genomic Medicine, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; 7Department of Physics and Mathematics, Nanoscience and Nanotechnology Laboratory, Universidad Iberoamericana, Mexico City, Mexico Abstract: Carbon nanotubes (CNTs have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs and functionalized oxygen-doped multiwalled CNTs (fCOxs have toxic effects on rat mesenchymal stem cells (MSCs in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our

  14. Systematic Analysis of Compositional Order of Proteins Reveals New Characteristics of Biological Functions and a Universal Correlate of Macroevolution

    Science.gov (United States)

    Persi, Erez; Horn, David

    2013-01-01

    We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces. PMID:24278003

  15. Contemporary Developments in Cinema Exhibition

    OpenAIRE

    Hanson, Stuart

    2014-01-01

    he work offered for this PhD by Published Works charts the history of cinema exhibition in Britain from the late 1950s to the present. At the start of this period, cinemagoing as a form of public entertainment entered a long period of decline that was only arrested with the development and growth of multiplex cinemas in the 1980s and 1990s. Despite these changes, the feature film itself remained a culturally and commercially valuable artefact, though increasingly this meant the Hollywood fil...

  16. Exhibition Review: The Fallen Woman

    OpenAIRE

    Maxwell, Catherine

    2016-01-01

    The Foundling Museum’s recent small exhibition ‘The Fallen Woman’ forms a salutary contrast with the considerably larger show ‘Splendour and Misery: Pictures of Prostitution, 1850-1910’ at the Musée d’Orsay, Paris (22 September 2015–17 January 2016). The Paris show, dedicated to the depiction of the ‘realities and fantasies’ of female prostitution–male prostitution, a thriving concern in this era, being singularly absent–lent heavily on the ‘fantasies’, serving up the masculine objectificatio...

  17. Clues for discovering a new biological function of Vitreoscilla hemoglobin in organisms: potential sulfide receptor and storage.

    Science.gov (United States)

    Wang, Dandan; Liu, Li; Wang, Hui; Xu, Haoran; Chen, Lei; Ma, Li; Li, Zhengqiang

    2016-04-01

    The interaction between H2 S and Vitreoscilla hemoglobin (VHb) has been studied by UV-Vis and Resonance Raman spectroscopes to confirm the binding between the ligand and the protein. Kinetic constants, kon = 1.2 × 10(5) m(-1) ·s(-1) and koff = 2.5 × 10(-4) ·s(-1) , have been determined and compared with those for mammalian hemoglobins. Density Functional Theory study supports the binding of H2 S by modeling the configurations of HOMO dispersions. We hypothesized that VHb is involved in H2 S reception and storage. Different from Lucina pectinata HbI, a typical H2 S-binding hemoglobin, VHb, exhibits unusual properties on H2 S reactivity such as steric constraints playing an important role in modulating H2 S entry. A distinct mechanism of VHb interaction with H2 S is supported by studies of variant forms of VHb. © 2016 Federation of European Biochemical Societies.

  18. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Feng, Yan; Qi, Jingyao; Chi, Liying; Wang, Dong; Wang, Zhaoyang; Li, Ke; Li, Xin

    2013-01-01

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH 3 -N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH 3 -N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment

  19. Neuro-differentiated Ntera2 cancer stem cells encapsulated in alginate beads: First evidence of biological functionality.

    Science.gov (United States)

    Cacciotti, Ilaria; Ceci, Claudia; Bianco, Alessandra; Pistritto, Giuseppa

    2017-12-01

    The present communication investigates an application of alginate encapsulation technology to the differentiation of the embryonic cancer stem NTera2 cells (NT2) into dopamine-producing cells. The encapsulation of cells in polymeric beads allows their immune isolation and makes them eligible for transplantation, thus representing a promising biotech tool for the delivery of biologically active compounds to the brain. The polysaccharide alginate is one of the most commonly used material for this procedure since it is well tolerated by various tissues, including the brain. Two different initial cell concentrations (i.e. 0.5∗10 6 /ml and 1.0∗10 6 /ml) were tested, in order to identify which one could better reflect the homogeneous cell distribution into the alginate beads and guarantee a good cell viability at different times of culture. As evidenced, the higher number of cells promoted the formation of clusters resulting in a better interaction among encapsulated cells and the subsequent promotion of mitotic activity. The distribution of alive/dead cells into the alginate beads was verified and followed at different time points through the fluorescein diacetate/propidium iodide (FDA/PI) staining, confirming the presence of living neuronal positive cells, as determined from fluorescence microscopy imaging. The functionality of the encapsulated NT2 cells was confirmed by their dopamine production capability as assessed by UV-Vis spectrophotometric analysis and by liquid chromatography-mass spectrometry (LC-MS). The NT2/microspheres system can be considered a groundbreaking experimental procedure, a functionally active platform, able to produce and release dopamine, and thus potentially exploitable for therapy in Parkinson's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Growth of novel ceramic layers on metals via chemical and heat treatments for inducing various biological functions

    Directory of Open Access Journals (Sweden)

    Tadashi eKokubo

    2015-10-01

    Full Text Available The present authors’ systematic studies on growth of novel ceramic layers on Ti metal and its alloys by chemical and heat treatments for inducing bone-bonding bioactivity and some other biological functions are reviewed. Ti metal formed an apatite on its surface in a simulated body fluid (SBF, when heat-treated after exposure to strong acid solutions to form rutile surface layer, or to strong alkali solutions to form sodium titanate surface layer. Both types of Ti metal tightly bonded to the living bone.The alkali and heat treatment was applied to the surface Ti metal of an artificial hip joint and successfully used in the clinic since 2007. The acid and heat treatments was applied to porous Ti metal to induce osteoconductivity as well as osteoinductivity. The resulting product was successfully used in clinical trials for spinal fusion devices. For the Ti-based alloys, the alkali and heat treatment was a little modified to form calcium titanate surface layer. Bone-growth promoting Mg, Sr, and Zn ions as well as the antibacterial Ag ion were successfully incorporated into the calcium titanate layer.

  1. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Science.gov (United States)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  2. A Tricky Trait: Applying the Fruits of the “Function Debate” in the Philosophy of Biology to the “Venom Debate” in the Science of Toxinology

    Science.gov (United States)

    Jackson, Timothy N. W.; Fry, Bryan G.

    2016-01-01

    The “function debate” in the philosophy of biology and the “venom debate” in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between “venomous” and “non-venomous” species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology. PMID:27618098

  3. A Tricky Trait: Applying the Fruits of the “Function Debate” in the Philosophy of Biology to the “Venom Debate” in the Science of Toxinology

    Directory of Open Access Journals (Sweden)

    Timothy N. W. Jackson

    2016-09-01

    Full Text Available The “function debate” in the philosophy of biology and the “venom debate” in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between “venomous” and “non-venomous” species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.

  4. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  5. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  6. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Guodong; Bergenholm, David; Nielsen, Jens

    2016-01-01

    In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p...... of transcription factors. In the model eukaryote Saccharomyces cerevisiae, the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding...... at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly...

  7. Crows spontaneously exhibit analogical reasoning.

    Science.gov (United States)

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rafts in oligodendrocytes : Evidence and structure-function relationship

    NARCIS (Netherlands)

    Gielen, Ellen; Baron, Wia; Vandeven, Martin; Steels, Paul; Hoekstra, Dick; Ameloot, Marcel

    2006-01-01

    The plasma membrane of eukaryotic cells exhibits lateral inhomogeneities, mainly containing cholesterol and sphingomyelin, which provide liquid-ordered microdomains (lipid "rafts") that segregate membrane components. Rafts are thought to modulate the biological functions of molecules that become

  9. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  10. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN).

    Science.gov (United States)

    Büdel, Burkhard; Colesie, Claudia; Green, T G Allan; Grube, Martin; Lázaro Suau, Roberto; Loewen-Schneider, Katharina; Maier, Stefanie; Peer, Thomas; Pintado, Ana; Raggio, José; Ruprecht, Ulrike; Sancho, Leopoldo G; Schroeter, Burkhard; Türk, Roman; Weber, Bettina; Wedin, Mats; Westberg, Martin; Williams, Laura; Zheng, Lingjuan

    2014-01-01

    Here we report details of the European research initiative "Soil Crust International" (SCIN) focusing on the biodiversity of biological soil crusts (BSC, composed of bacteria, algae, lichens, and bryophytes) and on functional aspects in their specific environment. Known as the so-called "colored soil lichen community" (Bunte Erdflechtengesellschaft), these BSCs occur all over Europe, extending into subtropical and arid regions. Our goal is to study the uniqueness of these BSCs on the regional scale and investigate how this community can cope with large macroclimatic differences. One of the major aims of this project is to develop biodiversity conservation and sustainable management strategies for European BSCs. To achieve this, we established a latitudinal transect from the Great Alvar of Öland, Sweden in the north over Gössenheim, Central Germany and Hochtor in the Hohe Tauern National Park, Austria down to the badlands of Tabernas, Spain in the south. The transect stretches over 20° latitude and 2,300 m in altitude, including natural (Hochtor, Tabernas) and semi-natural sites that require maintenance such as by grazing activities (Öland, Gössenheim). At all four sites BSC coverage exceeded 30 % of the referring landscape, with the alpine site (Hochtor) reaching the highest cyanobacterial cover and the two semi-natural sites (Öland, Gössenheim) the highest bryophyte cover. Although BSCs of the four European sites share a common set of bacteria, algae (including cyanobacteria) lichens and bryophytes, first results indicate not only climate specific additions of species, but also genetic/phenotypic uniqueness of species between the four sites. While macroclimatic conditions are rather different, microclimatic conditions and partly soil properties seem fairly homogeneous between the four sites, with the exception of water availability. Continuous activity monitoring of photosystem II revealed the BSCs of the Spanish site as the least active in terms of

  11. A comparative study of economical separation and aggregation properties of biologically capped and thiol functionalized gold nanoparticles: selecting the eco-friendly trojan horses for biological applications.

    Science.gov (United States)

    Pandey, Sunil; Thakur, Mukeshchand; Shah, Ritu; Oza, Goldie; Mewada, Ashmi; Sharon, Madhuri

    2013-09-01

    We are presenting facile bio-fabrication of extremely stable gold nanoparticles (GNPs) using medicinal plant Azadirachta indica (commonly called Neem) and its comparison with most commonly used glutathione (GSH) protected GNPs in terms of stability under physiological conditions, seperation using density gradient centrifugation and aggregation properties in the solution. There was dual peak at 536 and 662 nm indicating the presence of non-spherical GNPs including triangles, rods and hexagons in case of A. indica mediated GNPs unlike citrate stabilized GNPs which exhibited single sharp peak. Spherical GNPs were separated from the consortium of uniquely shaped nanoparticles bio-fabricated using A. indica leaf extract using sucrose density gradient centrifugation (SDGC).To comprehend the anti-agglomeration potentials of A. indica leaf mediated GNPs and GSH-GNPs under physiological conditions, flocculation parameters (FP) were calculated and found to be least for A. indica leaf mediated GNPs, indicating their exceptional stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: advances in the field of barriology revealed in knockout mice.

    Science.gov (United States)

    Tamura, Atsushi; Tsukita, Sachiko

    2014-12-01

    Claudin was first identified as a four-transmembrane protein in the tight junctions (TJs) between epithelial cells. The claudin family has 27 members, which are specifically expressed depending on the epithelial cell type. Accumulating evidence has revealed that claudins are responsible for the paracellular barrier that prevents molecules from passing through epithelial cell sheets. In addition, the extracellular domains of some claudins enable them to act as a permselective paracellular channel for specific molecules, including ions and/or non-ionic solutes. Recent studies using claudin knockout mice revealed that the loss of claudins' specific paracellular barrier and/or channel functions affects specific biological functions and leads to pathological states. In this review, considering recent findings in vivo, we describe how, sometimes in concert with canonical transporters and channels, the paracellular barrier and channel functions of claudins sophisticatedly organize biological systems. Copyright © 2014. Published by Elsevier Ltd.

  13. Designing Art Exhibitions in an Educational Virtual World

    Science.gov (United States)

    Julian, June; Crooks, Julian

    2011-01-01

    Demonstrating the multiple features of the Cerulean Gallery in Second Life, this research report showcases several exemplar exhibits created by students, artists, and museums. Located in The Educational Media Center, a Second Life teaching and social space, the Cerulean Gallery exhibits functioned as case studies that tested its effectiveness as…

  14. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Directory of Open Access Journals (Sweden)

    Luan Yihui

    2009-09-01

    Full Text Available Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Conclusion Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  15. The Risk Factors for Criminal Behaviour in High-Functioning Autism Spectrum Disorders (HFASDs): A Comparison of Childhood Adversities between Individuals with HFASDs Who Exhibit Criminal Behaviour and Those with HFASD and No Criminal Histories

    Science.gov (United States)

    Kawakami, Chihiro; Ohnishi, Masafumi; Sugiyama, Toshiro; Someki, Fumio; Nakamura, Kazuhiko; Tsujii, Masatsugu

    2012-01-01

    Most reports of the criminal behaviour of individuals with high-functioning autism spectrum disorder (HFASD) have been case studies, and few have empirically examined the risk factors of criminal behaviour among these individuals. This study examined 175 individuals with HFASD, including 36 individuals who had a prior history of criminal…

  16. Treatment of ankylosing spondylitis with biologics and targeted physical therapy: positive effect on chest pain, diminished chest mobility, and respiratory function.

    Science.gov (United States)

    Gyurcsik, Z; Bodnár, N; Szekanecz, Z; Szántó, S

    2013-12-01

    Biologics are highly effective in ankylosing spondylitis (AS). In this self-controlled study, we assessed the additive value of complex physiotherapy in decreasing chest pain and tenderness and improving respiratory function in AS patients treated with tumor necrosis factor α (TNF-α) inhibitors. The trial consisted of 2 parts. In study I, clinical data of AS patients with (n=55) or without biological therapy (n=20) were retrospectively analyzed and compared. Anthropometrical data, duration since diagnosis and patient assessment of disease activity, pain intensity, tender points, sacroiliac joint involvement determined by X-ray, functional condition, and physical activity level were recorded. Subjective, functional, and physical tests were performed. In study II, 10 voluntary patients (6 men and 4 women, age 52.4 ± 13.6 years) with definite AS and receiving anti-TNF therapy were recruited. It was a prospective, non-randomized physiotherapeutic trial. BASFI (Bath Ankylosing Spondylitis Functional Index), BASDAI (Bath Ankylosing Spondylitis Disease Activity Index), modified Schober Index, occiput-to-wall distance, and fingertip-to-floor distance were evaluated. Forced vital capacity, forced 1-s expiratory volume, peak expiratory flow, and maximum voluntary ventilation were recorded. Furthermore, typical tender points were recorded. A targeted physiotherapy program was conducted twice a week for 12 weeks and all above parameters were recorded at baseline and after 12 weeks. Differences in patient assessment of disease activity (p=0.019) and pain intensity (p=0.017) were found in study I. Pain and tenderness of the thoracic spine were observed in both groups. Back pain without biologic therapy was slightly higher than other group. In study II, we found that patient assessment of disease activity and pain intensity significantly improved after the physical therapy program (p=0.002 and prespiratory functional parameters showed a tendency towards improvement. AS

  17. Disruption of SLX4-MUS81 Function Increases the Relative Biological Effectiveness of Proton Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Underwood, Tracy S.A.; Kung, Jong [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Meng [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lu, Hsiao-Ming; Paganetti, Harald [Division of Radiation Physics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Held, Kathryn D.; Hong, Theodore S.; Efstathiou, Jason A. [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Willers, Henning, E-mail: hwillers@mgh.harvard.edu [Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-05-01

    Purpose: Clinical proton beam therapy has been based on the use of a generic relative biological effectiveness (RBE) of ∼1.1. However, emerging data have suggested that Fanconi anemia (FA) and homologous recombination pathway defects can lead to a variable RBE, at least in vitro. We investigated the role of SLX4 (FANCP), which acts as a docking platform for the assembly of multiple structure-specific endonucleases, in the response to proton irradiation. Methods and Materials: Isogenic cell pairs for the study of SLX4, XPF/ERCC1, MUS81, and SLX1 were irradiated at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer 2.5 keV/μm) or with 250 kVp x-rays, and the clonogenic survival fractions were determined. To estimate the RBE of the protons relative to cobalt-60 photons (Co60Eq), we assigned a RBE(Co60Eq) of 1.1 to x-rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor the damage responses, and the cell cycle distributions were assessed by flow cytometry. The poly(ADP-ribose) polymerase inhibitor olaparib was used for comparison. Results: Loss of SLX4 function resulted in an enhanced proton RBE(Co60Eq) of 1.42 compared with 1.11 for wild-type cells (at a survival fraction of 0.1; P<.05), which correlated with increased persistent DNA double-strand breaks in cells in the S/G{sub 2} phase. Genetic analysis identified the SLX4-binding partner MUS81 as a mediator of resistance to proton radiation. Both proton irradiation and olaparib treatment resulted in a similar prolonged accumulation of RAD51 foci in SLX4/MUS81-deficient cells, suggesting a common defect in the repair of DNA replication fork-associated damage. Conclusions: A defect in the FA pathway at the level of SLX4 results in hypersensitivity to proton radiation, which is, at least in part, due to impaired MUS81-mediated processing of replication forks that stall at clustered DNA damage. In vivo and clinical studies are needed to

  18. Variations in the Biological Functions of HIV-1 Clade C Envelope in a SHIV-Infected Rhesus Macaque during Disease Progression.

    Directory of Open Access Journals (Sweden)

    For Yue Tso

    Full Text Available A better understanding of how the biological functions of the HIV-1 envelope (Env changes during disease progression may aid the design of an efficacious anti-HIV-1 vaccine. Although studies from patient had provided some insights on this issue, the differences in the study cohorts and methodology had make it difficult to reach a consensus of the variations in the HIV-1 Env functions during disease progression. To this end, an animal model that can be infected under controlled environment and reflect the disease course of HIV-1 infection in human will be beneficial. Such an animal model was previously demonstrated by the infection of macaque with SHIV, expressing HIV-1 clade C Env V1-V5 region. By using this model, we examined the changes in biological functions of Env in the infected animal over the entire disease course. Our data showed an increase in the neutralization resistance phenotype over time and coincided with the decrease in the net charges of the V1-V5 region. Infection of PBMC with provirus expressing various Env clones, isolated from the infected animal over time, showed a surprisingly better replicative fitness for viruses expressing the Env from early time point. Biotinylation and ELISA data also indicated a decrease of cell-surface-associated Env and virion-associated gp120 content with disease progression. This decrease did not affect the CD4-binding capability of Env, but were positively correlated with the decrease of Env fusion ability. Interestingly, some of these changes in biological functions reverted to the pre-AIDS level during advance AIDS. These data suggested a dynamic relationship between the Env V1-V5 region with the host immune pressure. The observed changes of biological functions in this setting might reflect and predict those occurring during natural disease progression in human.

  19. G(i)α proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells.

    Science.gov (United States)

    Wang, Zhanwei; Dela Cruz, Rica; Ji, Fang; Guo, Sheng; Zhang, Jianhua; Wang, Ying; Feng, Gen-Sheng; Birnbaumer, Lutz; Jiang, Meisheng; Chu, Wen-Ming

    2014-02-13

    In a classic model, G(i)α proteins including G(i1)α, G(i2)α and G(i3)α are important for transducing signals from G(i)α protein-coupled receptors (G(i)αPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that G(i1)α, G(i2)α and G(i3)α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these G(i)α proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these G(i)α proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these G(i)α proteins in breast cancer remains to be elucidated. We found that Gi1/3 deficient MEFs with the low expression level of G(i2)α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The G(i)α proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1's interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF. G(i)α proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. G(i)α proteins are important for breast cancer cell growth and invasion.

  20. Plant shoots exhibit synchronized oscillatory motions.

    Science.gov (United States)

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals.

  1. Exhibiting health and medicine as culture

    DEFF Research Database (Denmark)

    Whiteley, Louise; Tybjerg, Karin; Pedersen, Bente Vinge

    2017-01-01

    Introduction: This paper discusses the potential role of medical museums in public engagement with health and medicine, based on the work of Medical Museion at the University of Copenhagen. Rather than asking whether cultural venues such as museums can directly improve the well-being of their vis......Introduction: This paper discusses the potential role of medical museums in public engagement with health and medicine, based on the work of Medical Museion at the University of Copenhagen. Rather than asking whether cultural venues such as museums can directly improve the well......-being of their visitors, we instead focus on how museums should communicate about health and medicine. Methods: The paper describes three examples of exhibitions at Medical Museion that attempt to display medicine as culture, and draws out three of the key strategies they employ. Results: The three key strategies are: (1......) medicine is presented through historically specific material objects; (2) these objects areused to explore the processes of research and the evolution of practice; and (3) exhibitions are designed to emphasize an implied relationship between the objects’ functions and the visitor’s own body. Conclusion...

  2. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    Science.gov (United States)

    2012-09-30

    biologically significant responses such as changes in reproductive potential, immune system function, acute phase responses, and energetic fitness. The...the National Marine Fisheries Service-Southwest Fisheries Science Center. Particular thanks go to Dr. R.L. Brownell, Ms. Siri Hakala, Agent Rhyan...profiling of a pre-selected class of metabolites, and non-targeted, semi-quantitative fingerprinting of a large number of metabolites providing a “ systems

  3. Biological oceanography, biogeochemical cycles, and pelagic ecosystem functioning of the east-central South Pacific Gyre: focus on Easter Island and Salas y Gómez Island

    OpenAIRE

    Von Dassow , Peter; Collado-Fabbri , Silvana

    2014-01-01

    International audience; The Exclusive Economic Zone of Chile defined by Easter Island and Salas y Gómez Island is in the South Pacific Subtropical Gyre (SPSG), putting it at the center of the most oligotrophic and biomass poor waters in the world. Only 10 biological oceanographic expeditions have entered this zone in 105 years (1905-2010). We review key aspects of the plankton ecosystem and biogeochemical function relevant for the understanding of and conservation planning for marine environm...

  4. Loss-of-function mutants and overexpression lines of the Arabidopsis cyclin CYCA1;2/Tardy Asynchronous Meiosis exhibit different defects in prophase-i meiocytes but produce the same meiotic products.

    Directory of Open Access Journals (Sweden)

    Yixing Wang

    Full Text Available In Arabidopsis, loss-of-function mutations in the A-type cyclin CYCA1;2/Tardy Asynchronous Meiosis (TAM gene lead to the production of abnormal meiotic products including triads and dyads. Here we report that overexpression of TAM by the ASK1:TAM transgene also led to the production of triads and dyads in meiosis, as well as shriveled seeds, in a dominant fashion. However, the partial loss-of-function mutant tam-1, an ASK1:TAM line, and the wild type differed in dynamic changes in chromosome thread thickness from zygotene to diplotene. We also found that the pericentromeric heterochromatin regions in male meiocytes in tam-1 and tam-2 (a null allele frequently formed a tight cluster at the pachytene and diplotene stages, in contrast to the infrequent occurrences of such clusters in the wild type and the ASK1:TAM line. Immunolocalization studies of the chromosome axial component ASY1 revealed that ASY1 was highly expressed at the appropriate male meiotic stages but not localized to the chromosomes in tam-2. The level of ASY1, however, was greatly reduced in another ASK1:TAM line with much overexpressed TAM. Our results indicate that the reduction and increase in the activity of TAM differentially affect chromosomal morphology and the action of ASY1 in prophase I. Based on these results, we propose that either the different meiotic defects or a common defect such as missing ASY1 on the chromosomal axes triggers a hitherto uncharacterized cell cycle checkpoint in the male meiocytes in the tam mutants and ASK1:TAM lines, leading to the production of the same abnormal meiotic products.

  5. Some nonlinear challenges in biology

    International Nuclear Information System (INIS)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-01-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher–Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'. (open problem)

  6. Biological and functional diversity of bird communities in natural and human modified habitats in Northern Flank of Knuckles Mountain Forest Range, Sri Lanka

    Directory of Open Access Journals (Sweden)

    KALYA SUBASINGHE

    2014-10-01

    Full Text Available Subasinghe K, Sumanapala AP. 2014. Biological and functional diversity of bird communities in natural and human modified habitats in Northern Flank of Knuckles Mountain Forest Range, Sri Lanka. Biodiversitas 15: 200-205. The Knuckles Mountain Forest Range (KMFR has a complex mosaic of natural and human modified habitats and the contribution of these habitats to the biological and functional diversities has not been deeply studied. Present study investigated both of these diversities in five habitat types (two natural habitats: Sub-montane forest and Pitawala Patana grassland; three modified habitats: cardamom, pinus and abandoned tea plantations in Northern Flank of KMFR using birds as the indicator group. Bird communities were surveyed using point count method. A total of 1,150 individuals belonging to 56 species were observed. The highest species richness was reported from the cardamom plantation where as sub-montane forest had the highest feeding guild diversity in terms of Shannon Weiner index. The abandoned tea plantation and the Pitawala Patana grasslands with fairly open habitats, showed relatively lower levels of feeding guild diversities. It is clear that the structurally complex habitats contribute more to the area’s biological and functional diversities and need to be taken into consideration when developing conservation plans.

  7. Decision Making in Biological Systems

    DEFF Research Database (Denmark)

    Tian, Chengzhe

    -dormancy transition is primarily mediated by (p)ppGpp fluctuation. In the second topic, we discuss the transition paths between two stable steady states. We construct a simple model of coupled bistable gene circuits and demonstrate the possibility of bifurcation of transition path in biology. We then construct...... a theory to predict whether a general coupled bistable system exhibits bifurcated path or not and verify the theory through numerical simulation. We also show that a primary function of bifurcated paths is to facilitate transition by lowering the associated action. In the third topic, we discuss...

  8. Biological rhythms in the human life cycle and their relationship to functional changes in the suprachiasmatic nucleus

    NARCIS (Netherlands)

    Swaab, D. F.; van Someren, E. J.; Zhou, J. N.; Hofman, M. A.

    1996-01-01

    Biological rhythms play a prominent role in the human life cycle. The endogenous rhythms are entrained by the environment and have an astronomical counterpart which is obvious for daily, monthly, and yearly rhythms, and may possibly also be present in weekly rhythms. Circadian rhythms are present

  9. 2K09 and thereafter : the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research

    Science.gov (United States)

    2010-01-01

    Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT

  10. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  11. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Multicomponent pattern and biological activities of seven Asphodeline taxa: potential sources of natural-functional ingredients for bioactive formulations.

    Science.gov (United States)

    Locatelli, Marcello; Zengin, Gokhan; Uysal, Ahmet; Carradori, Simone; De Luca, Elisa; Bellagamba, Giuseppe; Aktumsek, Abdurrahman; Lazarova, Irina

    2017-12-01

    The current study was carried out to evaluate multicomponent pattern, biological and enzymatic activities of seven Asphodeline taxa root extracts as useful ingredients, due to the fact that these plants are commonly used as traditional food supplements in Turkish regions. The extracts were characterized for free anthraquinones and phenolics to obtain a specific chemical fingerprint useful for quality control. These analyzes were coupled to biological and enzymatic activities in order to obtain comprehensive information of the natural product. Free anthraquinones and phenolics were determined using validated HPLC-PDA methods. Antioxidant properties were determined by different procedures including free radical scavenging, reducing power, phosphomolybdenum and metal chelating assays. Ames assay was performed to evaluate mutagenic/antimutagenic properties. Enzyme inhibitory activities were tested against cholinesterase, tyrosinase, α-amylase and α-glucosidase. From the herein reported results, Asphodeline could be valuable for the production of bioactive products or food supplements for cosmetic and pharmaceutical industries.

  13. Regulatory dynamics of network architecture and function in tristable genetic circuit of Leishmania: a mathematical biology approach.

    Science.gov (United States)

    Mandlik, Vineetha; Gurav, Mayuri; Singh, Shailza

    2015-01-01

    The emerging field of synthetic biology has led to the design of tailor-made synthetic circuits for several therapeutic applications. Biological networks can be reprogramed by designing synthetic circuits that modulate the expression of target proteins. IPCS (inositol phosphorylceramide synthase) has been an attractive target in the sphingolipid metabolism of the parasite Leishmania. In this study, we have constructed a tristable circuit for the IPCS protein. The circuit has been validated and its long-term behavior has been assessed. The robustness and evolvability of the circuit has been estimated using evolutionary algorithms. The tristable synthetic circuit has been specifically designed to improve the rate of production of phosphatidylcholine: ceramide cholinephosphotransferase 4 (SLS4 protein). Site-specific delivery of the circuit into the parasite-infected macrophages could serve as a possible therapeutic intervention of the infectious disease 'Leishmaniasis'.

  14. The Bioethicist Who Cried "Synthetic Biology":An Analysis of the Function of Bioterrorism Predictions in Bioethics

    OpenAIRE

    Holm, Søren

    2017-01-01

    This article analyzes a specter that has haunted bioethics almost since its inception, namely the specter of the misuse of biotechnology by maleficent agents bent on mass destruction, or the complete eradication of human kind and life as we know it. The article provides a general account of why bioethicists cry "catastrophic bioterrorism potential" when new biotechnologies emerge, and an analysis of the arguments that flow from the prediction, especially in relation to synthetic biology.

  15. Conformational control of cofactors in nature The influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles

    OpenAIRE

    SENGE, MATHIAS

    2015-01-01

    PUBLISHED Tetrapyrrole‐containing proteins are one of the most fundamental classes of enzymes in nature and it remains an open question to give a chemical rationale for the multitude of biological reactions that can be catalyzed by these pigment‐ protein complexes. There are many fundamental processes where the same (i.e., chemically identical) porphyrin cofactor is involved in chemically quite distinct reactions. For example, heme is the active cofactor for oxygen transport and s...

  16. Development of congress and exhibition in Russia

    Directory of Open Access Journals (Sweden)

    Fedorova Ekaterina Valerevna

    2013-10-01

    Full Text Available In the article the history of the development and current state of exhibition activity in Russia, considered the potential and prospects of the congress and exhibition activities of Russia in the international market.

  17. Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions.

    Science.gov (United States)

    Drolet, Robert E; Sanders, John M; Kern, Jonathan T

    2011-12-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common forms of inheritable Parkinson's disease and likely play a role in sporadic disease as well. LRRK2 is a large multidomain protein containing two key groups, a Ras-like GTP binding domain and a serine, threonine kinase domain. Mutations in the LRRK2 gene that associate with Parkinson's disease reside primarily within the two functional domains of the protein, suggesting that LRRK2 function is critical to the pathogenesis of the disease. The most common LRRK2 mutation increases kinase activity, making LRRK2 kinase inhibition an attractive target for small molecule drug development. However, the physiological function of LRRK2 kinase as well as its endogenous protein substrates remains poorly understood and has hindered drug development efforts. Recent advances in LRRK2 biology have revealed several potential cellular roles, interacting proteins, and putative physiological substrates. Together, a picture emerges of a complex multifunctional protein that exists in multiple cellular compartments. Through unclear mechanisms, LRRK2 kinase regulates cytoskeleton architecture through control of protein translation, phosphorylation of cytoskeletal proteins, and response to cellular stressors. This article will briefly cover some interesting recent studies in LRRK2 cellular biology and highlight emerging cellular models of LRRK2 kinase function.

  18. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea)

    Science.gov (United States)

    Paganelli, Daniele; Marchini, Agnese; Occhipinti-Ambrogi, Anna

    2012-01-01

    The functional diversity index has shown that the functional diversity of the macrobenthic community increased along a spatial gradient of distance from the Po river delta (Emilia-Romagna coast, Italy, North-Adriatic Sea), which suggests that riverine inputs have a detrimental effect on community functioning. This study focuses on two different depths along a southward gradient of increasing distance from the Po river delta where the Po river is the main source of freshwater and nutrient inputs in the North-Adriatic Sea. A Biological Traits Analysis (BTA) was used to examine a dataset of 156 soft-bottom macrobenthic species that were collected at eight stations in this area. Instead of comparing communities on the basis of their taxonomic composition, BTA uses a series of life history, morphological and behavioural characteristics of species to indicate aspects of their ecological functioning. The variability of the Emilia-Romagna dataset was governed by relatively few biological traits: growth form, trophic group, type of movement, habit, adult mobility and bioturbation activity. The community closer to the coastline was mainly composed of moderately mobile vermiform organisms with burrowing or tube-dwelling behaviour, and deposit feeding behaviour. However, the offshore community was mainly characterized by organisms with a laterally compressed or globose body and tube-dwelling behaviour; filter feeders and deposit feeders were dominant.

  19. Coiled-coil motif in LBD16 and LBD18 transcription factors are critical for dimerization and biological function in arabidopsis.

    Science.gov (United States)

    Pandey, Shashank K; Kim, Jungmook

    2018-01-02

    The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family members encode a class of plant-specific transcription factors that play important roles in many different aspects of plant growth and development. The LBD proteins contain a conserved LOB domain harboring a Leu zipper-like coiled-coil motif, which has been predicted to mediate protein-protein interactions among the LBD family members. Dimerization of transcription factors is crucial for the modulation of their DNA-binding affinity, specificity, and diversity, contributing to the transcriptional regulation of distinct cellular and biological responses. Our various molecular and biochemical experiments with genetic approaches on LBD16 and LBD18, which are known to control lateral root development in Arabidopsis, demonstrated that the conserved Leu or Val residues in the coiled-coil motifs of these transcription factors are critical for their dimerization as well as the transcriptional regulation to display their biological functions during lateral root formation. We further showed that beside the coiled-coil motif, the carboxyl-terminal region in LBD18 acts as an additional dimerization domain. These findings provide a molecular framework for the homo- and hetero-dimerization of the LBD family proteins for displaying their distinct and diverse biological functions in plants.

  20. Investigating Design Research Landscapes through Exhibition