WorldWideScience

Sample records for biological function environmental

  1. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  2. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions.

    Science.gov (United States)

    Arrivabene, Hiulana Pereira; Souza, Iara; Có, Walter Luiz Oliveira; Rodella, Roberto Antônio; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf & Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (-0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. PMID:24496023

  3. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Arrivabene, Hiulana Pereira [Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, 29075-910 Vitória, Espírito Santo (Brazil); Souza, Iara [Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, 13565-905 São Carlos (Brazil); Có, Walter Luiz Oliveira [Associação Educational de Vitória, Departamento de Biologia, 29053-360 Vitória (Brazil); Rodella, Roberto Antônio [Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Botânica, C. Postal 510, 18618-000 Botucatu, São Paulo (Brazil); Wunderlin, Daniel Alberto, E-mail: dwunder@fcq.unc.edu.ar [Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET, Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba (Argentina); and others

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  4. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    International Nuclear Information System (INIS)

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  5. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  6. The Role of Biology in Environmental Education

    Science.gov (United States)

    Xingcun, Lu

    2004-01-01

    The principal mode of environmental education is to integrate environmental education into science classes. Biology is a life science. To study biology it is necessary to talk about the living environment and the relationship between biological organisms and their environment. Studying biology not only enables students to learn a great deal of…

  7. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail. PMID:26449352

  8. The biological function of consciousness

    Science.gov (United States)

    Earl, Brian

    2014-01-01

    This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159

  9. Functional Aspects of Biological Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  10. Practical Statistics for Environmental and Biological Scientists

    CERN Document Server

    Townend, John

    2012-01-01

    All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific comp

  11. Graphene for Environmental and Biological Applications

    Science.gov (United States)

    Sreeprasad, T. S.; Pradeep, T.

    2012-08-01

    The latest addition to the nanocarbon family, graphene, has been proclaimed to be the material of the century. Its peculiar band structure, extraordinary thermal and electronic conductance and room temperature quantum Hall effect have all been used for various applications in diverse fields ranging from catalysis to electronics. The difficulty to synthesize graphene in bulk quantities was a limiting factor of it being utilized in several fields. Advent of chemical processes and self-assembly approaches for the synthesis of graphene analogues have opened-up new avenues for graphene based materials. The high surface area and rich abundance of functional groups present make chemically synthesized graphene (generally known as graphene oxide (GO) and reduced graphene oxide (RGO) or chemically converted graphene) an attracting candidate in biotechnology and environmental remediation. By functionalizing graphene with specific molecules, the properties of graphene can be tuned to suite applications such as sensing, drug delivery or cellular imaging. Graphene with its high surface area can act as a good adsorbent for pollutant removal. Graphene either alone or in combination with other materials can be used for the degradation or removal of a large variety of contaminants through several methods. In this review some of the relevant efforts undertaken to utilize graphene in biology, sensing and water purification are described. Most recent efforts have been given precedence over older works, although certain specific important examples of the past are also mentioned.

  12. Nuclear energy: biological effects and environmental impact

    International Nuclear Information System (INIS)

    This thesis is concerned with the large development of nuclear power plants and the recent nuclear catastrophe which has made clear how the hazards resulting from radioactivity affect public health and the environment. Environmental effects of nuclear power plants operating in normal conditions are small, but to obtain nuclear power plants of reduced radioactivity, optimization of their design, construction, operation and waste processing plays a decisive role. Biological effects of ionizing radiations and environmental impacts of Nuclear Power plants are developed

  13. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  14. Seasonality of suicides: environmental, sociological and biological covariations.

    Science.gov (United States)

    Souêtre, E; Salvati, E; Belugou, J L; Douillet, P; Braccini, T; Darcourt, G

    1987-01-01

    The monthly rates of completed suicides in France from 1978 until 1982 were analyzed. The seasonal variations of environmental (daylight and sunlight durations, mean temperature, geomagnetism), sociological (unemployment, deaths of all causes, birth and conception rates), and biological (melatonin, cortisol and serotonin circannual rhythms) factors were compared to the seasonal patterns of suicides. A clear seasonal variation (with peaks in May and September) in suicidal behavior was detected. These patterns tended to differ as a function of age (bimodal in young, unimodal in old people). The component analysis clearly pointed out that seasonal patterns of suicides may be considered as the sum of two components, unimodal and bimodal. Almost similar covariations were found between the main seasonal (unimodal) component of suicides and environmental (daylight duration and mean monthly temperature) or sociological factors whereas the secondary component was more correlated to variations in environmental factors and, to some extent, to biological parameters. PMID:2960714

  15. Functional quantum biology in photosynthesis and magnetoreception

    CERN Document Server

    Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

  16. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text:The year 1999 we devoted mainly to the activities concerning our basic research, and requirements and expectations of three research projects. The environmental project from the European Community was supporting our research in the issues of human monitoring of occupational exposure to pesticides. The two other radiobiology projects from the State Committee of Research were supporting our search on the biological efficiency and its enhancement of radio-therapeutic sources of various LET radiation. We succeeded fruitful co-operation with colleagues from Academy of Mining and Metallurgy that let us go faster with modernization of our laboratory by automation of our methods for screening cytogenetic damages. A lot of efforts were paid to modify our work by automatic reports of the coordinates of aberrant metaphases, and to make a smooth work of our new and own metaphase finder. We are sure that our new and unique research tool will not only enhance the accuracy and speed of measurements, but will also be useful for the purpose of the retrospective biological dosimetry of absorbed doses. We have applied fluorescent in situ hybridization (FISH) for cytogenetic studies of biological effects induced by neutrons. Now, we are looking forward to apply this technique in a combination with the DNA damage measures done by SCGE assay, to our research on mechanisms of the induction and repair, or interaction of the lesions induced by genotoxic agents. Understanding of the regulation of these processes could be a good goal for the new century to come. (author)

  17. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  18. Structure and function in biology

    International Nuclear Information System (INIS)

    A summary is given of the history of the developments of structural chemistry in biology beginning with the work of the bacteriologist Ehrlich leading to a comprehensive examination of the influence of size and configuration on the interaction between specific antibodies and side-chain determinants. Recent developments include the recognition of a higher order of specificity in the interaction of proteins with one another

  19. Biological and Environmental Research Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF); Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dart, Eli [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Dattoria, Vince [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Desai, Narayan [Argonne National Lab. (ANL), Argonne, IL (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foster, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Goldstone, Robin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gregurick, Susan [U.S. Dept. of Energy, Washington, DC (United States). Biological Systems Science Division; Houghton, John [U.S. Dept. of Energy, Washington, DC (United States). Biological and Environmental Research (BER) Program; Izaurralde, Cesar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnston, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Joseph, Renu [U.S. Dept. of Energy, Washington, DC (United States). Climate and Environmental Sciences Division; Kleese-van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lipton, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Monga, Inder [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Pritchard, Matt [British Atmospheric Data Centre (BADC), Oxon (United Kingdom); Rotman, Lauren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Strand, Gary [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Stuart, Cory [Argonne National Lab. (ANL), Argonne, IL (United States); Tatusova, Tatiana [National Inst. of Health (NIH), Bethesda, MD (United States); Tierney, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). ESNet; Thomas, Brian [Univ. of California, Berkeley, CA (United States); Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zurawski, Jason [Internet2, Washington, DC (United States)

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  20. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text: In the year 2000 we completed our study of the genotoxic influence of occupational exposure to pesticides on human cells, and their susceptibility to radiation in particular. Examining blood samples from four countries: Greece, Hungary, Poland and Spain we found that exposure to pesticides usually resulted in an increased susceptibility to the UV-C radiation, although statistical significance could only be concluded for inhabitants of Poland. In Spain, exposure to pesticides was proved to impair the lymphocyte DNA repair capability, while for the Polish group this repair capability appeared enhanced in people exposed to pesticides (see the research reports below). The possible influence of lifestyle or particular diet on the observed national differences would probably be worth analyzing. We also investigate the biological effectiveness of therapeutic beams (neutrons and X-rays). Experimental part of such study, concerning neutrons of different mean energies, is over and the results are now being processed. Our work covers hot issues of environmental and radiation biology making us research partners to many domestic and foreign scientific institutions. Our proficiency in the field is also reflected by membership in various expert boards (e.g. evaluating research applications for the Fifth EU Framework Programme for RTD and Demonstration Activities in the field 'Environment and Health', lecturing in the 2000 NATO IOS Life Science Books). We have entered the 5th EU Programme Scheme within the EXPAH project starting January 1, 2001. (author)

  1. Matching biological traits to environmental conditions in marine benthic ecosystems

    Science.gov (United States)

    Bremner, J.; Rogers, S. I.; Frid, C. L. J.

    2006-05-01

    The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for

  2. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  3. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    Full text: The year 2001 started for us with new demanding tasks connected with participation in a new research project performed in collaboration with a excellent teams from six countries under the 5th EU the Quality of Life Programme. The aim of the project EXPAH is to propose methods of molecular epidemiology for the risk assessment of exposure to polycyclic aromatic hydrocarbons in the air. The exploration of cause-effect relationships for carcinogenic agents will be based on the study of exogenous and endogenous influence on DNA damage in exposed population, and will determine the relationship between biomarkers of exposure, effects and susceptibility in the exposed populations. Analysis of this damage is carried out using highly specialising multidisciplinary techniques brought together by seven laboratories specialised in chemical, biochemical and biological techniques for analysing DNA damage and repair, together with access to populations exposed to environmental pollution and experience in collecting samples. In the year 2001 all the members of the department put much effort in co-organizing 12. Meeting of the Maria Sklodowska-Curie Polish Radiation Research Society. The Meeting was held in the September in Cracow and rewarded hard work of everybody with many applauding comments for the high scientific and organization level. Our parallel activities were concentrated on arrangement and preparation of the forthcoming Course on Human Monitoring for Genetic Effects proposed to us by the Alexander Hollaender Committee of the International Environmental Mutagenesis Society. The Alexander Hollaender ''HUMOGEF'' Course will concentrate on the commonly measured biomarkers (chromosome aberrations; micronuclei; DNA damage), but others (p53 protein levels; metabolic genotypes) will also be addressed. Scientists of international standing from the fields of toxicology, molecular biology, cytogenetics, mutation, and epidemiology, will present and discuss the state

  4. Metacognition: computation, biology and function.

    Science.gov (United States)

    Fleming, Stephen M; Dolan, Raymond J; Frith, Christopher D

    2012-05-19

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746

  5. Marine Carotenoids: Biological Functions and Commercial Applications

    OpenAIRE

    Vega, José M.; Inés Garbayo; Francisco Bédmar; María Cuaresma; Carlos Vílchez; Eduardo Forján

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesised by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for wide range of commercial applications. Indeed, recent interest in the carotenoids has be...

  6. Structure and Associated Biological Functions of Viroids.

    Science.gov (United States)

    Steger, Gerhard; Perreault, Jean-Pierre

    2016-01-01

    Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids. PMID:26997592

  7. Biologic markers in risk assessment for environmental carcinogens

    OpenAIRE

    Perera, F.; Mayer, J.; Santella, R. M.; Brenner, D; Jeffrey, A.; Latriano, L; Smith, S.; Warburton, D; Young, T. L.; Tsai, W. Y.; Hemminki, K; Brandt-Rauf, P

    1991-01-01

    The potential of biologic markers to provide more timely and precise risk assessments for environmental carcinogens is viewed against the current state-of-the-art in biological monitoring/molecular epidemiology. Biologic markers such as carcinogen-DNA adducts and oncogene activation are currently considered valid qualitative indicators of potential risk, but for most chemical exposures research is needed to establish their validity as quantitative predictors of cancer risk. Biologic markers h...

  8. Inferring Biologically Relevant Models: Nested Canalyzing Functions

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting the available data is huge and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory networks. Previously we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of the cell cycle in budding yeast.

  9. Insights into the functional biology of schistosomes

    OpenAIRE

    Walker Anthony

    2011-01-01

    Abstract The need to discover new treatments for human schistosomiasis has been an important driver for molecular research on schistosomes, a major breakthrough being the publication of the Schistosoma mansoni and Schistosoma japonicum genomes in 2009. This 'Primer' considers recent advances in the understanding of schistosome biology by providing a snapshot of selected areas of contemporary functional schistosome research, including that on the genome, the tegument, cell signalling and devel...

  10. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  11. Functional biology of sympatric krill species

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel

    2016-01-01

    Here we compare the functional biology of the sympatric krill species, Meganyctiphanes norvegica and Thysanoessa inermis. For M. norvegica, we investigated functional responses on diatoms and copepods, together with prey size spectra on plankton ,400 mm and copepods in the size range 500–3220 mm....... For T. inermis, only prey size spectrum on plankton ,400 mm were investigated. The prey size ranges of both species include organisms ,400 mm, and they consequently graze on several trophic levels. However, T. inermis feed on cells ,10 mm equivalent spherical diameter (ESD), whereas M. norvegica only...... feed on cells .10 mm. Meganyctiphanes norvegica show maximum predation on 800–1600 mm sized copepods, corresponding to a predator:prey size ratio of 17.0+2.2. Functional response experiments with M. norvegica follow a Holling type III functional response, both when feeding on diatoms and copepods, but...

  12. Analyses of environmental and biological specimens by PIXE

    International Nuclear Information System (INIS)

    Analyses of environmental and biological specimens were carried out by PIXE. The yield of potassium (Kα line) is used as a standard for other elements. Environmental and biological samples studied here are standard polished glass beads (30/60 mesh), soil dust generated by studded tires, materials accumulated in a water supplying pipe, perfumes of China and Japan, ash, asbestos-dark, briquettes, synovial fluids, sex skin of a chimpanzee and so on. Concentrations of K, Ca, Fe and Zn in these biological samples are noticeable. (author)

  13. PIXE - Analysis for environmental and biological samples

    International Nuclear Information System (INIS)

    The usefulness and accuracy of PIXE as an analytical tool in the study of trace elements in environmental samples of the Brazilian Cerrado are discussed. The report lists actual and forthcoming publications resulting from the study. The mechanism of exchange of elements in solution in water to aerosols has been investigated. For details of the procedure the reader is referred to an earlier report

  14. The biological basis for environmental quality assessments

    International Nuclear Information System (INIS)

    A systematic approach is required to environmental quality assessments with regard to the Baltic regions in order to address the problem of pollution abatement. The proposed systematization of adaptive states stems from the general theory of adaptation. The various types of adaption are described. (AB)

  15. Use of biological indicators to evaluate environmental stress

    International Nuclear Information System (INIS)

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present usage in Canada of biological indicators for evaluating environmental stress

  16. Use of biological indicators for evaluating environmental stress

    International Nuclear Information System (INIS)

    This report examines the usefulness of biological analyses for evaluating environmental stress. All forms of stress are addressed; particular attention, however, is paid to the use of biological analyses to evaluate the impact on the environment from radioactive releases of the nuclear industry. First, we will review different biological analyses which are grouped into two approaches: the holistic approach (biotic and diversity indices) and the reductionist approach ('biological indicators' per se). Secondly, we will compare the usefulness of plants and animals as indicators based on the established criteria. This report ends with a compilation of letters received from different organizations which outline the present use in Canada of biological indicators for evaluating environmental stress

  17. Biologic markers in risk assessment for environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perera, F.; Mayer, J.; Santella, R.M.; Brenner, D.; Jeffrey, A.; Latriano, L.; Smith, S.; Warburton, D.; Young, T.L.; Tsai, W.Y.; Brandt-Rauf, P. (Columbia Univ. School of Public Health, New York, NY (United States)); Hemminki, K. (Finnish School of Occupational Health, Helsinki (Finland))

    1991-01-01

    The potential of biologic markers to provide more timely and precise risk assessments for environmental carcinogens is viewed against the current state-of-the-art in biological monitoring/molecular epidemiology. Biologic markers such as carcinogen-DNA adducts and oncogene activation are currently considered valid qualitative indicators of potential risk, but for most chemical exposures research is needed to establish their validity as quantitative predictors of cancer risk. Biologic markers have, however, already provided valuable insights into the magnitude of interindividual variation in response to carcinogenic exposures, with major implications for risk assessment.

  18. Biologic markers in risk assessment for environmental carcinogens

    International Nuclear Information System (INIS)

    The potential of biologic markers to provide more timely and precise risk assessments for environmental carcinogens is viewed against the current state-of-the-art in biological monitoring/molecular epidemiology. Biologic markers such as carcinogen-DNA adducts and oncogene activation are currently considered valid qualitative indicators of potential risk, but for most chemical exposures research is needed to establish their validity as quantitative predictors of cancer risk. Biologic markers have, however, already provided valuable insights into the magnitude of interindividual variation in response to carcinogenic exposures, with major implications for risk assessment

  19. The use of self-determination theory to foster environmental motivation in an environmental biology course

    OpenAIRE

    Darner, Rebekka L.

    2007-01-01

    A scientifically literate person is one who understands the nature of science, its processes, products, and their appropriate application to decision-making contexts. The impetus to make informed decisions about environmental issues is environmental motivation. I examined students' environmental motivation, its relationship to scientific knowledge, and how environmental motivation can be fostered in a science classroom. This study took place in a college-level environmental biology course in ...

  20. Biological functions of decorin in cancer

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Bi; Wancai Yang

    2013-01-01

    Decorin is a member of the extracellular matrix small leucine-rich proteoglycans family that exists and functions in stromal and epithelial cells.Accumulating evidence suggests that decorin affects the biology of various types of cancer by directly or indirectly targeting the signaling molecules involved in cell growth,survival,metastasis,and angiogenesis.More recent studies show that decorin plays important roles during tumor development and progression and is a potential cancer therapeutic agent.In this article,we summarize recent studies of decorin in cancer and discuss decorin's therapeutic and prognostic value.

  1. Laboratory analyses: Environmental and biological measurements

    International Nuclear Information System (INIS)

    From its inception in 1951 to the present, the measurement of radioactive fallout from nuclear weapons testing and the many associated programs to establish global distribution and human health effects have contributed significantly to the understanding of worldwide dispersal of contamination. The original measurements of regional surface deposition of fallout nuclides were with duplicate gummed film collectors. Later, collectors were established in a worldwide network to measure total deposition and specific radionuclides such as 90Sr and 137Cs, which evolved into the first large-scale, global environmental monitoring network. Programs were set up to determine dietary intake and human and animal tissue distribution of 90Sr and 137Cs. Some of the first measurements of natural background dietary radium and body potassium were a response to identify analog elements. The impact of the environmental measurements made for fallout went far beyond any dosimetric consequences. For example, present day information on bone tissue turnover rates are derived mainly from radiochemical analysis of 90Sr measurements in human bone. The spin off from the enormous expenditure in effort to make these measurements and to determine the health consequences of global fallout laid a rich basic and applied scientific foundation in many disciplines, particularly in exposure pathways from ground deposition to dietary uptake and human organ biokinetics. (author)

  2. Department of Radiation and Environmental Biology - Overview

    International Nuclear Information System (INIS)

    californium 252 neutrons from KAERI source. The third part of our effort concerns an application of different radiation sources for clinical cancer therapy. In cooperation with dr Jacek Capala we have done experiments on Medical Research Reactor in Brookhaven Laboratory. We have also introduced a COMET assay in their laboratory. This is an excellent feeling when both cooperating sides may benefit from co-operation. The year 1998 was also very attractive in the sense of many interesting visits to our Department. All of them we enjoyed a lot. We were honored to host Dr Diana Anderson from BIBRA International, Carshalton, UK. We are happy to see that her visits have become a tradition so much profitable for both our friendship and programs. The end of the year was equally touching as the beginning when X-ray machine had arrived, at the beginning of December, I won myself, a prize from the International Mutagenesis Society for the outstanding presentation; on the 3rd International Conference of Mutagenesis in Human Populations. I really respect both, working issue of the Conference ''Understanding Gene and Environmental Interactions for Disease Prevention'' and a prize itself (Five-year-subscription of International Journal of Environmental and Molecular Mutagenesis). Whoop! I am proud of myself and of the people in my Department!!. (author)

  3. Biological monitoring and selected trends in environmental quality

    International Nuclear Information System (INIS)

    Under a contract with the President's Council on Environmental Quality, the National Inventory of Selected Biological Monitoring Programs at ORNL was used to identify documented environmental trends. Fish population trends were described for the Great Lakes and the Colorado River system. Trends in amphibian populations in the northeast were examined and correlated with acid precipitation. Increases in breeding success among large birds of prey were correlated with reductions in ambient levels of DDT and its residues. Geographic variation in PCB contamination was examined along with differences between aquatic and terrestrial contamination levels. Changes in air quality were documented, and their effects on plant viability were outlined. Trends in the biological effects of environmental deposition of lead were documented. Long-term changes in forest structure in the southeast were presented, and a general reduction in wildlife habitat, associated with land use practices, was documented for several areas in the US

  4. Structure and biological functions of fungal cerebrosides

    Directory of Open Access Journals (Sweden)

    Barreto-Bergter Eliana

    2004-01-01

    Full Text Available Ceramide monohexosides (CMHs, cerebrosides are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.

  5. Biological responses to environmental heterogeneity under future ocean conditions.

    Science.gov (United States)

    Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew

    2016-08-01

    Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to

  6. Systems Biology: New Approaches to Old Environmental Health Problems

    Directory of Open Access Journals (Sweden)

    Kristen P. Oehlke

    2005-04-01

    Full Text Available The environment plays a pivotal role as a human health determinant and presence of hazardous pollutants in the environment is often implicated in human disease. That pollutants cause human diseases however is often controversial because data connecting exposure to environmental hazards and human diseases are not well defined, except for some cancers and syndromes such as asthma. Understanding the complex nature of human-environment interactions and the role they play in determining the state of human health is one of the more compelling problems in public health. We are becoming more aware that the reductionist approach promulgated by current methods has not, and will not yield answers to the broad questions of population health risk analysis. If substantive applications of environment-gene interactions are to be made, it is important to move to a systems level approach, to take advantage of epidemiology and molecular genomic advances. Systems biology is the integration of genomics, transcriptomics, proteomics, and metabolomics together with computer technology approaches to elucidate environmentally caused disease in humans. We discuss the applications of environmental systems biology as a route to solution of environmental health problems.

  7. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  8. The use of self-determination theory to foster environmental motivation in an environmental biology course

    Science.gov (United States)

    Darner, Rebekka

    A scientifically literate person is one who understands the nature of science, its processes, products, and their appropriate application to decision-making contexts. The impetus to make informed decisions about environmental issues is environmental motivation. I examined students' environmental motivation, its relationship to scientific knowledge, and how environmental motivation can be fostered in a science classroom. This study took place in a college-level environmental biology course in which the instructor attempted to support students' basic psychological needs, as defined by self-determination theory (SDT). The first question was to what extent does an SDT-guided environmental biology course differ from a non-SDT-guided course in the degree to which it fostered self-determined motivation toward the environment. The administration of a well-validated scale to two sections before, after, and six months following the end of the course indicated that SDT-guided instruction is a plausible way to foster environmental motivation in the classroom. The second question was what are the multiple influences on fostering self-determined motivation toward the environment in an SDT-guided course. Path analysis indicated that environmental motivation can be partially accomplished in an environmental biology course by conveying to students that they are cared for, are connected to others, and can trust others while solving environmental problems. The third question sought to characterize students' scientific conceptualizations as they solve environmental problems and the extent to which their conceptualizations relate to the satisfaction of their need for competence. Students were videotaped during in-class problem-solving, after which stimulated-recall interviews were conducted. Grounded theory and an established coding scheme were combined to analyze these data, which resulted in three grounded hypotheses about what characterizes students' scientific knowledge when they

  9. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functi

  10. Gm crops: between biological risk and environmental and economic benefits

    International Nuclear Information System (INIS)

    The transgenic crops were the result of the application of recombinant DNA technology in agriculture. These crops were developed by transfer of foreign genes (transgenes) from any biological origin (animal, plant, microbial, viral) to the genome of cultivated species of plants. The crops genetically modified (GM) have been used in the world since 1996; up to December 2010 they counted to a billion hectares planted throughout the period. In just the past year 2010 148 million hectares were planted, grown by 15.4 million farmers in 29 countries. GM crops that are used in global agriculture are mainly soybean, cotton, corn and canola, which express transgenes derived from bacteria, and confer resistance to lepidopteron insects (ILR) or herbicide tolerance (HT; glyphosate and glufosinate ammonium). the first transgenic varieties containing only a single transgene, or simple event, while the current varieties express several transgenes, or stacked, conferring resistance to different species of Lepidoptera and coleopteran insects and tolerance to two different herbicides. In 2010 were planted in Colombia, 18.874 hectares of GM cotton, 16.793 hectares of GM corn, and 4 hectares of GM carnations and GM roses. GM corn and GM cotton were planted in Sucre, Cesar, Cordoba, Huila and Tolima. GM corn was planted in Antioquia, Valle del Cauca, Meta, Cundinamarca and Santander. Carnations and roses were planted in Cundinamarca. GM maize and GM cotton expressing ILR and HT features, as simple events or stacked. In the case of GM carnation and GM roses, these genotypes that express the color blue. Academia has tried to organize the debate on the adoption of GM crops around the analysis of biological risks and environmental vs environmental and economic benefits. Biological hazards are defined by the possible negative effects on human consumers or negative effects on the environment. The environmental benefits are related to reduce use of agrochemicals (insecticides and herbicides

  11. Use of coral skeleton as environmental archives: The biological basis

    International Nuclear Information System (INIS)

    Full text: 'There has never been any doubt that corals write valuable information into their skeletons it is their language that has remained blurry and ambiguous'. Paleoceanographers derive information about past environmental conditions from stable isotopes and other tracer records held with geological structures. The skeletons of hermatypic corals are particularly useful for high-resolution studies of tropical paleoceanic environments as they provide an unaltered record of the chemical and physical conditions that existed in the seawater when they were formed. However, these structures do not result from pure chemical CaCO3 precipitation but from highly- regulated biological activities of living organisms. Indeed, trace elements and isotopes were shown to vary widely between and within species or to correlate well with coral growth or extension rates. It was therefore suggested that environmental factors are not completely controlling isotope and trace element signatures in coral skeletons but that biological factors were also important. Furthermore, most of reefbuilding corals harbor photosynthetic symbionts which stimulate by an unknown mechanism coral calcification, a process called light-enhanced calcification. Consequently, one must consider the effects of these biological activities on the distribution and fractionation of tracers to make correct inferences on climate at the time of skeleton formation. It is, therefore, necessary to understand the physiological mechanisms which control both biomineral formation and carbon supply to the photosynthetic symbiont, called 'vital effects'. This paper will present an up-to-date review of the biological control of the biomineralization process in corals which will allow an optimization for the use of coral skeletons as environmental archives. By using the branched scleractinian coral, Stylophora pistillata as a model organism, we have shown that coral skeleton formation results from two biological processes

  12. The application of nuclear localisation technologies in environmental biology

    International Nuclear Information System (INIS)

    Nuclear and related localisation technologies at ANSTO have been applied to a range biological matrices, in relation to specific environmental questions. Several of these applications are summarised, including the localization of lead and other elements in crocodile osteoderms and validation of bivalve shell micro-laminations as archival monitors of pollution signals. The co-location of Ca and its metabolic analogue Ra-226 led to further development of a theoretical model of bioaccumulation of alkaline-earth and other elements in the tissue of Australian freshwater bivalves under natural conditions, which were not appreciably altered by uranium mining in the region

  13. Biological monitoring and environmental assessment in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Mining projects in the Alligator Rivers Region can accumulate excess volumes of water from the heavy rains of the annual Wet season. Such water contains naturally-occurring substances (heavy metals, radionuclides, suspended solids) at concentrations greater than those in adjacent streams and could pose an environmental risk if allowed to drain freely from a site. Because transport by surface waters dominates dispersion of mine-derived material, much of the research carried out at the Alligator Rivers Region Research Institute has been centred on aquatic ecosystems. While chemical analysis of waters can be used to measure concentrations of selected constituents, only biological monitoring can be used to assess effects on organisms, a crucial aspect of environmental protection

  14. Environmental chemicals and thyroid function: an update

    DEFF Research Database (Denmark)

    Boas, M.; Main, K.M.; Feldt-Rasmussen, U.

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...... pregnant women, neonates and small children in order to avoid potential impairment of brain development. Future studies will indicate whether adults also are at risk of thyroid damage due to these chemicals Udgivelsesdato: 2009/10...

  15. Tunable ultrasensitivity: functional decoupling and biological insights.

    Science.gov (United States)

    Wang, Guanyu; Zhang, Mengshi

    2016-01-01

    Sensitivity has become a basic concept in biology, but much less is known about its tuning, probably because allosteric cooperativity, the best known mechanism of sensitivity, is determined by rigid conformations of interacting molecules and is thus difficult to tune. Reversible covalent modification (RCM), owing to its systems-level ingenuity, can generate concentration based, tunable sensitivity. Using a mathematical model of regulated RCM, we find sensitivity tuning can be decomposed into two orthogonal modes, which provide great insights into vital biological processes such as tissue development and cell cycle progression. We find that decoupling of the two modes of sensitivity tuning is critical to fidelity of cell fate decision; the decoupling is thus important in development. The decomposition also allows us to solve the 'wasteful degradation conundrum' in budding yeast cell cycle checkpoint, which further leads to discovery of a subtle but essential difference between positive feedback and double negative feedback. The latter guarantees revocability of stress-induced cell cycle arrest; while the former does not. By studying concentration conditions in the system, we extend applicability of ultrasensitivity and explain the ubiquity of reversible covalent modification. PMID:26847155

  16. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects.

    Science.gov (United States)

    Yueh, Mei-Fei; Tukey, Robert H

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence--from in vitro and in vivo animal studies and environmental toxicology studies--demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health. PMID:26738475

  17. Printable Bioelectronics To Investigate Functional Biological Interfaces.

    Science.gov (United States)

    Manoli, Kyriaki; Magliulo, Maria; Mulla, Mohammad Yusuf; Singh, Mandeep; Sabbatini, Luigia; Palazzo, Gerardo; Torsi, Luisa

    2015-10-19

    Thin-film transistors can be used as high-performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to high-performance low-cost bioelectronic sensing devices that are potentially very useful for point-of-care applications. Among others, electrolyte-gated transistors are of interest as they can be operated as capacitance-modulated devices, because of the high capacitance of their charge double layers. Specifically, it is the capacitance of the biolayer, being lowest in a series of capacitors, which controls the output current of the device. Such an occurrence allows for extremely high sensitivity towards very weak interactions. All the aspects governing these processes are reviewed here. PMID:26420480

  18. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  19. Biological soil crust community types differ in key ecological functions

    OpenAIRE

    Pietrasiak, N; Regus, JU; Johansen, JR; LAM, D.; Sachs, JL; Santiago, LS

    2013-01-01

    Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi-functionality whereas incipient crust had the poorest performance. A finely divided classification of biological soil crust communities improves estimation of ecosystem function and strengthens the accuracy of landscape-scale assessments. © 2013 Elsevier Ltd.

  20. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    OpenAIRE

    Ye-Rang Yun; Jong Eun Won; Eunyi Jeon; Sujin Lee; Wonmo Kang; Hyejin Jo; Jun-Hyeog Jang; Ueon Sang Shin; Hae-Won Kim

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain opt...

  1. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  2. Speciation needs in relation with environmental and biological purposes

    International Nuclear Information System (INIS)

    Radionuclides can occur in the environment either through chronic releases of nuclear facilities, or due to incidents or accidents. In order to study their behaviour in the environment (migration, retention, transfer, and in human organisms (metabolism, retention, excretion), it is of prime importance to know their solution chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation. In fact, speciation governs the migration, the bioavailability and the toxicity of elements. Moreover, this knowledge is also of great interest for decorporation or decontamination purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides, namely Th, U, Pu, Am, Np, taking into account their most important oxidation states occurring in environmental or biological environments: Th(IV), U(IV, VI), Pu(III, IV, VI), Am(III), Np(IV, V). A particular attention was devoted to the choice of ligands (inorganic and organic) for being the most representative of environmental and biological media. The thermodynamic database used is BASSIST for Base Applied to Speciation in Solution and at Interfaces and Solubility (developed by CEA), in interaction with the code JCHESS. Different examples will be then presented on the selection of data (thermodynamic constants, ligands of interest) through benchmark exercises (case of U(VI), Am(III), Pu(IV)) which will show the lacks or weakness of knowledge. Speciation diagrams will support these discussions. Moreover, analytical methods to determine thermodynamic constants or direct speciation will also be presented and discussed. (author)

  3. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  4. Labeling and functionalizing amphipols for biological applications.

    Science.gov (United States)

    Le Bon, Christel; Popot, Jean-Luc; Giusti, Fabrice

    2014-10-01

    Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes. PMID:24696186

  5. [Biological experiments in microgravity: equilibrium function].

    Science.gov (United States)

    Gorgiladze, G I; Shipov, A A; Horn, E

    2012-01-01

    The review deals with the investigations of structural and functional modifications in the equilibrium organ (EO) in invertebrates (coelenterates, shells, crustaceans and insects) and vertebrates (fishes, amphibians, rats, primates) on different ontogenetic stages in the condition of microgravity and during readaptation to the Earth's gravity. Results of the investigations detail the adaptive strategy of terrestrial organism in the environment lacking the gravitational components that leads to the discrepancy of an inner model of the body-environment schema constructed by the central nervous system at 1 g and the novel reality. It is manifested by ataxic behavior and increased graviceptors' afferentation against efferent system inactivation. The new condition is defined as a sensibilization phase ensued by the eluding phase: behavior obeys the innate motion strategy, whereas graviceptors' afferentation decreases due to activation of the efferent system. Readaptation to 1 G takes several to 50 days and proceeds as a sequence of slow in motion behavior, ataxia and vestibular sensitization. Reactivity of the gravitosensory system to microgravity was found to be age-dependent. Gain in the EO inertial mass in microgravity and reduction with return to 1 g indicates gravity relevance to EO genesis. PMID:23402139

  6. Evidence for a Role of Executive Functions in Learning Biology

    Science.gov (United States)

    Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela

    2014-01-01

    Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…

  7. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  8. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  9. Biological accessibility of Chernobyl radionuclides and aspects of environmental rehabilitation

    International Nuclear Information System (INIS)

    The redistribution of 137Cs, 90Sr, 239,240Pu and 241Am within natural ecosystems and the determination of natural and artificial factors influencing on processes of radionuclide migration on biogeochemical chains were investigated. There are three main directions of investigation. The first of them is to estimate the intensity of self-purification of damaged region soil cover, taking into account landscape, soil, land-use differentiation and also peculiarities of physico-chemical occurrence forms of the radioactive fallout. In particular, the change dynamics of radionuclide physico-chemical state and vertical migration in soil of different genesis were estimated, the soil varieties with high and low rate of radionuclide migration were discovered, the peculiarities of 'hot' particles destruction, the change of their dispersity and structure composition under the influence of natural reagents were studied, the radionuclide bond strength with some components of different soil types was determined. The second problem is to estimate the biological accessibility of radionuclides. In particular, the radionuclide contamination of different components of forest and meadow phytocenoses was investigated, the change of radionuclide accumulation coefficients in system 'soil-plant' was estimated. The third problem is ecological and practice measures for environmental rehabilitation. In particular, the soil self-purification hypothesis in different natural conditions were created and the permissible criterion's of interference in natural processes were developed

  10. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  11. Biomarkers of Aging: From Function to Molecular Biology

    OpenAIRE

    Karl-Heinz Wagner; David Cameron-Smith; Barbara Wessner; Bernhard Franzke

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a sing...

  12. Diverse Biological Functions of Extracellular Collagen Processing Enzymes

    OpenAIRE

    Trackman, Philip C.

    2005-01-01

    Collagens are abundant proteins in higher organisms, and are formed by a complex biosynthetic pathway involving intracellular and extracellular post-translational modifications. Starting from simple soluble precursors, this interesting pathway produces insoluble functional fibrillar and non-fibrillar elements of the extracellular matrix. The present review highlights recent progress and new insights into biological regulation of extracellular procollagen processing, and some novel functions o...

  13. Biological ensilage of fish - optimization of stability, safety and functionality

    NARCIS (Netherlands)

    Enes Dapkevicius, M.L.N.

    2002-01-01

    This thesis deals with stability, safety, and functionality aspects of biological fish silage (BFS) obtained by lactic acid fermentation. BFS may provide an economically viable, environment friendly way of upgrading fish waste.BFS has been found advantageous when compared to the so-called acid proce

  14. Integrated Omics in Systems Biology: The New Frontier for Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2008-08-12

    Environmental biotechnology encompasses a wide range of characterization, monitoring and control for bioenergy and bioremediation technologies that are based on biological processes. Recent breakthroughs in our understanding of biogeochemical processes and genomics are leading to exciting new and cost effective ways to monitor and manipulate the environment and potentially produce bioenergy fuels as we also cleanup the environment. Indeed, our ability to sequence an entire microbial genome in just a few hours is leading to similar breakthroughs in characterizing proteomes, metabolomes, phenotypes, and fluxes for organisms, populations, and communities. Understanding and modeling functional microbial community structure and stress responses in subsurface environments has tremendous implications for our fundamental understanding of biogeochemistry and the potential for making biofuel breakthroughs. Monitoring techniques that inventory and monitor terminal electron acceptors and electron donors, enzyme probes that measure functional activity in the environment, functional genomic microarrays, phylogenetic microarrays, metabolomics, proteomics, and quantitative PCR are also being rapidly adapted for studies in environmental biotechnology. Integration of all of these new high throughput techniques using the latest advances in bioinformatics and modeling will enable break-through science in environmental biotechnology. A review of these techniques with examples from field studies and lab simulations will be discussed.

  15. Applications of large-scale density functional theory in biology.

    Science.gov (United States)

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  16. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  17. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  18. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains

    Science.gov (United States)

    Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo

    2016-01-01

    Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760

  19. Bigheaded carps : a biological synopsis and environmental risk assessment

    Science.gov (United States)

    Kolar, Cindy S.; Chapman, Duane C.; Courtenay, Walter R., Jr.; Housel, Christine M.; Williams, James D.; Jennings, Dawn P.

    2007-01-01

    The book is a detailed risk assessment and biological synopsis of the bigheaded carps of the genus Hypophthalmichthys, which includes the bighead, silver, and largescale silver carps. It summarizes the scientific literature describing their biology, ecology, uses, ecological effects, and risks to the environment.

  20. SU-E-T-54: Benefits of Biological Cost Functions

    Energy Technology Data Exchange (ETDEWEB)

    Demirag, N [Elekta CMS GmbH, Freiburg Im Breisgau, baden wurttemberg (Germany)

    2014-06-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics.

  1. SU-E-T-54: Benefits of Biological Cost Functions

    International Nuclear Information System (INIS)

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics

  2. Biological framework for soil aggregation: Implications for ecological functions.

    Science.gov (United States)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  3. Functionalized Conjugated Polyelectrolytes for Biological Sensing and Imaging.

    Science.gov (United States)

    Zhan, Ruoyu; Liu, Bin

    2016-06-01

    Conjugated polyelectrolytes (CPEs) are macromolecules with highly delocalized π-conjugated backbones and charged side chains, which are unique types of active materials, with wide applications in optoelectronics, sensing, imaging, and therapy. By attaching specific groups (e.g., recognition elements, magnetic resonance (MR) contrast agents, gene carriers, and drugs) to the side chain or backbone of CPEs, functionalized CPEs have been developed and used for specific biological applications. In this account, we summarize the recent progress of functionalized CPEs with respect to their synthesis and biomedical applications. Future perspectives are also discussed at the end. PMID:27230631

  4. Environmental DNA for wildlife biology and biodiversity monitoring

    DEFF Research Database (Denmark)

    Bohmann, Kristine; Evans, Alice; Gilbert, M. Thomas P.;

    2014-01-01

    Extraction and identification of DNA from an environmental sample has proven noteworthy recently in detecting and monitoring not only common species, but also those that are endangered, invasive, or elusive. Particular attributes of so-called environmental DNA (eDNA) analysis render it a potent...

  5. ENVIRONMENTAL ATTITUDES OF BIOLOGY TEACHER CANDIDATES AND THE ASSESSMENTS IN TERMS OF SOME VARIABLES

    OpenAIRE

    UĞULU, İlker; ERKOL, Sevilay

    2013-01-01

    Studying individuals and students' attitudes towards environment and factors affecting students to be responsible individuals towards their environment may provide help towards the solution of environmental problems. In this study, it is aimed to evaluate environmental attitudes of biology teacher candidates in terms of some variables. As a means of data collection, Environmental Attitude Scale and the personal information form have been used. Environmental Attitude Scale which has 35 items i...

  6. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    OpenAIRE

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W. Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H. Clifford; Lempicki, Richard A.

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretat...

  7. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  8. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  9. Biological properties of extracellular vesicles and their physiological functions.

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  10. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  11. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  12. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter;

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene......, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual...... setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based...

  13. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  14. Application of Computational Systems Biology to Explore Environmental Toxicity Hazards

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Grandjean, P.

    2011-01-01

    BACKGROUND: Computer-based modeling is part of a new approach to predictive toxicology. OBJECTIVES: We investigated the usefulness of an integrated computational systems biology approach in a case study involving the isomers and metabolites of the pesticide dichlorodiphenyltrichloroethane (DDT) to...... ascertain their possible links to relevant adverse effects. METHODS: We extracted chemical protein association networks for each DDT isomer and its metabolites using Chem Prot, a disease chemical biology database that includes both binding and gene expression data, and we explored protein protein...

  15. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  16. Phenological response of a key ecosystem function to biological invasion.

    Science.gov (United States)

    Alp, Maria; Cucherousset, Julien; Buoro, Mathieu; Lecerf, Antoine

    2016-05-01

    Although climate warming has been widely demonstrated to induce shifts in the timing of many biological events, the phenological consequences of other prominent global change drivers remain largely unknown. Here, we investigated the effects of biological invasions on the seasonality of leaf litter decomposition, a crucial freshwater ecosystem function. Decomposition rates were quantified in 18 temperate shallow lakes distributed along a gradient of crayfish invasion and a temperature-based model was constructed to predict yearly patterns of decomposition. We found that, through direct detritus consumption, omnivorous invasive crayfish accelerated decomposition rates up to fivefold in spring, enhancing temperature dependence of the process and shortening the period of major detritus availability in the ecosystem by up to 39 days (95% CI: 15-61). The fact that our estimates are an order of magnitude higher than any previously reported climate-driven phenological shifts indicates that some powerful drivers of phenological change have been largely overlooked. PMID:26931804

  17. Lipids in the structure and functions of biological membranes

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.I.

    2014-06-01

    Full Text Available Lipids are one of the main components of cellular membranes. Lipids make up 30-55% of the cell content depending on the types of cells. Phospholipids, sphingomyelins, cholesterol, etc. are characteristic to cellular membranes. The composition of lipids of the both sides of the membranes differs. This fact determines asymmetry of the structure of bili-pid layer. The reason for many pathologies is the changes in the properties of cellular membranes with the modification of their components. The study of structure and functioning of cellular biomembranes is essential for many researchers. The condition of membranes, their quality, their quantitative composition and modification under the influence of different factors as well as their interaction with carbohydrate and protein component are of great importance for the functioning of both membranes, cells and the body in general. Analysis and structuring of lipids and their functions in biological membranes are studied.

  18. The Impact of Collective Molecular Dynamics on Physiological and Biological Functionalities of Artificial and Biological Membranes

    Science.gov (United States)

    Rheinstadter, Maikel

    2008-03-01

    We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).

  19. Annual rhythms that underlie phenology : biological time-keeping meets environmental change

    NARCIS (Netherlands)

    Helm, Barbara; Ben-Shlomo, Rachel; Sheriff, Michael J; Hut, Roelof A; Foster, Russell; Barnes, Brian M; Dominoni, Davide

    2013-01-01

    Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the rel

  20. Environmental Biology Programs at the University of Illinois, Urbana-Champaign.

    Science.gov (United States)

    Getz, Lowell L.

    1987-01-01

    Describes the programs of the Department of Ecology, Ethology, and Evolution at the University of Illinois (Urbana-Champaign). Focuses on the graduate degrees offered in environmental biology. Lists research interests and courses in plant biology, entomology, forestry, civil engineering, and landscape architecture. (TW)

  1. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    Science.gov (United States)

    2010-11-12

    ... Assessment for a Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service... the control of Arundo donax (giant reed, Carrizo cane). The environmental assessment considers the... a biological control agent to reduce the severity of Arundo donax infestations. We are making...

  2. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... Assessment for a Biological Control Agent for Hawkweeds AGENCY: Animal and Plant Health Inspection Service... the control of hawkweeds (Hieracium spp.). The environmental assessment considers the effects of, and... States as a biological control agent to reduce the severity of infestations of hawkweeds. We are...

  3. A systems biology approach to understanding impacts of environmental contaminants on fish reproduction

    Science.gov (United States)

    Over the past decade, our research team at the US EPA Mid-Continent Ecology Division has employed systems biology approaches to examine and understand impacts of environmental contaminants on fish reproduction. Our systems biology approach is one in which iterations of model cons...

  4. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    Science.gov (United States)

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  5. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    Science.gov (United States)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  6. Functionalization of hydroxyl terminated polybutadiene with biologically active fluorescent molecule

    Indian Academy of Sciences (India)

    R Murali Sankar; Subhadeep Saha; K Seeni Meera; Tushar Jana

    2009-10-01

    A biologically active molecule, 2-chloro-4,6-bis(dimethylamino)-1,3,5-triazine (CBDT), has been covalently attached at the terminal carbon atoms of the hydroxyl terminated polybutadiene (HTPB) backbone. The modification of HTPB backbone by CBDT molecule does not affect the unique physico-chemical properties such as fluidity, hydroxyl value and microstructure of the parent HTPB. The formation of hydrogen bonding between the terminal hydroxyl groups and the nitrogen atoms of triazine moiety is the driving force for the terminal attachment chemistry. The functionalized HTPB (HTPB–CBDT) shows a strong fluorescence emission at 385 nm.

  7. Application of computational systems biology to explore environmental toxicity hazards

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Grandjean, Philippe

    2011-01-01

    Background: Computer-based modeling is part of a new approach to predictive toxicology.Objectives: We investigated the usefulness of an integrated computational systems biology approach in a case study involving the isomers and metabolites of the pesticide dichlorodiphenyltrichloroethane (DDT......) to ascertain their possible links to relevant adverse effects.Methods: We extracted chemical-protein association networks for each DDT isomer and its metabolites using ChemProt, a disease chemical biology database that includes both binding and gene expression data, and we explored protein-protein interactions...... using a human interactome network. To identify associated dysfunctions and diseases, we integrated protein-disease annotations into the protein complexes using the Online Mendelian Inheritance in Man database and the Comparative Toxicogenomics Database.Results: We found 175 human proteins linked to p...

  8. Technologies for detecting botulinum neurotoxins in biological and environmental matrices

    Science.gov (United States)

    Biomonitoring of food and environmental matrices is critical for the rapid and sensitive diagnosis, treatment, and prevention of diseases caused by toxins. The United States Centers for Disease Control and Prevention (CDC) has noted that toxins from bacteria, fungi, algae, and plants present an ongo...

  9. Environmental and biological characteristics of high altitude lochs in Scotland

    Czech Academy of Sciences Publication Activity Database

    Kernan, M.; Brancelj, A.; Clarke, G.; Lami, A.; Raddum, G.; Straškrábová, Viera; Stuchlík, E.; Velle, G.; Ventura, M.

    2009-01-01

    Roč. 62, - (2009), s. 379-417. ISSN 1612-166X Grant ostatní: EU EURO-LIMPACS(CZ) GOCE-CT-2003-505540 Institutional research plan: CEZ:AV0Z60170517 Keywords : mountain lakes * species composition * environmental gradients Subject RIV: EH - Ecology, Behaviour

  10. Suboptimal geometrical implantation of biological aortic valves provokes functional deficits.

    Science.gov (United States)

    Kuehnel, Ralf-Uwe; Wendt, Max O; Jainski, Ute; Hartrumpf, Martin; Pohl, Manfred; Albes, Johannes M

    2010-06-01

    Endovascular valves have become a valid option for patients not qualifying for conventional surgery. Biological valves mounted in a stent are currently used. After implantation, however, geometrical distortion of the valve can occur. We tested whether biological valves suitable for transcatheter implantation exhibit hemodynamic deficits after deployment in a distorted position. Two types of valves [bovine pericardium (BP) and porcine cusps], of 21 and 23 mm diameter, respectively were investigated. Mean transvalvular gradient (TVG), effective orifice area (EOA), and regurgitation fraction (REG) were measured prior to and after the 20% distortion of the original diameter. All valves exhibited an increase of TVG and reduction of EOA whereas REG increased only in BP valves after distortion. The 21 mm valves demonstrated a more pronounced alteration than the 23 mm valves. Even moderately distorted implantation of a biological valve results in a marked functional alteration. The susceptibility of pericardial valves is higher than that of porcine valves probably owing to better coaptation properties of native cusps even under deformed conditions when compared to valves constructed with pericardium. Care should therefore be taken during implantation of endovascular valves in order to avoid fixed hemodynamic deficits. Native valves may preferably be used as they demonstrate a more robust behavior regarding suboptimal implantation. PMID:20233809

  11. Functions of microRNAs in cardiovascular biology and disease.

    Science.gov (United States)

    Hata, Akiko

    2013-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  12. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  13. Natural environmental impacts on teleost immune function.

    Science.gov (United States)

    Makrinos, Daniel L; Bowden, Timothy J

    2016-06-01

    The environment in which teleosts exist can experience considerable change. Short-term changes can occur in relation to tidal movements or adverse weather events. Long-term changes can be caused by anthropogenic impacts such as climate change, which can result in changes to temperature, acidity, salinity and oxygen capacity of aquatic environments. These changes can have important impacts on the physiology of an animal, including its immune system. This can have consequences on the well-being of the animal and its ability to protect against pathogens. This review will look at recent investigations of these types of environmental change on the immune response in teleosts. PMID:26973022

  14. Biological and Environmental Transformations of Copper-Based Nanomaterials

    OpenAIRE

    Wang, Zhongying; von dem Bussche, Annette; Kabadi, Pranita K.; Kane, Agnes B.; Hurt, Robert H.

    2013-01-01

    Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in stud...

  15. Transuranium analysis methodologies for biological and environmental samples

    International Nuclear Information System (INIS)

    Analytical procedures for the most abundant transuranium nuclides in the environment (i.e., plutonium and, to a lesser extent, americium) are available. There is a lack of procedures for doing sequential analysis for Np, Pu, Am, and Cm in environmental samples, primarily because of current emphasis on Pu and Am. Reprocessing requirements and waste disposal connected with the fuel cycle indicate that neptunium and curium must be considered in environmental radioactive assessments. Therefore it was necessary to develop procedures that determine all four of these radionuclides in the environment. The state of the art of transuranium analysis methodology as applied to environmental samples is discussed relative to different sample sources, such as soil, vegetation, air, water, and animals. Isotope-dilution analysis with 243Am (239Np) and 236Pu or 242Pu radionuclide tracers is used. Americium and curium are analyzed as a group, with 243Am as the tracer. Sequential extraction procedures employing bis(2-ethyl-hexyl)orthophosphoric acid (HDEHP) were found to result in lower yields and higher Am--Cm fractionation than ion-exchange methods

  16. Understanding the biological and environmental implications of nanomaterials

    Science.gov (United States)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  17. Biological Monitoring Prospects in Occupational and Environmental Medicine

    CERN Document Server

    Angerer, Jürgen

    2003-01-01

    At the invitation of the Deutsche Forschungsgemeinschaft (DFG), a round-table discussion was held on 9 and 10 March 2000, dealing with future possibilities for biomonitoring in occupational and environmental medicine. Biomonitoring has reached a high standard in Germany over the past 30 years, not least due to the fact that the results of the Senate commission on materials hazardous to health at the workplace have been directly implemented as part of the jurisdiction relating to occupational safety. This book combines the expertise gathered from various areas within toxicology, occupational me

  18. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  19. Environmental distribution and population biology of Candidatus Accumulibacter, a primary agent of Biological Phosphorus Removal

    OpenAIRE

    Peterson, S. Brook; Warnecke, Falk; Madejska, Julita; McMahon, Katherine D.; Hugenholtz, Philip

    2008-01-01

    Members of the uncultured bacterial genus Candidatus Accumulibacter are capable of intracellular accumulation of inorganic phosphate (Pi) in activated sludge wastewater treatment plants (WWTPs) performing enhanced biological phosphorus removal (EBPR), but were also recently shown to inhabit freshwater and estuarine sediments. Additionally, metagenomic sequencing of two bioreactor cultures enriched in Candidatus Accumulibacter, but housed on separate continents, revealed the potential for glob...

  20. AFM imaging of functionalized carbon nanotubes on biological membranes

    Science.gov (United States)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  1. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  2. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  3. Genome-wide survey for biologically functional pseudogenes.

    Science.gov (United States)

    Svensson, Orjan; Arvestad, Lars; Lagergren, Jens

    2006-05-01

    According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3), and one from the Spinocerebellar ataxia type 1 protein (ATX1). Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios. PMID:16680195

  4. Biochemical Properties and Biological Functions of FET Proteins.

    Science.gov (United States)

    Schwartz, Jacob C; Cech, Thomas R; Parker, Roy R

    2015-01-01

    Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis. PMID:25494299

  5. Comparative genomics of pectinacetylesterases: Insight on function and biology.

    Science.gov (United States)

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  6. Biological Functional Relevance of Asymmetric Dimethylarginine (ADMA in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Sara Franceschelli

    2013-12-01

    Full Text Available There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.

  7. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2013-04-01

    Full Text Available Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.

  8. Functions of environmental epidemiology and surveillance in state health departments.

    Science.gov (United States)

    Stanbury, Martha; Anderson, Henry; Blackmore, Carina; Fagliano, Jerald; Heumann, Michael; Kass, Daniel; McGeehin, Michael

    2012-01-01

    Public health surveillance and epidemiology are the foundations for disease prevention because they provide the factual basis from which agencies can set priorities, plan programs, and take actions to protect the public's health. Surveillance for noninfectious diseases associated with exposure to agents in the environment like lead and pesticides has been a function of state health departments for more than 3 decades, but many state programs do not have adequate funding or staff for this function. Following the efforts to identify core public health epidemiology functions in chronic diseases, injury, and occupational health and safety, a workgroup of public health environmental epidemiologists operating within the organizational structure of the Council of State and Territorial Epidemiologists has defined the essential core functions of noninfectious disease environmental epidemiology that should be present in every state health department and additional functions of a comprehensive program. These functions are described in terms of the "10 Essential Environmental Public Health Services" and their associated performance standards. Application of these consensus core and expanded functions should help state and large metropolitan health departments allocate resources and prioritize activities of their environmental epidemiologists, thus improving the delivery of environmental health services to the public. PMID:22836537

  9. Functionalized nanoparticles for biological imaging and detection applications

    Science.gov (United States)

    Mei, Bing C.

    Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable in aqueous media and lack simple and reliable means of covalently linking to biomolecules. The focus of this work is to advance the progress of these nanomaterials for biotechnology by synthesizing them, characterizing their optical properties and rendering them water-soluble and functional while maintaining their coveted optical properties. QDs were synthesized by an organometallic chemical procedure that utilizes coordinating solvents to provide brightly luminescent nanoparticles. The optical interactions of these QDs were studied as a function of concentration to identify particle size-dependent optimal concentrations, where scattering and indirection excitation are minimized and the amount light observed per particle is maximized. Both QDs and AuNPs were rendered water-soluble and stable in a broad range of biologically relevant conditions by using a series of ligands composed of dihydrolipoic acid (DHLA) appended to poly(ethylene glycol) methyl ether. By studying the stability of the surface modified AuNPs, we revealed some interesting information regarding the role of the surface ligand on the nanoparticle stability (i.e. solubility in high salt concentration, resistance to dithiothreitol competition and cyanide decomposition). Furthermore, the nanoparticles

  10. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Basile, D.; Birattari, C.; Bonard, M.; Salomone, A. (Istituto Nazionale di Fisica Nucleare, Milan (Italy)); Goetz, L.; Sabbioni, E. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1981-06-01

    Many arsenic radionuclides have come to be used as tracers in biology and in the study of environmental pollution of both water and soil. In nuclear medicine, radioactive /sup 74/As has been employed as a positron emitter for the localization of brain tumors, cerebral occlusive vascular lesions, arterious-venous malformations, etc. The aim of the work described was to study the excitation functions for the production of the arsenic radioisotopes from targets of natural germanium via nuclear reactions (p, xn).

  11. OMNIHAB - a controlled environmental system for application in gravitational biology

    Science.gov (United States)

    Anken, Ralf; Hilbig, Reinhard; Anken, Ralf; Lebert, Michael; Häder, Donat

    Several "closed" habitats have been designed in the past for experiments with unicellular organisms as well as with multicellular animals and plants under long-term microgravity. Some of these environmental systems were flown successfully. The bioregenerative C.E.B.A.S.- Minimodul allowed the maintenance of higher plants (Ceratophyllum sp.), mollusks (Biomphalaria glabrata) and fish (swordtail Xiphophorus helleri, cichlid fish Oreochromis mossambicus) under spaceflight conditions (STS-89, STS-90 Neurolab, STS-107). A much simpler and smaller system, the OMEGAHAB, was successfully employed on the FOTON M-3 flight, containing cichlid fish larvae and unicellular algae (Euglena gracilis). Further aquatic habitats are under development (e.g., AquaHab, another aquatic research module especially dedicated to ground based, application-oriented research). These systems tend to be specialized, minimal ecosystems with limited research potential. Therefore, we propose to develop a controlled, multi-modular hardware to increase the diversity of experimental species to be flown together. Currently, a variety of plant and animal species are used as model systems. Combining as many of them as possible (and conducting a most effective sample-sharing among the different working groups) will strongly improve the cost-benefit ratio and thus effectiveness of a space- flight experiment in utilising limited resources at the maximum. The concept of OMNIHAB, an aquatic life support system comprising exchangeable modules, will be presented at the meeting.

  12. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    OpenAIRE

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders; Bhander, Gurbakhash S.; Møller, Jacob; Christensen, Thomas Højlund

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be model...

  13. Quality of environmental impact assessment (EIA) reports on biological pest control / Thea Henriette Carroll

    OpenAIRE

    Carroll, Thea Henriette

    2006-01-01

    Decision making regarding the release of biological control agents for invasive species such as lantana, Lantana camara, requires the consideration and evaluation of environmental impact assessment (EIA) reports by a competent authority. Although various biological control agents have been authorised for release into the environment for the control of lantana, the quality of the EIA reports that form the basis for decision making has never been evaluated. The evaluation of the ...

  14. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls

    Science.gov (United States)

    Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.

    2000-01-01

    OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession.
METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B).
RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in

  15. Specimen banking for trace element research in biological and environmental systems

    International Nuclear Information System (INIS)

    A specimen banking is a physical archive of samples collected as part of an environmental monitoring programme. It is an activity involving the characterization and storage of these samples for deferred analysis. The main problems in establishing a Chinese specimen banking for trace element research in environmental and biological systems are to develop a set of selection criteria to collect the most representative environmental and biological samples and to develop optimal procedures for specimen preservation. The authors originally intend to collect the following samples: 1) tree ring for heavy metal monitoring, e.g. Pb and Cd; 2) lake sediments for long term trend research of trace elements and flux estimation; 3) loess; 4) human tissues and organs at Hg-polluted and Se-deficient regions; 5) soils and plants at the areas where the REE-fertilizers are used; 6) environmental samples at some new industrial zones

  16. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss. PMID:22700920

  17. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones.

    Science.gov (United States)

    Lace, Beatrice; Prandi, Cristina

    2016-08-01

    Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. PMID:27378726

  18. A vital legacy: Biological and environmental research in the atomic age

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. [ed.

    1997-09-01

    This booklet presents a summary of the five decades of biological and environmental research in the atomic age. It commemorates the contributions to science and society during these decades and concludes with a view to the years ahead. The Contents includes `Safety First: in the Shadow of a New Technology; A Healthy Citizenry: Gifts of the New Era; and Environmental Concerns: From Meteorology to Ecology`. The conclusion is titled `An Enduring Mandate: Looking to the Future`.

  19. A Vital Legacy: Biological and Environmental Research in the Atomic Age

    Science.gov (United States)

    1997-09-01

    This booklet presents a summary of the five decades of biological and environmental research in the atomic age. It commemorates the contributions to science and society during these decades and concludes with a view to the years ahead. The Contents includes Safety First: in the Shadow of a New Technology; A Healthy Citizenry: Gifts of the New Era; and Environmental Concerns: From Meteorology to Ecology. The conclusion is titled An Enduring Mandate: Looking to the Future.

  20. The impact of different environmental conditions on cognitive function: a focused review

    Directory of Open Access Journals (Sweden)

    Lee Taylor

    2016-01-01

    Full Text Available Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; 1 the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, 2 the potential mechanisms underpinning these alterations, and 3 plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions.

  1. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review.

    Science.gov (United States)

    Taylor, Lee; Watkins, Samuel L; Marshall, Hannah; Dascombe, Ben J; Foster, Josh

    2015-01-01

    Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029

  2. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  3. Home environmental problems and physical function in Taiwanese older adults.

    Science.gov (United States)

    Lan, Tzuo-Yun; Wu, Shwu-Chong; Chang, Wen-Chiung; Chen, Ching-Yu

    2009-01-01

    Environmental hazards play an important role in the disablement process. The purpose of this study was to investigate the relationship between home environmental problems and personal physical function. Data were based on a two-stage nationwide survey and evaluation on the needs of long-term care in Taiwan. A total of 10,596 individuals aged 65 and over were included in this study. These participants were identified with physical or cognitive problems at the screening interview and further evaluated at the second interview on health condition, functional status, needs of long-term care, and home environmental problems. Six items of environmental hazards were assessed at the participants' homes with direct observation. The prevalence rates of home environmental problems were similar among older adults with different levels of physical function. No grab bars (79.6-85.1%) and no protections against slip (81.9-92.8%) in the bathroom were two commonly present hazards in older adults' homes. Older adults with a higher income (Odds ratio=OR=0.75), without income information (OR=0.78) or living with other persons (OR=0.74) were less likely to experience environmental problems at home. Results from this study revealed that home environment condition was associated with factors other than personal disabling conditions for the elderly. Modifying home environment, especially the bathroom, should be attached with great importance for physically disabled older adults. PMID:19124167

  4. Beyond the Golden Gate; oceanography, geology, biology, and environmental issues in the Gulf of the Farallones

    Science.gov (United States)

    Karl, Herman A., (Edited By); Chin, John L.; Ueber, Edward; Stauffer, Peter H.; Hendley, James W., II

    2001-01-01

    In the 1990's, the U.S. Geological Survey sponsored a multidisciplinary, multiagency investigation of the Gulf of the Farallones, which lies offshore of the San Francisco Bay region. This book discussess the results of the endeavor, covering the topics of oceanography and geology, biology and ecological niches, and issues of environmental management.

  5. 75 FR 28232 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2010-05-20

    ... Control Agent for Hemlock Woolly Adelgid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Plant Health Inspection Service has prepared an environmental assessment relative to the control of... a biological control agent to reduce the severity of hemlock woolly adelgid infestations. We...

  6. 77 FR 46373 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2012-08-03

    ... Control Agent for Hemlock Woolly Adelgid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... prepared an environmental assessment relative to the release of Symnus coniferarum to control hemlock... of Symnus coniferarum into the eastern United States for use as a biological control agent to...

  7. Heme-nitrosyls: electronic structure implications for function in biology.

    Science.gov (United States)

    Hunt, Andrew P; Lehnert, Nicolai

    2015-07-21

    The question of why mammalian systems use nitric oxide (NO), a potentially hazardous and toxic diatomic, as a signaling molecule to mediate important functions such as vasodilation (blood pressure control) and nerve signal transduction initially perplexed researchers when this discovery was made in the 1980s. Through extensive research over the past two decades, it is now well rationalized why NO is used in vivo for these signaling functions, and that heme proteins play a dominant role in NO signaling in mammals. Key insight into the properties of heme-nitrosyl complexes that make heme proteins so well poised to take full advantage of the unique properties of NO has come from in-depth structural, spectroscopic, and theoretical studies on ferrous and ferric heme-nitrosyls. This Account highlights recent findings that have led to greater understanding of the electronic structures of heme-nitrosyls, and the contributions that model complex studies have made to elucidate Fe-NO bonding are highlighted. These results are then discussed in the context of the biological functions of heme-nitrosyls, in particular in soluble guanylate cyclase (sGC; NO signaling), nitrophorins (NO transport), and NO-producing enzymes. Central to this Account is the thermodynamic σ-trans effect of NO, and how this relates to the activation of the universal mammalian NO sensor sGC, which uses a ferrous heme as the high affinity "NO detection unit". It is shown via detailed spectroscopic and computational studies that the strong and very covalent Fe(II)-NO σ-bond is at the heart of the strong thermodynamic σ-trans effect of NO, which greatly weakens the proximal Fe-NHis (or Fe-SCys) bond in six-coordinate ferrous heme-nitrosyls. In sGC, this causes the dissociation of the proximally bound histidine ligand upon NO binding to the ferrous heme, inducing a significant conformational change that activates the sGC catalytic domain for the production of cGMP. This, in turn, leads to vasodilation and

  8. Natural killer cells: Biology, functions and clinical relevance

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction. Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1 killer immunoglobulin like receptors-KIR, 2 C-type lectin receptors,3natural citotoxicity receptors-NCR and 4 Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.

  9. Estimating biological half-lifes of radionuclides in marine compartments from environmental time-series measurements

    International Nuclear Information System (INIS)

    Modelling radionuclide transfers between seawater and marine species on a short time scale basis requires being able to take into account the transfer kinetics. This means (1) to implement the effect of the biological half-lives of radionuclides together with the concentration factor in the calculation of transfers and (2), to get these kinetic parameters for each element and species. Biological half-lives are usually determined from laboratory labelling experiments with the challenge to match natural environmental conditions. The present work proposes a simple model that implements the effect of kinetic parameters in the calculation of transfers. This model is also used to derive the biological half-life and the concentration factor for 137Cs from time-series measurements of environmental concentrations in seawater and in the brown alga Fucus serratus, as an example. These transfer parameters are finally used to predict the Cs activities in Fucus serratus on the English Channel shores

  10. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Neidel, Trine Lund; Damgaard, Anders;

    2011-01-01

    The waste-LCA model EASEWASTE quantifies potential environmental effects from biological treatment of organic waste, based on mass and energy flows, emissions to air, water, soil and groundwater as well as effects from upstream and downstream processes. Default technologies for composting......, anaerobic digestion and combinations hereof are available in the model, but the user can change all key parameters in the biological treatment module so that specific local plants and processes can be modelled. EASEWASTE is one of the newest waste LCA models and the biological treatment module was built...... partly on features of earlier waste-LCA models, but offers additional facilities, more flexibility, transparency and user-friendliness. The paper presents the main features of the module and provides some examples illustrating the capability of the model in environmentally assessing and discriminating...

  11. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  12. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  13. Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Juncker, Agnieszka; Roque, Francisco José Sousa Simões Almeida;

    2010-01-01

    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of...... chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential...

  14. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment?

    Science.gov (United States)

    Biological monitoring has become a standard approach to exposure assessment in occupational and environmental epidemiology. The use of biological effect markers to identify early adverse changes in target organs has also become widely adopted. Recently, nephrotoxicant research us...

  15. Structure, function, and behaviour of computational models in systems biology

    OpenAIRE

    Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Novère, Nicolas Le

    2013-01-01

    Background Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such “bio-models” necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natu...

  16. Molecular eco-systems biology: towards an understanding of community function

    OpenAIRE

    Raes, J.; Bork, P.

    2008-01-01

    Systems-biology approaches, which are driven by genome sequencing and high-throughput functional genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we discuss the necessary data types that ar...

  17. Function of dynamic models in systems biology: linking structure to behaviour

    OpenAIRE

    Knüpfer, Christian; Beckstein, Clemens

    2013-01-01

    Background Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. Results In this paper we describe different functional aspects of dynamic models. This descriptio...

  18. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    International Nuclear Information System (INIS)

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs

  19. Biological markers in animals can provide information on exposure and bioavailability of environmental contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; Adams, S.M.; Jimenez, B.D.; Talmage, S.S.; McCarthy, J.F.

    1987-01-01

    Epidemiologic studies of agents present in the environment seek to identify the extent to which they contribute to the causation of a specific toxic, clinical, or pathological endpoint. The multifactorial nature of disease etiology, long latency periods and the complexity of exposure, all contribute to the difficulty of establishing associations and casual relationships between a specific exposure and an adverse outcome. These barriers to studies of exposures and subsequent risk assessment cannot generally be changed. However, the appropriate use of biological markers in animal species living in a contaminated habitat can provide a measure of potential damage from that exposure and, in some instances, act as a surrogate for human environmental exposures. Quantitative predictivity of the effect of exposure to environmental pollutants is being approached by employing an appropriate array of biological end points. 34 refs., 1 fig., 6 tabs.

  20. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa

    OpenAIRE

    Akinbo, Olalekan; Hancock, James F.; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, ce...

  1. Deposition rates in growing tissue: Implications for physiology, molecular biology, and response to environmental variation

    OpenAIRE

    Silk, Wendy K.; Bogeat-Triboulot, Marie-Béatrice

    2014-01-01

    Net rates of biosynthesis and mineral deposition are needed to understand the physiology and molecular biology of growth and plant responses to environmental variation. Many popular models ignore cell expansion and displacement. In contrast, the continuity equation, used with empirical data on growth velocity and concentration, allows computation of biosynthesis and deposition rates in growing tissue. This article describes data and methods needed to calculate deposition rates and reviews som...

  2. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples.

    Science.gov (United States)

    Guo, Huiyuan; Xing, Baoshan; Hamlet, Leigh C; Chica, Andrea; He, Lili

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. PMID:26956173

  3. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  4. Some environmental and biological factors influencing the activity of entomopathogenic Bacillus on mosquito larvae in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. G. B Consoli

    1995-02-01

    Full Text Available The influence of environmental and biological factors on the efficacy of Bacillus thuringiensis serovar israelensis and B. sphaericus as mosquito larvicides are reviewed. The importance of strain dependence, cultivating media/methods, mosquito species/specificity, formulations and their relation to mosquito feeding habits, as well as temperature, solar exposure, larval density and concomitant presence of other aquatic organisms are addressed with reference to the present status of knowledge in Brazil.

  5. The IWOP Technique and Wigner-Function Approach to Quantum Effect of Mesoscopic Biological Cell

    Science.gov (United States)

    Wang, Xiu-Xia

    2014-09-01

    Using the IWOP technique, Wigner function theory and TFD theory, the quantization of a mesoscopic biological cell equivalent circuit is proposed, The quantum fluctuations of the mesoscopic biological cell are researched in thermal vacuum state and vacuum state. It is shown that the IWOP technique, Wigner function theory and Umezawa-Takahashi's TFD theory play the key role in quantizing a mesoscopic biological cell at finite temperature and the fluctuations and uncertainty increase with increasing temperature and decrease with prolonged time.

  6. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; ; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the

  7. The functioning of coral reef communities along environmental gradients

    OpenAIRE

    Plass-Johnson, Jeremiah

    2015-01-01

    One of the primary challenges in ecology is to understand how environmental disturbance affects diversity and community structure, and what are the subsequent consequences on ecosystem functioning. Coral reefs are some of the most diverse ecosystems on the planet resulting in complex sets of interactions between benthic, habitat-forming constituents and mobile fish consumers. However, scleractinian corals, the primary habitat engineers, are dependent on high-light, low-nutrient water conditio...

  8. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica;

    2016-01-01

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use...

  9. A "weight of evidence" approach for the integration of environmental "triad" data to assess ecological risk and biological vulnerability.

    Science.gov (United States)

    Dagnino, Alessandro; Sforzini, Susanna; Dondero, Francesco; Fenoglio, Stefano; Bona, Elisa; Jensen, John; Viarengo, Aldo

    2008-07-01

    A new Expert Decision Support System (EDSS) that can integrate Triad data for assessing environmental risk and biological vulnerability at contaminated sites has been developed. Starting with ecosystem relevance, the EDSS assigns different weights to the results obtained from Triad disciplines. The following parameters have been employed: 1) chemical soil analyses (revealing the presence of potentially dangerous substances), 2) ecotoxicological bioassays (utilizing classical endpoints such as survival and reproduction rates), 3) biomarkers (showing sublethal pollutant effects), and 4) ecological parameters (assessing changes in community structure and functions). For each Triad discipline, the EDSS compares the data obtained at the studied field sites with reference values and calculates different 0-1 indexes (e.g., Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index). The EDSS output consists of 3 indexes: 1) Environmental Risk index (EnvRI), quantifying the levels of biological damage at population-community level, 2) Biological Vulnerability Index (BVI), assessing the potential threats to biological equilibriums, and 3) Genotoxicity Index (GTI), screening genotoxicity effects. The EDSS has been applied in the integration of a battery of Triad data obtained during the European Union-funded Life Intervention in the Fraschetta Area (LINFA) project, which has been carried out in order to estimate the potential risk from soils of a highly anthropized area (Alessandria, Italy) mainly impacted by deposition of atmospheric pollutants. Results obtained during 4 seasonal sampling campaigns (2004-2005) show maximum values of EnvRI in sites A and B (characterized by industrial releases) and lower levels in site D (affected by vehicular traffic emissions). All 3 potentially polluted sites have shown high levels of BVI and GTI, suggesting a general change from reference conditions (site C). PMID:18393577

  10. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology.

    Science.gov (United States)

    Waldock, Joanna; Chandra, Nastassya L; Lelieveld, Jos; Proestos, Yiannis; Michael, Edwin; Christophides, George; Parham, Paul E

    2013-07-01

    Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data. PMID:23916332

  11. Functional-environmental assessment of Chernozems' technogenic changes in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Deviatova, Tatiana; Jablonskikh, Lidiia; Alaeva, Liliia; Negrobova, Elena

    2015-04-01

    Long-term research revealed the significant changes in Chernozems of the recreational, urban, industrial and transport areas in the eastern part of the Central-Chernozem Region of Russia. They are reflected in the soil properties and regimes disturbances that determine their environmental functions. The level of the Chernozems' anthropogenic degradation is usually determined not only by their pollutants composition and quantity but by landscape, microclimatic, hydrological and soil features too. The Chernozems strongest degradation has been observed in the industrial zone and central part of Voronezh, and also in the 20-m zone of the highway "Don" with maximum technogenic input intensity and depth. The Chernozems' resistance to contamination is determined by their texture, organic matter content and quality, microbial activity and biochemical processes, pH and redox power. The level of the pollution impact on the organic substances decomposition can be evaluated according to the extracellular biological processes changes from their standard rates: 50% - very hazardous (ecotoxicological scale). The investigated soil types and subtypes have essentially different resistance to their contamination. In case of the gray forest soils already medium input of pollutants often results in irreversible changes in their biocenosis functions. In case of the leached Chernozems 50%-drop in their biological state occurs only at high levels of pollution. The developed criteria reflect the man-made ecosystems' soil principal changes and can be useful in prediction of their environmental functions.

  12. Cerenkov Radiation: A Multi-functional Approach for Biological Sciences

    Directory of Open Access Journals (Sweden)

    Xiaowei eMa

    2014-02-01

    Full Text Available Cerenkov radiation (CR has been used in various biological research fields, which has aroused lots of attention in recent years. Combining optical imaging instruments and most of nuclear medicine imaging or radiotherapy probes, the CR was developed as a new imaging modality for biology studies, called Cerenkov luminescence imaging (CLI. On the other hand, it was novelly used as an internal excitation source to activate some fluorophores for energy transfer imaging. However, it also has some shortages such as relatively weak luminescence intensity and low penetration in tissue. Thus some scientific groups demonstrated to optimize the CLI and demonstrated it to three-dimension tomography. In this article, we elaborate on its principle, history, and applications and discuss a number of directions for technical improvements. Then concluded some advantages and shortages of CR and discuss some prospects of it.

  13. Normal form from biological motion despite impaired ventral stream function

    OpenAIRE

    Gilaie-Dotan, S.; Bentin, S.; Harel, M; Rees, G.; Saygin, A.P.

    2011-01-01

    We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, ...

  14. Computational Exploration of the Biological Basis of Black-Scholes Expected Utility Function

    OpenAIRE

    Sukanto Bhattacharya; Kuldeep Kumar

    2007-01-01

    It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to minimiz...

  15. Computational Exploration of the Biological Basis of Black-Scholes Expected Utility Function

    OpenAIRE

    Kuldeep Kumar; Sukanto Bhattacharya

    2007-01-01

    It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to mi...

  16. Heavy water effects on the structure, functions and behavior of biological systems

    International Nuclear Information System (INIS)

    The H2O substitution for D2O either in environment or in the culture medium of the living systems generates changes in their main functions and composition. In this paper some of the heavy water effects in biological systems such as structural and functional changes were reviewed: normal cell architecture alterations, cell division and membrane functions disturbance, muscular contractility and the perturbations of biological oscillators such as circadian rhythm, heart rate, respiratory cycle, tidal and ultradian rhythm. (authors)

  17. Limiting similarity and functional diversity along environmental gradients

    Science.gov (United States)

    Schwilk, D.W.; Ackerly, D.D.

    2005-01-01

    Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.

  18. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  19. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  20. Consequences of Environmental Service Payments for Forest Retention and Recruitment in a Costa Rican Biological Corridor

    Directory of Open Access Journals (Sweden)

    Steven J. Hollenhorst

    2009-06-01

    Full Text Available Compensation to landowners for forest-derived environmental services has gained international recognition as a mechanism to combat forest loss and fragmentation. This approach is widely promoted, although there is little evidence demonstrating that environmental service payments encourage forest stewardship and conservation. Costa Rica provides a unique case study in which a 1996 Forestry Law initiated environmental service payments and prohibited forest conversion to other land uses. We examined these novel policies to determine their influence on landowner decisions that affect forest change, carbon services, and connectivity in a 2425 km² biological corridor. We used Landsat images to compare land-cover changes before and after 1996, and linked these data to landowner surveys investigating land-use decisions. Carbon stocks and storage in secondary forests were also examined. Forest change observations were corroborated by landowner survey data, indicating that the 1996 Forestry Law and environmental service payments contributed positively to forest retention and recruitment. Socioeconomic conditions also favored forest protection. Rates of natural forest loss declined from -1.43% to -0.10%/yr after 1996. Forest cover and connectivity were maintained through tree plantations and secondary forest recruitment, although forest heterogeneity increased as these forest types sometimes replaced natural forest. Carbon storage in secondary forest approached levels in primary forest after 25–30 yr of succession, although few landowners retained natural regeneration. Secondary forests will persist as minor landscape components without legal or financial incentives. The Costa Rican experience provides evidence that environmental service payments can be effective in retaining natural forest and recruiting tree cover within biological corridors.

  1. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    Science.gov (United States)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  2. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis

    OpenAIRE

    Man-Ho Cho; Sang-Won Lee

    2015-01-01

    Phytoalexins are inducible secondary metabolites possessing antimicrobial activity against phytopathogens. Rice produces a wide array of phytoalexins in response to pathogen attacks and environmental stresses. With few exceptions, most phytoalexins identified in rice are diterpenoid compounds. Until very recently, flavonoid sakuranetin was the only known phenolic phytoalexin in rice. However, recent studies have shown that phenylamides are involved in defense against pathogen attacks in rice....

  3. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media.

    Science.gov (United States)

    Wang, Zhongying; von dem Bussche, Annette; Qiu, Yang; Valentin, Thomas M; Gion, Kyle; Kane, Agnes B; Hurt, Robert H

    2016-07-01

    Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1-30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk. PMID:27267956

  4. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  5. Non-coding RNAs: Classification, Biology and Functioning.

    Science.gov (United States)

    Hombach, Sonja; Kretz, Markus

    2016-01-01

    One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action. PMID:27573892

  6. Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data

    OpenAIRE

    Edoardo Saccenti; Westerhuis, Johan A.; Smilde, Age K.; van der Werf, Mariët J; Jos A Hageman; Hendriks, Margriet M. W. B.

    2011-01-01

    One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simple and interpretable solutions. On the basis of the observation that functional genomics data often contain both informative and non-informative variation, we propose a method that finds sets of va...

  7. Functional Analytic Multisensory Environmental Therapy for People with Dementia

    Directory of Open Access Journals (Sweden)

    Jason A. Staal

    2012-01-01

    Full Text Available This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment therapy. The aim of the treatment is to provide a safe and effective framework for reducing the behavioral disturbance of the disease process, increasing elder well-being, and to promote transfer of positive effects to other environments outside of the multisensory treatment room.

  8. Functional analytic multisensory environmental therapy for people with dementia.

    Science.gov (United States)

    Staal, Jason A

    2012-01-01

    This paper introduces Functional Analytic Multisensory Environmental Therapy (FAMSET) for use with elders with dementia while using a multisensory environment/snoezelen room. The model introduces behavioral theory and practice to the multisensory environment treatment, addressing assessment, and, within session techniques, integrating behavioral interventions with emotion-oriented care. A modular approach is emphasized to delineate different treatment phases for multisensory environment therapy. The aim of the treatment is to provide a safe and effective framework for reducing the behavioral disturbance of the disease process, increasing elder well-being, and to promote transfer of positive effects to other environments outside of the multisensory treatment room. PMID:22347667

  9. Multielemental NAA of biological, environmental and geological SRMs using k0 - method

    International Nuclear Information System (INIS)

    Instrumental Neutron Activation Analysis (INAA) using k0 - method has been employed for the determination of up to 18 elements (As, Ba, Br, Cl, Cr, Co, Cs, Dy, Fe, Hf, Ga, In, La, Mn, Na, Rb, Sc and Th) in three environmental and one geological standard reference materials (SRMs) using short and long duration irradiations. Besides, one biological standard (Bown's Kale) was also analysed for 5 elements (Br, Cl, K, Mn, and Na) by short irradiation only. Elemental data obtained for all the SRMs were in good agreement with the certified/literature values. (author)

  10. Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges

    DEFF Research Database (Denmark)

    Fitter, A.H.; Heinemeyer, A.; Husband, R.;

    2004-01-01

    atmospohere; we need, therefore, to measure the impact of soil temperature on hyphal turnover. There is also an urgent need to discover the extent to which AM fungal species are differentially adapted to abiotic environmental factors, as they apparently are to plant hosts. If they do show such an adaptation......Our ability to make predictions about the impact of global environmental change on arbuscular mycorrhizal (AM) fungi and on their role in regulating biotic response to such change is seriously hampered by our lack of knowledge of the basic biology of these ubiquitous organisms. Current information......, and if the number of species is much greater than the number currently described (150), as seems almost certain, then there is the potential for several new fields of study, including community ecology and biogeography of AM fungi, and these will give us new insights into the impacts of global...

  11. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    OpenAIRE

    Narayanasamy, Shaman; Muller, Emilie; Sheik, Abdul; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalitie...

  12. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  13. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  14. Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at superfund sites

    Energy Technology Data Exchange (ETDEWEB)

    Melinda Christine Wiles [Texas A& amp; M University, College Station, TX (United States). Department of Veterinary Anatomy & Public Health

    2004-08-15

    Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. The second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat. 420 refs., 28 figs, 15 tabs.

  15. The functionality of biological knowledge in the workplace. Integrating school and workplace learning about reproduction

    OpenAIRE

    Mazereeuw, M.

    2013-01-01

    This thesis reports on a design research project about a learning, supervising and teaching strategy to enable students in agricultural preparatory vocational secondary education (VMBO) to recognize the functionality of biological knowledge of reproduction in work placement sites. Although biological knowledge can be functionally used in many work placement sites it is not evident that students recognize that this is the case. Workplace characteristics, participation in work actions and workp...

  16. Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

    OpenAIRE

    Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal

    2014-01-01

    Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...

  17. 75 FR 28233 - Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid

    Science.gov (United States)

    2010-05-20

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... Plant Health Inspection Service has prepared an environmental assessment relative to the control...

  18. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  19. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: an overview.

    Science.gov (United States)

    Aufartová, Jana; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan; Nováková, Lucie; Solich, Petr

    2011-10-17

    Residues of steroid hormones have become a cause for concern because they can affect the biological activity of non-target organisms. Steroid hormones are a potential risk for wildlife and humans through the consumption of contaminated food or water. Their determination requires extraction and clean-up steps, prior to detection, to reach low concentration levels. In recent years, a great effort has been made to develop new analytical methodologies, such as microextraction techniques, that reduce environmental pollution. Researchers have modified old methods to incorporate procedures that use less-hazardous chemicals or that use smaller amounts of them. They are able to do direct analysis using miniaturised equipment and reduced amounts of solvents and wastes. These accomplishments are the main objectives of green analytical chemistry. In this overview, we focus on microextraction techniques for the determination of steroid hormones in biological (e.g., human urine, human serum, fish, shrimp and prawn tissue and milk) and environmental (e.g., wastewaters, surface waters, tap waters, river waters, sewage sludges, marine sediments and river sediments) samples. We comment on the most recent applications in sorptive-microextraction modes, such as solid phase microextraction (SPME) with molecularly imprinted polymers (MIPs), in-tube solid-phase microextraction (IT-SPME), stir-bar sorptive extraction (SBSE) and microextraction in packed sorbent (MEPS). We also describe liquid-phase microextraction (LPME) approaches reported in the literature that are applied to the determination of steroid hormones. PMID:21907019

  20. Functionalization of carbon nanotube and nanofiber electrodes with biological macromolecules: Progress toward a nanoscale biosensor

    Science.gov (United States)

    Baker, Sarah E.

    The integration of nanoscale carbon-based electrodes with biological recognition and electrical detection promises unparalleled biological detection systems. First, biologically modified carbon-based materials have been shown to have superior long-term chemical stability when compared to other commonly used materials for biological detection such as silicon, gold, and glass surfaces. Functionalizing carbon electrodes for biological recognition and using electrochemical methods to transduce biological binding information will enable real-time, hand-held, lower cost and stable biosensing devices. Nanoscale carbon-based electrodes allow the additional capability of fabricating devices with high densities of sensing elements, enabling multi-analyte detection on a single chip. We have worked toward the integration of these sensor components by first focusing on developing and characterizing the chemistry required to functionalize single-walled carbon nanotubes and vertically aligned carbon nanofibers with oligonucleotides and proteins for specific biological recognition. Chemical, photochemical and electrochemical methods for functionalizing these materials with biological molecules were developed. We determined, using fluorescence and colorimetric techniques, that these biologically modified nanoscale carbon electrodes are biologically active, selective, and stable. A photochemical functionalization method enabled facile functionalization of dense arrays vertically aligned carbon nanofiber forests. We found that much of the vertically aligned carbon nanofiber sidewalls were functionalized and biologically accessible by this method---the absolute number of DNA molecules hybridized to DNA-functionalized nanofiber electrodes was ˜8 times higher than the number of DNA molecules hybridized to flat glassy carbon electrodes and implies that nanofiber forest sensors may facilitate higher sensitivity to target DNA sequences per unit area. We also used the photochemical method

  1. Functional Nanostructured Platforms for Chemical and Biological Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  2. MicroRNA function in NK cell biology

    OpenAIRE

    Beaulieu, AM; Bezman, NA; Lee, JE; Matloubian, M; Sun, JC; Lanier, LL

    2013-01-01

    The important role of microRNAs in directing immune responses has become increasingly clear. Here, we highlight discoveries uncovering the role of specific microRNAs in regulating the development and function of natural killer (NK) cells. Furthermore, we discuss the impact of NK cells on the entire immune system during global and specific microRNA ablation in the settings of inflammation, infection, and immune dysregulation. © 2013 John Wiley & Sons A/S.

  3. Resilin-Like Polypeptide Hydrogels Engineered for Versatile Biological Functions.

    Science.gov (United States)

    Li, Linqing; Tong, Zhixiang; Jia, Xinqiao; Kiick, Kristi L

    2013-01-01

    Natural resilin, the rubber-like protein that exists in specialized compartments of most arthropods, possesses excellent mechanical properties such as low stiffness, high resilience and effective energy storage. Recombinantly-engineered resilin-like polypeptides (RLPs) that possess the favorable attributes of native resilin would be attractive candidates for the modular design of biomaterials for engineering mechanically active tissues. Based on our previous success in creating a novel RLP-based hydrogel and demonstrating useful mechanical and cell-adhesive properties, we have produced a suite of new RLP-based constructs, each equipped with 12 repeats of the putative resilin consensus sequence and a single, distinct biologically active domain. This approach allows independent control over the concentrations of cell-binding, MMP-sensitive, and polysaccharide-sequestration domains in hydrogels comprising mixtures of the various RLPs. The high purity, molecular weight and correct compositions of each new polypeptide have been confirmed via high performance liquid chromatography (HPLC), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and amino acid analysis. These RLP-based polypeptides exhibit largely random-coil conformation, both in solution and in the cross-linked hydrogels, as indicated by circular dichroic and infrared spectroscopic analyses. Hydrogels of various compositions, with a range of elastic moduli (1kPa to 25kPa) can be produced from these polypeptides, and the activity of the cell-binding and matrix metalloproteinase (MMP) sensitive domains was confirmed. Tris(hydroxymethyl phosphine) cross-linked RLP hydrogels were able to maintain their mechanical integrity as well as the viability of encapsulated primary human mesenchymal stem cells (MSCs). These results validate the promising properties of these RLP-based elastomeric biomaterials. PMID:23505396

  4. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis.

    Science.gov (United States)

    Cho, Man-Ho; Lee, Sang-Won

    2015-01-01

    Phytoalexins are inducible secondary metabolites possessing antimicrobial activity against phytopathogens. Rice produces a wide array of phytoalexins in response to pathogen attacks and environmental stresses. With few exceptions, most phytoalexins identified in rice are diterpenoid compounds. Until very recently, flavonoid sakuranetin was the only known phenolic phytoalexin in rice. However, recent studies have shown that phenylamides are involved in defense against pathogen attacks in rice. Phenylamides are amine-conjugated phenolic acids that are induced by pathogen infections and abiotic stresses including ultra violet (UV) radiation in rice. Stress-induced phenylamides, such as N-trans-cinnamoyltryptamine, N-p-coumaroylserotonin and N-cinnamoyltyramine, have been reported to possess antimicrobial activities against rice bacterial and fungal pathogens, an indication of their direct inhibitory roles against invading pathogens. This finding suggests that phenylamides act as phytoalexins in rice and belong to phenolic phytoalexins along with sakuranetin. Phenylamides also have been implicated in cell wall reinforcement for disease resistance and allelopathy of rice. Synthesis of phenolic phytoalexins is stimulated by phytopathogen attacks and abiotic challenges including UV radiation. Accumulating evidence has demonstrated that biosynthetic pathways including the shikimate, phenylpropanoid and arylmonoamine pathways are coordinately activated for phenolic phytoalexin synthesis, and related genes are induced by biotic and abiotic stresses in rice. PMID:26690131

  5. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    Science.gov (United States)

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies. PMID:20433956

  6. Environmental routes for platinum group elements to biological materials--a review.

    Science.gov (United States)

    Ek, Kristine H; Morrison, Gregory M; Rauch, Sebastien

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust. The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  7. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  8. [Dialectic of the interrelationship between structure and function in biology and medicine].

    Science.gov (United States)

    Strukov, A I; Kakturskiĭ, L V

    1977-01-01

    The paper deals with some aspects of the dialectics of structure and function relationships in biological objects normally and pathologically. Idealistic and metaphysical concepts of the structure-function relationships (morphological idealism, holism, physiological idealism, functionalism) are critisized, and historical premises of these concepts are characterized. The principle of indissoluble unity and interconnection of changes in structure and function is emphasized, while the thesis of the primacy of function in the shaping of the form and the concept of functional diseases are rejected. Much attention is paid to the methodological principles of the study of structure and function based on the systemic approach to the investigation of biological objects from the point of view of structural levels and integratism. The groundlessness of the principles of reductionism and organicism in the solution of this problem is indicated. The connection of the concepts of structure and function with categories and laws of materialistic dialectics is dwelt on. PMID:880057

  9. Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions I: Biology and Function.

    Science.gov (United States)

    Eveleigh, Eldon; Silk, Peter; Leclair, Gaëtan; Mayo, Peter; Francis, Brittany; Williams, Martin

    2015-12-01

    The potential roles of the oral secretions (OS) of spruce budworm (SBW; Choristoneura fumiferana Clemens) larvae and factors that may affect the volume of OS disgorged were investigated in the laboratory. Experiments revealed that diet-fed SBW larvae readily disgorge OS when induced ("milked"), with minimal overall cost to their development and eventual pupal weight. Exposure of conspecific larvae to OS throughout larval development negatively affected survival and male pupal weight; however, male development time was faster when exposed to OS. Female pupal weight and development time were not affected. Preliminary experiments suggested that OS had a repellent effect on a co-occurring herbivore, the false hemlock looper, Nepytia canosaria (Walker). OS produced by larvae that fed on three host tree species and on artificial diet significantly increased the grooming time of ants (Camponotus sp.), indicating that SBW OS have an anti-predator function. The volume of OS is significantly greater in L6 than in L4 or L5, with the volume produced by L6 depending on weight and age as well as feeding history at time of milking. These findings indicate that SBW OS function as both an intra- and interspecific epideictic pheromone and as an anti-predator defensive mechanism, while incurring minimal metabolic costs. PMID:26454475

  10. Is kinase activity essential for biological functions of BRI1?

    Institute of Scientific and Technical Information of China (English)

    Weihui Xu; Juan Huang; Baohua Li; Jiayang Li; Yonghong Wang

    2008-01-01

    Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.

  11. Comparative Study on Human Risk by Ionizing Radiation and Pesticide as Biological Information about Environmental Disaster

    International Nuclear Information System (INIS)

    Environmental risk factors such as ionizing radiations, heavy metals, and pesticides can cause environmental disasters when they exist in excess. The increases in use of ionizing radiation and agricultural pesticide are somewhat related to the possibility of the disaster. The risk of radiation and pesticide was evaluated by means of the Single Cell Gel Electrophoresis (SCGE) assay on the human blood lymphocytes. The lymphocytes were irradiated with 0∼2.0 Gy of 60Co gamma ray. Another groups of lymphocytes were exposed to various concentrations of parathion. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed a clear dose- or concentration-response relationship. Parathion of a recommended concentration for agricultural use ( 1 mg l-1) has a strong cytotoxic effect on lymphocytes, which is equivalent to damage induced by 0.1 Gy of γ-ray. Furthermore, 2 mg l-1 of parathion can give rise to DNA damage equivalent to that induced by 0.25 Gy at which the radiation-induced damage can start to develop into clinical symptoms. The comparative results of this study can provide an experimental basis and biological information for the prevention of environmental disaster

  12. DataONE: Enabling Data-Intensive Biological and Environmental Research through Cyberinfrastructure

    Science.gov (United States)

    Cook, R. B.; Michener, W. K.; Frame, M. T.; Hampton, S. E.; Vision, T. J.

    2009-12-01

    Addressing the Earth's environmental problems requires that we change the ways that we do science; harness the enormity of existing data; develop new methods to combine, analyze, and visualize diverse data resources; create new, long-lasting cyberinfrastructure; and re-envision many of our longstanding institutions. DataONE (Observation Network for Earth) represents a new virtual organization whose goal is to enable new science and knowledge creation through universal access to data about life on Earth and the environment that sustains it. DataONE is designed to be the foundation of new innovative environmental science through a distributed framework and sustainable cyberinfrastructure that meets the needs of science and society for open, persistent, robust, and secure access to well-described and easily discovered Earth observational data. Supported by the U.S. National Science Foundation, DataONE will ensure the preservation and access to multi-scale, multi-discipline, and multi-national science data. DataONE is transdisciplinary, making biological data available from the genome to the ecosystem; making environmental data available from atmospheric, ecological, hydrological, and oceanographic sources; providing secure and long-term preservation and access; and engaging scientists, land-managers, policy makers, students, educators, and the public through logical access and intuitive visualizations. Most importantly, DataONE will serve a broader range of science domains both directly and through the interoperability with the DataONE distributed network.

  13. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  14. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  15. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients. PMID:27035812

  16. GSK-3: functional insights from cell biology and animal models

    Directory of Open Access Journals (Sweden)

    Oksana eKaidanovich-Beilin

    2011-11-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3’ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knock-out mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior and neuronal fate determination and provide insights into possible therapeutic interventions.

  17. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  18. The biology and functional morphology of Macoma biota (Bivalvia: Tellinidae: Macominae

    Directory of Open Access Journals (Sweden)

    Pedro Ribeiro Piffer

    2011-06-01

    Full Text Available Macoma biota Arruda & Domaneschi, 2005, is a recently described species known only from the intertidal zone of Praia da Cidade, Caraguatatuba Bay, in the state of São Paulo, southeastern Brazil. The main purpose of the present paper is to describe the biology of M. biota, beginning with a detailed analysis of its anatomy and functional morphology and how these attributes are correlated with its habitat and life history. The morphology of the organs in the pallial cavity and their sorting devices indicate that this species has efficient mechanisms to process large amounts of particles that enter this cavity via the inhalant current. M. biota can rapidly select the material suitable for ingestion and direct the undesired excess to the rejection mantle tracts. These characteristics along with the siphon's behavior and the digestive tract configuration reveal that this species can be classified primarily as a deposit feeder, like other species of the genus; however, it can also behave as a suspension feeder, depending on the environmental conditions.

  19. The Biology of Behaviour.

    Science.gov (United States)

    Broom, D. M.

    1981-01-01

    Discusses topics to aid in understanding animal behavior, including the value of the biological approach to psychology, functional systems, optimality and fitness, universality of environmental effects on behavior, and evolution of social behavior. (DS)

  20. ISSEBETS 2009. 7. International Symposium on Speciation of Elements in Biological, Environmental and Toxicological Sciences

    International Nuclear Information System (INIS)

    The 7th ISSEBETS was held in August 2009 in city of Eger, Hungary. The main topics were: speciation of essential and toxic elements in food, in traditional drugs, designing functional foods through applied speciation, metallomics and metalloproteomics, metal species in health and disease, cycling of elemental species in the environment, speciation related regulations and legislation, metal environmental, bioremediation, quality assurance of speciation analysis. (S.I.)

  1. The reflection of life functional entailment and imminence in relational biology

    CERN Document Server

    Louie, A H

    2013-01-01

    A. H. Louie’s The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was ‘What is life?’; the theme of this sequel is “How do two life forms interact?” Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates ‘function dictates structure”, rather than ‘structure implies function’. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolis...

  2. Towards understanding the biological function of hopanoids (Invited)

    Science.gov (United States)

    Doughty, D. M.; Hunter, R.; Summons, R. E.; Newman, D. K.

    2010-12-01

    Rhodopseudomonas palustris TIE-1 expresses bacterial hopanoid lipids that are structurally similar and evolutionarily related to eukaryotic sterols. The genome of R. palustris TIE-1 contains two copies of the hpnN gene (hpnN1 and hpnN2) that are orthologs of genes encoding eukaryotic sterol and lipid transporters. Hopanoid localization to the outer membrane was found to be dependent upon hpnN1. Since the cell cycle of R. palustris TIE-1 is obligately bimodal with each cell division resulting in the generation of one mother and one swarmer cell, evidence was obtained that hopanoids where specifically localized to the outer membrane of mother cells. The sequestration of hopanoids to the mother cells was also disrupted by the deletion of the hpnN1 gene. Mutants lacking the hopanoid transporters were able to grow normally at 30 °C but showed decreased growth at 38 °C. The hopanoid transporter mutant formed cellular filaments when grown at elevated temperature. Because sedimentary steranes and hopanes comprise some of the earliest evidence for the emergence of distinct bacteria and eukaryotic phyla, a better appreciation of the function of hopanoids will improve our ability to interpret the evolution of life on Earth.

  3. Matrix metalloproteinases: their biological functions and clinical implications.

    Science.gov (United States)

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.) PMID:16026148

  4. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe3+ and La3+ ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification

  5. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2011-01-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  6. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  7. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  8. Engineering scalable biological systems

    OpenAIRE

    Lu, Timothy K.

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial, and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic, and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast, and mammal...

  9. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Palanisamy, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, Thomas A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  10. Determination of rhenium in biological and environmental samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Radiochemical neutron activation procedures using liquid-liquid extraction with tetraphenylarsonium chloride in chloroform from 1 M HCl and solid extraction with ALIQUAT 336 incorporated in a polyacrylonitrile binding matrix from 0.1 M HCl were developed for accurate determination of rhenium in biological and environmental samples at the sub-ng.g-1 level. Concentrations of Re in the range of 0.1 to 2.4 ng.g-1 were determined in several botanical reference materials (RM), while in a RM of road dust a value of approx. 10 ng.g-1 was found. Significantly elevated values of Re, up to 90 ng.g-1, were found in seaweed (brown algae). Results for Re in the brown algae Fucus vesiculosus in which elevated 99Tc values had previously been determined suggest possible competition between Re and Tc in the accumulation process. (author)

  11. Sharing Structure and Function in Biological Design with SBOL 2.0.

    Science.gov (United States)

    Roehner, Nicholas; Beal, Jacob; Clancy, Kevin; Bartley, Bryan; Misirli, Goksel; Grünberg, Raik; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Densmore, Douglas; Gennari, John H; Wipat, Anil; Sauro, Herbert M; Myers, Chris J

    2016-06-17

    The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate. PMID:27111421

  12. Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients.

    Science.gov (United States)

    Comte, Jérôme; del Giorgio, Paul A

    2010-05-01

    The connections that exist between the composition of bacterial communities and their functional attributes are still a matter of intense debate, despite over a decade of intense studies. Here we explored three different facets of the links that may exist between bacterioplankton compositional and functional successions that occurred along the water flow path in a complex watershed in southern Quebec. We analyzed the correlation between composition and function in terms of their absolute patterns, and in terms of their rates of change relative to transit time in environmental transitions, and relative to shifts in resources along the same transitions. Our results showed that the absolute patterns in bacterial community composition (BCC, using DGGE [denaturing gradient gel electrophoresis] profiles) and functional capacities (FC, using BIOLOG profiles) were not correlated, but that the rates of change in BCC and FC along the transitions were strongly correlated to each other. Further, we observed that the strength and shape of the relationship between the changes in BCC and FC varied relative to the type and intensity of gradient considered. Collectively, these results showed that BCC and FC are strongly related but in a very dynamic manner, such that their absolute patterns do not appear to be connected. This in turn suggests a high level of functional redundancy that occurs both within the existing community and in the meta-community from which phylotypes are selected to occupy the new niches that are created along the transitions. PMID:20503878

  13. Environmental risk assessment for Neodryinus typhlocybae, biological control agent against Metcalfa pruinosa, for Austria

    Directory of Open Access Journals (Sweden)

    Gudrun Strauss

    2013-03-01

    Full Text Available The potential environmental risks of Neodryinus typhlocybae, a parasitic wasp from North America, were evaluated with regard to its safe use as an exotic biocontrol agent for the planthopper Metcalfa pruinosa in Austria. Following an earlier host range study of N. typhlocybae conducted in the laboratory, the present study assessed the potential for establishment and spread as well as negative indirect effects on non-target organisms. The potential release sites in Austria were analysed for matching of the climatic requirements for establishment of N. typhlocybae. The two proposed release locations, Vienna and Graz, have a predominantly similar climate to the parasitoid’s region of origin, though the comparably cooler mean summer temperatures might result in a low emergence rate of the partial second generation. The natural spread potential of N. typhlocybae was reviewed and is considered to be sufficiently good for released individuals to reach nearby sites infested with M. pruinosa. However, a perceptible spreading of N. typhlocybae females only occurs a few years after release and seems to be strongly dependent on the host density. Gelis areator, a hyperparasitoid of N. typhlocybae known to occur in Austria, might have negative effects on the population of the beneficial organism. Advantages and disadvantages of chemical and biological control methods against M. pruinosa were evaluated. It is concluded that N. typhlocybae is very well suited as a biological control agent for M. pruinosa in Austria, as no adverse effects on non-target species are expected but its release offers advantages with regard to sustainable and environmentally friendly pest management.

  14. Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography.

    Science.gov (United States)

    Es'haghi, Zarrin; Nezhadali, Azizollah; Khatibi, Aram-Dokht

    2016-08-01

    A new Fe3O4/poly(є-caprolactone) (PCL) magnetite nanocomposite was fabricated and used as a sorbent for magnetically mediated PCL microspheres solid-phase extraction (MM-PCL-SPE) followed by gas chromatography-flame ionization detection (GC-FID) for monitoring of progesterone (PGN) hormone in biological and environmental matrices, namely blood serum, tap water, urine, and hospital wastewater. The nanomagnetite core of the sorbent was synthesized by a co-precipitation method. Magnetic nanoparticles (MNPs) were then microencapsulated with PCL microspheres using emulsion polymerization. The nanocomposite was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The magnetite sorbent can be effectively dispersed in aqueous solution and attracted to an external magnetic field. The MM-PCL-SPE process for PGN assay involved (a) dispersion of the sorbent in the donor phase aqueous solution with sonication, (b) exposure to a magnetic field to collect sorbent that had adsorbed the analyte, and (c) solvent desorption of extracted PGN for GC-FID analysis. The work demonstrates the usefulness of MM-PCL-SPE in the rapid and sensitive monitoring of trace amounts of PGN in real samples. The limit of detection (LOD) and limit of quantification (LOQ) were 1.00 and 3.30 ng/mL, respectively. The relative recoveries in real samples were adequate. Linearity was observed over a wide range of 2.2-10,000.0 ng/mL in aqueous media and urine and 0.01-70.0 μg/mL in blood serum. Graphical Abstract In this research new Fe3O4/poly(є-caprolactone) (PCL) magnetite microspheres were developed as an efficient sorbent for solid-phase extraction of progesterone hormone in biological and environmental matrices. PMID:27299775

  15. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  16. Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Telgmann, Lena [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); Sperling, Michael [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany); European Virtual Institute for Speciation Analysis (EVISA), Münster (Germany); Karst, Uwe, E-mail: uk@uni-muenster.de [University of Münster, Institute of Inorganic and Analytical Chemistry, Münster (Germany)

    2013-02-18

    Highlights: ► All major methods for the analysis of Gd-based MRI contrast agents are discussed. ► Biological and environmental samples are covered. ► Pharmacokinetics and species transformation can be investigated. ► The figures of merit as limit of detection and analysis time are described. -- Abstract: The development of analytical methods and strategies to determine gadolinium and its complexes in biological and environmental matrices is evaluated in this review. Gadolinium (Gd) chelates are employed as contrast agents for magnetic resonance imaging (MRI) since the 1980s. In general they were considered as safe and well-tolerated, when in 2006, the disease nephrogenic systemic fibrosis (NSF) was connected to the administration of MRI contrast agents based on Gd. Pathogenesis and etiology of NSF are yet unclear and called for the development of several analytical methods to obtain elucidation in this field. Determination of Gd complex stability in vitro and in vivo, as well as the quantification of Gd in body fluids like blood and urine was carried out. Separation of the Gd chelates was achieved with high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). For detection, various methods were employed, including UV–vis absorbance and fluorescence spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). A second challenge for analysts was the discovery of high concentrations of anthropogenic Gd in surface waters draining populated areas. The source could soon be determined to be the increasing administration of Gd complexes during MRI examinations. Identification and quantification of the contrast agents was carried out in various surface and groundwater samples to determine the behavior and fate of the Gd chelates in the environment. The improvement of limits of detection (LOD) and limits of quantification (LOQ) was and still is the goal of past and ongoing

  17. Social inclusion enhances biological motion processing: A functional near-infrared spectroscopy study

    OpenAIRE

    Bolling, Danielle Z.; Pelphrey, Kevin A.; Kaiser, Martha D.

    2012-01-01

    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscop...

  18. Identification of biological and environmental risk factors for language delay: The Let's Talk STEPS study.

    Science.gov (United States)

    Korpilahti, Pirjo; Kaljonen, Anne; Jansson-Verkasalo, Eira

    2016-02-01

    The aim of this population-based study was to identify demographic factors for language delays at an early age. The risk analysis covered 11 biological and 8 environmental factors. The mothers' concerns regarding language development were also examined. A total of 226 children from a Finnish cohort study were invited to participate in language assessments at 36 months. The test results for word finding and language comprehension were compared with parental questionnaires about children's vocabulary at 13 and 24 months. Regression analysis revealed that the father's social class (t=-2.79, p=0.006) and working full time (t=-2.86, p=0.005) significantly predicted children's language delay. In addition, language comprehension was significantly predicted by the mother's social class (t=-2.06, p=0.041) and by gender, with an advantage to girls (t=-2.71, p=0.008). Vocabulary at 24 months was a powerful predictor for lexical development (t=4.58, pparents needed special education during school years. At the population-level, gender was the most powerful biological factor in predicting language delays. Similarly, both parents' social status had predictive value for the child's language development. In addition, it was found that the mother's concern about her child's slow language acquisition should be taken into account when making decisions regarding special support. PMID:26700576

  19. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  20. Biological markers for kidney injury and renal function in the intensive care unit

    OpenAIRE

    Schultz, M.J.; Spronk, P.E.; Royakkers, A.A.N.M.

    2014-01-01

    The purpose of the investigations described in this thesis was to seek for answers to two relevant questions in ICUs in resource-rich settings, i.e., can new biological markers play a role in early recognition of AKI, and can new biological markers predict recovery of renal function in patients who receive CVVH? A second aim was to answer a relevant question in ICUs in resource-poor settings, i.e., can novel biological markers predict development of AKI and need for RRT in patients with sever...

  1. Genomic Insights into the Biomineralization and Environmental Function of Magnetotactic Bacteria

    Science.gov (United States)

    Lin, W.; Pan, Y.

    2015-12-01

    Microorganisms have populated the Earth for billions of years and their activities are important biologic forces shaping our planetary environments. Microbial biomineralization that selectively take up environmental elements (e.g., C, S, P, Fe) and synthesize minerals either intracellularly or extracellularly is of great interest. One of the most interesting examples of these types of organisms are magnetotactic bacteria (MTB), a polyphyletic group of prokaryotes that uptake iron from aquatic habitats and biomineralize intracellular nano-sized iron minerals of magnetite (Fe3O4) and/or greigite (Fe3S4), known as magnetosomes, and orientate and swim along the Earth's magnetic field. However, our knowledge on the biomineralization mechanisms of MTB and their environmental function remains very limited because the genomic information of most MTB is still not fully understood. By using metagenomic approaches, we have acquired genomic sequences of environmental MTB communities and discovered several conserved genomic fragments containing gene operons for magnetite or greigite biomineralization from Proteobacteria and Nitrospirae MTB. The comparison of these gene clusters has provided valuable insights into the origin and evolution of magnetosome biomineralization. We further obtained several draft genomes of uncultivated MTB belonging to the phylum Nitrospirae, which reveals a metabolic flexibility of this poorly understood magnetotactic group and indicates their considerable roles in the biogeochemical cycles of iron and sulfur.

  2. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors

    OpenAIRE

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-01-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors a...

  3. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons

    OpenAIRE

    Renato Sobral Monteiro; César Augusto Otero Vaghetti; Osvaldo José M. Nascimento; Jerson Laks; Andrea Camaz Deslandes

    2016-01-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and estab...

  4. Application of femtosecond-pulsed lasers for direct optical manipulation of biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jonghee; Park, Junseong; Jong Choi, Won [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); Choi, Myunghwan [Graduate School of Nanoscience and Technology, KAIST, Daejeon (Korea, Republic of); Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); Choi, Chulhee [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); KAIST Institute for the BioCentury, KAIST, Daejeon (Korea, Republic of)

    2013-03-15

    Absorption of photon energy by cells or tissue can evoke photothermal, photomechanical, and photochemical effects, depending on the density of the deposited energy. Photochemical effects require a low energy density and can be used for reversible modulation of biological functions. Ultrashort-pulsed lasers have a high intensity due to the short pulse duration, despite its low average energy. Through nonlinear absorption, these lasers can deliver very high peak energy into the submicrometer focus area without causing collateral damage. Absorbed energy delivered by ultrashort-pulsed laser irradiation induces free electrons, which can be readily converted to reactive oxygen species (ROS) and related free radicals in the localized region. Free radicals are best known to induce irreversible biological effects via oxidative modification; however, they have also been proposed to modulate biological functions by releasing calcium ions from intracellular organelles. Calcium can evoke variable biological effects in both excitable and nonexcitable cell types. Controlled stimulation by ultrashort laser pulses generate intracellular calcium waves that can modulate many biological functions, such as cardiomyocyte beat rate, muscle contractility, and blood-brain barrier (BBB) permeability. This article presents optical methods that are useful therapeutic and research tools in the biomedical field and discuss the possible mechanisms responsible for biological modulation by ultrashort-pulsed lasers, especially femtosecond-pulsed lasers. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Assessment of DDT levels in selected environmental media and biological samples from Mexico and Central America.

    Science.gov (United States)

    Pérez-Maldonado, Iván N; Trejo, Antonio; Ruepert, Clemens; Jovel, Reyna del Carmen; Méndez, Mónica Patricia; Ferrari, Mirtha; Saballos-Sobalvarro, Emilio; Alexander, Carlos; Yáñez-Estrada, Leticia; Lopez, Dania; Henao, Samuel; Pinto, Emilio R; Díaz-Barriga, Fernando

    2010-03-01

    Taking into account the environmental persistence and the toxicity of DDT, the Pan American Health Organization (PAHO) organized a surveillance program in Mesoamerica which included the detection of residual DDT in environmental (soil) and biological samples (fish tissue and children's blood). This program was carried out in communities from Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica and Panama. This paper presents the first report of that program. As expected, the results show that the levels for [summation operator] DDT in soil (outdoor or indoor) and fish samples in the majority of the locations studied are below guidelines. However, in some locations, we found children with high concentrations of DDT as in Mexico (mean level 50.2 ng/mL). Furthermore, in some communities and for some matrices, the DDT/DDE quotient is higher than one and this may reflect a recent DDT exposure. Therefore, more efforts are needed to avoid exposure and to prevent the reintroduction of DDT into the region. In this regard it is important to know that under the surveillance of PAHO and with the support of UNEP, a regional program in Mesoamerica for the collection and disposal of DDT and other POPs stockpiles is in progress. PMID:20092871

  6. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology.

    Science.gov (United States)

    Székely, Anna J; Breitbart, Mya

    2016-03-01

    Single-stranded DNA (ssDNA) phages are profoundly different from tailed phages in many aspects including the nature and size of their genome, virion size and morphology, mutation rate, involvement in horizontal gene transfer, infection dynamics and cell lysis mechanisms. Despite the importance of ssDNA phages as molecular biology tools and model systems, the environmental distribution and ecological roles of these phages have been largely unexplored. Viral metagenomics and other culture-independent viral diversity studies have recently challenged the perspective of tailed, double-stranded DNA (dsDNA) phages, dominance by demonstrating the prevalence of ssDNA phages in diverse habitats. However, the differences between ssDNA and dsDNA phages also substantially limit the efficacy of simultaneously assessing the abundance and diversity of these two phage groups. Here we provide an overview of the major differences between ssDNA and tailed dsDNA phages that may influence their effects on bacterial communities. Furthermore, through the analysis of 181 published metaviromes we demonstrate the environmental distribution of ssDNA phages and present an analysis of the methodological biases that distort their study through metagenomics. PMID:26850442

  7. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Labbe, Nicole [ORNL; Wagner, Rebekah J. [Pennsylvania State University, University Park, PA

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  8. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  9. Molecular Biology at the Quantum Level: Can Modern Density Functional Theory Forge the Path?

    CERN Document Server

    Kolb, Brian; 10.1142/S1793984412300063

    2012-01-01

    Recent years have seen vast improvements in the ability of rigorous quantum-mechanical methods to treat systems of interest to molecular biology. In this review article, we survey common computational methods used to study such large, weakly bound systems, starting from classical simulations and reaching to quantum chemistry and density functional theory. We sketch their underlying frameworks and investigate their strengths and weaknesses when applied to potentially large biomolecules. In particular, density functional theory---a framework that can treat thousands of atoms on firm theoretical ground---can now accurately describe systems dominated by weak van der Waals interactions. This newfound ability has rekindled interest in using this tried-and-true approach to investigate biological systems of real importance. In this review, we focus on some new methods within density functional theory that allow for accurate inclusion of the weak interactions that dominate binding in biological macromolecules. Recent ...

  10. Exercising in environmental extremes : a greater threat to immune function?

    Science.gov (United States)

    Walsh, Neil P; Whitham, Martin

    2006-01-01

    Athletes, military personnel, fire fighters, mountaineers and astronauts may be required to perform in environmental extremes (e.g. heat, cold, high altitude and microgravity). Exercising in hot versus thermoneutral conditions (where core temperature is > or = 1 degrees C higher in hot conditions) augments circulating stress hormones, catecholamines and cytokines with associated increases in circulating leukocytes. Studies that have clamped the rise in core temperature during exercise (by exercising in cool water) demonstrate a large contribution of the rise in core temperature in the leukocytosis and cytokinaemia of exercise. However, with the exception of lowered stimulated lymphocyte responses after exercise in the heat, and in exertional heat illness patients (core temperature > 40 degrees C), recent laboratory studies show a limited effect of exercise in the heat on neutrophil function, monocyte function, natural killer cell activity and mucosal immunity. Therefore, most of the available evidence does not support the contention that exercising in the heat poses a greater threat to immune function (vs thermoneutral conditions). From a critical standpoint, due to ethical committee restrictions, most laboratory studies have evoked modest core temperature responses (stroke (core temperature > 40.6 degrees C) and identify the effects of acclimatisation on neuroendocrine and immune responses to exercise-heat stress. Laboratory studies can provide useful information by, for example, applying the thermal clamp model to examine the involvement of the rise in core temperature in the functional immune modifications associated with prolonged exercise. Studies investigating the effects of cold, high altitude and microgravity on immunity and infection incidence are often hindered by extraneous stressors (e.g. isolation). Nevertheless, the available evidence does not support the popular belief that short- or long-term cold exposure, with or without exercise, suppresses

  11. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates.

    Directory of Open Access Journals (Sweden)

    João M Oliveira

    Full Text Available Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1 pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2 at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in 'natural' streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.

  12. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Douglas M. Davenport

    2016-01-01

    Full Text Available Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE.

  13. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Koichi Fujie; Hiroyuki Daimon; Yoichi Atsuta; Muhammad Hanif

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  14. Geographic Information Systems in function of environmental protection

    International Nuclear Information System (INIS)

    Geographical information systems as a methodology is a relatively new technology in scientific research and finding practical solutions for geographical problems. One of those problems is the complex over categorical set [1] known as environment. It is a very actual and complex problematic, hard for organizing and optimization when it has to set about the needs of humanity.Therefore, this article deals with the application of geographic information systems as one of the latest scientific techniques and technologies through which one can analyze and define the most optimal solutions in terms of environmental protection and sustainable development. The aim is to highlight the quantitative and qualitative aspects of GIS technology in function of the environment on the one hand, and through concrete examples to point out to the power of these technologies in the process of finding optimal solutions. It is briefly pointed out to some general criteria that are inevitable in the process of creating databases in GIS necessary for adequate and suitable GIS analyses.(Author)

  15. The Function of Remote Sensing in Support of Environmental Policy

    OpenAIRE

    Maarten Smies; Davaa Narantuya; Jelle Ferwerda; Yoshio Inoue; Alfred de Gier; Yola Georgiadou; Norman Kerle; Jan de Leeuw

    2010-01-01

    Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1), there is apparently lit...

  16. INVESTIGATION OF THE BIOLOGY TEACHER CANDIDATES' ENVIRONMENTAL LITERACY IN TERMS OF DIFFERENT VARIABLES

    OpenAIRE

    GÜRBÜZ, HASAN; KIŞOĞLU, Mustafa; ALAŞ, Ali; SÜLÜN, Ali

    2011-01-01

    Problem and Purpose: One of the problems that waits to be solved in the world is environmental problems whose effect is increasingly felt. The most important reason for environmental problems is the lack of environmental consciousness in socıety.. Constructing the environmental consciousness among the people is possible through an effective environmental education. The first aim of the environmental education is to make people environmentally literate. At this point, teachers who instruct env...

  17. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons

    Science.gov (United States)

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M.; Laks, Jerson; Deslandes, Andrea Camaz

    2016-01-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  18. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons.

    Science.gov (United States)

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M; Laks, Jerson; Deslandes, Andrea Camaz

    2016-02-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  19. Assessment of Physical Functioning: A Conceptual Model Encompassing Environmental Factors and Individual Compensation Strategies

    OpenAIRE

    Tomey, Kristin M.; Sowers, MaryFran R.

    2009-01-01

    Commonly studied physical functions include activities such as walking and climbing stairs. Despite the acknowledged role of environmental factors and behavioral strategies to compensate for reduced performance capacity or environmental barriers in characterizing physical functioning, most assessments do not take these factors into account. This article presents a new conceptual model for assessment of relevant physical functioning while accounting for habitual environmental factors and compe...

  20. Role of Biological Sex in Normal Cardiac Function and in its Disease Outcome – A Review

    OpenAIRE

    Prabhavathi, K.; Selvi, K.Tamarai; Poornima, K.N.; Sarvanan, A.

    2014-01-01

    Biological sex plays an important role in normal cardiac physiology as well as in the heart‘s response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this is progressively lost when comparing postmenopausal women with age matched men. Animal model of cardiac disease mirror what is seen in humans. Sex hormones contribute significantly to sex based difference in cardiac functioning and in its disease outcome. Es...

  1. 76 FR 4859 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-01-27

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological Control Agent for Asian Citrus Psyllid AGENCY: Animal and Plant Health.... On May 20, 2010, we published in the Federal Register (75 FR 28233- 28234, Docket No....

  2. Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Byrne, A. R.; Mizera, Jiří; Lučaníková, M.; Řanda, Zdeněk

    2006-01-01

    Roč. 269, č. 2 (2006), s. 251-257. ISSN 0236-5731 R&D Projects: GA ČR(CZ) GA203/04/0943 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiochemical neutron activation analysis * rhenium * biological and environmental samples Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  3. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Roos, Per

    2008-01-01

    application in the environmental and biological researches, these radionuclides include H-3, C-14, Cl-36, Ca-41 Ni-59,Ni-63, Sr-89,Sr-90, Tc-99, I-129, Cs-135,Cs-137, Pb-210, Ra-226,Ra-228, Np-237, Am-241, and isotopes of thorium, uranium and plutonium. The application of on-line methods (flow injection...

  4. Environmental quality and preservation; bedrock beneath reefs; the importance of geology in understanding biological decline in a modern reef ecosystem

    Science.gov (United States)

    Lidz, Barbara H.

    2000-01-01

    Environmental Quality and Preservation-Bedrock Beneath Reefs: the Importance of Geology in Understanding Biological Decline in a Modern Ecosystem' is a four-page and one-plate full-color discussion of the geologic framework and evolutionary history of the coral reef ecosystem that lines the outer shelf off the Florida Keys.

  5. Progress in Computational Physics (PiCP) Vol 2 Coupled Fluid Flow in Energy, Biology and Environmental Research

    CERN Document Server

    Ehrhardt, Matthias

    2012-01-01

    This second volume contains both, the mathematical analysis of the coupling between fluid flow and porous media flow and state-of-the art numerical techniques, like tailor-made finite element and finite volume methods. Readers will come across articles devoted to concrete applications of these models in the field of energy, biology and environmental research.

  6. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  7. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement;

    on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  8. Construction and behavior of biologically contained bacteria for environmental applications in bioredemiation

    DEFF Research Database (Denmark)

    Ronchel, M. C.; Ramos, C.; Jensen, Lars Bogø;

    1995-01-01

    The survival of microorganisms can be predicted through the use of active biological containment systems. We have constructed contained Pseudomonas putida strains that degrade alkylbenzoates. The modified strain carries a fusion of the P-lac promoter to the gef gene, which encodes a killing prote...... survived in these soils in the absence of alkylbenzoates. The TOL plasmid was transferred in soils between Pseudomonas strains but was not able to mobilize the elements of the containment system.......The survival of microorganisms can be predicted through the use of active biological containment systems. We have constructed contained Pseudomonas putida strains that degrade alkylbenzoates. The modified strain carries a fusion of the P-lac promoter to the gef gene, which encodes a killing protein...... survival and functionality in soil microcosms were as expected. Both contained and uncontained strains survived well in soils supplemented with alkylaromatics, whereas survival of the contained strain in soil microcosms without methylbenzoates was markedly reduced, in contrast to the control strain, which...

  9. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  10. Motion as a source of environmental information: A fresh view on biological motion computation by tiny brains

    Directory of Open Access Journals (Sweden)

    Martin Egelhaaf

    2014-10-01

    Full Text Available Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly aerobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (‘optic flow’ to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a deficiency of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and – in many behavioral contexts – less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.

  11. Macroecological scale effects of biodiversity on ecosystem functions under environmental change.

    Science.gov (United States)

    Burley, Hugh M; Mokany, Karel; Ferrier, Simon; Laffan, Shawn W; Williams, Kristen J; Harwood, Tom D

    2016-04-01

    Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α-diversity) to macroecological scales (β- and γ-diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB-EF relationships). However, before the outcomes of MB-EF analyses can be useful to real-world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB-EF mechanisms: "macroecological complementarity" and "spatiotemporal compensation." Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting-edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB-EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change. PMID:27066246

  12. To be well - to function well. Health biology at Copenhagen University

    DEFF Research Database (Denmark)

    Rosenkilde, Per

    1995-01-01

    Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion.......Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion....

  13. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  14. Large Scale Computing and Storage Requirements for Biological and Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    DOE Office of Science, Biological and Environmental Research Program Office (BER),

    2009-09-30

    In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

  15. Malignant transformation in vitro: criteria, biological markers, and application in environmental screening of carcinogens

    International Nuclear Information System (INIS)

    Biological markers which distinguish malignantly transformed fibroblasts from their normal counterpart include pleomorphic morphology, lowered requirement for nutritional factors, loss of density inhibition of growth, complex topography as discernible by scanning electron microscopy, loss in surface proteins, incomplete glycosylation of membrane glycolylipids and glycoproteins, increased production of specific proteases, decreased organization of the cytoskeleton, and acquisition of neoantigens. Several of these markers are not consistently found in transformed epithelial cells and therefore cannot serve to distinguish unequivocally neoplastic epithelial cells from the normal counterparts. The only criteria associated with the transformed nature of both fibroblasts and epithelial cells are the ability of the cells to proliferate in semisolid medium and to induce tumors in appropriate hosts. In vitro systems represent a powerful tool for screening the mutagenic/oncogenic potential of physical, chemical, and environmental agents. Fibroblasts rather than epithelial cells are preferred for this purpose at the present time because of the clear-cut phenotypic differences between the normal and the transformed cells. These systems have been useful in establishing that malignant transformation can be induced by doses as low as 1 rad of X rays or 0.1 rad of neutrons, and that fractionation at low dose levelsleads to enhanced transformation. They have been useful in identifying a large number of hazardous chemicals and in evaluating the relationship between the mutagenic and carcinogenic potential of radiation and chemicals

  16. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    International Nuclear Information System (INIS)

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail

  17. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  18. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report is the 1992--1994 Program Director`s Overview Report for Oak Ridge National Laboratory`s (ORNL`s) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  19. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter;

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork and...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  20. N-acylation of phosphatidylethanolamine and its biological functions in mammals

    DEFF Research Database (Denmark)

    Wellner, Niels; Diep, Thi Ai; Janfelt, Christian;

    2013-01-01

    N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesiz....... This paper reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism....

  1. Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters

    International Nuclear Information System (INIS)

    Multi-functionalized single walled carbon nanotubes (SWNTs) were prepared and applied as tumor cell targeting biological transporters. A positive charge was introduced on SWNTs to get high loading efficiency of fluorescein (FAM) labeled short double strands DNA (20 base pairs). The SWNTs were encapsulated with the folic acid modified phospholipids for active targeting into tumor cell. The tumor cell-targeting properties of these multi-functionalized SWNTs were investigated by active targeting into mouse ovarian surface epithelial cells. The experimental results show that these multi-functionalized SWNTs have good tumor cell targeting property

  2. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    Science.gov (United States)

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  3. The Function of Remote Sensing in Support of Environmental Policy

    Directory of Open Access Journals (Sweden)

    Maarten Smies

    2010-07-01

    Full Text Available Limited awareness of environmental remote sensing’s potential ability to support environmental policy development constrains the technology’s utilization. This paper reviews the potential of earth observation from the perspective of environmental policy. A literature review of “remote sensing and policy” revealed that while the number of publications in this field increased almost twice as rapidly as that of remote sensing literature as a whole (15.3 versus 8.8% yr−1, there is apparently little academic interest in the societal contribution of environmental remote sensing. This is because none of the more than 300 peer reviewed papers described actual policy support. This paper describes and discusses the potential, actual support, and limitations of earth observation with respect to supporting the various stages of environmental policy development. Examples are given of the use of remote sensing in problem identification and policy formulation, policy implementation, and policy control and evaluation. While initially, remote sensing contributed primarily to the identification of environmental problems and policy implementation, more recently, interest expanded to applications in policy control and evaluation. The paper concludes that the potential of earth observation to control and evaluate, and thus assess the efficiency and effectiveness of policy, offers the possibility of strengthening governance.

  4. Environmental quality evaluation. Indexing tools to evaluate environmental quality from biological data, floristic and vegetational data in Ponte Galeria (Rome, Italy)

    International Nuclear Information System (INIS)

    In the present work the study of indexing tools to evaluate environmental quality from biological data has been performed using a certain number of floristic and vegetational indices near Macchia Grande of Ponte Galeria (Rome, Italy). The indices have been applied on the basis of the data coming from a phyto sociological study of the area. Multivariate statistics methodologies have been utilized to obtain a synthetic evaluation of the indices

  5. High-Resolution Gene Flow Model for Assessing Environmental Impacts of Transgene Escape Based on Biological Parameters and Wind Speed

    Science.gov (United States)

    Wang, Lei; Haccou, Patsy; Lu, Bao-Rong

    2016-01-01

    Environmental impacts caused by transgene flow from genetically engineered (GE) crops to their wild relatives mediated by pollination are longstanding biosafety concerns worldwide. Mathematical modeling provides a useful tool for estimating frequencies of pollen-mediated gene flow (PMGF) that are critical for assessing such environmental impacts. However, most PMGF models are impractical for this purpose because their parameterization requires actual data from field experiments. In addition, most of these models are usually too general and ignored the important biological characteristics of concerned plant species; and therefore cannot provide accurate prediction for PMGF frequencies. It is necessary to develop more accurate PMGF models based on biological and climatic parameters that can be easily measured in situ. Here, we present a quasi-mechanistic PMGF model that only requires the input of biological and wind speed parameters without actual data from field experiments. Validation of the quasi-mechanistic model based on five sets of published data from field experiments showed significant correlations between the model-simulated and field experimental-generated PMGF frequencies. These results suggest accurate prediction for PMGF frequencies using this model, provided that the necessary biological parameters and wind speed data are available. This model can largely facilitate the assessment and management of environmental impacts caused by transgene flow, such as determining transgene flow frequencies at a particular spatial distance, and establishing spatial isolation between a GE crop and its coexisting non-GE counterparts and wild relatives. PMID:26959240

  6. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    Science.gov (United States)

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  7. Biological effects of environmentally relevant concentrations of the pharmaceutical Triclosan in the marine mussel Perna perna (Linnaeus, 1758)

    International Nuclear Information System (INIS)

    Triclosan (5-Chloro-2-(2,4-dichlorophenoxy) phenol) is an antibacterial compound widely employed in pharmaceuticals and personal care products. Although this emerging compound has been detected in aquatic environments, scarce information is found on the effects of Triclosan to marine organisms. The aim of this study was to evaluate the toxicity of a concentration range of Triclosan through fertilization assay (reproductive success), embryo-larval development assay (early life stage) and physiological stress (Neutral Red Retention Time assay - NRRT) (adult stage) in the marine sentinel organism Perna perna. The mean inhibition concentrations for fertilization (IC50 = 0.490 mg L−1) and embryo-larval development (IC50 = 0.135 mg L−1) tests were above environmental relevant concentrations (ng L−1) given by previous studies. Differently, significant reduction on NRRT results was found at 12 ng L−1, demonstrating the current risk of the continuous introduction of Triclosan into aquatic environments, and the need of ecotoxicological studies oriented by the mechanism of action of the compound. - Highlights: ► Triclosan causes biological adverse effects at environmental relevant concentrations. ► Mechanisms of action oriented assays were more sensitive to detect biological damages. ► Currently there is environmental risks concerned Triclosan in aquatic ecosystems. - Triclosan causes biological adverse effects at environmentally relevant concentrations.

  8. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  9. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  10. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A-Z) was...

  11. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful. PMID:17157770

  12. Variation of Phenolic Content in Globe Artichoke in Relation to Biological, Technical and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Giovanni Mauromicale

    2011-02-01

    Full Text Available In Italy, globe artichoke production is prevailingly concentrated in the South and islands, where it provides an important contribution to the agricultural economy. In recent years, there has been a renewed interest in this crop as a promising source of polyphenols, a heterogeneous class of secondary metabolites characterized by various healthy properties well-documented in literature. The phenolic fraction, present in the different artichoke plant parts, varies widely in relation to biotic and abiotic factors. Therefore, the present study aimed at evaluating the variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Two field-experiments were carried out in Sicily (South Italy in two representative cultivation areas, in order to examine the effects of genotype, head fraction, season conditions, planting density and arrangement on the globe artichoke phenolic concentration. Both the total polyphenols and the individual phenolic compounds detected were notably genotype- dependent. Particularly, the high level of caffeoylquinic acids (chlorogenic acid, among others and apigenin 7- O-glucuronide, reported respectively by “Violetto di Sicilia” and “Romanesco clone C3”, could be used to encourage globe artichoke fresh consumption. Total polyphenols content also resulted more abundant in specific accumulation sites within the inflorescence, such as the floral stem and receptacle, and for most of genotypes it decreased during the second year in response to the different meteorological conditions. Additionally, total polyphenols content significantly and linearly increased as plant density increased from 1.0 to 1.8 plant m-2 and it significantly increased by 13% passing from single to twin rows plant arrangement.

  13. Benthic biodiversity patterns in Ria de Aveiro, Western Portugal: Environmental-biological relationships

    Science.gov (United States)

    Rodrigues, Ana Maria; Quintino, Victor; Sampaio, Leandro; Freitas, Rosa; Neves, Ramiro

    2011-12-01

    This study characterizes the macrobenthic gradients in Ria de Aveiro, Western Portugal. Ria de Aveiro is the meeting place of a number of river basins, resulting in a transition system of complex geometry, with channels running parallel to the coast line, north and south of the entrance, but also inland, creating an intricate system of navigation channels, islands and intertidal sand and mudflats. This renders unique characteristics to this system within the framework of transitional waters. The study was based on the analysis of samples from 248 sites, covering the full salinity gradient and the entire channel system. A total of 120 taxa in more than 76,350 specimens were identified. The most abundant and frequent taxa were all annelids, namely Alkmaria romijni, Streblospio shrubsolii, Tharyx sp., Tubificoides benedii, Nereis diversicolor, Capitella sp., Pygospio elegans, Polydora ligni and an unidentified oligochaete. The spatial distribution of the fauna was found to be mainly related to hydrodynamics and the salinity gradient, whereas sediment grain-size characteristics were much less important. Shear stress, flux, current velocity, salinity and sediment redox potential were the environmental variables which best related to the biological data. Benthic assemblages succeed from the euhaline pole, at the entrance, to the limnetic poles, located in the inner parts of the channels. In this succession, mean abundance increased from the outward to the inward assemblages but species richness and diversity were higher in intermediate assemblages. These descriptors decrease abruptly in the limnetic areas. Using the M-AMBI index, the ecological quality of Ria de Aveiro revealed moderate, poor and bad status. However, the ecological status spatial trend closely followed the benthic assemblages succession, their species richness and diversity, indicating the need for proper reference conditions and inter-calibration exercises in the transition waters before final

  14. Determination of fluorine in environmental and biological samples by neutron and photon activation analysis

    International Nuclear Information System (INIS)

    In NAA, two analytical reactions, viz. 19F(n,γ)20F (T(1/2) =11.0 s, E(gamma) =1633.6 keV) and 19F(n,p)19O (T(1/2) =26.9 s, E(gamma) =197.1 keV) with thermal and fast neutrons, respectively, can be used. Due to the short half-lives of the activation products, only non-destructive, instrumental NAA (INAA) is feasible. Unfortunately, neither of the analytical reactions is interference-free: the reaction 23Na(n,α)20F with fast neutrons interferes with the former, the reaction 18O(n,γ)19O with thermal neutrons interferes with the latter. The interference free detection limits for irradiation of several types of biological materials at thermal and fast neutron fluency rates of 8.1013 cm-2 s-1 and 2.1013 cm-2 s -1, respectively, are in the range of 0.3 to 2 μg g-1 for both reactions. The actual detection limits for biological samples, however, are significantly higher, at least by one order of magnitude, due to the above interferences. In addition, the detection limit of the 19F(n,γ)20F reaction is strongly influenced by the Al content, particularly in environmental samples, due to the overwhelming activity of 28Al created even after a very short irradiation (10 s). Thus, fluorine can usually be determined in this type of samples at levels of several hundreds to thousands of μg g-1. The pseudocyclic mode of INAA improves the detection limit only slightly - by a factor of 2 after four cycles, by a factor of 3.2 after ten cycles, etc. The determination of fluorine by PAA is based on the reaction 19F(γ,n)18F (T(1/2) = 1.83 h, E(gamma) = 511.0 keV) that is free from nuclear interferences for irradiation with up to 20-MeV bremsstrahlung. In contrast to NAA, radiochemical separation is mandatory for low-level assay of fluorine by PAA because the radionuclide 18F is a pure positron emitter. Therefore, a radiochemical PAA procedure (RPAA) was developed and tested for analysis of biological materials. It is based on alkaline-oxidative fusion with Na2O2 + NaOH followed by

  15. Autofluorescence of atmospheric bioaerosols - Biological standard particles and the influence of environmental conditions

    Science.gov (United States)

    Pöhlker, Christopher; Huffman, J. Alex; Förster, Jan-David; Pöschl, Ulrich

    2013-04-01

    Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP can account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze

  16. Form and function: Perspectives on structural biology and resources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  17. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function....... system (the cell), also at the quantitative level, and this is the goal of systems biology. Clearly this will have a significant impact on microbial physiology as well as on metabolic engineering.......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function....... With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has...

  18. Form and function: Perspectives on structural biology and resources for the future

    International Nuclear Information System (INIS)

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs

  19. Random regression models for the estimation of genetic and environmental covariance functions for growth traits in Santa Ines sheep.

    Science.gov (United States)

    Sarmento, J L R; Torres, R A; Sousa, W H; Lôbo, R N B; Albuquerque, L G; Lopes, P S; Santos, N P S; Bignard, A B

    2016-01-01

    Polynomial functions of different orders were used to model random effects associated with weight of Santa Ines sheep from birth to 196 days. Fixed effects included in the models were contemporary groups, age of ewe at lambing, and fourth-order Legendre polynomials for age to represent the average growth curve. In the random part, functions of different orders were included to model variances associated with direct additive and maternal genetic effects and with permanent environmental effects of the animal and mother. Residual variance was fitted by a sixth-order ordinary polynomial for age. The higher the order of the functions, the better the model fit the data. According to the Akaike information criterion and likelihood ratio test, a continuous function of order, five, five, seven, and three for direct additive genetic, maternal genetic, animal permanent environmental, and maternal permanent environmental effects (k = 5573), respectively, was sufficient to model changes in (co)variances with age. However, a more parsimonious model of order three, three, five, and three (k = 3353) was suggested based on Schwarz's Bayesian information criterion for the same effects. Since it was a more flexible model, model k = 5573 provided inconsistent genetic parameter estimates when compared to the biologically expected result. Predicted breeding values obtained with models k = 3353 and k = 5573 differed, especially at young ages. Model k = 3353 adequately fit changes in variances and covariances with time, and may be used to describe changes in variances with age in the Santa Ines sheep studied. PMID:27323203

  20. Influence of Lipid Oxidization on Structures and Functions of Biological Membranes

    OpenAIRE

    Korytowski, Agatha Anna

    2016-01-01

    The primary aim of this thesis is to clarify how the structures and functions of biological membranes are influenced by the oxidative damage mediated by free radicals. As a precisely defined model systems, artificially reconstituted lipid membranes (Langmuir monolayers, vesicles, supported membranes, multilamellar membranes) incorporating two oxidized phospholipids bearing aldehyde or carboxyl groups at the end of truncated sn-2 acyl chains were fabricated. By the combination of various exper...

  1. Integration of multiscale dendritic spine structure and function data into systems biology models

    OpenAIRE

    Mancuso, James J.; Jie Cheng

    2014-01-01

    Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long d...

  2. The SYK tyrosine kinase: a crucial player in diverse biological functions

    OpenAIRE

    Mócsai, Attila; Ruland, Jürgen; Tybulewicz, Victor L.J.

    2010-01-01

    Spleen tyrosine kinase (SYK) has been known to relay adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates novel targets including the CARD9/CARMA1–BCL10–MALT1 pathway and the NLRP3 inflammasome. Drosophila studies indic...

  3. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    Science.gov (United States)

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  4. Modulation of telomerase activity in fish muscle by biological and environmental factors.

    Science.gov (United States)

    Peterson, Drew Ryan; Mok, Helen Oi Lam; Au, Doris Wai Ting

    2015-12-01

    Telomerase expression has long been linked to promotion of tumor growth and cell proliferation in mammals. Interestingly, telomerase activity (TA) has been detected in skeletal muscle for a variety of fish species. Despite this being a unique feature in fish, very few studies have investigated the potential role of TA in muscle. The present study was set to prove the concepts that muscle telomerase in fish is related to body growth, and more specifically, to muscle cell proliferation and apoptosis in vivo. Moreover, muscle TA can be influenced by biotic factors and modulated by environmental stress. Using three fish species, mangrove red snapper (Lutjanus argentimaculatus), orange-spotted grouper (Epinephelus coioides), and marine medaka (Oryzias melastigma), the present work reports for the first time that fish muscle TA was sensitive to the environmental stresses of starvation, foodborne exposure to benzo[a]pyrene, and hypoxia. In marine medaka, muscle TA was coupled with fish growth during early life stages. Upon sexual maturation, muscle TA was confounded by sex (female>male). Muscle TA was significantly correlated with telomerase reverse transcriptase (TERT) protein expression (Pearson correlation r=0.892; p≤0.05), which was coupled with proliferating cell nuclear antigen (PCNA) cell proliferation, but not associated with apoptosis (omBax/omBcl2 ratio) in muscle tissue. The results reported here have bridged the knowledge gap between the existence and function of telomerase in fish muscle. The underlying regulatory mechanisms of muscle TA in fish warrant further exploration for comparison with telomerase regulation in mammals. PMID:26400776

  5. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    Science.gov (United States)

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  6. Environmental Projects. Volume 17; Biological Assessment, Opinion, and New 34-Meter Beam-Waveguide Antenna (DSS 24) at Apollo Site

    Science.gov (United States)

    Bengelsdorf, Irving

    1996-01-01

    This report deals with the Biological Assessment, Biological Opinion and Final Report on the construction of a high- efficiency 34-meter, multifrequency beam-waveguide antenna at the Apollo Site of the Goldstone Deep Space Communications Complex, operated by JPL. According to the Endangered Species Act of 1973, a Biological Assessment must be conducted and a Biological Opinion, with terms and conditions, rendered (the Opinion by the U.S. Department of the Interior) before construction of any federal project that may affect endangered or threatened flora or fauna. After construction, a final report is filed with the Department. The desert tortoise, designated "threatened" by the U.S. Fish and Wildlife Service, and the Mojave ground squirrel and the Lane Mountain milk vetch, both designated "candidate threatened," required the reporting specified by the Act. The Assessment found no significant danger to the animal species if workers are educated about them. No stands of the plant species were observed in the surveyed construction area. The Department issued a Biological Opinion to safeguard the two animal species. The Service and the California Department of Fish and Game both issued a Biological Concurrence that JPL had satisfied all environmental criteria for preserving threatened species.

  7. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation

    Directory of Open Access Journals (Sweden)

    Kathleen H Wood

    2016-05-01

    Full Text Available DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.

  8. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    International Nuclear Information System (INIS)

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented

  9. Profile of social, environmental and biological correlates in intellectual disability in a resource-poor setting in India

    Directory of Open Access Journals (Sweden)

    Ram Lakhan

    2015-01-01

    Full Text Available Background: Intellectual disability (ID is a major public health issue in India. Social, environmental and biological factors all contribute to the nation′s high rate of ID. Objective: We aimed to investigate the distribution, differences and the association of social, environmental and biological factors with different types of ID in a mixed (tribal and non-tribal population in India. Materials and Methods: Secondary data was collected during a community-based rehabilitation project and analyzed with descriptive statistics: Frequency, percentage and χ2 . Results: Poverty, low levels of parental education and a family history of epilepsy and ID were all associated in both tribal and non-tribal populations (P < 0.05. Conclusion: The outcome of this study may be helpful in planning public health initiatives that aim to reduce the burden of ID in mixed populations.

  10. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero-Latorre, C., E-mail: carlos.herrero@usc.es; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.

    2015-01-01

    Highlights: • Analytical techniques for characterization of CNTs: classification, description and examples. • Determination methods for CNTs in biological and environmental samples. • Future trends and perspectives for characterization and determination of CNTs. - Abstract: In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.

  11. Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface

    Science.gov (United States)

    Hristov, Delyan R.; Rocks, Louise; Kelly, Philip M.; Thomas, Steffi S.; Pitek, Andrzej S.; Verderio, Paolo; Mahon, Eugene; Dawson, Kenneth A.

    2015-12-01

    We have used a silica - PEG based bionanoconjugate synthetic scheme to study the subtle connection between cell receptor specific recognition and architecture of surface functionalization chemistry. Extensive physicochemical characterization of the grafted architecture is capable of capturing significant levels of detail of both the linker and grafted organization, allowing for improved reproducibility and ultimately insight into biological functionality. Our data suggest that scaffold details, propagating PEG layer architecture effects, determine not only the rate of uptake of conjugated nanoparticles into cells but also, more significantly, the specificity of pathways via which uptake occurs.

  12. Correlation Between Toluene Environmental Monitoring and Biological Index of Urinary Hippuric Acid of Workers in the Coke Industry

    OpenAIRE

    MM Amin; Kalantari, A.; N BASHARDOOST; AR Bahrami; M. Rismanchian; Gh Mirsatari; Mansouri, F.

    2007-01-01

    Introduction: Toluene is an organic solvent that it is one of the byproducts in the coke industry. Exposure to toluene causes central nervous system dysfunction and others disorders. Many workers are exposed to toluene due to leakage from tracks. Therefore the aim of this study was to determine the levels of exposure through environmental and biological monitoring of toluene Methods: Air toluene sampling of air inhaled by 36 coke oven workers was done by using activated charcoal tubes and per...

  13. Modeling Genetic and Environmental Factors in Biological Systems Using Structural Equation Modeling: An Application to Energy Balance

    OpenAIRE

    Nock, Nora L.; Li, Li; Elston, Robert C.

    2009-01-01

    To improve our understanding of the role(s) that genes and environmental factors play in a complex disease, we need statistical approaches that model multiple factors simultaneously in a hierarchical manner that aims to reflect the underlying biological system(s). We present an approach that models genes as latent constructs, defined by multiple variants (single nucleotide polymorphisms, SNPs) within each gene, using the multivariate statistical framework of structural equation modeling (SEM)...

  14. Monitoring of environmental effects and process performance during biological treatment of sediment from the Petroleum Harbour in Amsterdam

    International Nuclear Information System (INIS)

    A full-scale (470 m3) process for biological treatment of dredging spoil from the Petroleum Harbour in Amsterdam has been monitored during a pilot project. The dredging spoil was heavily polluted with polycyclic aromatic hydrocarbons (PAH) and mineral oil. The remediation chain involved dredging, transport of dredged spoil, hydrocyclone separation, froth flotation of the coarse particles, and biological treatment of the silt fraction (<20 μm) in stirred bioreactors. The independent monitoring was aimed at recording the environmental effects, product quality and performance of the biological process. Hydrocyclone separation (cut point 20 m) resulted in two bulk streams: 65% sand and 30% silt (based on total dry weight of the input). (author)

  15. Functional Roles of Biosurfactants in Bacterial and Environmental Processes

    OpenAIRE

    Belcher, Richard Wilson

    2012-01-01

    Biosurfactants are amphipathic molecules exuded by bacteria that play critical roles in a variety of bacterial and environmental processes due to their interfacial interactions. The involvement of biosurfactants in these processes has vast potential to enhance bioremediation and expedite swarming motility, to name a few, and research into this arena is pivotal. Surface tension reduction by surface active agents can induce swarming motility lending competence of plant growth-promoting soil ino...

  16. An appraisal of biological responses and network of environmental interactions in non-mining and mining impacted coastal waters.

    Science.gov (United States)

    Fernandes, Christabelle E G; Malik, Ashish; Jineesh, V K; Fernandes, Sheryl O; Das, Anindita; Pandey, Sunita S; Kanolkar, Geeta; Sujith, P P; Velip, Dhillan M; Shaikh, Shagufta; Helekar, Samita; Gonsalves, Maria Judith; Nair, Shanta; LokaBharathi, P A

    2015-08-01

    The coastal waters of Goa and Ratnagiri lying on the West coast of India are influenced by terrestrial influx. However, Goa is influenced anthropogenically by iron-ore mining, while Ratnagiri is influenced by deposition of heavy minerals containing iron brought from the hinterlands. We hypothesize that there could be a shift in biological response along with changes in network of interactions between environmental and biological variables in these mining and non-mining impacted regions, lying 160 nmi apart. Biological and environmental parameters were analyzed during pre-monsoon season. Except silicates, the measured parameters were higher at Goa and related significantly, suggesting bacteria centric, detritus-driven region. At Ratnagiri, phytoplankton biomass related positively with silicate suggesting a region dominated by primary producers. This dominance perhaps got reflected as a higher tertiary yield. Thus, even though the regions are geographically proximate, the different biological response could be attributed to the differences in the web of interactions between the measured variables. PMID:25907627

  17. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review.

    Science.gov (United States)

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L

    2012-11-28

    Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. PMID:23146389

  18. System biology approach to detect and assign biological functions and regulator genes to feed efficiency traits in Nellore cattle

    DEFF Research Database (Denmark)

    Alexandre, Pâmela; Kogelman, Lisette; Santana, Miguel; Eler, Joanir; Kadarmideen, Haja; Fukumasu, Heidge

    The objective of this study was to use a system biology approach to identify biological mechanisms involved on feed efficiency in Nellore cattle and its possible regulator genes. Two modules of co-expressed and highly inter-connected genes correlated to feed efficiency were identified as well as ...

  19. Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities

    Directory of Open Access Journals (Sweden)

    Isganitis Timothy

    2006-02-01

    Full Text Available Abstract Background Existing biological databases support a variety of queries such as keyword or definition search. However, they do not provide any measure of relevance for the instances reported, and result sets are usually sorted arbitrarily. Results We describe a system that builds upon the complex infrastructure of the Biozon database and applies methods similar to those of Google to rank documents that match queries. We explore different prominence models and study the spectral properties of the corresponding data graphs. We evaluate the information content of principal and non-principal eigenspaces, and test various scoring functions which combine contributions from multiple eigenspaces. We also test the effect of similarity data and other variations which are unique to the biological knowledge domain on the quality of the results. Query result sets are assessed using a probabilistic approach that measures the significance of coherence between directly connected nodes in the data graph. This model allows us, for the first time, to compare different prominence models quantitatively and effectively and to observe unique trends. Conclusion Our tests show that the ranked query results outperform unsorted results with respect to our significance measure and the top ranked entities are typically linked to many other biological entities. Our study resulted in a working ranking system of biological entities that was integrated into Biozon at http://biozon.org.

  20. Multiclass mycotoxin analysis in food, environmental and biological matrices with chromatography/mass spectrometry.

    Science.gov (United States)

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Foglia, Patrizia; Samperi, Roberto; Laganà, Aldo

    2012-01-01

    . Sample handling is a crucial step to devise a multiclass analytical method; so when possible, it has been treated separately for a better comparison before tackling the instrumental part of the whole analytical method. This structure has resulted sometimes in unavoidable redundancies, because it was also important to underline the interconnection. Most reviews do not deal with all the possible mycotoxin sources, including the environmental ones. The focus of this review is the analytical methods based on MS for multimycotoxin class determination. Because the final purpose to devise multimycotoxin analysis should be the assessment of the danger to health of exposition to multitoxicants of natural origin (and possibly also the interaction with anthropogenic contaminants), therefore also the analytical methods for environmental relevant mycotoxins have been thoroughly reviewed. Finally, because the best way to shed light on actual risk assessment could be the individuation of exposure biomarkers, the review covers also the scarce literature on biological fluids. PMID:22065561

  1. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    Science.gov (United States)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  2. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  3. Applications of post-translational modifications of FoxO family proteins in biological functions

    Institute of Scientific and Technical Information of China (English)

    Ying Zhao; Yachen Wang; Wei-Guo Zhu

    2011-01-01

    The functions of the FoxO family proteins, in particular their transcriptional activities, are modulated by post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. These PTMs occur in response to different cellular stresses, which in turn regulate the subcellular localization of FoxO family proteins, as well as their half-life, DNA binding, transcriptional activity and ability to interact with other cellular proteins. In this review, we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.%The functions of the FoxO family proteins,in particular their transcriptional activities,are modulated by post-translational modifications (PTMs),including phosphorylation,acetylation,ubiquitination,methylation and glycosylation.These PTMs occur in response to different cellular stresses,which in turn regulate the subceilular localization of FoxO family proteins,as well as their half-life,DNA binding,transcriptional activity and ability to interact with other cellular proteins.In this review,we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.

  4. Coronary flow and left ventricular function during environmental stress.

    Science.gov (United States)

    Erickson, H. H.; Adams, J. D.; Stone, H. L.; Sandler, H.

    1972-01-01

    A canine model was used to study the effects of different environmental stresses on the heart and coronary circulation. The heart was surgically instrumented to measure coronary blood flow, left ventricular pressure, and other cardiovascular variables. Coronary flow was recorded by telemetry. Physiologic data were processed and analyzed by analog and digital computers. By these methods the physiologic response to altitude hypoxia, carbon monoxide, hypercapnia, acceleration, exercise, and the interaction of altitude hypoxia and carbon monoxide were described. The effects of some of these stresses on the heart and coronary circulation are discussed.

  5. Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology

    OpenAIRE

    Pycke, Benny F. G.; Benn, Troy M.; Herckes, Pierre; Westerhoff, Paul; Halden, Rolf U.

    2011-01-01

    Fullerenes are sphere-like molecules with unique physico-chemical properties, which render them of particular interest in biomedical research, consumer products and industrial applications. Human and environmental exposure to fullerenes is not a new phenomenon, due to a long history of hydrocarbon-combustion sources, and will only increase in the future, as incorporation of fullerenes into consumer products becomes more widespread for use as anti-aging, anti-bacterial or anti-apoptotic agents.

  6. Recent advances in alveolar biology: Evolution and function of alveolar proteins☆

    OpenAIRE

    Orgeig, Sandra; Hiemstra, Pieter S.; Edwin J A Veldhuizen; Casals, Cristina; Clark, Howard W.; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-01-01

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins – the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfa...

  7. Consequences of Environmental Service Payments for Forest Retention and Recruitment in a Costa Rican Biological Corridor

    OpenAIRE

    Hollenhorst, Steven J.; Kathleen L. Kavanagh; Celia A. Harvey; Bryan Finegan; Sesnie, Steven E.; Schedlbauer, Jessica L.; Morse, Wayde C; Dietmar Stoian; J. D. Wulfhorst

    2009-01-01

    Compensation to landowners for forest-derived environmental services has gained international recognition as a mechanism to combat forest loss and fragmentation. This approach is widely promoted, although there is little evidence demonstrating that environmental service payments encourage forest stewardship and conservation. Costa Rica provides a unique case study in which a 1996 Forestry Law initiated environmental service payments and prohibited forest conversion to other land uses. We exam...

  8. Environmental compensation for disrupted ecological functions in Swedish road planning and design

    OpenAIRE

    Rundcrantz, Kristina

    2007-01-01

    The road network is growing in Europe, resulting in environmental impacts with fragmentation and loss of ecological functions as major problems. This thesis is the first to systematically analyse the use of environmental compensation in the Swedish road planning system. The aim is to provide an increased knowledge and understanding of environmental compensation and specifically to consider how it can be improved in planning and design of roads. The thesis consists of three papers which elucid...

  9. Symptoms, ventilatory function, and environmental exposures in Portland cement workers.

    OpenAIRE

    Abrons, H L; Petersen, M R; Sanderson, W T; Engelberg, A L; Harber, P

    1988-01-01

    Data on respiratory symptoms and pulmonary function were obtained for 2736 Portland cement plant workers and 755 controls. Personal dust samples contained a geometric mean concentration of 0.57 mg/m3 for respirable dust and 2.90 mg/m3 for total dust. Cement workers and controls had similar prevalences of symptoms, except that 5.4% of the cement workers had dyspnoea compared with 2.7% of the controls. The mean pulmonary function indices were similar for the two groups. Among cement plant worke...

  10. Distribution of functional traits in subtropical trees across environmental and forest use gradients

    Science.gov (United States)

    Blundo, Cecilia; Malizia, Lucio R.; González-Espinosa, Mario

    2015-11-01

    The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.

  11. Environmental Contaminants Monitoring in Selected Wetlands of Wyoming: Biologically Active Elements Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...

  12. Applications of synchrotron {mu}-XRF to study the distribution of biologically important elements in different environmental matrices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra; Peralta-Videa, Jose R. [Chemistry Department, University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968 (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble, Cedex (France); Hong Jie [Environmental Science and Engineering PhD Program, University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968 (United States); Rico, Cyren M. [Chemistry Department, University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Chemistry Department, University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, University of Texas at El Paso, 500 West University Ave. El Paso, TX 79968 (United States)

    2012-11-28

    Highlights: Black-Right-Pointing-Pointer {mu}-SXRF is a state-of-the-art technique to map biologically important elements. Black-Right-Pointing-Pointer {mu}-SXRF allows in situ mapping of the elements at nanometer to sub-micrometer scale. Black-Right-Pointing-Pointer {mu}-SXRF can be used in plant, soil, microbe and particulate matter samples. Black-Right-Pointing-Pointer {mu}-SXRF is coupled with other synchrotron techniques to study chemical speciation. - Abstract: Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence ({mu}-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction ({mu}-XRD) and micro-X-ray absorption spectroscopy ({mu}-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of {mu}-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using {mu}-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed.

  13. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: A review

    International Nuclear Information System (INIS)

    Highlights: ► μ-SXRF is a state-of-the-art technique to map biologically important elements. ► μ-SXRF allows in situ mapping of the elements at nanometer to sub-micrometer scale. ► μ-SXRF can be used in plant, soil, microbe and particulate matter samples. ► μ-SXRF is coupled with other synchrotron techniques to study chemical speciation. - Abstract: Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed.

  14. Ecological risk assessment in the function of environmental protection

    Directory of Open Access Journals (Sweden)

    Saša T. Bakrač

    2012-10-01

    Full Text Available This paper proposes an appropriate methodology for ecological risk assessment. The methodology has been applied in the region of Boka Kotorska Bay (Bay, Montenegro. The emphasis of the research is on the analysis of the impact of various stressors on the ecological components of Bay. The consequences of that impact can be seen in an increased level of eutrophication of water environment, mostly through the influence of nitrogen and its compounds. The actual research at/about the region of Boka Kotorska Bay was performed in the period of 2008. The study emphasized the importance of the acquisition, processing and analysis of various ecologically related data for more efficient monitoring and management of the environment. The suggested methodology of the ecological risk assessment is, therefore, a remarkable scientific and expert contribution in the area of environmental protection in our country and in general.

  15. An integrated approach to the preventive conservation of cultural heritage: indoor biological environmental monitoring

    OpenAIRE

    Cesira Pasquarella; Giovanna Pasquariello; Carla Balocco; Elisa Saccani; Manuela Ugolotti; Oriana Maggi; Roberto Albertini

    2013-01-01

    In recent times has emerged a particular focus on the study of methods and techniques of investigation and prevention of biological risk in the area of cultural properties. The importance of preventing biological risk in cultural heritage has been laid out by the Italian Ministry of Cultural Heritage in the Atto di indirizzo sui criteri tecnico-scientifici e sugli standard di funzionamento e sviluppo dei musei (Guidelines on technical and scientific criteria, and operating and development sta...

  16. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Dipsikha; Sahu, Sumanta K. [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Banerjee, Indranil [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Das, Manasmita [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Mishra, Debashish; Maiti, Tapas K. [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Pramanik, Panchanan, E-mail: dipsikha.chem@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2011-09-15

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T{sub 2} contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T{sub 2} relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  17. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  18. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  19. [The influences of anterior disc displacement on oral mandibular function and morphology and their biological mechanisms].

    Science.gov (United States)

    Xia, W D; Fu, K Y

    2016-03-01

    Anterior disc displacement is a common subtype seen in temporomandibular disorders (TMD) patients. It may cause mandibular movement disorders, such as clicking of joint, intermittent closed lock, limitation of mouth opening, etc. These disorders may affect the life qualities of patients. Anterior disc displacement may also cause mandibular malformations, especially among adolescents, which may affect the growth of condyle, therefore may have a correlation with mandibular retrusion or mandibular deviation when grown up. This paper going to review the influences of anterior disc displacement on oral mandibular function and morphology and their biological mechanisms. PMID:26980658

  20. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    Science.gov (United States)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  1. Role of PET/CT functional imaging on constructing a tumor radiotherapeutic biological target volume

    International Nuclear Information System (INIS)

    In studies on intensity modulated radiotherapy with conventional fractionation, different radiosensitivity areas require different irradiation doses. In tumor radiotherapy areas CR, boosts in radiotherapy doses should be determined according to whether there are survived tumor cells or not. To those survived cells, CT imaging has become the key tool to delineate the radiotherapy target. Thus, the study on the construction of biological target volume with PET/CT functional imaging, which could reflect either radiosensitivity or cell proliferation-related cell metabolism, anoxia and DNA number of various cell cycle phases, is an important research area. (authors)

  2. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces). PMID:22391598

  3. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  4. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    Science.gov (United States)

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  5. Clustering of DNA words and biological function: a proof of principle.

    Science.gov (United States)

    Hackenberg, Michael; Rueda, Antonio; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Oliver, José L

    2012-03-21

    Relevant words in literary texts (key words) are known to be clustered, while common words are randomly distributed. Given the clustered distribution of many functional genome elements, we hypothesize that the biological text per excellence, the DNA sequence, might behave in the same way: k-length words (k-mers) with a clear function may be spatially clustered along the one-dimensional chromosome sequence, while less-important, non-functional words may be randomly distributed. To explore this linguistic analogy, we calculate a clustering coefficient for each k-mer (k=2-9bp) in human and mouse chromosome sequences, then checking if clustered words are enriched in the functional part of the genome. First, we found a positive general trend relating clustering level and word enrichment within exons and Transcription Factor Binding Sites (TFBSs), while a much weaker relation exists for repeats, and no relation at all exists for introns. Second, we found that 38.45% of the 200 top-clustered 8-mers, but only 7.70% of the non-clustered words, are represented in known motif databases. Third, enrichment/depletion experiments show that highly clustered words are significantly enriched in exons and TFBSs, while they are depleted in introns and repetitive DNA. Considering exons and TFBSs together, 1417 (or 72.26%) in human and 1385 (or 72.97%) in mouse of the top-clustered 8-mers showed a statistically significant association to either exons or TFBSs, thus strongly supporting the link between word clustering and biological function. Lastly, we identified a subset of clustered, diagnostic words that are enriched in exons but depleted in introns, and therefore might help to discriminate between these two gene regions. The clustering of DNA words thus appears as a novel principle to detect functionality in genome sequences. As evolutionary conservation is not a prerequisite, the proof of principle described here may open new ways to detect species-specific functional DNA sequences

  6. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) [Ca10(PO4)6(OH)2] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  7. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Afsaneh [Department of Mechanical and Aerospace Engineering, North Carolina State University, 3211 Broughton Hall, 2601 Stinson Dr., Campus Box 7910, Raleigh, NC 27695-7910 (United States)]. E-mail: arabiei@eos.ncsu.edu; Blalock, Travis [Department of Mechanical and Aerospace Engineering, North Carolina State University, 3211 Broughton Hall, 2601 Stinson Dr., Campus Box 7910, Raleigh, NC 27695-7910 (United States); Thomas, Brent [Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695 (United States); Cuomo, Jerry [Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695 (United States); Yang, Y. [Biomedical Engineering and Orthopedic Surgery, University of Tennessee Health Science Center, 920 Madison Ave., Suite 1005, Memphis, TN 38163 (United States); Ong, Joo [Biomedical Engineering and Orthopedic Surgery, University of Tennessee Health Science Center, 920 Madison Ave., Suite 1005, Memphis, TN 38163 (United States)

    2007-04-15

    Hydroxyapatite (HA) [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film.

  8. Biological Sensitivity to Family Income: Differential Effects on Early Executive Functioning.

    Science.gov (United States)

    Obradović, Jelena; Portilla, Ximena A; Ballard, Parissa J

    2016-03-01

    The study examined how the interplay between children's cortisol response and family income is related to executive function (EF) skills. The sample included one hundred and two 5- to 6-year-olds (64% minority). EF skills were measured using laboratory tasks and observer ratings. Physiological reactivity was assessed via cortisol response during a laboratory visit. A consistent, positive association between family income and EF skills emerged only for children who showed high cortisol response, a marker of biological sensitivity to context. In contrast, family income was not related to EF skills in children who displayed low cortisol response. Follow-up analyses revealed a disordinal interaction, suggesting that differential susceptibility can be detected at the level of basic cognitive and self-regulatory skills that support adaptive functioning. PMID:26709089

  9. Environmental fate mechanisms influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems

    International Nuclear Information System (INIS)

    This paper discusses biodegradation, a technically viable and cost effective approach for the reduction and immobilization of polynuclear aromatic hydrocarbons (PAH) present in contaminated soils and sludges associated with coal-tar derived processes. While it is widely reported and accepted that PAH biodegradation in soil systems does occur, the specific controlling mechanisms are not entirely understood. One common observation among published reports is that the more soluble, lower molecular weight PAH compounds are biodegraded to a greater extent than the less soluble, higher molecular weight PAHs. The rate and extent to which PAHs are removed form soil/sludges is influenced by the combined and simultaneously occurring effects of volatilization, sorption and biological oxidation. The degree to which each of these three environmental fate mechanisms occurs is mainly influenced by the physical/chemical characteristics of the contaminated media, the physical/chemical characteristics of the specific PAH compounds, and the design and operation of the particular biological treatment process

  10. Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.

    Science.gov (United States)

    Kumar, A; Nune, K C; Misra, R D K

    2016-06-01

    Three-dimensional (3D) printing is considered an ideally suitable method to fabricate patient specific implantable devices. The approach enabled to produce a porous scaffold with tailored physical, mechanical, and biological properties because of the flexibility to tune the scaffold architecture. The objective of the study described was to elucidate the determining role of cell-laid extracellular matrix (ECM) in impacting biological response. In this regard, to mimic the natural ECM environment or the attributes of the native tissue, a natural ECM analogue surface was produced on the 3D printed and sintered hydroxyapatite (HA) scaffold surface by the mineralized ECM of the osteoblast. This involved the growth of osteoblast on 3D printed scaffolds, followed by differentiation to deposit the mineralized ECM on the biomaterial surface. The cells were removed from the mineralized matrix using freeze-thaw cycles to obtain a decellularized extracellular matrix (dECM) on the biomaterial surface. Subsequently, seeding of osteoblast on dECM-ornamented HA scaffolds led to 3D growth with enhanced expression of prominent proteins, actin and vinculin. Based on preliminary observations of present study, it was underscored that HA scaffolds-ornamented with dECM provided an optimized microenvironment conducive to the growth of 3D structural tissue and favorably promoted biological functionality because of the availability of an environment that promoted cell-cell and cell-scaffold interaction. The primary advantage of dECM is that it enabled constructive remodeling and promoted the formation of tissue in lieu of less functional tissue. The study opens-up a new path for printing of 3D structures suitable to treat segmental bone defects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1343-1351, 2016. PMID:26799466

  11. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  12. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  13. Biological performance of functionalized biomedical polymers for potential applications as intraocular lens.

    Science.gov (United States)

    Zheng, Zhiwen; Wang, Yingjun; Jiao, Yan; Zhai, Zhichen

    2016-08-01

    To study the biological performance of surface-modified biomedical polymer materials, a model of the functional mechanism of nonspecific adsorption resistance was constructed. Cell behavior on the surface and in vivo transplantation features of intraocular lens (IOL) materials, such as hydrophobic acrylic ester and polymethyl methacrylate (PMMA), were investigated. The results of cell adhesion and proliferation studies showed that the addition of hirudin can significantly resist epithelial cell adhesion, better than the pure amination process, and thereby inhibit excessive proliferation on the surface. Experiments on the eyes of rabbits indicated that the IOL surfaces with hirudin modification reduced the incidence of cell aggregation and inflammation. Combined with a study of protein-resistant layer construction with recombinant hirudin on the material surface, the mechanism of surface functionalization was determined. The biological performance indicated that nonspecific adsorption is greatly decreased due to the existence of amphiphilic ions or hydration layers, which lead to stability and long-term resistance to nonspecific adsorption. These results offer a theoretical basis for the use of traditional biomedical polymer materials in long-term clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1961-1967, 2016. PMID:27027387

  14. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology.

    Science.gov (United States)

    Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos

    2014-12-16

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined. PMID:25404136

  15. Desenvolvimento motor e funcional em crianças nascidas pré-termo e a termo: influência de fatores de risco biológico e ambiental Desarrollo motor y funcional en niños nacidos pretérmino y a término: influencia de factores de riesgo biológico y ambiental Motor and functional development in infants born preterm and full term: influence of biological and environmental risk factors

    Directory of Open Access Journals (Sweden)

    Edifrance Sá de Souza

    2012-12-01

    adquisición de la marcha en el grupo pretérmino (p=0,005, aunque no se haya encontrado diferencia significativa entre los grupos en la AIMS a los 12 (p=0,187 y a los 15 meses (p=0,80. A los 18 meses se encontraron diferencias significativas en el desarrollo motor grueso (pOBJECTIVE: To compare motor development in preterm and full term infants from 12 to 18 months and to investigate the relationship between functional performance and quantity and quality of environmental stimulation. METHODS: Quantitative, exploratory and longitudinal study, which included 30 preterm (gestational age: 30.0±2.3 weeks and birth weight: 1178±193g and 30 full term infants (39±1.3 weeks and 3270±400g. Motor development was evaluated by the Alberta Infant Motor Scale and the Peabody Developmental Motor Scales. Home environment was assessed by the Home Observation Measurement of the Environment. The Pediatric Evaluation of Disability Inventory was used to examine functional abilities. RESULTS: The preterm group presented slower gait acquisition (p=0.005, although no significant differences between groups were found in the Alberta Infant Motor Scale at 12 (p=0.187 and 15 months (p=0.80. At 18 months, significant differences were found in gross (p<0.001 and fine (p=0.001 motor development and in functional abilities, with a better performance of the full term group. There were differences between groups in the Home Observation Measurement of the Environment inventory (p=0.008. CONCLUSIONS: Performance differences between groups increased from 12 to 18 months, and environmental factors might have enhanced the effects of biological risks. Developmental follow-up programs should focus on aspects of the environment where the child lives.

  16. Current role of NAA in biological and health-related environmental studies as exemplified by programs of the IAEA

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) has many projects and activities supporting the utilization of nuclear research reactors for neutron activation analysis (NAA). Globally the number of operating nuclear research reactors has been in decline since about 1975. This contrasts with the situation in developing countries where the numbers show a modest increase over the same period. This paper reviews the current status of NAA as seen from the particular perspective of IAEA programs involving studies of biological and environmental specimens. Some of the areas in which NAA is maintaining its role as a competitive technique are briefly reviewed. (author)

  17. The use of remote sensors to relate biological and physical indicators to environmental and public health problems

    Science.gov (United States)

    1972-01-01

    Relationships between biological, ecological and botanical structures, and disease organisms and their vectors which might be detected and measured by remote sensing are determined. In addition to the use of trees as indicators of disease or potential disease, an attempt is made to identify environmental factors such as soil moisture and soil and water temperatures as they relate to disease or health problems and may be detected by remote sensing. The following three diseases and one major health problem are examined: Malaria, Rocky Mountain spotted fever, Encephalitis and Red Tide. It is shown that no single species of vascular plant nor any one environmental factor can be used as the indicator of disease or health problems. Entire vegetation types, successional stages and combinations of factors must be used.

  18. Translating Lung Function Genome-Wide Association Study (GWAS) Findings: New Insights for Lung Biology.

    Science.gov (United States)

    Kheirallah, A K; Miller, S; Hall, I P; Sayers, I

    2016-01-01

    Chronic respiratory diseases are a major cause of worldwide mortality and morbidity. Although hereditary severe deficiency of α1 antitrypsin (A1AD) has been established to cause emphysema, A1AD accounts for only ∼1% of Chronic Obstructive Pulmonary Disease (COPD) cases. Genome-wide association studies (GWAS) have been successful at detecting multiple loci harboring variants predicting the variation in lung function measures and risk of COPD. However, GWAS are incapable of distinguishing causal from noncausal variants. Several approaches can be used for functional translation of genetic findings. These approaches have the scope to identify underlying alleles and pathways that are important in lung function and COPD. Computational methods aim at effective functional variant prediction by combining experimentally generated regulatory information with associated region of the human genome. Classically, GWAS association follow-up concentrated on manipulation of a single gene. However association data has identified genetic variants in >50 loci predicting disease risk or lung function. Therefore there is a clear precedent for experiments that interrogate multiple candidate genes in parallel, which is now possible with genome editing technology. Gene expression profiling can be used for effective discovery of biological pathways underpinning gene function. This information may be used for informed decisions about cellular assays post genetic manipulation. Investigating respiratory phenotypes in human lung tissue and specific gene knockout mice is a valuable in vivo approach that can complement in vitro work. Herein, we review state-of-the-art in silico, in vivo, and in vitro approaches that may be used to accelerate functional translation of genetic findings. PMID:26915270

  19. Lack of correlation between environmental or biological indicators of benzene exposure at parts per billion levels and micronuclei induction

    International Nuclear Information System (INIS)

    Despite growing concern for possible carcinogenic effects associated with environmental benzene exposure in the general population, few studies exist at parts per billion (ppb) levels. We investigated the existence of a relationship between airborne/biological measurements of benzene exposure i.e., personal/area sampling and unmodified urinary benzene/trans,trans-muconic acid; t,t-MA) and micronuclei induction cytochalasin B technique) among exposed chemical laboratory workers (n=47) and traffic wardens (n=15). Although urinary t,t-MA (106.9±123.17 μg/Lurine) correlated (R2=0.37) with urinary benzene (0.66±0.99 μg/Lurine), neither biological measurement correlated with environmental benzene exposure (14.04±9.71 μg/m3; 4.39±3.03 ppb), suggesting that, at ppb level (1 ppb=3.2 μg/m3), airborne benzene constitutes a fraction of the total intake. Traffic wardens and laboratory workers had comparable numbers of micronuclei (4.70±2.63 versus .76±3.11; n.s.), similar to levels recorded in the general population. With univariate/multivariate analysis, no association was found between micronuclei induction and air/urinary benzene exposure variables. Notably, among the personal characteristics examined (including age, gender, smoking, drinking, etc.), high body mass index correlated with micronuclei induction while, among females, use of hormonal medication was associated with less micronuclei. Thus the present study provides no evidence that ppb levels of environmental benzene exposure appreciably affect micronuclei incidence against the background of other relevant factors). However, this should not be taken as an argument against efforts aiming to reduce environmental benzene pollution

  20. Prediction of glass durability as a function of environmental conditions

    International Nuclear Information System (INIS)

    The author reports on thermodynamic model of glass durability applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 A. D., Nishapur 10-11th century A. D., and Gorgon 9-11th century A.D.), have been compared. Glass durability had been shown to be a function of the thermodynamic hydration free energy. Δ Ghyd, which can be calculated from glass composition and solution pH. Using this approach, the durability of the most durable nuclear waste glasses examined was ≅106 years by comparison with the durability of the natural basalts of ≅106 years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of ≅103 years. In this manner, the durability of nuclear waste glasses has been interpolated to be ≅106 years and no less than 103 years. Hydration thermodynamics are shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, and/or other archeological studies can be modeled, e.g. the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 year) experiments

  1. Electrochemical Sensors Based on Functionalized Nanoporous Silica for Environmental Monitoring

    International Nuclear Information System (INIS)

    Nanostructured materials enable the development of miniature sensing devices that are compact, low-cost, low-energy-consumption, and easily integrated into field-deployable units. Recently we have successfully developed electrochemical sensors based on functionalized nanostructured materials for the characterization of metal ions. Specifically, glycinyl-urea self-assembled monolayer on nanoporous silica (Gly-UR SAMMS) has been incorporated in carbon paste electrodes for the detection of toxic metals such as lead, copper, and mercury based on adsorptive stripping voltammetry, while acetamide phosphonic acid self-assembled monolayer on nanoporous silica (Ac-Phos SAMMS) has been used for the detection of uranium. Both electrochemical sensors yield reproducible measurements with excellent detection limits (at ppb level), are selective for target species, does not require the use of mercury film and chelating agents, and require little or no regeneration of electrode materials. The rigid, open, paralleled pore structure combined with suitable interfacial chemistry of SAMMS also results in fast responses of the electrochemical sensors

  2. Experiences performed at the C:R: Saluggia of ENEA in low-level determination of plutonium in biological and environmental samples

    International Nuclear Information System (INIS)

    This report describes some experiences performed at the Research Center Saluggia of ENEA concerning low-level determination of plutonium in biological and environmental samples, with discussions of practical analytical problems. The main characteristics and properties of plutonium with emphasis to aqueous solutions chemistry and environmental behaviour are also reported

  3. Disentangling the role of environmental and human pressures on biological invasions across Europe

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Wild, Jan; Hejda, Martin; Pergl, Jan

    2010-01-01

    Roč. 107, č. 27 (2010), s. 12157-12162. ISSN 0027-8424 R&D Projects: GA MŠk 7E09053 Grant ostatní: ALARM(XE) GOCE-CT-2003-506675; European Comission(XE) SSPI-CT-2003-511202 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * economy Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  4. The relationship between environmental monitoring and biological markers in exposure assessment.

    OpenAIRE

    Rappaport, S. M.; Symanski, E.; Yager, J W; Kupper, L L

    1995-01-01

    The poor quality of traditional assessments of exposure has encouraged epidemiologists to explore biological monitoring in studies of chronic diseases. Yet, despite theoretical advantages, biomarkers have not been widely used in such applications. This article compares the general utility of a biomarker with that of the measurement of exposure per se. Points are illustrated with a longitudinal study of boat workers in which levels of styrene in the breathing zone and in exhaled air were compa...

  5. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    Science.gov (United States)

    2011-01-19

    ... Control Agent for Air Potato AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of... Inspection Service has prepared an environmental assessment (EA) relative to the control of air potato... severity of air potato infestations. We are making the EA available to the public for review and...

  6. Assessment of environmental radiological findings in a service experimental biological irradiation

    International Nuclear Information System (INIS)

    This paper presents the evaluation of the data dosimetric environmental obtained in the last 4 years in different areas of work related to the techniques of irradiation, with special attention to the levels of radiation to areas of free access, to ensure that the dose in these dependencies are lower than the doses to members of the public. (Author)

  7. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: PROCEDURES FOR USING FAUNA AS BIOLOGICAL MONITORS OF POTENTIAL GEOTHERMAL POLLUTANTS

    Science.gov (United States)

    This is the first in a series of reports that covers the feasibility of utilizing wildlife and domestic animals to design a monitoring strategy for assessing the environmental impact of geothermal resource development. Animal tissues and animal products were collected in the vici...

  8. The conditions for functional mechanisms of compensation and reward for environmental services

    OpenAIRE

    Velarde, Sandra J.; Thomas Yatich; Beria Leimona; Brent M. Swallow

    2010-01-01

    Mechanisms of compensation and reward for environmental services (CRES) are becoming increasingly contemplated as means for managing human–environment interactions. Most of the functional mechanisms in the tropics have been developed within the last 15 years; many developing countries still have had little experience with functional mechanisms. We consider the conditions that foster the origin and implementation of functional mechanisms. Deductive and inductive approaches are combined. ...

  9. Evaluation of environmental functions as a tool in planning, management and decision-making.

    OpenAIRE

    Groot, de, C.P.G.M.

    1994-01-01

    Although there is a growing awareness about the many benefits of natural ecosystems, concrete information on their full economic value is still scarce. This thesis provides a comprehensive method whereby all functions and values of natural and semi-natural ecosystems can be assessed and evaluated in a systematic manner. A checklist of 37 environmental functions is given with examples of the functions and socio-economics value of three major types of ecosystems: tropical moist forests (based o...

  10. Social representations and directing to the environmental education in the Perobas Biological Reserve, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Oliveira Magalhães Júnior

    2012-05-01

    Full Text Available The Perobas Biological Reserve is situated in the Brazilian municipalities of Tuneiras do Oeste and Cianorte, State of Paraná. Prior to the foundation, the local and state communities’ representatives manifested different standpoints, favorable and unfavorable, concerning the establishment of this environmental protection area. Considering the importance of comprehending social representations that students from the City of Tuneiras do Oeste have concerning the Perobas Biological Reserve, the present study aimed at investigating Basic Education students, as well as indicating ways for an environmental education development. We used the Free Evocation of Words technique and the analysis of composition contents. We identified that representations of the analyzed group are based on the Nature components present in the Reserve and on the role of the local inhabitants for their conservation, however such knowledge is not well-founded. We understand that educative actions must be initiated in order to proportionate the construction of knowledge concerning the Reserve´s Nature components and the mutual interactions involved. This knowledge can, subsequently, lead students to comprehend that a role is ascribed to them in the protection and the co-responsibility for the preservation of the protected area.

  11. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, Izaskun [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Apraiz, Itxaso [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Ortiz-Zarragoitia, Maren [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Orbea, Amaia [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cancio, Ibon [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Soto, Manu [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Marigomez, Ionan [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain); Cajaraville, Miren P. [Biologia Zelularra eta Histologia Laborategia, Zoologia eta Biologia Zelularra Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/Univ. del Pais Vasco, 644 P.K., E-48080 Bilbao, Basque Country (Spain)]. E-mail: mirenp.cajaraville@ehu.es

    2007-07-15

    With the aim of assessing the biological effects of pollution along three gradients of pollution in the NW Mediterranean Sea, a biomonitoring survey was implemented using a battery of biomarkers (lysosomal membrane stability, lysosomal structural changes, metallothionein (MT) induction and peroxisome proliferation) in mussels over a period of two years as part of the EU-funded BEEP project. Mussels from the most impacted zones (Fos, Genova and Barcelona harbours) showed enlarged lysosomes accompanied by reduced labilisation period of lysosomal membranes, indicating disturbed health. MT levels did not reveal significant differences between stations and were significantly correlated with gonad index, suggesting that they were influenced by gamete development. Peroxisomal acyl-CoA oxidase (AOX) activity was significantly inhibited in polluted stations possibly due to interactions among mixtures of pollutants. In conclusion, the application of a battery of effect and exposure biomarkers provided relevant data for the assessment of biological effects of environmental pollution along the NW Mediterranean Sea. - The biomarker approach is suitable for assessment of environmental pollution in the NW Mediterranean Sea.

  12. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid-liquid extraction

    International Nuclear Information System (INIS)

    A novel and sensitive spectrophotometric method for the determination of molybdenum at trace levels in environmental and biological samples is proposed. The method is based on the reaction of Mo (V) with thiocyanate (SCN-) and methyltrioctyl ammonium chloride (MTOAC) in acidic medium. The red colored complex of molybdenum is extracted with N-phenylbenzimidoyl thiourea (PBITU) in 1-pentanol for its determination by spectrophotometry. The sensitivity of the present method is higher than other conventional thiocyanate method, due to the use of MTOAC in liquid-liquid extraction. The value of molar absorptivity of the complex with respect to molybdenum is 7.6 x 104 L mol-1 cm-1 at 470 nm. The limit of detection of the metal is 5 ng mL-1. The system obeys Beer's law between 20 and 1000 ng mL-1 with slope, intercept and correlation coefficient values of 0.81, 2.5 x 10-3 and +0.999, respectively. Most of the metal ions tested did not interfere in the determination of molybdenum. The proposed method has been successfully applied for the determination of the molybdenum in environmental and biological samples

  13. Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)], E-mail: shrikam@rediffmail.com; Agrawal, Kavita [Department of Chemistry, Raipur Institute of Technology, Mandir Hasaud, Chhatauna Raipur, CG 492101 (India); Harmukh, Neetu [Chhattisgarh State Minor Forest Produce, Co-operative Federation Ltd., Raipur, CG (India)

    2009-01-15

    A novel and sensitive spectrophotometric method for the determination of molybdenum at trace levels in environmental and biological samples is proposed. The method is based on the reaction of Mo (V) with thiocyanate (SCN{sup -}) and methyltrioctyl ammonium chloride (MTOAC) in acidic medium. The red colored complex of molybdenum is extracted with N-phenylbenzimidoyl thiourea (PBITU) in 1-pentanol for its determination by spectrophotometry. The sensitivity of the present method is higher than other conventional thiocyanate method, due to the use of MTOAC in liquid-liquid extraction. The value of molar absorptivity of the complex with respect to molybdenum is 7.6 x 10{sup 4} L mol{sup -1} cm{sup -1} at 470 nm. The limit of detection of the metal is 5 ng mL{sup -1}. The system obeys Beer's law between 20 and 1000 ng mL{sup -1} with slope, intercept and correlation coefficient values of 0.81, 2.5 x 10{sup -3} and +0.999, respectively. Most of the metal ions tested did not interfere in the determination of molybdenum. The proposed method has been successfully applied for the determination of the molybdenum in environmental and biological samples.

  14. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  15. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    黄一丁; 梁镇和; 冯佑民

    2001-01-01

    To investigate the relationship between the biological activity of recombined single chain insulin and the length of the connecting peptide, we designed and prepared three single chain insulin molecules, namely, PIP, [A]5PIP and [A]10PIP, by site-directed mutagenesis, in which B30 and A1 were linked through dipeptide A-K, heptapeptide A-A-A-A-A-A-K, and dodecapeptide A-A-A-A-A-A-A-A-A-A-A-K, respectively. Their receptor binding capacities were 0.14%, 14.3% and 11.1% of that of insulin respectively and their in vivo biological activities were in consistence with their receptor binding capacity; whereas their growth promoting activities were 17%, 116.3% and 38% of that of insulin. These results suggested the following conclusions. (i) The recombined single chain insulin could also possess the same metabolic and mitogenic function as insulin. (ii) The receptor binding capacity of recombined single chain insulin to insulin receptor was closely related to the length and amino acid composition of the connecting peptide and could change from 0 to 100% of insulin depending on the different connecting peptides. This result further illustrated the necessity of B chain C-terminus swaying away from A chain N-terminus when insulin binds to its receptor. (iii) The mitogenic activity of recombined single chain insulin also depended on the length and the amino acid composition of the connecting peptide and was higher than its metabolic activity.

  16. Species composition,distribution patterns and ecological functions of biological soil crusts in the Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.

  17. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  18. Synthetic biology: insights into biological computation.

    Science.gov (United States)

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  19. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and

  20. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.

    Science.gov (United States)

    Heussler, Gary E; O'Toole, George A

    2016-05-15

    Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions beyond adaptive immunity. In this minireview, we discuss recent studies that focus on the functions and consequences of CRISPR-Cas self-targeting, including reshaping of the host population, group behavior modification, and the potential applications of CRISPR-Cas self-targeting as a tool in microbial biotechnology. Understanding the effects of CRISPR-Cas self-targeting is vital to fully understanding the spectrum of function of these systems. PMID:26929301

  1. Structural and biological function of NYD-SP15 as a new member of cytidine deaminases.

    Science.gov (United States)

    Xu, Yidan; Li, Lei; Li, Jianmin; Liu, Qinghuai

    2016-05-25

    Recent studies were mainly focus on the cytidine deaminase family genes, which contained a lot of members that varied on the function of catalytic deamination in RNA or DNA and were involved in the process of growth maintenance, host immunity, retroviral infection, tumorigenesis, and drug resistance with a feature of C-U deamination. In this study, we identified a new member of cytidine deaminase family, NYD-SP15. Previous work showed that the deduced structure of the protein contained two dCMP_cyt_deam domains, which were involved in zinc ion binding. NYD-SP15 was expressed variably in a wide range of tissues, indicating its worthy biological function and creative significances. Sequence analysis, RT-PCR, western blot, flow cytometry, direct-site mutation and GST pull-down assay were performed to analyze the construction and function of NYD-SP15. The results in our studies showed that NYD-SP15 was closely related to deoxycytidylate deaminase and cytidine deaminase, with authentic cytidine deaminase activity in vivo and vitro as well as homo dimerization effects. NYD-SP15 contained nuclear localization sequence (NLS) and nuclear export-signal (NES) and could dynamically shuttle between the nucleus and cytoplasm. Furthermore, NYD-SP15 gene over-expression reduced the cells growth and blocked G1 to S phase, which implied a potential inhibition effect on cell growth. PMID:26945630

  2. Identifying environmental risk to male reproductive function by occupational sperm studies: logistics and design options.

    OpenAIRE

    Bonde, J P; Giwercman, A.; Ernst, E.

    1996-01-01

    Malfunction of the male reproductive system might be a sensitive marker of environmental hazards, the effects of which may extend beyond reproductive function. The testis is more vulnerable to heat and ionising radiation than any other organ of the body and several xenobiotics are known to disrupt spermatogenesis after low level exposure. Studies of environmental impact on human health are often most informative and accurate when carried out in the workplace where exposures can be high and ea...

  3. Phylogenetic and Functional Metagenomic Profiling for Assessing Microbial Biodiversity in Environmental Monitoring

    OpenAIRE

    Kisand, Veljo; Valente, Angelica; Lahm, Armin; Tanet, Gerard; Lettieri, Teresa

    2012-01-01

    Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples t...

  4. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  5. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Generally,cell signal molecules are classified into the extracellular signal molecules (the first messengers) and the intracellular signal ones (the second messengers).Cyclic adenosine monophosphate (cAMP),calcium ions and calmodulin (CaM) are the traditional intracellular messengers,but they are also present in extracellular matrix (ECM).Some of them have been discovered to act as the first messengers through cell surface receptors.Other second messengers,such as cyclic guanosine monophosphate (cGMP),cyclic adenosine diphosphate ribose (cADPR) and annexin,are also found existing outside animal and plant cells.The existence of these messengers with intracellular-extracellular compatible functions in cells may be a regular biological phenomenon.These compatible messengers might be the communication factors between intracellular and extracellular regions or among the cell populations,and are also important in regulating cell development procedure.

  6. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    Science.gov (United States)

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  7. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    Science.gov (United States)

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. PMID:26755134

  8. [Historic and functional biology: the inadequacy of a system theory of evolution].

    Science.gov (United States)

    Regelmann, J P

    1982-01-01

    In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and

  9. Mapping the functional properties of soft biological tissues under shear loading

    Science.gov (United States)

    Buckley, Mark Raymond

    The structure and composition of articular cartilage and other load-bearing biological tissues are highly complex and heterogeneous. As a result, their functional mechanical properties exhibit clear spatial variations. Unlocking the structure-function relationship in these materials is critical for devising strategies to restore tissue impaired by injury or disease and can provide a template for successful implant design. Here, we describe a tissue deformation imaging stage (TDIS) allowing for simultaneous force measurement and visualization of microscale deformation in soft biological tissues under controlled shear strain. In combination with a fast confocal microscope, the TDIS is used to test the microscale response of articular cartilage to shear loading. To obtain the location-specific shear modulus of this tissue, we employ a high-resolution technique that involves tracking the deformation of a line photobleached into a fluorescently stained sample loaded in the TDIS. We find that the quasi-static and dynamic shear moduli are lowest roughly 100 mum below the articular surface. Here, articular cartilage is highly nonlinear, stiffening under increased shear strain and becoming more compliant under increased compressive strain. Using a simple thought model, we relate these results to structural features of the collagen network in articular cartilage. Furthermore, we demonstrate that the region of maximum compliance is also the primary site of shear energy dissipation in articular cartilage. Our findings suggest that damage to or surgical removal of the surface of this tissue will increase the joint's susceptibility to shear-induced damage. Finally, similar experiments are performed on intervertebral disc and growth plate, demonstrating the versatility of our in-situ strain mapping techniques.

  10. Biological and environmental characteristics of mangrove habitats from Manori creek, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Jagtap, T.G.; Mhalsekar, N.M.; Naik, A.N.

    invertebrates as indicators of pollution origin in agricultural and urban areas. – In A. Ebel and T. Divitashvili (eds.) Air, water and soil quality modelling for risk and impact assessment (pp 217- 220) NATO Security through Science Series C: Environmental... Security. 25. Kenny R. (1969). Temperature tolerance of the polychaete worms. Diopatra cuprea and Clymenella torquata. Mar. Biol, 4, 219-223. 26. Khadilkar, S. (1989). Marine algae of Mumbai coast, PhD thesis, Mumbai University. 77 pp. 27...

  11. Biological Tools to Study the Effects of Environmental Contaminants at the Feto–Maternal Interface

    OpenAIRE

    Mannelli, Chiara; Ietta, Francesca; Avanzati, Anna Maria; Skarzynski, Dariusz; Paulesu, Luana

    2015-01-01

    The identification of reproductive toxicants is a major scientific challenge for human health. Prenatal life is the most vulnerable and important time span of human development. For obvious ethical reasons, in vivo models cannot be used in human pregnancy, and animal models do not perfectly reflect human physiology. This review describes the in vitro test models representative of the human feto–maternal interface and the effects of environmental chemicals with estrogen-like activity, mainly b...

  12. A note on environmental aspects of penaeid shrimp biology and dynamics

    OpenAIRE

    Garcia, Serge

    1984-01-01

    Shrimps are short-lived animals living in highly variable inshore areas during the juvenile phase and are therefore subject to particularly strong environmentally driven variability in recruitment and stock size. This paper examines the likely consequences of this fact on the surplus yield production and stock-recruitment modelling underlining the high risk of generating artefactual models when the data series are short. (Résumé d'auteur)

  13. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology

    OpenAIRE

    Waldock, Joanna; Chandra, Nastassya L.; Lelieveld, Jos; Proestos, Yiannis; Michael, Edwin; Christophides, George; Parham, Paul E

    2013-01-01

    Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures ...

  14. Exploiting the Physicochemical Properties of Dendritic Polymers for Environmental and Biological Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Geitner, Nicholas K.; Sarupria, Sapna; Ke, Pu Chun

    2013-04-07

    In this Perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers for humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on their 10 implications for water purification, environmental remediation, nanomedicine, and energy harvesting.

  15. Habitual Snoring in school-aged children: environmental and biological predictors

    Directory of Open Access Journals (Sweden)

    Wu Shenghu

    2010-10-01

    Full Text Available Abstract Background Habitual snoring, a prominent symptom of sleep-disordered breathing, is an important indicator for a number of health problems in children. Compared to adults, large epidemiological studies on childhood habitual snoring and associated predisposing factors are extremely scarce. The present study aimed to assess the prevalence and associated factors of habitual snoring among Chinese school-aged children. Methods A random sample of 20,152 children aged 5.08 to 11.99 years old participated in a cross-sectional survey, which was conducted in eight cities of China. Parent-administrated questionnaires were used to collect information on children's snoring frequency and the possible correlates. Results The prevalence of habitual snoring was 12.0% (14.5% for boys vs. 9.5% for girls in our sampled children. Following factors were associated with an increased risk for habitual snoring: lower family income (adjusted odds ratio [OR] = 1.46, lower father's education (OR = 1.38 and 1.14 for middle school or under and high school of educational level, respectively, breastfeeding duration Conclusion The prevalence of habitual snoring in Chinese children was similar to that observed in other countries. The potential predisposing factors covered socioeconomic characteristics, environmental exposures, chronic health problems, and family susceptibility. Compared to socioeconomic status and family susceptibility, environmental exposures and chronic health problems had greater impact, indicating childhood habitual snoring could be partly prevented by health promotion and environmental intervention.

  16. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  17. Differential function of lip residues in the mechanism and biology of an anthrax hemophore.

    Directory of Open Access Journals (Sweden)

    MarCia T Ekworomadu

    Full Text Available To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3(10-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3(10-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction

  18. Spatial, Phylogenetic, Environmental and Biological Components of Variation in Extinction Risk: A Case Study Using Banksia

    Science.gov (United States)

    Cardillo, Marcel; Skeels, Alexander

    2016-01-01

    Comparative analyses of extinction risk routinely apply methods that account for phylogenetic non-independence, but few analyses of extinction risk have addressed the possibility of spatial non-independence. We explored patterns of extinction risk in Banksia, a plant genus largely endemic to Australia’s southwest biodiversity hotspot, using methods to partition the variance in two response variables (threat status and range size) into phylogenetic, spatial, and independent components. We then estimated the effects of a number of biological and external predictors on extinction risk independently of phylogeny and space. The models explained up to 34.2% of the variation in range size and up to 9.7% of the variation in threat status, nearly all of which was accounted for by the predictors, not by phylogeny or space. In the case of Banksia, therefore, high extinction risk can be clearly linked with biological syndromes (such as a brief flowering period) or geographic indicators of human impact (such as extensive habitat loss), but cannot be predicted from phylogenetic relatedness or geographic proximity. PMID:27148745

  19. Spatial, Phylogenetic, Environmental and Biological Components of Variation in Extinction Risk: A Case Study Using Banksia.

    Science.gov (United States)

    Cardillo, Marcel; Skeels, Alexander

    2016-01-01

    Comparative analyses of extinction risk routinely apply methods that account for phylogenetic non-independence, but few analyses of extinction risk have addressed the possibility of spatial non-independence. We explored patterns of extinction risk in Banksia, a plant genus largely endemic to Australia's southwest biodiversity hotspot, using methods to partition the variance in two response variables (threat status and range size) into phylogenetic, spatial, and independent components. We then estimated the effects of a number of biological and external predictors on extinction risk independently of phylogeny and space. The models explained up to 34.2% of the variation in range size and up to 9.7% of the variation in threat status, nearly all of which was accounted for by the predictors, not by phylogeny or space. In the case of Banksia, therefore, high extinction risk can be clearly linked with biological syndromes (such as a brief flowering period) or geographic indicators of human impact (such as extensive habitat loss), but cannot be predicted from phylogenetic relatedness or geographic proximity. PMID:27148745

  20. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH3-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH3-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment

  1. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Qi, Jingyao, E-mail: qjy_hit@yahoo.cn [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Chi, Liying [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Dong [School of Civil Engineering and Architecture, University of Jinan, Jinan 250022 (China); Wang, Zhaoyang; Li, Ke; Li, Xin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2013-02-15

    Highlights: ► Sorption functional media (SFM) were prepared using zeolite tailings. ► Two upflow BAFs were applied to treat municipal wastewater. ► SFM BAF brought a relative superiority to haydite reactor. ► SFM BAF has a stronger adaptability to low temperature (6–11°C) for NH{sub 3}-N removal. ► The application provided a promising way in zeolite tailings utilization. -- Abstract: The few reuse and large stockpile of zeolite tailings led to a series of social and environmental problems. This study investigated the possibility of using the zeolite tailings as one of principal raw materials to prepare sorption functional media (SFM) by a high temperature sintering process. The SFM was used to serve as a biomedium in a biological aerated filter (BAF) reactor for domestic wastewater treatment, and its purification performance was examined. The physical, chemical and sorption properties of SFM were also determined. The microstructure of the SFM was analyzed by scanning electron microscopy (SEM). Results revealed that: (1) zeolite tailings could be used to produce the SFM under the optimal sintering parameters; (2) the sorption and desorption isotherm of ammonia nitrogen on SFM could be well described by the Langmuir formula; (3) in terms of removing organic matter, ammonia nitrogen, turbidity and colourity, the performance of the biofilter with SFM was superior to that with haydite; and (4) SFM BAF has a stronger adaptability to low temperature (6–11 °C) for NH{sub 3}-N removal compared to haydite BAF. Therefore, the SFM produced from the zeolite tailings was suitable to serve as the biomedium in the domestic wastewater treatment.

  2. Tracers: the use of chemical agents for hydrological environmental, petrochemical and biological studies

    International Nuclear Information System (INIS)

    This paper presents a revision of the history, definitions, and classification of tracers (natural and artificial, internal and external). The fundamental ideas concerning tracers are described, followed by their application illustrated by typical examples. The advantages and disadvantages of five classes among the most frequently used external tracers (fluorescent, microbial, chemical, radioactive and activable isotopes) are also described in detail. This review also presents some interesting and modern applications of tracers in the areas of diagnostics in medical practice, environmental pollution, hydrology and petroleum chemistry. (author)

  3. Environmental effects on recruitment and implications for biological reference points of Eastern Baltic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Köster, Fritz; Vinther, Morten; MacKenzie, Brian; Eero, Margit; Plikshs, Maris

    2009-01-01

    The decline of the Eastern Baltic cod (Gadus morhua) stock from highest to lowest stock levels on record throughout the 1980s and early 1990s was caused by a combination of recruitment failure and increasing fishing pressure at declining stock sizes. The processes driving the reproductive success...... fishing mortality or the limit biomass reference point is indicated. However, an accepted methodology to determine these reference points in situations of changing stock productivity or system carrying capacity does not exist. Environmental conditions affecting recruitment matter not only for the...

  4. Environmental and Biological Controls of Tidal Banding in the Common Mussel Mytilus californianus

    Science.gov (United States)

    Ford, H. L.; Schellenberg, S. A.

    2005-12-01

    Mytilus californianus, a common intertidal mussel of the North Pacific, is often used to monitor coastal water quality via tissue incorporation of heavy metals and biotoxins, and is increasingly used to reconstruct environmental conditions (i.e. temperature, salinity, and seasonality) archived within shell carbonate. However, little is known about what governs the banded shell growth of M. californianus and accordingly, the completeness of the environmental record contained within the shell. Presumably, the most important factor determining growth is submergence (required for biomineralization and feeding), but other factors such as temperature variability, subaerial exposure, and respiration stress may also influence growth patterns. Observations from thin sections oriented along the maximum growth axis reveal light and dark banding with diffuse purple coloration throughout the prismatic layer of the shell. Thickness of the banding oscillates from broadly to narrowly (~0.4-1.0μm) spaced light colored bands (periods of crystalline growth) separated by thin dark bands (emergence and respiration). We relate these band oscillations to 1) tidal regime and 2) mussel location within the intertidal zone. Both of these factors dictate the amount of submergence a mussel experiences and thus directly influences the growth and tidal banding. Providing submergence primarily governs the banding oscillations found in M. californianus, we predict that 1) specimens from a low intertidal height have maximum growth during the neap tide (nearly continual submergence and feeding) and diffuse growth increments with no obvious tidal banding and 2) specimens from a high intertidal height have maximum growth during the spring tide (longest duration of submergence), with broadly spaced banding during the spring tides and narrowly spaced bands during the neap tides. On going investigation on thin sections and acetate peels will test these growth predictions to produce a model of M

  5. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    Science.gov (United States)

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. PMID:27596431

  6. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    Directory of Open Access Journals (Sweden)

    Zahra YADEGARI

    2015-10-01

    Full Text Available Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate ex-pression of full-length functional recombinant human amelogenin (rhAm in Iranian lizard Leishmania (I.L.L. as an alternative eukaryotic expression system.Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control.Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm sig-nificantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+ multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells.Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future.

  7. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control.

    Science.gov (United States)

    Medeiros, David B; Daloso, Danilo M; Fernie, Alisdair R; Nikoloski, Zoran; Araújo, Wagner L

    2015-08-01

    Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency. PMID:25689387

  8. Analytical quality assurance in laboratories using tracers for biological and environmental studies

    International Nuclear Information System (INIS)

    This work describe the way we are organizing a quality assurance system to apply in the analytical measurements of the relation 14N/15N in biological and soil material. The relation 14/15 is measured with a optic emission spectrometer (NOI6PC), which distinguish the differences in wave length of electromagnetic radiation emitted by N-28, N-29 and N-30. The major problem is the 'cross contamination' of samples with different enrichments. The elements that are been considered to reach satisfactory analytical results are: 1) A proper working area; 2) The samples must be homogeneous and the samples must represent the whole sampled system; 3) The use of reference materials. In each digestion, a known reference sample must be added; 4) Adequate equipment operation; 5) Standard operating procedures; 6) Control charts, laboratory and equipment books. All operations using the equipment is registered in a book; 7) Training of the operators. (author)

  9. Environmental application of XRF, ICP-AES and INAA on biological matrix

    International Nuclear Information System (INIS)

    Full text: It is very important to determine trace quantities of metals in different matrices with high accuracy since the metals are used as markers for different sources in air pollution studies. In this study, the analytical capabilities of XRF, ICP-AES and INM techniques on a biological matrix namely lichens, which are widely used as bio monitoring organisms for the pollutants mapping in the atmosphere, were tested. Lichen samples were collected in Aegean Region of Turkey where pollution is an important issue. 9 elements were determined by XRF, 14 elements by ICP-AES and 13 elements by INM. Quality assurance was achieved using lichen SRM (IAEA-336) and Orchard leaves SRM (NIST- 1571). Produced data are subjected to statistical tests, like t-test, Q-test in order to determine the accuracy and precision of each technique. A recommendation list of the proper analytical technique is obtained for determination of each specific element considering analytical capabilities of ICP-AES, XRF and INM. As a result we can recommend that the first choice for Cd, Cu, Mg is ICP-AES, for In, K, Rb is INAA, for Br is XRF, if the concentrations are not close to the detection limit of XRF. For V, Cr, AI, Na, Fe ICP-AES and INM are both well, for Pb ICP-AES and XRF are both well, if the concentrations are not close to the detection limit of XRF, for Mn and Ca INM, XRF and ICP-AES are all give similar results for this type of biological matrix

  10. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    Science.gov (United States)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  11. Environmental conditions influence the plant functional diversity effect on potential denitrification.

    Directory of Open Access Journals (Sweden)

    Ariana E Sutton-Grier

    Full Text Available Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP. We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.

  12. Structure and functions of water-membrane interfaces and their role in proto-biological evolution

    Science.gov (United States)

    Pohorille, A.; Wilson, M.; Macelroy, R. D.

    1991-01-01

    Among the most important developments in proto-biological evolution was the emergence of membrane-like structures. These are formed by spontaneous association of relatively simple amphiphilic molecules that would have been readily available in the primordial environment. The resulting interfacial regions between water and nonpolar interior of the membrane have several properties which made them uniquely suitable for promoting subsequent evolution. They can (1) selectively attract organic material and mediate its transport, (2) serve as simple catalysts for chemical reactions, and (3) promote the formation of trans-membrane electrical and chemical gradients which could provide energy sources for proto-cells. Understanding the structure of interfaces, their interactions with organic molecules and molecular mechanisms of their functions is an essential step to understanding proto-biological evolution. In our computer simulation studies, we showed that the structure of water at interfaces with nonpolar media is significantly different from that in the bulk. In particular, the average surface dipole density points from the vapor to the liquid. As a result, negative ions can approach the interface more easily than positive ions. Amphiphilic molecules composed of hydrocarbon conjugated rings and polar substituents (e.g., phenol) assume at the interface rigid orientations in which polar groups are buried in water while hydrocarbon parts are located in the nonpolar environment. These orientational differences are of special interest in connection with the ability of some of these molecules to efficiently absorb photons. Flexible molecules with polar substituents often adopt at interfaces conformations different from those in the bulk aquaeous solution and in the gas phase. As a result, in many instances both specificity and kinetics of chemical reactions in which these molecules can participate is modified by the presence of surfaces. Of special interest is the mechanism by

  13. Biological consequences of environmental changes related to coastal upwelling: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.O.

    1979-05-01

    Two simulation models of marine ecosystem dynamics are formulated and applied to field data. The first is a time-dependent model of phytoplankton growth in nutrient-enriched batch cultures where spatial gradients of dependent variables and the effects of higher tropic level processes are not included. Rates of photosynthesis, nutrient uptake, chlorophyll synthesis and cell division for a single phytoplankton functional group are simulated as functions of photosynthetically active solar radiation, dissolved nutrient concentrations and cell quotas of carbon, nitrogen and silica. The second model combines the phytoplankton growth model with a time dependent, two-dimensional model of coastal upwelling off northwest Africa.

  14. Shyness and Vocabulary: The Roles of Executive Functioning and Home Environmental Stimulation

    OpenAIRE

    A. Nayena Blankson; O’Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2011-01-01

    Although shyness has often been found to be negatively related to vocabulary, few studies have examined the processes that produce or modify this relation. The present study examined executive functioning skills and home environmental stimulation as potential mediating and moderating mechanisms. A sample of 3.5-year-old children (N=254) were administered executive functioning tasks and a vocabulary test during a laboratory visit. Mothers completed questionnaires assessing child shyness and ho...

  15. HOW DO FISHING AND ENVIRONMENTAL EFFECTS PROPAGATE AMONG AND WITHIN FUNCTIONAL GROUPS?

    OpenAIRE

    Rochet, Marie-joelle; Collie, Jeremy S.; Trenkel, Verena

    2013-01-01

    Competition and predation can play different roles in mediating the influence of external pressures, such as fishing or environmental variations, on marine communities. Pressure effects propagate through food webs along predation links. These predator-prey interactions may result in trophic cascades, but they can be buffered by competitive interactions. We investigated these mechanisms by taking a functional-group approach. Are functional groups affected by external pressures in a predictable...

  16. Home and Community Environmental Features, Activity Performance, and Community Participation among Older Adults with Functional Limitations

    Directory of Open Access Journals (Sweden)

    Hsiang-Yu Yang

    2012-01-01

    Full Text Available This paper describes relationships among home and community environmental features, activity performance in the home, and community participation potential to support aging in place. A subset of data on older adults with functional limitations (=122, sixty three (63 with mobility and 59 with other limitations, were utilized in this study from a larger project's subject pool. Results showed significant and positive correlations between environmental barriers, activity dependence and difficulty at home, and less community participation in the mobility limitation group. While kitchen and bathroom features were most limiting to home performance, bathtub or shower was the only home feature, and destination social environment was the only community feature, that explained community participation. Compared to environmental features, home performance explained much more community participation. Study results provide detailed information about environmental features as well as types of home activities that can be prioritized as interventions for aging in place.

  17. Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level

    International Nuclear Information System (INIS)

    Radiochemical neutron activation procedures using liquid-liquid extraction with tetraphenylarsonium chloride in chloroform from 1M HCl and solid extraction with ALIQUAT 336 incorporated in a polyacrylonitrile binding matrix from 0.1M HCl were developed for accurate determination of rhenium in biological and environmental samples at the sub-ng x g-1 level. Concentrations of Re in the range of 0.1 to 2.4 ng x g-1 were determined in several botanical reference materials (RM), while in a RM of road dust a value of ∼ 10 ng x g-1 was found. Significantly elevated values of Re, up to 90 ng x g-1 were found in seaweed (brown algae). Results for Re in the brown algae Fucus vesiculosus in which elevated 99Tc values had previously been determined suggested possible competition between Re and Tc in the accumulation process. (author)

  18. Environmental Effect on the Biological Behavior of The Cucurbit Beetle Epilachna chrysomelina in Al-Qunfudah Province-Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Saleh A. Aldigail

    2013-08-01

    Full Text Available Epilachna chrysomelina (Coleoptera: Coccinellidae is a phytophagous insect with an economic importance damaging the agricultural crops. The Melon Ladybird Beetle, E. Chrysomelinais one of the major phytophagous insects that feed on cucurbit plants. It is considered an economic pest in agriculture and multi-habitat insect widely distributed throughout the world.The insect is abundant in the southern region of Saudi Arabia and choose the most favourable conditions for its life cycle completion. It prefers humid habitats with optimum temperature degrees. The generations of the insect are affected by changes in environmental conditions and its numbers increase or decline according to variation in temperature and relative humidity (RH. These factors play an important role in changing its biological behaviour particularly feeding, breeding, reproduction and development of its generations. There were significant differences between the different developmental stages in the periods of time of their development.

  19. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples.

    Science.gov (United States)

    Hou, Xiaolin; Roos, Per

    2008-02-11

    The radiometric methods, alpha (alpha)-, beta (beta)-, gamma (gamma)-spectrometry, and mass spectrometric methods, inductively coupled plasma mass spectrometry, accelerator mass spectrometry, thermal ionization mass spectrometry, resonance ionization mass spectrometry, secondary ion mass spectrometry, and glow discharge mass spectrometry are reviewed for the determination of radionuclides. These methods are critically compared for the determination of long-lived radionuclides important for radiation protection, decommissioning of nuclear facilities, repository of nuclear waste, tracer application in the environmental and biological researches, these radionuclides include (3)H, (14)C, (36)Cl, (41)Ca, (59,63)Ni, (89,90)Sr, (99)Tc, (129)I, (135,137)Cs, (210)Pb, (226,228)Ra, (237)Np, (241)Am, and isotopes of thorium, uranium and plutonium. The application of on-line methods (flow injection/sequential injection) for separation of radionuclides and automated determination of radionuclides is also discussed. PMID:18215644

  20. Adaptability and variability of the cell functions to the environmental factors

    International Nuclear Information System (INIS)

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author)

  1. Accounting for multiple functions in environmental life cycle assessment of storm water management solutions

    DEFF Research Database (Denmark)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Rygaard, Martin

    Copenhagen, Denmark, where extensive implementation of green infrastructure is planned to mitigate the adverse effects of climate change. This « green » scenario is compared to a traditional « grey » solution, utilizing pipes and basins. The environmental impacts, which are dominated by material production...... environments by adding green and blue elements, and they change the water balance compared to traditional, underground approaches. Additionally, different implementation and maintenance processes are required. All of these transformations affect the environmental impacts of urban storm water management (SWM......) systems, which can be quantified using Life Cycle Assessment (LCA). This study aims to define the multiple functions provided by a SWM system at sub-catchment scale, and to assess the environmental impacts arising from fulfilling these functions. The approach is tested using the Nørrebro catchment in...

  2. Adaptability and variability of the cell functions to the environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tadatoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1995-02-01

    Adaptive phenomenon of the cells to the environmental factors is one of the most important functions of cells. In the initial research program, yeast, Saccharomyces cerevisiae, as model species of eukaryote was selected to use for the experiments and copper sulfate was adopted as one of the ideal environmental factors, and then adaptation mechanisms of yeast cells in the environment surrounded by copper ions were analyzed metabolically and morphologically. Furthermore, in the relationships between environmental factors and the cells, the researches performed were as follows: (1) Induced mutation in the extranuclear-inheritable system: Mutagenic effect of ethidium bromide on mitochondria and plastids. (2) Induction of gene expression by light exposure in the early development of chloroplast in Chlamydomonas reinhardi. (3) Some features of RNA and protein syntheses in thermophilic alga Cyanidium caldarium. (4) Satellite DNA of Ochromonas danica. (5) Analyses of cell functions using various kinds of radiations. (6) Novel methionine requirement of radiation resistant bacterium, Deinococcus radiodurans. (author).

  3. NATO Advanced Research Workshop on Environmental and Biological Risks of Hybrid Organic-Silicon Nanodevices

    CERN Document Server

    Kozyrev, Sergey; Vaseashta, Ashok

    2009-01-01

    Even though there is no generally accepted definition of nanotechnologies to be defined as distinct discipline there is an emerging consensus that their advent and development is a growing in importance factor of the contemporary and future technological civilization. One of these most fundamental issues we are confronted with is the compatibility with life itself. From single cell organisms to humans, carbon is a key building block of all molecular structures of life. In contrast the man created electronic industry to build on other elements, of which silicon is the most common. Both carbon and silicon create molecular chains, although different in their internal structure. All life is built from carbon-based chains. As long as the man built technological products do not directly interfere with the physiology of life the associated risks from them are relatively easy to identify. They are primarily in the environmental pollution and the possibility of upsetting the natural balance of biocoenosis, on a planet...

  4. A review on speciation of iodine-129 in the environmental and biological samples

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Hansen, Violeta; Aldahan, Ala;

    2009-01-01

    As a long-lived beta-emitting radioisotope of iodine, I-129 is produced both naturally and as a result of human nuclear activities. At present time, the main part of I-129 in the environment originates from the human nuclear activity, especially the releases from the spent nuclear fuel reprocessing...... plants, the I-129/I-127 ratios have being reached to values of 10(-10) to 10(-4) in the environment from 10(-12) in the pre-nuclear era. In this article, we review the occurrence, sources, inventory, and concentration level of I-129 in environment and the method for speciation analysis of I-129 in the...... environment. Measurement techniques for the determination of I-129 are presented and compared. An overview of applications of I-129 speciation in various scientific disciplines such as radiation protection, waste depository, and environmental sciences is given. In addition, the bioavailability and radiation...

  5. To Build an Ecosystem: An Introductory Lab for Environmental Science & Biology Students

    Science.gov (United States)

    Hudon, Daniel; Finnerty, John R.

    2013-01-01

    A hypothesis-driven laboratory is described that introduces students to the complexities of ecosystem function. Students work with live algae, brine shrimp, and sea anemones to test hypotheses regarding the trophic interactions among species, the exchange of nutrients and gases, and the optimal ratio of producers to consumers and predators in…

  6. Exploring biological and pathological functions of TGFβ family member activin C

    International Nuclear Information System (INIS)

    Activins and their antagonists inhibins are cytokines of the transforming growth factor β family (TGFβ), with important regulatory functions in a wide array of physiological processes. Activins are homo- or heterodimers consisting of two disulfide-linked β subunits, four mammalian activin β subunits - βA, βB, βC, βE - have been identified in mammalian cells. Inhibins in contrast are heterodimers composed of an β subunit and a β subunit. Whereas the expression of βA and βB subunits is high and widely distributed in many organs, the βC and βE subunits are predominantly expressed in the liver. Activin A is by far the best investigated activin. It has been implicated for instance in reproductive biology, embryonic development, homeostasis, inflammation and tissue repair. In the liver it contributes to regulation of cell growth, apoptosis and tissue architecture. Additionally, deregulation of activin A signaling accounts for pathologic conditions such as hepatic inflammation, fibrosis and carcinogenesis. The biological functions of the other family members and their involvement in liver biology and diseases are still poorly understood. The first part of this work deals with the mRNA expression pattern of the complete inhibin gene family to obtain novel insights into possible functions of activins and inhibins in human hepatocellular carcinogenesis. Using quantitative real-time PCR analysis we found strongly increased inhibin β subunit expression comparing samples of hepatocellular carcinoma and tumor surrounding tissue to samples from healthy donors. All four β subunits were expressed in normal and patient samples, whereas expression of βB subunit increased from normal to malignant samples. This study is the first to report a significant relation of the inhibin β and inhibin βB mRNA levels to human hepatocellular carcinoma. Furthermore, these data, different from those in rodent model systems, suggest a tumor promoting role of inhibin and activin

  7. Surfactant-Assisted Nanodrop Spectrophotometer Determination of Iron(III) in a Single Drop of Food, Biological, and Environmental Samples

    Science.gov (United States)

    Sharma, A.; Tapadia, K.; Sahin, R.; Shrivas, K.

    2016-01-01

    A surfactant-assisted nanodrop spectrophotometric (NDS) method has been developed for the determination of the iron(III) content in single drops (1 μ L) of food, biological, and or environmental sample using disodium 1-nitroso-2-naphthol-3,6-sulfonate (Nitroso-R salt) as a complexing agent and Tween-80 as non-ionic surfactant at pH 4.0. This method is based on the formation of a complex between the Fe(III) present in a sample and the Nitroso-R-salt in the presence of a surfactant to form a green-colored Fe(III)-Nitroso-R salt complex, which can be measured using a NDS method at a λ max = 710 nm. This system was found to obey Beer's law at concentrations in the range of 50-5000 μ g/L with slope, intercept and correlation coefficient values of 0.683, 0.102, and 0.986, respectively. The molar absorptivity of the complex in terms of the Fe(III) content was determined to be 4.86 × 10 5 L· mol -1 · cm -1 . The detection limit and %RSD values of the method were found to be 17 × 10-3 mg/L and ±1.3706%, respectively. This newly developed method was successfully applied to the determination of the Fe(III) content in single drops of food, biological, and environmental samples, and the results were compared with those obtained by atomic absorption spectrometry.

  8. Danish consumers' attitudes to the functional and environmental characteristics of food packaging

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino

    1996-01-01

    This paper presents the results of a study of Danish consumers' attitudes to packaging and the importance of the environmental and functional characteristics of packaging for their purchasing decisions. The aim is to evaluate whether and how purch behaviour can be influenced in such a way as to...

  9. Shyness and Vocabulary: The Roles of Executive Functioning and Home Environmental Stimulation

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.

    2011-01-01

    Although shyness has often been found to be negatively related to vocabulary, few studies have examined the processes that produce or modify this relation. The present study examined executive functioning skills and home environmental stimulation as potential mediating and moderating mechanisms. A sample of 3 1/2-year-old children (N = 254) was…

  10. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites.

    Science.gov (United States)

    Ali, Vahab; Nozaki, Tomoyoshi

    2013-01-01

    Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections. PMID:23876871

  11. Structured Development and Promotion of a Research Field: Hormesis in Biology, Toxicology, and Environmental Regulatory Science.

    Science.gov (United States)

    Mushak, Paul; Elliott, Kevin C

    2015-12-01

    The ability of powerful and well-funded interest groups to steer scientific research in ways that advance their goals has become a significant social concern. This steering ability is increasingly being recognized in the peer-reviewed scientific literature and in findings of deliberative scientific bodies. This paper provides a case study that illustrates some of the major strategies that can be used to structure and advance a controversial research field. It focuses on hormesis, described as a type of dose-response relationship in toxicology and biology showing low-dose stimulation but high-dose inhibition, or the reverse. Hormesis proponents tout its significance, arguing that substances toxic at high doses and beneficial at lower doses should be regulated less stringently. We identify five strategies employed by hormesis proponents to foster its acceptance: (1) creating institutions focused on supporting hormesis; (2) developing terminology, study designs, and data interpretations that cast it in a favorable light; (3) using bibliometric techniques and surveys to attract attention; (4) aggressively advocating for the phenomenon and challenging critics; and (5) working with outside interest groups to apply the hormesis phenomenon in the economic and political spheres. We also suggest a number of oversight strategies that can be implemented to help promote credible and socially responsible research in cases like this one. PMID:26775877

  12. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area.

    Science.gov (United States)

    Zhao, Yang-Guo; Zheng, Yu; Tian, Weijun; Bai, Jie; Feng, Gong; Guo, Liang; Gao, Mengchun

    2016-07-01

    To remove sulfide in the deteriorating aquaculture sediment and water, sulfide-oxidizing microbiota was enriched from Jiaozhou Bay, China, by using sulfide-rich medium. Composition and structure of microbial communities in the enrichments were investigated by 16S rDNA molecular biotechniques. Results showed that microbial community structure continuously shifted and the abundance of sulfate reducing bacteria, i.e., Desulfobacterium, Desulfococcus and Desulfobacca apparently declined. Several halophile genera, Vibrio, Marinobacter, Pseudomonas, Prochlorococcus, Pediococcus and Thiobacillus predominated finally in the microbiota. The enriched microbiota was capable of removing a maximum of 1000 mg/L sulfide within 12 h with 10% inoculum at pH 7.0, 20-30 °C. After immobilized, the microbiota presented excellent resistance to impact and could completely remove 600 mg/L sulfide in 12 h. Moreover, the immobilized microbiota recovered well even recycled for five times. In conclusion, the immobilized sulfide-removing microbiota showed a quite promising application for biological restoring of sulfide-rich aquaculture environment. PMID:27105167

  13. Modification of chitosan derivatives of environmental and biological interest: a green chemistry approach.

    Science.gov (United States)

    Abdelaal, Magdy Y; Sobahi, Tariq R; Al-Shareef, Hossa F

    2013-04-01

    Chitosan is a non-toxic polyaminosaccharide that is available in a variety of useful forms, and its chemical and biological properties make it a very attractive biomaterial that could be used in a wide variety of medicinal applications. This work focuses on the preparation of different chitosan derivatives by treatment with ethyl cellulose, cellulose triacetate and different carbohydrates in both neutral and slightly acidic media. It also addresses modification with glycidyltrimethyl ammonium chloride, phthalic anhydride and succinic acid derivatives. The obtained derivatives were crosslinked with glutaraldehyde. Thermo-gravimetric (TGA) and FT-IR spectroscopic analyses and electron scanning microscopy (SEM) were used to characterize the obtained products and demonstrate the success of the chitosan-modification process. The obtained products were tested for their ability to uptake transition metal ions from aqueous solutions, and their ion-uptake efficiency was determined with the aid of the ICP-AES technique. The bioactivity of some selected products was tested to study the effect of their concentrations on selected microorganisms. Burkholderia cepaci, Aspergillus niger, and Candida albicans were selected as representative examples of bacteria, yeasts and fungi, respectively. PMID:23376358

  14. bioremediation of some environmental pollutants by the biological activity of fungi

    International Nuclear Information System (INIS)

    Sharkia governorate is an important area of egypt because it include an important places, economically and scientifically as 10th of Ramadan City which is the biggest industrial City and the nuclear reactor of the Egyptian Atomic Energy Authority (EAEA). so that this study was conducted for isolation of some fungal bioremediators of the famous pollutants as some of heavy metals Mn+2 and Co+2 and some of the polycyclic aromatic hydrocarbons (PAHs)as textile direct dyes (orange,pink,red and black) regarding the aim of this study, which was conducted for isolation of some fungal bioremediators and study the bioremediation efficiency in the most suitable conditions for a success to attain bioremediation process of some dangerous heavy metals and / or toxic, carcinogenic and mutagenic textile dyes, in addition to the biological pathways for the uptake of heavy metals and dyes accumulation and/or degradation and after finishing this study, it can be concluded that; the fungal microfolora of each polluted sites is best bioremediators for these sites

  15. Microarrays - new possibilities for detecting biological factors hazardous for humans and animals, and for use in environmental protection.

    Science.gov (United States)

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Gryko, Romuald; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof

    2016-03-01

    Both the known biological agents that cause infectious diseases, as well as modified (ABF-Advanced Biological Factors) or new, emerging agents pose a significant diagnostic problem using previously applied methods, both classical, as well as based on molecular biology methods. The latter, such as PCR and real-time PCR, have significant limitations, both quantitative (low capacity), and qualitative (limited number of targets). The article discusses the results of studies on using the microarray method for the identification of viruses (e.g. Orthopoxvirus group, noroviruses, influenza A and B viruses, rhino- and enteroviruses responsible for the FRI (Febrile Respiratory Illness), European bunyaviruses, and SARS-causing viruses), and bacteria (Mycobacterium spp., Yersinia spp., Campylobacter spp., Streptococcus pneumoniae, Salmonella typhi, Salmonella enterica, Staphylococcus aureus, Neisseria meningitidis, Clostridium difficile , Helicobacter pylori), including multiple antibiotic-resistant strains. The method allows for the serotyping and genotyping of bacteria, and is useful in the diagnosis of genetically modified agents. It allows the testing of thousands of genes in one experiment. In addition to diagnosis, it is applicable for gene expression studies, analysis of the function of genes, microorganisms virulence, and allows the detection of even single mutations. The possibility of its operational application in epidemiological surveillance, and in the detection of disease outbreak agents is demonstrated. PMID:27007515

  16. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    Directory of Open Access Journals (Sweden)

    Sanne C T Peeters

    Full Text Available Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN, is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder.Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk, group × environmental exposure (to cannabis, developmental trauma and urbanicity and symptomatology.There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL, the precuneus (PCu and the medial prefrontal cortex (MPFC. Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity.Increased functional connectivity in individuals with (increased risk for psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  17. The application of environmental economics in marine functional zoning and coastal city conceptual planning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are a lot of functions of marine resources.The various and competing conflicts between different users and different sectors in th euse of marine resources will cause the disorderly development of marine resources,and even destroy the marine ecosystem.Marine functional zoning is an effective tool to solve the conflicts.However,there are some shortcomings in the current understanding on marine functional zoning and its practice.In this paper,a case study on the resource-oriented marine functional zoning of Xiangshan Port is introduced.By the prmeiples of resource-oriented and public participation,Xiangshan Pon is divided into seven zones.and the main function of the whole port and seven zones are determined by the environmental economics analysis.A case study of Xiamen is also introduced for how to integrate marine functional zoning into a coastal city conceptual planning.Under the conservation prmciple,resources-oriented principle and so on,the advantages and disadvantages of natural ecosystem,social ecosystem and econnomic ecosystem are holistically analyzed,the urban orientation of Xiamen is determined as a regional international tourism ciif,and the whole city is divided into five function zones according to its leading industry-tourism.Resource-oriented marine functional zoning has a long-term guidance for sustainable use of marine resources and development strategy of a coastal city.And environmental economics analysis is an effective tool for resource-orientation.

  18. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Directory of Open Access Journals (Sweden)

    Matthew P. Anderson

    2008-01-01

    Full Text Available We review evidence to support a model where the disease process underlying autism may begin when an in utero or early postnatal environmental, infectious, seizure, or autoimmune insult triggers an immune response that increases reactive oxygen species (ROS production in the brain that leads to DNA damage (nuclear and mitochondrial and metabolic enzyme blockade and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations, producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with damaged DNA and impaired metabolic enzyme function may generate additional ROS which will cause persistent activation of the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Beyond the direct effects of ROS on neuronal function, receptors on neurons that bind the inflammatory mediators may serve to inhibit neuronal signaling to protect them from excitotoxic damage during various pathologic insults (e.g., infection. In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  19. The Biological Role of the Medial Olivocochlear Efferents in Hearing: Separating Evolved Function from Exaptations

    Directory of Open Access Journals (Sweden)

    David W. Smith

    2015-02-01

    Full Text Available Cochlear outer hair cells (OHCs are remarkable, mechanically-active receptors that determine the exquisite sensitivity and frequency selectivity characteristic of the mammalian auditory system. While there are three to four times as many OHCs compared with inner hair cells, OHCs lack a significant afferent innervation and, instead, receive a rich efferent innervation from medial olivocochlear (MOC efferent neurons. Activation of the MOC has been shown to exert a considerable suppressive effect over OHC activity. The precise function of these efferent tracts in auditory behavior, however, is the matter of considerable debate. The most frequent functions assigned to the MOC tracts are to protect the cochlea from traumatic damage associated with intense sound and to aid the detection of signals in noise. While considerable evidence shows that interruption of MOC activity exacerbates damage due to high-level sound exposure, the well characterized MOC physiology and evolutionary studies do not support such a role. Instead, a MOC protective effect is well explained as being a byproduct of the suppressive nature of MOC action on OHC mechanical behavior. A role in the enhancement of signals in noise backgrounds, on the other hand, is well supported by (1 an extensive physiological literature (2 examination of naturally 0ccuring environmental acoustic conditions (3 recent data from multiple laboratories showing that the MOC plays a significant role in auditory selective attention by suppressing the response to unattended or ignored stimuli. This presentation will argue that, based on the extant literature combining the suppression of background noise through MOC-mediated rapid adaptation with the suppression of non-attended signals, in concert with the corticofugal pathways descending from the auditory cortex, the MOC system has one evolved function – to increase the signal-to-noise ratio, aiding in the detection of target signals. By contrast, the MOC

  20. The biological role of the medial olivocochlear efferents in hearing: separating evolved function from exaptation.

    Science.gov (United States)

    Smith, David W; Keil, Andreas

    2015-01-01

    Cochlear outer hair cells (OHCs) are remarkable, mechanically-active receptors that determine the exquisite sensitivity and frequency selectivity characteristic of the mammalian auditory system. While there are three to four times as many OHCs compared with inner hair cells, OHCs lack a significant afferent innervation and, instead, receive a rich efferent innervation from medial olivocochlear (MOC) efferent neurons. Activation of the MOC has been shown to exert a considerable suppressive effect over OHC activity. The precise function of these efferent tracts in auditory behavior, however, is the matter of considerable debate. The most frequent functions assigned to the MOC tracts are to protect the cochlea from traumatic damage associated with intense sound and to aid the detection of signals in noise. While considerable evidence shows that interruption of MOC activity exacerbates damage due to high-level sound exposure, the well characterized MOC physiology and evolutionary studies do not support such a role. Instead, a MOC protective effect is well explained as being a byproduct of the suppressive nature of MOC action on OHC mechanical behavior. A role in the enhancement of signals in noise backgrounds, on the other hand, is well supported by (1) an extensive physiological literature (2) examination of naturally occurring environmental acoustic conditions (3) recent data from multiple laboratories showing that the MOC plays a significant role in auditory selective attention by suppressing the response to unattended or ignored stimuli. This presentation will argue that, based on the extant literature combining the suppression of background noise through MOC-mediated rapid adaptation (RA) with the suppression of non-attended signals, in concert with the corticofugal pathways descending from the auditory cortex, the MOC system has one evolved function-to increase the signal-to-noise ratio, aiding in the detection of target signals. By contrast, the MOC system role

  1. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha.

    Science.gov (United States)

    Binelli, A; Pedriali, A; Riva, C; Parolini, M

    2012-03-01

    The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L(-1); 220 ng L(-1); and 10 μg L(-1)). Cocaine caused significant (papoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects. PMID:22119280

  2. Voltammetric method for sensitive determination of herbicide picloram in environmental and biological samples using boron-doped diamond film electrode

    International Nuclear Information System (INIS)

    The voltammetric behavior and determination of picloram, a member of a pyridine herbicide family, was for the first time investigated on a boron doped diamond film electrode using cyclic and differential pulse voltammetry. The influence of supporting electrolyte and scan rate on the current response of picloram was examined to select the optimum experimental conditions. It was found that picloram provided one well-shaped oxidation peak at very positive potential (+1.5 V vs. Ag/AgCl electrode) in strong acidic medium. At optimized differential pulse voltammetric parameters, the current response of picloram was proportionally linear in the concentration range from 0.5 to 48.07 μmol L−1 and the low limit of detection of 70 nmol L−1 as well as good repeatability (relative standard deviation of 2.6% at 10 μmol L−1 for n = 11) were obtained on unmodified boron-doped diamond film electrode. The proposed method was successfully applied in analysis of environmental (tap and natural water) and biological (human urine) samples spiked with picloram with good accuracy (relative standard deviations less than 5% for all samples, n = 5). By this way, the boron-doped diamond could introduce a green (environmentally acceptable) alternative to mercury electrodes for the monitoring of herbicides

  3. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    Science.gov (United States)

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality. PMID:27060638

  4. Molecular biology of environmental aromatic hydrocarbons. Progress report, September 1, 1984-June 31, 1985

    International Nuclear Information System (INIS)

    The biological activities of the (+)- and (-)-enantiomers of anti-BPDE (benzo[a]pyrene diol epoxide) and BePe (benzo[e]pyrene epoxide) were examined for their capacity to inhibit infectious single- and double-stranded 0X174 phage DNAs. For both activated PAH derivatives, the (+)-isomer was more inhibitory using either single- or double-stranded 0X DNAs. Both PAH derivatives showed a higher inhibition potency with single-stranded 0X DNA than with duplex DNA; this difference between the two phage DNA forms was much greater for BePE than with anti-BPDE. Digestion of phage DNAs reacted with the two isomers of anti-BPDE, followed by chromatography on LH20 Sephadex, showed a single major dG adduct peak for the (+)-isomer suggesting that alkylation of both 0X DNA forms is highly stereoselective. Reaction of the (-)-isomer of anti-BPDE with either form of 0X DNA showed several dG adduct peaks indicating that adduct formation was not stereoselective. A model viral DNA system was used, containing short oligonucleotide inserts as targets for PAH alkylation, to detect sequence modifications induced by anti-BPDE. A 10-base-pair oligomer (Bam HI linker) was treated with anti-BPDE and inserted into phage M13 replicative form DNA. E. coli was transfected with the recombinant DNA containing the alkylated oligomer, progeny viral plaques were selected, and their DNAs subjected to DNA sequence analysis at the region of oligomer insertion. For the alkylated inserts used in our study, the DNA sequence analysis of progeny viral DNA showed that nucleotide deletions were present in all the clones examined. These deletions occurred primarily, but not exclusively, at G dot C cluster regions, varied from 1 to 24 base pairs in length, and included both target and nontarget nucleotides. 19 refs., 4 figs

  5. DataONE: Preserving Data and Enabling Data-Intensive Biological and Environmental Research

    Science.gov (United States)

    Cook, R. B.; DataONE Leadership Team

    2011-12-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. From a scientist's perspective, the challenges lie in discovering the relevant data, dealing with data heterogeneity, and converting data to information and knowledge. Solving these challenges requires new approaches for managing, preserving, sharing and analyzing data. DataONE (Observation Network for Earth) represents a virtual organization whose goal is to enable new science and knowledge creation through preservation and access to data about life on Earth and the environment that sustains it. DataONE supports science through facilitating easy, secure, and persistent storage of data and disseminating integrated and user-friendly tools for data discovery, analysis, visualization, and decision-making. DataONE engages its community of partners through working groups focused on identifying and implementing the DataONE cyberinfrastructure, governance, and sustainability models. These working groups, which consist of a diverse group of graduate students, educators, government representatives, and leading computer, information, and library scientists: (1) adapt interoperability standards; (2) create value-added technologies (e.g., semantic mediation, scientific workflow, and visualization) that facilitate data integration, analysis, and understanding; (3) address socio-cultural barriers to sustainable data preservation and data sharing; and (4) promote the adoption of best practices for managing the full data life cycle.

  6. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens

    International Nuclear Information System (INIS)

    The diversity of epiphytic lichens and the accumulation of selected trace elements in the lichen Flavoparmelia caperata L. (Hale) were used as indicators of pollution around a landfill in central Italy along 14 years of waste management. Lichens revealed an increased deposition for some elements (i.e., Cd, Cr, Fe and Ni) and a decrease of the lichen diversity at sites facing the landfill after an enlargement of the dumping area. However, the results allowed to exclude a significant increase in heavy metal depositions in the surrounding area and suggested that successful waste management may be associated with environmental quality. It is concluded that lichen monitoring might provide essential information to enhance the implementation of ecological impact assessment, supporting industrial regulatory procedures, also when waste management is concerned. - Highlights: ► Lichens were used as bioindicators at a landfill along 14 years of waste management. ► Metal deposition and low lichen diversity were found only close to the landfill. ► Lichen monitoring can assist in waste management regulatory decision. - The results of lichen monitoring can contribute to decision making process concerning waste management.

  7. Sheep lymph-nodes as a biological indicator of environmental exposure to fluoro-edenite.

    Science.gov (United States)

    Ledda, Caterina; Loreto, Carla; Pomara, Cristoforo; Rapisarda, Giuseppe; Fiore, Maria; Ferrante, Margherita; Bracci, Massimo; Santarelli, Lory; Fenga, Concettina; Rapisarda, Venerando

    2016-05-01

    A significantly increased incidence of pleural mesothelioma in Biancavilla (Sicily, Italy) has been attributed to exposure to fluoro-edenite (FE), a fibrous amphibole extracted from a local stone quarry. The lymph-nodes draining the pulmonary lobes of sheep grazing around the town were examined, to gain insights into fibre diffusion. The pasture areas of six sheep flocks lying about 3km from Biancavilla were located using the global positioning system. The cranial tracheobronchial and one middle mediastinal lymph-node as well as four lung tissue samples were collected from 10 animals from each flock and from 10 control sheep for light and scanning electron microscopy (SEM) examination. The lymph-nodes from exposed sheep were enlarged and exhibited signs of anthracosis. Histologically, especially at the paracortical level, they showed lymph-follicle hyperplasia with large reactive cores and several macrophages (coniophages) containing grey-brownish particulate interspersed with elements with a fibril structure, forming aggregates of varying dimensions (coniophage nodules). Similar findings were detected in some peribronchiolar areas of the lung parenchyma. SEM examination showed that FE fibres measured 8-41µm in length and 0.4-1.39µm in diameter in both lymph-nodes and lung tissue. Monitoring of FE fibres in sheep lymph-nodes using appropriate techniques can help set up environmental pollution surveillance. PMID:26855127

  8. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    OpenAIRE

    Luan Yihui; Nunez-Iglesias Juan; Wang Wenhui; Sun Fengzhu

    2009-01-01

    Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results ...

  9. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    Science.gov (United States)

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  10. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  11. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  12. Melatonin and its potential biological functions in the fruits of sweet cherry.

    Science.gov (United States)

    Zhao, Yu; Tan, Dun-Xian; Lei, Qiong; Chen, Hao; Wang, Lin; Li, Qing-tian; Gao, Yinan; Kong, Jin

    2013-08-01

    Melatonin is a well-known molecule which possesses many beneficial effects on human health. Many agriculture products provide natural melatonin in the diet. Cherry is one such fruit as they are rich in melatonin. In order to understand the biological roles of melatonin in cherry fruit, melatonin synthesis and its changes over 24 hr period were systematically monitored both during their development and in the ripe cherries in two cultivars, 'Hongdeng' (Prunus avium L. cv. Hongdeng) and 'Rainier' (Prunus avium L. cv. Rainier). It was found that both darkness and oxidative stress induced melatonin synthesis, which led to dual melatonin synthetic peaks during a 24 hr period. The high levels of malondialdehyde induced by high temperature and high intensity light exposure were directly related to up-regulated melatonin production. A primary function of melatonin in cherry fruits is speculated to be as an antioxidant to protect the cherry from the oxidative stress. Importantly, plant tryptophan decaboxylase gene (PaTDC) was identified in cherry fruits. Our data shows that PaTDC expression is positively related to the melatonin production in the cherry. This provides additional information to suggest that tryptophan decaboxylase is a rate-limiting enzyme of melatonin synthesis in plants. PMID:23480341

  13. The formation, function and regulation of amyloids: insights from structural biology.

    Science.gov (United States)

    Landreh, M; Sawaya, M R; Hipp, M S; Eisenberg, D S; Wüthrich, K; Hartl, F U

    2016-08-01

    Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies. PMID:27237473

  14. Expression of a Magnaporthe grisea Elicitor and Its Biological Function in Activating Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The expression of a protein elicitor from Magnaporthe griesea and its biological function in activating resistance in rice (Oryza sativa L) were reported. The gene of elicitor was expressed in Escherichia coli cells and produced a His6-fusion protein with 42 kD apparent molecular weight on SDS-PAGE. The purified protein could induce the resistance to blast disease, with the control efficiency of 46.47% and 36.41% at the 14th day and the 21st day after blast inoculation, respectively.After treatment with the expressed protein, the phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were promoted in rice plants, meanwhile, the transcription levels of STKM, FAD, PBZ1 and PR1 genes were increased in rice plants. Moreover, after comparing the profile of total rice leaf proteins on two-dimensional eiectrophoresis gel, about 14proteins were found to be increased in expression level after the expressed protein treatment. All the results indicated that the expressed protein could act as an elicitor to trigger the resistance in rice.

  15. Non-random distribution of homo-repeats: links with biological functions and human diseases.

    Science.gov (United States)

    Lobanov, Michail Yu; Klus, Petr; Sokolovsky, Igor V; Tartaglia, Gian Gaetano; Galzitskaya, Oxana V

    2016-01-01

    The biological function of multiple repetitions of single amino acids, or homo-repeats, is largely unknown, but their occurrence in proteins has been associated with more than 20 hereditary diseases. Analysing 122 bacterial and eukaryotic genomes, we observed that the number of proteins containing homo-repeats is significantly larger than expected from theoretical estimates. Analysis of statistical significance indicates that the minimal size of homo-repeats varies with amino acid type and proteome. In an attempt to characterize proteins harbouring long homo-repeats, we found that those containing polar or small amino acids S, P, H, E, D, K, Q and N are enriched in structural disorder as well as protein- and RNA-interactions. We observed that E, S, Q, G, L, P, D, A and H homo-repeats are strongly linked with occurrence in human diseases. Moreover, S, E, P, A, Q, D and T homo-repeats are significantly enriched in neuronal proteins associated with autism and other disorders. We release a webserver for further exploration of homo-repeats occurrence in human pathology at http://bioinfo.protres.ru/hradis/. PMID:27256590

  16. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    OpenAIRE

    Douglas M. Davenport; Minghui Gui; Lindell R. Ormsbee; Dibakar Bhattacharyya

    2016-01-01

    Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF) type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabr...

  17. Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors

    International Nuclear Information System (INIS)

    Issues of obsolescence and lack of infrastructural support in (analog) spare parts, coupled with the potential benefits of digital systems, are driving the nuclear industry to retrofit analog instrumentation and control (I ampersand C) systems with digital and microprocessor-based systems. While these technologies have several advantages, their application to safety-related systems in nuclear power plants raises key issues relating to the systems' environmental qualification and functional reliability. To bound the problem of new I ampersand C system functionality and qualification, the authors focused this study on protection systems proposed for use in ALWRs. Specifically, both functional and environmental qualification issues for ALWR protection system I ampersand C were addressed by developing an environmental, functional, and aging data template for a protection division of each proposed ALWR design. By using information provided by manufacturers, environmental conditions and stressors to which I ampersand C equipment in reactor protection divisions may be subjected were identified. The resulting data were then compared to a similar template for an instrument string typically found in an analog protection division of a present-day nuclear power plant. The authors also identified fiber-optic transmission systems as technologies that are relatively new to the nuclear power plant environment and examined the failure modes and age-related degradation mechanisms of fiber-optic components and systems. One reason for the exercise of caution in the introduction of software into safety-critical systems is the potential for common-cause failure due to the software. This study, however, approaches the functionality problem from a systems point of view. System malfunction scenarios are postulated to illustrate the fact that, when dealing with the performance of the overall integrated system, the real issues are functionality and fault tolerance, not hardware vs. software

  18. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows

    Science.gov (United States)

    Schultz, M.M.; Painter, M.M.; Bartell, S.E.; Logue, A.; Furlong, E.T.; Werner, S.L.; Schoenfuss, H.L.

    2011-01-01

    Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305. ng/L and 1104. ng/L) and SER (5.2. ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28. ng/L induced vitellogenin in male fish-a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies. ?? 2011 Elsevier B.V.

  19. Biological transfer of radionuclides in marine environments - Identifying and filling knowledge gaps for environmental impact assessments

    International Nuclear Information System (INIS)

    A review on concentration factors (CF) for the marine environment was conducted in order to consider the relevance of existing data from the perspective of environmental protection and to identify areas of data paucity. Data have been organised in a format compatible with a reference organism approach, for selected radionuclides, and efforts have been taken to identify the factors that may be of importance in the context of dosimetric and dose-effects analyses. These reference organism categories had been previously selected by identifying organism groups that were likely to experience the highest levels of radiation exposure, owing to high uptake levels or residence in a particular habitat, for defined scenarios. Significant data gaps in the CF database have been identified, notably for marine mammals and birds. Most empirical information pertains to a limit suite of radionuclides, particularly 137Cs, 210Po and 99Tc. A methodology has been developed to help bridge this information deficit. This has been based on simple dynamic, biokinetic models that mainly use parameters derived from laboratory-based study and field observation. In some cases, allometric relationships have been employed to allow further model parameterization. Initial testing of the model by comparing model output with empirical data sets suggest that the models provide sensible equilibrium CFs. Furthermore, analyses of modelling results suggest that for some radionuclides, in particularly those with long effective half-lives, the time to equilibrium can be far greater than the life-time of an organism. This clearly emphasises the limitations of applying a universal equilibrium approach. The methodology, therefore, has an added advantage that non-equilibrium scenarios can be considered in a more rigorous manner. Further refinements to the modelling approach might be attained by exploring the importance of various model parameters, through sensitivity analyses, and by identifying those parameters

  20. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    Science.gov (United States)

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  1. Pollen tube growth test (PTGT) in environmental biomonitoring and predictive radiation biology studies: problem and prospect

    International Nuclear Information System (INIS)

    In Environmental and Human Bio monitoring studies of Hazardous xenobiotics over living system particularly at cell level, it is desirable to have easy and sensitive test system like Cell Viability assay, MNT, Cell Culture photo toxicity Test, PTGT etc. Out of these the PTGT quite better than other because the in vitro culture of pollen grain can provides a sensitive indication of toxicity at cellular level, since germination and growth of pollen tube will inhibited in presence of toxic substance like DDT, Heavy metal, even Radionuclide's. This test system is easy, economical and widely accepted through out world. In PTGT pollen tube never containing Chloroplast or other plastids so pollen tube resembles animals more than a plant organ and is therefore also a suitable as model for Genotoxicity Assessment of compounds harmful to animal and humans. Lack of plastids in PT, PTGT will not identify the toxic effect of compounds that targets Non cyclic and cyclic photoposphorylation of photosynthesis. This test system valid in International Toxicity Testing Protocol. But this method is time consuming and problem in measurement of pollen tube growing in a culture medium became usually bent and make measurement difficult. Other disadvantage of this method is requirement of DMSO to dissolve test substance of low water suitability in culture medium. DMSO shown to have no effect on PTG at Concentration not more than 1% but some extent interfere with results. Values of PTG are quantified in ED50/IC50 that is the concentration of test compounds that reduces pollen tube growth to 50% of control. So PTGT could be very sensitive and easy to assess in common lab in International way. (author)

  2. Environmental DNA Marker Development with Sparse Biological Information: A Case Study on Opossum Shrimp (Mysis diluviana).

    Science.gov (United States)

    Carim, Kellie J; Christianson, Kyle R; McKelvey, Kevin M; Pate, William M; Silver, Douglas B; Johnson, Brett M; Galloway, Bill T; Young, Michael K; Schwartz, Michael K

    2016-01-01

    The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion. Environmental DNA (eDNA) provides one solution for detecting M. diluviana, but building eDNA markers that are both sensitive and species-specific is challenging when the distribution and taxonomy of closely related non-target taxa are poorly understood, published genetic data are sparse, and tissue samples are difficult to obtain. To address these issues, we developed a pair of independent eDNA markers to increase the likelihood of a positive detection of M. diluviana when present and reduce the probability of false positive detections from closely related non-target species. Because tissue samples of closely-related and possibly sympatric, non-target taxa could not be obtained, we used synthetic DNA sequences of closely related non-target species to test the specificity of eDNA markers. Both eDNA markers yielded positive detections from five waterbodies where M. diluviana was known to be present, and no detections in five others where this species was thought to be absent. Daytime samples from varying depths in one waterbody occupied by M. diluviana demonstrated that samples near the lake bottom produced 5 to more than 300 times as many eDNA copies as samples taken at other depths, but all samples tested positive regardless of depth. PMID:27551919

  3. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    Science.gov (United States)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  4. Genetic and environmental links between cognitive and physical functions in old age

    DEFF Research Database (Denmark)

    Johnson, Wendy; Deary, Ian J; McGue, Matt;

    2009-01-01

    In old age, cognitive and physical functions are correlated. Knowing the correlations between genetic and environmental influences underlying this correlation can help to clarify the reasons for the observable (phenotypic) correlation. We estimated these correlations in a sample of 1,053 pairs of...... climbing stairs. The phenotypic correlation between latent variable representations was .46 (95% confidence interval 0.27-0.65). The genetic correlation was .56 (95% confidence interval 0.15-1.00) and the nonshared environmental correlation .48 (95% confidence interval 0.35-0.61). We discuss several ways...

  5. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint...... motions. Design/methodology/approach – Each joint is driven by a pair of virtual agonist-antagonist mechanism (VAAM, i.e., passive components). The muscle-like functions as well as the variable joint compliance are simply achieved by tuning the damping coefficient of the VAAM. Findings – With the VAAM......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i...

  6. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    soil biological classes). Physical soil characteristics remained unchanged after the first year from the earthworks and did not change under grass cover. Chemical analysis only indicated a significant effect of earthworks. Over the 2010-2013 period, the new vineyard showed a slight increase of TOC and total N contents; as compared to the old vineyard, it averaged lower TOC and total N, and higher CaCO3 contents, suggesting still evolving equilibrium conditions. Microarthropod analysis showed significant different abundances and communities' structures both by management system and by year, increasing where the land use pressure was reduced by permanent grass cover and along with the aging of vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis showed a different structure of eubacterial communities and a lower microbial activity in the new vineyard, especially during 2010-2012. In contrast, significant differences were not observed between the two vineyards in 2013, and grass cover effect was controversial. To sum up, the consequence of deep earthworks on chemical and biological properties were still evident after four years from planting and more time was needed to recover soil functions. Permanent grass cover did not always show a consistent positive effect.

  7. Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production.

    Science.gov (United States)

    Albanez, R; Chiaranda, B C; Ferreira, R G; França, A L P; Honório, C D; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-01-01

    The energy crisis resulted in increasing awareness that alternative sources of energy should be considered. During this time, Brazil implemented ethanol production from sugarcane as biofuel. However, during this process, large amounts of residues are generated, such as vinasse. This residue can be treated anaerobically to generate methane as a source of bioenergy with the use of sequencing batch reactors operated with immobilized biomass (AnSBBR). In this work, tests were conducted in an AnSBBR laboratory-scale reactor, and the main results regarding the kinetic model fitting and performance of substrate consumption (83 %), methane content in the biogas (77 %), applied organic load (5.54 g COD L(-1) day(-1)), methane productivity (973 N-mL CH4 L(-1) day(-1)), and yield (9.47 mol CH4 kg COD(-1)) show that AnSBBR is a promising technological alternative. After tests conducted in a laboratory-scale reactor, an industrial reactor was scaled and was also operated in a sequencing batch with immobilized biomass (AnSBBR) for the anaerobic treatment of vinasse with the goal of generating methane and environmental suitability to further disposal in soil. The calculations were performed based on data from a sugar and alcohol plant located in São Paulo, Brazil. This study proposes to the operation of the industrial scale reactor was the association of four AnSBBR (each one with a volume of 15849 m(3)) operating in parallel (with a feeding and discharge time of 4 h and a reaction time of 8 h), with the goal of adapting the treatment system from a discontinuous operation to a continuous operation. In this industrial scenario, the methane production was estimated at 1.65 × 10(6) mol CH4 day(-1), and the energy was approximately 17 MW, increasing the possible energy recovery contained in sugarcane from 93 to 96 %. PMID:26400496

  8. Fluorescence response of hypocrellin B to the environmental changes in a mimic biological membrane--liposome

    Institute of Scientific and Technical Information of China (English)

    JIN; Xuanye; ZHAO; Yuewei; XIE; Jie; ZHAO; Jingquan

    2004-01-01

    , Photochem.Photobiol., 2001, 73 (5): 482-488.[13]Mang, T. S., Dougherty, T. J., Potter, W. R. et al., Photobleaching of porphyrins used in photodynamic therapy and implications for therapy, Photochem. Photobiol., 1987, 45: 501-506.[14]Shoko, Y., Tadahiro, T., Masahiko, A., Preparation of ganglioside GM3 liposomes and their membrane properties, Colloid Surface B, 2002, 27: 181-187.[15]Murakami, S., Packer, L., The role of cations in the organization of chloroplast membranes, Arch. Biochem. Biophys., 1971, 146:337-347.[16]Angeli, N. G., Lagorio, M. G., San Román, E. et al., Meso-substituted cationic porphyrins of biological interest, Photophysical and physicochemical properties in solution and bound to liposomes,Photochem. Photobiol., 2000, 72(1 ): 49-56.

  9. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  10. Danish consumers' attitudes to the functional and environmental characteristics of food packaging

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino

    1996-01-01

    Executive summary The purpose of the studies presented in the paper is to research different aspects of Danish consumers' views about the functional and environmental consequences of packaging, as well as to study cognitive barriers that can prevent consumer attitudes to environmental consequences...... of food packaging to influence the buying of food products. The results of these studies will be employed to consider whether and how to influence Danish consumers to buy products with environmental sustainable packaging. As the project concerns both consumers' attitudes to packaging on the abstract...... personal interviews with customers in selected supermarkets in Aarhus, Odense and Copenhagen. The data consists of 351 interviews distributed on four different food-products (cheese spread, butter products, orange juice and ketchup). The results indicate, not surprisingly, that packaging influences the...

  11. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  12. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  13. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  14. The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP).

    Science.gov (United States)

    Ren, Chunhua; Chen, Ting; Jiang, Xiao; Wang, Yanhong; Hu, Chaoqun

    2014-12-01

    Translationally controlled tumor protein (TCTP) is a multifunctional protein that existed ubiquitously in different eukaryote species and distributed widely in various tissues and cell types. In this study, the gene structure and biological function of TCTP were first characterized in echinoderm. An echinoderm TCTP named StmTCTP was identified from sea cucumber (Stichopus monotuberculatus) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The StmTCTP cDNA is 1219 bp in length, containing a 5'-untranslated region (UTR) of 77 bp, a 3'-UTR of 623 bp and an open reading frame (ORF) of 519 bp that encoding a protein of 172 amino acids with a deduced molecular weight of 19.80 kDa and a predicted isolectric point of 4.66. Two deduced signal signatures termed TCTP1 and TCTP2, a microtubule binding domain, a Ca(2+) binding domain and the conserved residues forming Rab GTPase binding surface were found in the StmTCTP amino acid sequence. For the gene structure, StmTCTP contains four exons separated by three introns. The anti-oxidation and heat shock protein activities of recombinant TCTP protein were also demonstrated in this study. In addition, the expression of StmTCTP was found to be significantly upregulated by polyriboinosinic polyribocytidylic acid [poly (I:C)], lipopolysaccharides (LPS) or inactivated bacteria challenge in in vitro primary culture experiments of coelomocytes, suggested that the sea cucumber TCTP might play critical roles not only in the defense against oxidative and thermal stresses, but also in the innate immune defense against bacterial and viral infections. PMID:25193395

  15. Contribution of personal and environmental factors on positive psychological functioning in adolescents.

    Science.gov (United States)

    Fadda, Daniela; Scalas, L Francesca; Meleddu, Mauro

    2015-08-01

    This study examined self-esteem as mediator in the relations of personal (extraversion, neuroticism) and environmental (maternal, paternal, peer-relationships) variables with domains of positive psychological functioning (PPF) in adolescence (Satisfaction with life, Mastery, Vigor, Social Interest, Social Cheerfulness). We compared one-sided and multidimensional models using a sample of 1193 high school students (592 males and 601 females). We examined variations in adolescent PPF as a function of parenting styles via independent examination of maternal and paternal bonding. Results supported the multidimensional models, which indicated direct effects of personality traits, maternal care and peer relationships, as well as indirect effects, mediated by self-esteem, of all predictors on most PPF dimensions. Overall, our study provided a broader picture of personal and environmental predictors on different dimensions of PPF, which supported the mediating role of self-esteem and emphasized the importance of considering multidimensional models to characterize PPF in adolescents. PMID:26093819

  16. The influence of demographic, environmental and physical factors on functional independence post stroke

    OpenAIRE

    M.V. Mamabolo; W. Mudzi; A.S. Stewart; N. P. Mbambo; S. Olorunju

    2008-01-01

    Purpose: The magnitude of disability observed in strokesurvivors is believed to be dependent in part, on the severity of neurological deficits incurred. A s important but less well understood, is thecontribution of demographic, physical and environmental factors. The objective of this study was to establish what demographic, environmentaland physical factors influence functional independence post stroke. Method: Convenience sampling was used in the selection of subjects from four stroke outpa...

  17. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus

    OpenAIRE

    Williamson, Lauren L.; Chao, Agnes; Bilbo, Staci D.

    2012-01-01

    Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Environmental enrichment (EE) in rodents increases neurogenesis, enhances cognition, and promotes recovery from injury. However, little is known about the effects of EE on glia (astrocytes and microglia). Given their importance in neural repair, we predicted that EE would modulate glial phenotype and/or function within the hippocampus. Adult male rats were housed either 12 h/day in an enric...

  18. Decreased Pulmonary Function Measured in Children Exposed to High Environmental Relative Moldiness Index Homes

    OpenAIRE

    Vesper, Stephen J.; Wymer, Larry; Kennedy, Suzanne; Grimsley, L. Faye

    2013-01-01

    Background: Exposures to water-damaged homes/buildings has been linked to deficits in respiratory health. However, accurately quantifying this linkage has been difficult because of the methods used to assess water damage and respiratory health. Purpose: The goal of this analysis was to determine the correlation between the water-damage, as defined by the Environmental Relative Moldiness Index (ERMI) value in an asthmatic child’s home, and the child’s pulmonary function measured by spirometry,...

  19. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  20. Environmental and socio-economic analysis of treatment of biological waste; Miljoe- och samhaellsekonomisk analys av behandling av biologiskt avfall

    Energy Technology Data Exchange (ETDEWEB)

    Ljungkvist, Hanna

    2008-01-15

    Biogas is a renewable fuel that can be extracted from anaerobic digestion of many different substrates, for example biological household waste. An alternative handling of the waste is to mix it with other wastes and incinerate it in a combined heat and power (CHP) plant. This study uses life cycle assessment to investigate which type of waste handling that is better from an environmental point of view, anaerobic digestion with biogas production or incineration. The results are based on a case study of a biogas production plant owned by the company Ragn-Sells in Vaenersborg. The alternative is incineration at a CHP plant in Gothenburg. Three different weighting methods were used, which produced different results on the detailed level. Overall however, the alternative with digestion and biogas production had significantly lower potential environmental impact than incineration according to all three methods. An economic valuation of the biogas production potential showed that the biggest societal savings would result from using all the produced biogas in heavy vehicles or to replace fuel oil for heating. However, since biogas is a high quality fuel it should be used as transportation fuel rather than for heating. By digestion and biogas production many potential services are gained from the organic waste. Waste volumes are reduced, emissions from the transport sector are reduced, local air quality is improved and valuable nutrients are returned to farmland through the organic fertilizer produced. The infrastructure and knowledge built up around the biogas system is also very valuable as a bridge to future gas based transport systems

  1. What should be computed to understand and model brain function? from robotics, soft computing, biology and neuroscience to cognitive philosophy

    CERN Document Server

    Kitamura, Tadashi

    2001-01-01

    This volume is a guide to two types of transcendence of academic borders which seem necessary for understanding and modelling brain function. The first type is technical transcendence needed to make intelligent machines such as a humanoid robot, an animal-like behavior architecture, an interpreter of fiction, and an evolving learning machine. This technical erosion is conducted into areas such as biology, ethology, neuroscience and psychology, as well as robotics and soft computing. The second type of transcendence of cross-disciplinary boundaries cuts across scientific areas such as biology a

  2. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  3. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Energy Technology Data Exchange (ETDEWEB)

    Sandercock, Brett K. [Kansas State University

    2013-05-22

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most

  4. Multivariate benthic ecosystem functioning in the Arctic – benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    Directory of Open Access Journals (Sweden)

    H. Link

    2013-09-01

    Full Text Available The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual, long-term (annual to decadal and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57% by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with

  5. 2K09 and Thereafter : The Coming Era of Integrative Bioinformatics, Systems Biology and Intelligent Computing for Functional Genomics and Personalized Medicine Research

    OpenAIRE

    2010-01-01

    Abstract Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Co...

  6. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has...... system (the cell), also at the quantitative level, and this is the goal of systems biology. Clearly this will have a significant impact on microbial physiology as well as on metabolic engineering....

  7. Effects of environmental and architechtural diversity of Caryocar brasiliense (Malpighiales: Caryocaraceae on Edessa ruformaginata (Hemiptera: Pentatomidae and its biology

    Directory of Open Access Journals (Sweden)

    Germano Leao Demolin Leite

    2016-01-01

    Full Text Available We studied the effect of environmental complexity and plant architecture on the abundance of the Edessa rufomarginata bugs in pastures and cerrado areas and its biology. We observed higher number of bugs on Caryocar brasiliense trees in the cerrado than pasture areas. Bugs were more abundant on leaves and branches rather than fruits. Caryocar brasiliense had greatest fruit production on pasture than in the cerrado areas. The abundance of bugs was correlated positively with aluminum, organic matter, and tree height, but negatively correlated by soil pH. Productivity of C. brasiliense were negatively correlated with aluminum, pH, and number of bugs, but positively correlated with phosphorus and calcium. The number of eggs per clutch was 14.3, their viability was 93% and the embryonic period was 6.9 days. The respective length and width of each instar were: first instar 3.3 mm and 2.4 mm, second 4.1 mm and 3.0 mm, third 6.7 mm and 3.0mm, and fourth 11.5 mm and 3.5 mm. The respective length and width of adults were: males, 15.8 mm and 8.6 mm and females, 17.3 mm and 9.1 mm. The sex ratio was 0.43, and the total duration of the life cycle of E. rufomarginata was 156 days.

  8. Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: integrating chemical and biological data by chemometrics.

    Science.gov (United States)

    da Souza, Iara; Bonomo, Marina Marques; Morozesk, Mariana; Rocha, Lívia Dorsch; Duarte, Ian Drumond; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-04-01

    Mangroves are dynamic environments under constant influence of anthropic contaminants. The correlation between environmental contamination levels and possible changes in the morphology of plants, evaluated by multivariate statistics helps to highlight matching between these variables. This study aimed to evaluate the uptake and translocation of metals and metalloids in roots and leaves as well as the changes induced in both anatomy and histochemistry of roots of Laguncularia racemosa inhabiting two estuaries of Espírito Santo (Brazil) with different pollution degrees. The analysis of 14 elements in interstitial water, sediments and plants followed by multivariate statistics, allowed the differentiation of studied sites, showing good match between levels of elements in the environment with the corresponding in plants. L. racemosa showed variations in their root anatomy in different collection areas, with highest values of cortex/vascular cylinder ratio, periderm thickness and air gap area in Vitória Bay, the most polluted sampling area. These three parameters were also important to differentiate the mangrove areas by linear discriminant analysis. The development stage of aerenchyma in roots reflected the oxygen availability in the water, being found a negative correlation between these variables. The combined use of chemical and biological analyses responded quite well to different pollution scenarios, matching morphological responses to physical and chemical parameters, measured at different partitions within the estuary. Thus, L. racemosa can be confirmed as a reliable sentinel plant for biomonitoring of estuaries impacted by anthropic pollution. PMID:24445776

  9. Correlation Between Toluene Environmental Monitoring and Biological Index of Urinary Hippuric Acid of Workers in the Coke Industry

    Directory of Open Access Journals (Sweden)

    MM Amin

    2007-04-01

    Full Text Available Introduction: Toluene is an organic solvent that it is one of the byproducts in the coke industry. Exposure to toluene causes central nervous system dysfunction and others disorders. Many workers are exposed to toluene due to leakage from tracks. Therefore the aim of this study was to determine the levels of exposure through environmental and biological monitoring of toluene Methods: Air toluene sampling of air inhaled by 36 coke oven workers was done by using activated charcoal tubes and personal sampling pumps. At the end of the shift, urine samples of workers and control group were collected by urine samplers. Air toluene was determined by GC, urinary hippuric acid by HPLC and urine creatinine level was determined by auto analyzer. Results: The mean of air toluene and urinary hippuric acid levels in exposed and control samples were 14.34 ppm, 0.33 and 0.28 g/g creatinine. Air toluene and urinary hippuric acid showed a correlation of r = 0.8. Conclusion: Toluene TWA was lower than the TLV-TWA (p=0.000. Urinary hippuric acid concentration was also lower than the BEI (p=0.008. Difference between exposed and unexposed group was not significant. This study showed that hippuric acid because of its interaction with background factors can not be used as a sensitive biomarker for biomonitoring.

  10. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies

    CERN Document Server

    Kramar, Peter

    2016-01-01

    This volume presents the proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies (WC2015). The congress took place in Portorož, Slovenia, during the week of September 6th to 10th, 2015. The scientific part of the Congress covered different aspects of electroporation and related technologies and included the following main topics:   ·         Application of pulsed electric fields technology in food: challenges and opportunities ·         Electrical impedance measurement for assessment of electroporation yield ·         Electrochemistry and electroporation ·         Electroporation meets electrostimulation ·         Electrotechnologies for food and biomass treatment ·         Food and biotechnology applications ·         In vitro electroporation - basic mechanisms ·         Interfacial behaviour of lipid-assemblies, membranes and cells in electric f...

  11. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (23) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L-1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L-1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L-1. Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  12. Gender Differences in Patients' Beliefs About Biological, Environmental, Behavioral, and Psychological Risk Factors in a Cardiac Rehabilitation Program

    Directory of Open Access Journals (Sweden)

    Mozhgan Saeidi

    2014-11-01

    Full Text Available Introduction: There are significant gender differences in the epidemiology and presentation of cardiovascular diseases (CVDs, physiological aspects of CVDs, response to diagnostic tests or interventions, and prevalence or incidence of the associated risk factors. Considering the independent influence of gender on early dire consequences of such diseases, this study was conducted to investigate gender differences in patients' beliefs about biological, environmental, behavioral, and psychological risk factors in a cardiac rehabilitation program. Materials and Methods: This study has cross sectional design. The sample was composed of 775 patients referred to cardiac rehabilitation unit in Imam Ali Hospital in Kermanshah, Iran. The data were collected using clinical interview and patients’ medical records. The data were analyzed using descriptive statistics such as mean, standard deviation, and chi-square test​​. To do the statistical analysis, SPSS version 20 was utilized. Results: As the results indicated, there was a significant difference between the beliefs of men and women about risk factors of heart disease (X2= 48.36; P

  13. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  14. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  15. The Environmental Dependence of the Galaxy Luminosity Function in the ECO Survey

    Science.gov (United States)

    Andrews, Hayley; Andreas A. Berlind, Victor Calderon, Kathleen D. Eckert, Sheila J. Kannappan, Amanda J. Moffett, David V. Stark

    2016-01-01

    We study the environmental dependence of the galaxy luminosity function in the ECO survey and compare it with models that associate galaxies with dark matter halos. Specifically, we quantify the environment of each galaxy in the ECO survey using an Nth nearest neighbor distance metric, and we measure how the galaxy luminosity distribution varies from low density to high density environments. As expected, we find that luminous galaxies preferentially populate high density regions, while low luminosity galaxies preferentially populate lower density environments. We investigate whether this trend can be explained simply by the correlation of galaxy luminosity and dark matter halo mass combined with the environmental dependence of the halo mass function. In other words, we test the hypothesis that the luminosity of a galaxy depends solely on the mass of its dark matter halo and does not exhibit a residual dependence on the halo's larger environment. To test this hypothesis, we first construct mock ECO catalogs by populating dark matter halos in an N-body simulation with galaxies using a model that preserves the overall clustering strength of the galaxy population. We then assign luminosities to the mock galaxies using physically motivated models that connect luminosity to halo mass and are constrained to match the global ECO luminosity function. Finally, we impose the radial and angular selection functions of the ECO survey and repeat our environmental analysis on the mock catalogs. Though our mock catalog luminosity functions display similar qualitative trends as those from the ECO data, the trends are not in agreement quantitatively. Our results thus suggest that the simple models used to build the mocks are incomplete and that galaxy luminosity is possibly correlated with the larger scale density field.

  16. “Multi-functional Agriculture - Agriculture as a Resource for Energy and Environmental Preservation

    Directory of Open Access Journals (Sweden)

    the Editors

    2008-10-01

    Full Text Available In the present global situation, agriculture plays a major role in the interaction between socio-economic and biophysical processes. In addition to its principal and fundamental role of providing food, it now also needs to consider other ecosystem services provided by agriculture and to explore the new frontiers for the the future. In the 50’s of the 20th century the major topic was the introduction of inorganic fertilizers, in the 60’s the use of synthetic compounds for plant protection (insecticides, herbicides, fungicides, in the 70’s industrial crops, in the 80’s organic farming and the environmental impact of agronomic practices, and in the 90’s genetically modified crops (herbicide tolerance, insect resistance. In the current decade the themes are: land and water degradation, the production of agricultural biomass for bio-energy, and the increased expression of functional compounds in crops. The Bologna X Congress of ESA “Multi-functional Agriculture - Agriculture as a Resource for Energy and Environmental Preservation”, will meet the needs of finding tools to deal with environmental problems coupled with the increasing demand for food, and filling the knowledge gap on the physiological relationships between functional compound bio-synthesis and agricultural practices. Members of the European Society for Agronomy already have a deep knowledge of these issues, and the Bologna ESA Congress will provide an opportunity to develop them further particularly in regard to innovative agricultural techniques, new energy sources and better environmental monitoring.

  17. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  18. Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization

    International Nuclear Information System (INIS)

    We describe a simple and efficient method for solid phase extraction and speciation of trace quantities of arsenic. It is based on the use of functionalized aluminum oxide nanoparticles and does not require any oxidation or reduction steps. The experimental parameters affecting extraction and quantitation were optimized using fractional factorial design methods. Adsorbed arsenic was eluted from the sorbent with 1 M hydrochloric acid and determined by graphite furnace atomic absorption spectrometry. Preconcentration factors up to 750 were achieved depending on the sample volume. Studies on potential interferences by various anions and cations showed the method to be highly selective. Under optimum conditions, the calibration plots are linear in the 5.0 to 280 ng L−1 and 8.0 to 260 ng L−1 concentration ranges for As(III) and total arsenic, respectively. The detection limits (calculated for S/N ratios of 3) are 1.81 and 1.97 ng L−1 for As(III) and total arsenic, respectively. The method was successfully applied to the determination and speciation of arsenic in (spiked) environmental, food and biological samples and gave good recoveries. The method was validated using a certified geological reference material. (author)

  19. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Science.gov (United States)

    Panek, Jacek; Frąc, Magdalena; Bilińska-Wielgus, Nina

    2016-01-01

    Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700), the other from thermal processed strawberry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I) acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods. PMID:26815302

  20. Best Practices for Promoting Functional Biology Education: Activity-Based, Laboratory-Oriented Instruction

    Directory of Open Access Journals (Sweden)

    Abigail Mgboyibo Osuafor

    2016-08-01

    Full Text Available A major goal of science education is fostering students’ intellectual competencies. This goal can only be achieved when students are actively involved in the teaching-learning process. This study therefore, investigated the extent to which the biology teachers employ pupil-centered activities such as laboratory/practical instructional methods in order to improve the learning outcome of their students. The descriptive survey involved 73 Biology teachers randomly selected from all the six education zones of Anambra state, Nigeria. Four research questions and two hypotheses guided the conduct of the study. A 32-item structured questionnaire which has reliability co-efficient of 0.82 was used to collect data. Data were analyzed using mean, standard deviation and t-test. Results show that Biology teachers adopt practical-oriented strategies in teaching biology, conduct practical activities to a high extent, and perceive practical exercises as essential to effective teaching and learning of the subject. Provision of adequate number of laboratory materials, employment of adequate number of biology teachers, making provision for well designed laboratory activities in the curriculum and training of teachers on how to effectively combine theory with practical are some of the strategies that will encourage biology teachers to conduct practical lessons. There was no significant difference between male and female biology teachers in their responses to the different aspects investigated. Based on these findings, some recommendations were made which include that curriculum designers should incorporate guides for practical activities that go with each topic in the curriculum so as to encourage the teachers to teach theory with practical.