WorldWideScience

Sample records for biological function analyses

  1. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  2. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail. PMID:26449352

  3. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  4. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  5. Comparing functional annotation analyses with Catmap

    Directory of Open Access Journals (Sweden)

    Krogh Morten

    2004-12-01

    Full Text Available Abstract Background Ranked gene lists from microarray experiments are usually analysed by assigning significance to predefined gene categories, e.g., based on functional annotations. Tools performing such analyses are often restricted to a category score based on a cutoff in the ranked list and a significance calculation based on random gene permutations as null hypothesis. Results We analysed three publicly available data sets, in each of which samples were divided in two classes and genes ranked according to their correlation to class labels. We developed a program, Catmap (available for download at http://bioinfo.thep.lu.se/Catmap, to compare different scores and null hypotheses in gene category analysis, using Gene Ontology annotations for category definition. When a cutoff-based score was used, results depended strongly on the choice of cutoff, introducing an arbitrariness in the analysis. Comparing results using random gene permutations and random sample permutations, respectively, we found that the assigned significance of a category depended strongly on the choice of null hypothesis. Compared to sample label permutations, gene permutations gave much smaller p-values for large categories with many coexpressed genes. Conclusions In gene category analyses of ranked gene lists, a cutoff independent score is preferable. The choice of null hypothesis is very important; random gene permutations does not work well as an approximation to sample label permutations.

  6. Representing and analysing molecular and cellular function using the computer.

    Science.gov (United States)

    van Helden, J; Naim, A; Mancuso, R; Eldridge, M; Wernisch, L; Gilbert, D; Wodak, S J

    2000-01-01

    Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model.

  7. The biological function of consciousness

    Science.gov (United States)

    Earl, Brian

    2014-01-01

    This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159

  8. Functional Aspects of Biological Networks

    Science.gov (United States)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  9. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  10. Functional quantum biology in photosynthesis and magnetoreception

    CERN Document Server

    Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

  11. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  12. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  13. Complex Analyses of Plankton Structure and Function

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available This paper critically evaluates some complex methods that have been used to characterize the structure and function of freshwater plankton communities. The focus is on methods related to plankton size structure and carbon transfer. The specific methods reviewed are 1 size spectrum analysis, 2 size-fractionated phytoplankton productivity, 3 size-fractionated zooplankton grazing, 4 plankton ecological transfer efficiency, and 5 grazer effects on phytoplankton community structure. Taken together, these methods can provide information on community ecological properties that are directly related to practical issues including water quality and fisheries productivity. However, caution is warranted since application without a complete understanding of assumptions and context of the manipulations could lead to erroneous conclusions. As an example, experimental studies involving the addition or removal of zooplankton, especially when coupled with nutrient addition treatments, could provide information on the degree of consumer vs. resource control of phytoplankton. Resource managers subsequently could use this information in developing effective measures for controlling nuisance algal biomass. However, the experiments must be done critically and with sufficient safeguards and other measurements to ensure that treatments (e.g., zooplankton exclosure by screening of water actually are successful and do not introduce other changes in the community (e.g., removal of large algae. In all of the methods described here, the investigator must take care when generalizing results and, in particular, carry out a sufficient number of replications to encompass both the major seasonal and spatial variation that occurs in the ecosystem.

  14. Training Residential Staff to Conduct Trial-Based Functional Analyses

    Science.gov (United States)

    Lambert, Joseph M.; Bloom, Sarah E.; Kunnavatana, S. Shanun; Collins, Shawnee D.; Clay, Casey J.

    2013-01-01

    We taught 6 supervisors of a residential service provider for adults with developmental disabilities to train 9 house managers to conduct trial-based functional analyses. Effects of the training were evaluated with a nonconcurrent multiple baseline. Results suggest that house managers can be trained to conduct trial-based functional analyses with…

  15. Photosynthetic system as a biological functional element

    International Nuclear Information System (INIS)

    Photosynthetic apparatus of high plants and photosynthetic bacteria is essentially autonomic system in terms of genetics and structural -functional properties located in specific medium, a bio-membrane. Processes of light absorption and exciton migration in light harvesting antenna, separation and further transfer of charges in reaction centers have specific features, which may be used for application of these objects as key elements in construction of future biological functional elements. Progress in study and genetic modification of photosynthetic membranes achieved during the last decade opens great prospects in development biological functional elements and systems. The main characteristics of photosynthetic system for these purposes are: (i) energy conversion processes in the first light phase of the photosynthesis have very short periods, up to picoseconds, which indicates possibility of creation of ultrafast functional elements on their basis; (ii) characteristics sizes of photosynthetic units, 10-100 nm, and possibility to arrange regularly disposed elements in relevant membranes could be prospective point for creation of nano structures and on their basis relevant biologic functional elements; (iii) elements based on modified photosynthetic apparatus and bio-membranes might be efficiently created by methods of gene engineering and manipulation, that open huge opportunities for development of read biological functional systems. In the paper structural-functional properties and characteristics of high plants and purple photosynthetic bacteria, which may be useful for creation of future biological functional elements are considered. (author)

  16. Metacognition: computation, biology and function.

    Science.gov (United States)

    Fleming, Stephen M; Dolan, Raymond J; Frith, Christopher D

    2012-05-19

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746

  17. Functional biology of sympatric krill species

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel

    2016-01-01

    Here we compare the functional biology of the sympatric krill species, Meganyctiphanes norvegica and Thysanoessa inermis. For M. norvegica, we investigated functional responses on diatoms and copepods, together with prey size spectra on plankton ,400 mm and copepods in the size range 500–3220 mm...

  18. Marine Carotenoids: Biological Functions and Commercial Applications

    OpenAIRE

    Vega, José M.; Inés Garbayo; Francisco Bédmar; María Cuaresma; Carlos Vílchez; Eduardo Forján

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesised by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for wide range of commercial applications. Indeed, recent interest in the carotenoids has be...

  19. Trends and implications of biological analyses for agricultural operations

    Energy Technology Data Exchange (ETDEWEB)

    Ash, D.H.; Salladay, D.G.

    1994-10-01

    State and federal legislatures, regulatory agencies, the agricultural community, and the public at large have increasing concerns about groundwater contamination and other environmental issues. The U.S. Congress has requested all federal agencies working with agriculture to address these issues. Even with current pressures to {open_quotes}cut government spending,{close_quotes} public pressure prevails to clean up polluted sites and to prevent future contamination. Farmers, agrichemical dealers and producers, and related trade associations have voiced concern about regulations affecting their industries. Over the last three decades positive changes have evolved in the disposal or final resolution of agricultural wastes from indiscriminate disposal on land and in water, through regulated land filling and incineration to a point where biological treatment/remediation strategies are coming to the forefront. These biological strategies bring with them different requirements for analytical methods. In March of this year the Environmental Protection Agency (EPA) and ARA organized a work group which met in Cincinnati, Ohio, to discuss the bioremediation of pesticide-laden soil. This work group consisted of EPA researchers, regulators, and administrators; state ag-environmental technologists and program directors; ag-chemical producer, remediation program managers, university ag researchers, USDA researchers, and TVA technologists. Consensus was quickly obtained on the utter unaffordability of current chemical and thermal treatment schemes for agricultural wastes, contaminated soils, and rinsewaters. Consensus was also reached that conventional analytical methods are too expensive and complicated for use in the field demonstration/application of the bioremediation-type processes. Thus the group recommended and supported field agrichemical dealer demonstrations of landfarming and composting with an emphasis on the need to develop low cost, easy toxicological measurements.

  20. Understanding biological functions through molecular networks

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong Jackie Han

    2008-01-01

    The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.

  1. Chromatic alteration on marble surfaces analysed by molecular biology tools

    Directory of Open Access Journals (Sweden)

    Franco Palla

    2007-07-01

    Full Text Available The patina represents a superficial natural alteration of the constituting matter of the work of art. It emerges from the natural and usual stabilization process that the materials of the surface undergo because of the interaction with outdoor agents characterizing the surrounding environment. Besides, it is not linked to an obvious phenomenon of degradation that can be noticed through the change in the original colour of the matter. This is what we intend when we talk about biological patina usually generated by macro and/or micro-organic colonization (fungi, bacteria, alga which contributes to surface bio-deterioration and thus lead to the formation of orange, red or even brown and dark pigmented areas. The presence of chromatic alterations (rose-coloured areas, as a consequence of bacterial colonization, was most particularly pointed out in different sites, such as in the marble slabs on the facades of both the Cathedral of Siena (Duomo di Siena and the Certosa of Pavia. The present study shows an example of chromatic alteration of the surface of marble works due to bacterial colonization.

  2. Stress Field Analyses of Functionally Gradient Ceramic Tool by FEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cutting properties of the functionally gradient ceramic cutting tools relate closely to the gradient distribution. A cutting model of the functionally gradient ceramic tool is firstly designed in the present paper. The optimum of gradient distribution is obtained by way of the FEM analyses.

  3. Inferring Biologically Relevant Models: Nested Canalyzing Functions

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting the available data is huge and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory networks. Previously we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of the cell cycle in budding yeast.

  4. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  5. Insights into the functional biology of schistosomes

    OpenAIRE

    Walker Anthony

    2011-01-01

    Abstract The need to discover new treatments for human schistosomiasis has been an important driver for molecular research on schistosomes, a major breakthrough being the publication of the Schistosoma mansoni and Schistosoma japonicum genomes in 2009. This 'Primer' considers recent advances in the understanding of schistosome biology by providing a snapshot of selected areas of contemporary functional schistosome research, including that on the genome, the tegument, cell signalling and devel...

  6. Biological Function of REE in Plants & Microbes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rare earth elements (REE) and their compounds are widely applied in agronomic and medical fields for many years. The bioinorganic chemical research of REE during the past few years indicates that REE play important roles in the promotion of photosynthetic rate as well as root absorption, regulation of hormone and nitrogen metabolism, and suppression of microbes, etc. The metallic or non-metallic targets of key biomolecule in various physiological processes can be chosen by REE for the chelation or replacement, which enables REE to regulate the biological functions or behaviors of those biomolecule and consequently leads to significant embodiment of biological function of REE in plants and microbes.Overdose of REE, however, shows an inhibitory effect on living organisms. Therefore, this paper proposes two suggestions that will be available in the extension of full use of REE's biological function. One is to obey the dose law of REE and control REE concentrations within a safe range. The other is to further test the bioaccumulation and long-period influence of REE on organisms.

  7. Deducing protein function by forensic integrative cell biology.

    Directory of Open Access Journals (Sweden)

    William C Earnshaw

    2013-12-01

    Full Text Available Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  8. Deducing protein function by forensic integrative cell biology.

    Science.gov (United States)

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  9. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  10. Interpretation of differential item functioning analyses using external review

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K;

    2010-01-01

    using blinded reviewers, to help interpret these results. The authors conducted a literature review of this topic to describe the current usage of external reviews alongside DIF analyses. It concentrated on studies of health-related quality of life instruments, but studies in other fields were also...... considered. Relatively few examples of blinded item reviews were identified, and these were mostly from educational studies. A case study using blinded bilingual reviewers alongside translation DIF analyses of a health-related quality of life instrument is described. Future researchers should consider......Differential item functioning (DIF) analyses are used to determine whether certain groups respond differently to a particular item of a test or questionnaire; however, these do not explain the reasons for observed response differences. Many studies have used external reviews of items, sometimes...

  11. Biological functions of decorin in cancer

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Bi; Wancai Yang

    2013-01-01

    Decorin is a member of the extracellular matrix small leucine-rich proteoglycans family that exists and functions in stromal and epithelial cells.Accumulating evidence suggests that decorin affects the biology of various types of cancer by directly or indirectly targeting the signaling molecules involved in cell growth,survival,metastasis,and angiogenesis.More recent studies show that decorin plays important roles during tumor development and progression and is a potential cancer therapeutic agent.In this article,we summarize recent studies of decorin in cancer and discuss decorin's therapeutic and prognostic value.

  12. Flavonoids: Biosynthesis, Biological functions and Biotechnological applications

    Directory of Open Access Journals (Sweden)

    Maria Lorena eFalcone Ferreyra

    2012-09-01

    Full Text Available Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, bHLH and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.

  13. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Title Structural and functi...onal analyses of bacterial lipopolysaccharides. Authors

  14. A real-time transfer function analyser program for PFR

    International Nuclear Information System (INIS)

    A transfer function analyser software package has been produced which is believed to constitute a significant advance over others reported in the literature. The main advantages of the system are its operating speed, especially at low frequencies, which is due to its use of part-cycle integration and its high degree of interactive operator control. The driving sine wave, the return signals and the computed vector diagrams are displayed on TV type visual display units. Data output is by means of an incremental graph plotter or an IBM typewriter. (author)

  15. Implementation of response function concept for spent fuel cask analyses

    International Nuclear Information System (INIS)

    Due to the uncertain schedule about the first disposal of the large quantity of spent nuclear fuel (SNF) accumulated at the US commercial nuclear power plants, and due to the wide range of burnups and cooling times of the SNF, it is urgent to develop a quick and realistic method for analyzing an interim-storage or shipping package of SNF. The existing method uses design-basis SNF, and it is unnecessarily conservative and therefore uneconomic. This paper demonstrates the use of response-function concept for shielding and criticality analysis for a commercial SNF shipping cask. A PC-based computer code is written for this purpose. The program allows users to perform accurate shielding and criticality analyses for any selected cask payload on real-time basis. The results are less conservative, but more realistic than that of the design-basis analyses. One must be noted, however, that the response function is cask-specific. Therefore, the concept is most beneficial to the major cask type which is to be repeatedly used for a large number of SNF shipments

  16. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    OpenAIRE

    Narayanasamy, Shaman; Muller, Emilie; Sheik, Abdul; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalitie...

  17. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    Science.gov (United States)

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  18. Local analyses of Planck maps with Minkowski functionals

    Science.gov (United States)

    Novaes, C. P.; Bernui, A.; Marques, G. A.; Ferreira, I. S.

    2016-09-01

    Minkowski functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional χ2 value, at more than 2.2σ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian deviations. According to our results, these non-Gaussian contributions show signatures that can be associated to the presence of hot or cold spots in such regions. Moreover, some of these non-Gaussian deviations signals suggest the presence of foreground residuals in those regions located near the Galactic plane. Additionally, we confirm that most of the regions revealed in our analyses, but not all, have been recently reported in studies done by the Planck collaboration. Furthermore, we also investigate whether these non-Gaussian deviations can be possibly sourced by systematics, like inhomogeneous noise and beam effect in the released Planck data, or perhaps due to residual Galactic foregrounds.

  19. Local analyses of Planck maps with Minkowski Functionals

    CERN Document Server

    Novaes, C P; Marques, G A; Ferreira, I S

    2016-01-01

    Minkowski Functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional $\\chi^2$ value, at more than $2.2 \\sigma$ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian devia...

  20. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  1. Structure and biological functions of fungal cerebrosides

    Directory of Open Access Journals (Sweden)

    Barreto-Bergter Eliana

    2004-01-01

    Full Text Available Ceramide monohexosides (CMHs, cerebrosides are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.

  2. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  3. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

  4. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    Science.gov (United States)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  5. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functi

  6. Tunable ultrasensitivity: functional decoupling and biological insights.

    Science.gov (United States)

    Wang, Guanyu; Zhang, Mengshi

    2016-01-01

    Sensitivity has become a basic concept in biology, but much less is known about its tuning, probably because allosteric cooperativity, the best known mechanism of sensitivity, is determined by rigid conformations of interacting molecules and is thus difficult to tune. Reversible covalent modification (RCM), owing to its systems-level ingenuity, can generate concentration based, tunable sensitivity. Using a mathematical model of regulated RCM, we find sensitivity tuning can be decomposed into two orthogonal modes, which provide great insights into vital biological processes such as tissue development and cell cycle progression. We find that decoupling of the two modes of sensitivity tuning is critical to fidelity of cell fate decision; the decoupling is thus important in development. The decomposition also allows us to solve the 'wasteful degradation conundrum' in budding yeast cell cycle checkpoint, which further leads to discovery of a subtle but essential difference between positive feedback and double negative feedback. The latter guarantees revocability of stress-induced cell cycle arrest; while the former does not. By studying concentration conditions in the system, we extend applicability of ultrasensitivity and explain the ubiquity of reversible covalent modification. PMID:26847155

  7. Functional analyses of NSF1 in wine yeast using interconnected correlation clustering and molecular analyses.

    Directory of Open Access Journals (Sweden)

    Kyrylo Bessonov

    Full Text Available Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples.

  8. Whole-Genome Analyses of LUNG FUNCTION, HEIGHT and SMOKING

    OpenAIRE

    Janss, Luc; Sigsgaard, Torben; Sorensen, Daniel

    2014-01-01

    A joint analysis of FEV1 (Forced Expiratory Volume after one second) and height is reported using novel methodology, as well as a single-trait analysis of smoking status. A first goal of the study was to incorporate dense genetic marker information in a random regression (Bayesian) model to quantify the relative contributions of genomic and environmental factors to the relationship between FEV1 and height. Smoking status was analysed using a probit random regression model and a second goal of...

  9. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement;

    on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  10. Printable Bioelectronics To Investigate Functional Biological Interfaces.

    Science.gov (United States)

    Manoli, Kyriaki; Magliulo, Maria; Mulla, Mohammad Yusuf; Singh, Mandeep; Sabbatini, Luigia; Palazzo, Gerardo; Torsi, Luisa

    2015-10-19

    Thin-film transistors can be used as high-performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to high-performance low-cost bioelectronic sensing devices that are potentially very useful for point-of-care applications. Among others, electrolyte-gated transistors are of interest as they can be operated as capacitance-modulated devices, because of the high capacitance of their charge double layers. Specifically, it is the capacitance of the biolayer, being lowest in a series of capacitors, which controls the output current of the device. Such an occurrence allows for extremely high sensitivity towards very weak interactions. All the aspects governing these processes are reviewed here. PMID:26420480

  11. Function Analyses of Geographic Information System on Rural Distribution Network

    Institute of Scientific and Technical Information of China (English)

    FANG Junlong; FAN Yongcun; ZHANG Chunmei; GU Shumin

    2006-01-01

    With the actuality and characteristic and requirement of rural power enterprise distribution network management, this article introduced the function of geographic information system on the framework of distribution network, in order to develop rural distribution network.

  12. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  13. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    OpenAIRE

    Ye-Rang Yun; Jong Eun Won; Eunyi Jeon; Sujin Lee; Wonmo Kang; Hyejin Jo; Jun-Hyeog Jang; Ueon Sang Shin; Hae-Won Kim

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain opt...

  14. Genomic Functionalization: The Next Revolution In Biology.

    Energy Technology Data Exchange (ETDEWEB)

    Imbro, Paula; Schoeniger, Joseph S.; Anderson, Peter

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins. Page 4 of 17 PAGE INTENTIONALLY LEFT BLANK

  15. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  16. Correlation analyses of clinical and molecular findings identify candidate biological pathways in systemic juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Ling Xuefeng B

    2012-10-01

    Full Text Available Abstract Background Clinicians have long appreciated the distinct phenotype of systemic juvenile idiopathic arthritis (SJIA compared to polyarticular juvenile idiopathic arthritis (POLY. We hypothesized that gene expression profiles of peripheral blood mononuclear cells (PBMC from children with each disease would reveal distinct biological pathways when analyzed for significant associations with elevations in two markers of JIA activity, erythrocyte sedimentation rate (ESR and number of affected joints (joint count, JC. Methods PBMC RNA from SJIA and POLY patients was profiled by kinetic PCR to analyze expression of 181 genes, selected for relevance to immune response pathways. Pearson correlation and Student's t-test analyses were performed to identify transcripts significantly associated with clinical parameters (ESR and JC in SJIA or POLY samples. These transcripts were used to find related biological pathways. Results Combining Pearson and t-test analyses, we found 91 ESR-related and 92 JC-related genes in SJIA. For POLY, 20 ESR-related and 0 JC-related genes were found. Using Ingenuity Systems Pathways Analysis, we identified SJIA ESR-related and JC-related pathways. The two sets of pathways are strongly correlated. In contrast, there is a weaker correlation between SJIA and POLY ESR-related pathways. Notably, distinct biological processes were found to correlate with JC in samples from the earlier systemic plus arthritic phase (SAF of SJIA compared to samples from the later arthritis-predominant phase (AF. Within the SJIA SAF group, IL-10 expression was related to JC, whereas lack of IL-4 appeared to characterize the chronic arthritis (AF subgroup. Conclusions The strong correlation between pathways implicated in elevations of both ESR and JC in SJIA argues that the systemic and arthritic components of the disease are related mechanistically. Inflammatory pathways in SJIA are distinct from those in POLY course JIA, consistent with

  17. Whole-Genome Analyses of lung function, height and smoking

    DEFF Research Database (Denmark)

    Janss, Luc; Sigsgaard, Torben; Sorensen, Daniel

    2014-01-01

    quantify the relative contributions of genomic and environmental factors to the relationship between FEV1 and height. Smoking status was analysed using a probit random regression model and a second goal of the study was to estimate the genomic heritability of smoking status. Estimates of genomic...... heritabilities for height and FEV1 are equal to 0.47 and to 0.30, respectively. The estimates of the genomic and environmental correlations between height and FEV1 are 0.78 and 0.34, respectively. The posterior mean of the genomic heritability of smoking status is equal to 0.14 and provides evidence for the...... presence of genetic factors associated with the trait. Under the data augmentation strategy introduced, the joint posterior distribution of FEV1 and height factorises into two independent posterior distributions. This simplifies programming and results in excellent numerical behaviour. The approach can be...

  18. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  19. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  20. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.;

    2009-01-01

    patients with no detectable serum FI and also close family members revealed homozygous or compound heterozygous mutations in several domains of FI. These mutations were introduced into recombinant FI and the resulting proteins were purified for functional studies, while transient transfection was used...... to analyze expression and secretion. The G170V mutation resulted in a protein that was not expressed, whereas the mutations Q232K, C237Y, S250L, I339M and H400L affected secretion. Furthermore, the C237Y and the S250L mutants did not degrade C4b and C3b as efficiently as the WT. The truncated Q336x mutant...... could be expressed, in vitro, but was not functional because it lacks the serine protease domain. Furthermore, this truncated FI was not detected in serum of the patient. Structural investigations using molecular modeling were performed to predict the potential impact the mutations have on FI structure...

  1. Screening and Functional Analyses of Nilaparvata lugens Salivary Proteome.

    Science.gov (United States)

    Huang, Hai-Jian; Liu, Cheng-Wen; Huang, Xiao-Hui; Zhou, Xiang; Zhuo, Ji-Chong; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2016-06-01

    Most phloem-feeding insects secrete gelling and watery saliva during the feeding process. However, the functions of salivary proteins are poorly understood. In this study, our purpose was to reveal the components and functions of saliva in a rice sap-sucking insect pest, Nilaparvata lugens. The accomplishment of the whole genome and transcriptome sequencing in N. lugens would be helpful for elucidating the gene information and expression specificity of the salivary proteins. In this study, we have, for the first time, identified the abundant protein components from gelling and watery saliva in a monophagous sap-sucking insect species through shotgun proteomic detection combined with the genomic and transcriptomic analysis. Eight unknown secreted proteins were limited to N. lugens, indicating species-specific saliva components. A group of annexin-like proteins first identified in the secreted saliva displayed different domain structure and expression specificity with typical insect annexins. Nineteen genes encoding five annexin-like proteins, six salivaps (salivary glands-specific proteins with unknown function), seven putative enzymes, and a mucin-like protein showed salivary gland-specific expression pattern, suggesting their importance in the physiological mechanisms of salivary gland and saliva in this insect species. RNA interference revealed that salivap-3 is a key protein factor in forming the salivary sheath, while annexin-like5 and carbonic anhydrase are indispensable for N. lugens survival. These novel findings will greatly help to clarify the detailed functions of salivary proteins in the physiological process of N. lugens and elucidate the interaction mechanisms between N. lugens and the rice plant, which could provide important targets for the future management of rice pests. PMID:27142481

  2. An abrupt stochastic damage function to analyse climate policy benefits

    OpenAIRE

    Ha-Duong, Minh; Dumas, Patrice

    2004-01-01

    Chapter in Alain Haurie and Laurent Viguier (eds.) 2005, The coupling of climate and economic dynamics, Essays on Integrated Assessment. Series: Advances in Global Change Research, Vol. 22 , Kluwerhttp://www.centre-cired.fr/perso/haduong/files/Dumas.ea-2004-AbruptStochasticDamage.pdf This paper studies uncertainty about the non-linearity of climate change impact. The DIAM 2.3 model is used to compute the sensitivity of optimal CO2 emissions paths with respect to damage function parameters....

  3. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    Science.gov (United States)

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  4. Analyses of functionally graded plates with a magnetoelectroelastic layer

    International Nuclear Information System (INIS)

    A meshless local Petrov–Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM) plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner–Mindlin shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment, shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step function as the test function is applied to derive local integral equations. After performing the spatial MLS approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained. The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads are analyzed. (paper)

  5. Labeling and functionalizing amphipols for biological applications.

    Science.gov (United States)

    Le Bon, Christel; Popot, Jean-Luc; Giusti, Fabrice

    2014-10-01

    Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes. PMID:24696186

  6. [Biological experiments in microgravity: equilibrium function].

    Science.gov (United States)

    Gorgiladze, G I; Shipov, A A; Horn, E

    2012-01-01

    The review deals with the investigations of structural and functional modifications in the equilibrium organ (EO) in invertebrates (coelenterates, shells, crustaceans and insects) and vertebrates (fishes, amphibians, rats, primates) on different ontogenetic stages in the condition of microgravity and during readaptation to the Earth's gravity. Results of the investigations detail the adaptive strategy of terrestrial organism in the environment lacking the gravitational components that leads to the discrepancy of an inner model of the body-environment schema constructed by the central nervous system at 1 g and the novel reality. It is manifested by ataxic behavior and increased graviceptors' afferentation against efferent system inactivation. The new condition is defined as a sensibilization phase ensued by the eluding phase: behavior obeys the innate motion strategy, whereas graviceptors' afferentation decreases due to activation of the efferent system. Readaptation to 1 G takes several to 50 days and proceeds as a sequence of slow in motion behavior, ataxia and vestibular sensitization. Reactivity of the gravitosensory system to microgravity was found to be age-dependent. Gain in the EO inertial mass in microgravity and reduction with return to 1 g indicates gravity relevance to EO genesis. PMID:23402139

  7. Evidence for a Role of Executive Functions in Learning Biology

    Science.gov (United States)

    Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela

    2014-01-01

    Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…

  8. Soil microbial community structure in diverse land use systems:A comparative study using Biolog,DGGE,and PLFA analyses

    Institute of Scientific and Technical Information of China (English)

    XUE Dong; YAO Huai-Ying; GE De-Yong; HUANG Chang-Yong

    2008-01-01

    Biolog,16S rRNA gene denaturing gradient gel electrophoresis (DGGE),and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden systems (8-,50-,and 90year-old tea gardens),an adjacent wasteland,and a 90-year-old forest.Biolog analysis showed that the average well color development (AWCD) of all carbon sources and the functional diversity based on the Shannon index decreased (P<0.05)in the following order:wasteland>forest>tea garden.For the DGGE analysis,the genetic diversity based on the Shannon index was significantly lower in the tea garden soils than in the wasteland.However,compared to the 90-year-old forest,the tea garden soils showed significantly higher genetic diversity.PLFA analysis showed that the ratio of Gram positive bacteria to Gram negative bacteria was significantly higher in the tea garden soils than in the wasteland,and the highest value was found in the 90-year-old forest.Both the fungal PLFA and the ratio of fungi to bacteria were significantly higher in the three tea garden soils than in the wasteland and forest,indicating that fungal PLFA was significantly affected by land-use change.Based on cluster analysis of the soil microbial community structure,all three analytical methods showed that land-use change had a greater effect on soil microbial community structure than tea garden age.

  9. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  10. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.

  11. Thermal post-bunkling analyses of functionally graded material rod

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qun; WANG Zhong-min; LIU Hong-zhao

    2007-01-01

    The non-linear governing differential equations of immovably simply supported functionally graded material (FGM) rod subjected to thermal loads were derived.The thermal post-buckling behaviors of FGM rod made of ZrO2 and Ti-6A1-4Vwere analyzed by shooting method. Firstly, the thermal post-buckling equilibrium paths of the FGM rod with different gradient index in the uniform temperature field were plotted,and compared with the behaviors of the homogeneous rods made of ZrO2 and Ti-6A1-4V materials, respectively. For given value of end rotation angles, the influence of gradient index on the thermal post-buckling behaviors of FGM rod was discussed. Secondly, the thermal post-buckling characteristics of the FGM rod were analyzed when the temperature difference parameter is changed while the bottom temperature parameter remains constant, and when the bottom temperature parameter is changed while the temperature difference parameter remains constant, and compared with the characteristics of the two homogeneous material rods.

  12. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  13. Micro-PIXE analyses of frozen-hydrated semi-thick biological sections

    International Nuclear Information System (INIS)

    Cryo-micro-PIXE system and methodology of microanalysis of frozen-hydrated semi-thick biological sections is described. A commercially available cryotransfer system used in electron microscopy has been adapted for this purpose. The analyzed material was frozen by metal–mirror method and sections of 20–50 micron thickness were prepared. Micro-PIXE and simultaneous proton backscattering was performed using 3 MeV proton beam. Monitoring of water vapour composition during the proton bombardment showed good stability of the analyzed material. The results of repetitive analyses of standards prepared from gelatin–glycerol solution with added known concentrations of K, Ni, Cu, Zn were in good agreement with expected, calculated values. Mass losses and changes of elemental composition were monitored. Elemental maps obtained for frozen-hydrated semi-thick section of Ni hyperaccumulator Senecio coronatus showed excellent preservation of leaf morphology and the distribution of elements. Quantitative elemental mapping of frozen-hydrated specimens compared with subsequent analysis of the same areas after freeze-drying revealed similar distribution pattern in both cases. It is clear, however, that freeze-drying induces some distortion of cell morphology and specimen shrinkage

  14. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Science.gov (United States)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  15. Systematic Functional Annotation and Visualization of Biological Networks.

    Science.gov (United States)

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  16. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.

    Science.gov (United States)

    He, Yongqun

    2012-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  17. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics

    Directory of Open Access Journals (Sweden)

    Yongqun eHe

    2012-02-01

    Full Text Available Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of ten classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  18. Biomarkers of Aging: From Function to Molecular Biology

    OpenAIRE

    Karl-Heinz Wagner; David Cameron-Smith; Barbara Wessner; Bernhard Franzke

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a sing...

  19. Functional and biological characteristics of asthma in cleaning workers.

    NARCIS (Netherlands)

    Vizcaya, D.; Mirabelli, M.C.; Orriols, R.; Antó, J.M.; Barreiro, E.; Burgos, F.; Arjona, L.; Gomez, F.; Zock, J.P.

    2013-01-01

    Objectives: Cleaning workers have an increased risk of asthma but the underlying mechanisms are largely unknown. We studied functional and biological characteristics in asthmatic cleaners and compared these to healthy cleaners. Methods: Forty-two cleaners with a history of asthma and/or recent respi

  20. Biological ensilage of fish - optimization of stability, safety and functionality

    NARCIS (Netherlands)

    Enes Dapkevicius, M.L.N.

    2002-01-01

    This thesis deals with stability, safety, and functionality aspects of biological fish silage (BFS) obtained by lactic acid fermentation. BFS may provide an economically viable, environment friendly way of upgrading fish waste.BFS has been found advantageous when compared to the so-called acid proce

  1. Further Evaluation of Leisure Items in the Attention Condition of Functional Analyses

    OpenAIRE

    Roscoe, Eileen M; Carreau, Abbey; MacDonald, Jackie; Pence, Sacha T

    2008-01-01

    Research suggests that including leisure items in the attention condition of a functional analysis may produce engagement that masks sensitivity to attention. In this study, 4 individuals' initial functional analyses indicated that behavior was maintained by nonsocial variables (n  =  3) or by attention (n  =  1). A preference assessment was used to identify items for subsequent functional analyses. Four conditions were compared, attention with and without leisure items and control with and w...

  2. Toward functional analysis of protein interactome using "in vitro virus": in silico analyses of Fos/Jun interactors.

    Science.gov (United States)

    Miyamoto-Sato, Etsuko; Yanagawa, Hiroshi

    2006-01-01

    Our high-throughput in vitro virus (IVV) method for selection of protein-protein interactions (PPI) and complexes, based on a simple cell-free co-translation and selection followed by computational sequence data analysis, was previously used to identify 31 Fos and Jun interactors. Here, in silico analyses of biological function, localization and phenotype of these AP-1 (Fos/Jun) interactors were performed. The results suggest that Fos and Jun do not necessarily work together, but also interact separately with novel interactors, including products of disease-related genes. Fos showed transcription-related activities, while Jun interacted with motor-related and structural proteins. The reliability of the IVV selection for the Fos interactors was further confirmed by means of in vitro reciprocal prey and bait protein experiments and co-immunoprecipitation. Further study of these novel interactors may provide clues to new pathways or mechanisms of biological functions and diseases.

  3. Applications of large-scale density functional theory in biology.

    Science.gov (United States)

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  4. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  5. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  6. A structural biology perspective on NMDA receptor pharmacology and function.

    Science.gov (United States)

    Regan, Michael C; Romero-Hernandez, Annabel; Furukawa, Hiro

    2015-08-01

    N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.

  7. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  8. Relative influences of establishing operations and reinforcement contingencies on self-injurious behavior during functional analyses.

    OpenAIRE

    Worsdell, A S; Iwata, B A; Conners, J; Kahng, S W; Thompson, R H

    2000-01-01

    In the typical functional analysis in which the antecedent and consequent events associated with problem behavior are manipulated, the control condition involves elimination of both the relevant establishing operation (EO) and its associated contingency through a schedule of noncontingent reinforcement (usually fixed-time [FT] 30 s). In some functional analyses, however, antecedent events are manipulated in the absence of differential consequences, and a common test condition in such analyses...

  9. SU-E-T-54: Benefits of Biological Cost Functions

    Energy Technology Data Exchange (ETDEWEB)

    Demirag, N [Elekta CMS GmbH, Freiburg Im Breisgau, baden wurttemberg (Germany)

    2014-06-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics.

  10. Development of Analyses of Biological Steroids Using Chromatography--Special Reference to Vitamin D Compounds and Neurosteroids--

    Institute of Scientific and Technical Information of China (English)

    Kazutake Shimada; Tatsuya Higashi; Kuniko Mitamura

    2003-01-01

    Steroids comprise a large group of natural substances that must frequently be monitored in various biological materials. Due to the metabolic versatility of steroid molecules, extremely complex mixtures are often encountered, necessitating the use of a chromatographic procedure prior to measurement. In this article we present our work, that is, the development of analyses of biological steroids (especially vitamin D compounds and neurosteroids) using gas chromatography/mass spectrometry, high-performance liquid chromatography (including inclusion chromatography using cyclodextrin) and liquid chromatography/mass spectrometry.

  11. Biological framework for soil aggregation: Implications for ecological functions.

    Science.gov (United States)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  12. Functionalized Conjugated Polyelectrolytes for Biological Sensing and Imaging.

    Science.gov (United States)

    Zhan, Ruoyu; Liu, Bin

    2016-06-01

    Conjugated polyelectrolytes (CPEs) are macromolecules with highly delocalized π-conjugated backbones and charged side chains, which are unique types of active materials, with wide applications in optoelectronics, sensing, imaging, and therapy. By attaching specific groups (e.g., recognition elements, magnetic resonance (MR) contrast agents, gene carriers, and drugs) to the side chain or backbone of CPEs, functionalized CPEs have been developed and used for specific biological applications. In this account, we summarize the recent progress of functionalized CPEs with respect to their synthesis and biomedical applications. Future perspectives are also discussed at the end. PMID:27230631

  13. Utilization of inherent miRNAs in functional analyses of Toxoplasma gondii genes.

    Science.gov (United States)

    Crater, Anna K; Manni, Emad; Ananvoranich, Sirinart

    2015-01-01

    MicroRNAs (miRNAs) are crucial genetic effectors partaking in numerous mechanisms of gene regulation in eukaryotic organisms. Recent discoveries of miRNA in Toxoplasma gondii, an intracellular obligate parasite of the phylum Apicomplexa, suggested possible roles of T. gondii miRNAs (Tg-miRNAs) in the post-transcriptional gene regulation and in the cell biology of the parasite. To gain a better understanding of the involvement of Tg-miRNAs in regulating the parasite gene expression, a dual luciferase reporter system was used in the examination and evaluation of the effects of endogenous Tg-miRNAs, their mimics and inhibitors. A Renilla luciferase (Rnluc) transcript was engineered to carry independent binding sites of two abundant species, namely Tg-miR-60a and Tg-miR-4a, so that the expression of Rnluc was silenced in a sequence specific manner by Tg-miR-60a and Tg-miR-4a. Notably, Tg-miR-60a, but not Tg-miR-4a, caused the levels of Rnluc transcripts to decrease. These findings strongly suggested that T. gondii employs the Tg-miRNA species-specific mode of silencing actions: transcript degradation by Tg-miR-60a, and translational suppression by Tg-miR-4a. Herein we developed a genetic system that exploits and directs the most abundant Tg-miR-60a for loss-of-function analyses in T. gondii. As a proof of principle, we showed that when the binding sites for Tg-miR-60a were introduced into the parasite transcripts via homologous recombination at the locus of (i) DEAD-box RNA helicase (TgHoDI), or (ii) lactate dehydrogenase isoform 1 (TgLDH1), the expression levels of the selected genes can be altered. It was thus proven that inherit Tg-miR-60a could be directed and used to assist in the loss-of-function analyses.

  14. EULAR points to consider when establishing, analysing and reporting safety data of biologics registers in rheumatology

    DEFF Research Database (Denmark)

    Dixon, William G; Carmona, Loreto; Finckh, Axel;

    2010-01-01

    upon safety data generated from observational drug registers makes it important to convert the lessons learned from such registers into recommendations for rheumatologists embarking upon the establishment of future registers, or analysing and reporting from new and existing registers....

  15. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  16. Systems analysis of biological networks in skeletal muscle function.

    Science.gov (United States)

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  17. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  18. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  19. PRODUCTION PROCESS DESIGN OF FUNCTIONAL FOOD PRODUCTS BASED ON FUNCTIONAL VALUE ANALYSES

    OpenAIRE

    Pershakova T. V.; Shubina L. N.; Derenkova I. A.; Naumov N. N.

    2015-01-01

    The article substantiates the feasibility of the method of functional value analysis application to ensure high efficiency for the production of functional food products. This article describes the design technique of food functionality based on the methodology of value analysis, allowing considering such factors as consumer preferences, nutritional, functional value, economic and technological indicators while developing product formulations and technologies. With the example of flour confec...

  20. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.

  1. Phenological response of a key ecosystem function to biological invasion.

    Science.gov (United States)

    Alp, Maria; Cucherousset, Julien; Buoro, Mathieu; Lecerf, Antoine

    2016-05-01

    Although climate warming has been widely demonstrated to induce shifts in the timing of many biological events, the phenological consequences of other prominent global change drivers remain largely unknown. Here, we investigated the effects of biological invasions on the seasonality of leaf litter decomposition, a crucial freshwater ecosystem function. Decomposition rates were quantified in 18 temperate shallow lakes distributed along a gradient of crayfish invasion and a temperature-based model was constructed to predict yearly patterns of decomposition. We found that, through direct detritus consumption, omnivorous invasive crayfish accelerated decomposition rates up to fivefold in spring, enhancing temperature dependence of the process and shortening the period of major detritus availability in the ecosystem by up to 39 days (95% CI: 15-61). The fact that our estimates are an order of magnitude higher than any previously reported climate-driven phenological shifts indicates that some powerful drivers of phenological change have been largely overlooked. PMID:26931804

  2. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  3. Lipids in the structure and functions of biological membranes

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.I.

    2014-06-01

    Full Text Available Lipids are one of the main components of cellular membranes. Lipids make up 30-55% of the cell content depending on the types of cells. Phospholipids, sphingomyelins, cholesterol, etc. are characteristic to cellular membranes. The composition of lipids of the both sides of the membranes differs. This fact determines asymmetry of the structure of bili-pid layer. The reason for many pathologies is the changes in the properties of cellular membranes with the modification of their components. The study of structure and functioning of cellular biomembranes is essential for many researchers. The condition of membranes, their quality, their quantitative composition and modification under the influence of different factors as well as their interaction with carbohydrate and protein component are of great importance for the functioning of both membranes, cells and the body in general. Analysis and structuring of lipids and their functions in biological membranes are studied.

  4. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  5. The Impact of Collective Molecular Dynamics on Physiological and Biological Functionalities of Artificial and Biological Membranes

    Science.gov (United States)

    Rheinstadter, Maikel

    2008-03-01

    We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).

  6. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    International Nuclear Information System (INIS)

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis

  7. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  8. Cell biological analyses of anther morphogenesis and pollen viability in Arabidopsis and rice.

    Science.gov (United States)

    Chang, Fang; Zhang, Zaibao; Jin, Yue; Ma, Hong

    2014-01-01

    Major advances have been made in recent years in our understanding of anther development through a combination of genetic studies, cell biological technologies, biochemical analysis, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize the widely used protocols for pollen viability staining; the investigation of anther morphogenesis by light microscopy of semi-thin sections; TUNEL assay for programmed tapetum cell death; and laser microdissection procedures to obtain specialized cells or cell layers for carrying out transcriptomics.

  9. Functionalization of hydroxyl terminated polybutadiene with biologically active fluorescent molecule

    Indian Academy of Sciences (India)

    R Murali Sankar; Subhadeep Saha; K Seeni Meera; Tushar Jana

    2009-10-01

    A biologically active molecule, 2-chloro-4,6-bis(dimethylamino)-1,3,5-triazine (CBDT), has been covalently attached at the terminal carbon atoms of the hydroxyl terminated polybutadiene (HTPB) backbone. The modification of HTPB backbone by CBDT molecule does not affect the unique physico-chemical properties such as fluidity, hydroxyl value and microstructure of the parent HTPB. The formation of hydrogen bonding between the terminal hydroxyl groups and the nitrogen atoms of triazine moiety is the driving force for the terminal attachment chemistry. The functionalized HTPB (HTPB–CBDT) shows a strong fluorescence emission at 385 nm.

  10. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    Science.gov (United States)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  11. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  12. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Directory of Open Access Journals (Sweden)

    Timothy G Bromage

    Full Text Available The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the

  13. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Science.gov (United States)

    Bromage, Timothy G; Idaghdour, Youssef; Lacruz, Rodrigo S; Crenshaw, Thomas D; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  14. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  15. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.

  16. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  17. Functions of microRNAs in cardiovascular biology and disease.

    Science.gov (United States)

    Hata, Akiko

    2013-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  18. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  19. Sucrose metabolism gene families and their biological functions.

    Science.gov (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  20. Crucial role of detailed function, task, timeline, link and human vulnerability analyses in HRA

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.; Haney, L.N.; Ostrom, L.T.

    1992-10-01

    This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.

  1. A systematic literature review on reviews and meta-analyses of biologically based CAM-practices for cancer patients

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Lunde, Anita; Johannessen, Helle

    2010-01-01

    for the improvement of quality of life. Breast cancer was the most common single type of cancer reviewed (8 reviews), all focused on the relief of side effects, primarily by supplements containing soy/plant hormones. The use of these supplements should be discouraged due to a risk for progression of breast cancer......Purpose To provide an overview and evaluate the evidence of biologically based CAM-practices for cancer patients. Methods Pubmed, Social Science Citation Index, AMED and the Cochrane library were systematically searched for reviews on effects of biologically based CAM-practices, including herbal...... remedies, vitamins and other dietary supplements, for cancer or cancer related symptoms published 2000-2008. All studies were assessed according to the SIGN hierarchy of evidence. Results A total of 78 reviews/meta-analyses were identified. Of these, 32 were evaluated as high-quality, whereas 46 had low...

  2. Using Additional Analyses to Clarify the Functions of Problem Behavior: An Analysis of Two Cases

    Science.gov (United States)

    Payne, Steven W.; Dozier, Claudia L.; Neidert, Pamela L.; Jowett, Erica S.; Newquist, Matthew H.

    2014-01-01

    Functional analyses (FA) have proven useful for identifying contingencies that influence problem behavior. Research has shown that some problem behavior may only occur in specific contexts or be influenced by multiple or idiosyncratic variables. When these contexts or sources of influence are not assessed in an FA, further assessment may be…

  3. Functional analyses of the digestive ß-Glucosidase of Formosan Subterranean Termites (Coptotermes formosanus)

    Science.gov (United States)

    The research was to elucidate the function of the ß-glucosidase of Formosan subterranean termites in vitro and in vivo. Quantitative RT-PCR analyses indicated that the gene transcript was relatively more abundant in the foraging worker caste than in other castes and salivary glands were the major ex...

  4. Analysing Symbolic Expressions in Secondary School Chemistry: Their Functions and Implications for Pedagogy

    Science.gov (United States)

    Liu, Yu; Taber, Keith S.

    2016-01-01

    Symbolic expressions are essential resources for producing knowledge, yet they are a source of learning difficulties in chemistry education. This study aims to employ social semiotics to analyse the symbolic representation of chemistry from two complementary perspectives, referred to here as contextual (i.e., historical) and functional. First, the…

  5. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  6. Chemical and Biological Analyses of the Essential Oils and Main Constituents of Piper Species

    Directory of Open Access Journals (Sweden)

    Leonor Laura Leon

    2012-02-01

    Full Text Available The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3% and β-elemene (33.1% and in P. duckei oil the major components found were germacrene D (14.7% and trans-caryophyllene (27.1%. P. demeraranum and P. duckei oils exhibited biological activity, with IC50 values between 15 to 76 μg mL−1 against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC50 = 278 μM and caryophyllene (IC50 = 96 μM, were tested against the strains of Leishmania amazonensis, and the IC50 values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs.

  7. An Improved Computing Method for Analysing the Spatial Resolved Reflectance from Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    来建成; 李振华; 贺安之

    2003-01-01

    A mathematical expression of reflectance point-spread function, which is defined as the spatial distribution of light diffuse-reflected from bio-tissues irradiated by an infinitely narrow photon beam, is derived from the diffusion approximation (DA) theory. With the introduction of reflectance point-spread function to describe the reflectance characteristics of bio-tissues, the convolution method is used to calculate the spatial resolved reflectance from dense and thick tissues irradiated by different photon beams. This is called the DA based convolution method and is used to calculate the responses of the semi-infinite bio-tissues irradiated by a Gaussian beam and a flat beam with different beam radius. The calculation results show that the DA based convolution method has much higher computing efficiency compared to the Monte Carlo method.

  8. Insights into IL-23 biology: From structure to function.

    Science.gov (United States)

    Floss, Doreen M; Schröder, Jutta; Franke, Manuel; Scheller, Jürgen

    2015-10-01

    Interleukin (IL-)23 is a central cytokine controlling TH17 development. Overshooting IL-23 signaling contribute to autoimmune diseases. Moreover, GWAS studies have identified several SNPs within the IL-23 receptor, which are associated with autoimmune diseases. IL-23 is a member of the IL-12-type cytokine family and consists of IL-23p19 and p40. Within the IL-12 family, IL-12 and IL-23 share the p40 cytokine subunit and the IL-12Rβ1 as one chain of the receptor complex. For signaling, IL-23 triggers heterodimerization of IL-12Rβ1 and the IL-23R. Subsequently, signal transduction pathways including JAK/STAT, MAPK and PI3K are activated. Most studies have investigated the biological relevance of IL-23 in the development of TH17 cells and autoimmunity, whereas less is known about the molecular context of IL-23 biology. Therefore, we focused on IL-23 receptor complex assembly, signal transduction and functional relevance of IL-23R SNPs in the context of IL-23-inhibitory principles.

  9. Once upon Multivariate Analyses: When They Tell Several Stories about Biological Evolution.

    Science.gov (United States)

    Renaud, Sabrina; Dufour, Anne-Béatrice; Hardouin, Emilie A; Ledevin, Ronan; Auffray, Jean-Christophe

    2015-01-01

    Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing 'better' than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred. PMID:26192946

  10. Once upon Multivariate Analyses: When They Tell Several Stories about Biological Evolution.

    Directory of Open Access Journals (Sweden)

    Sabrina Renaud

    Full Text Available Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1 the Principal Component Analysis (PCA, which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2 the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA for more than two groups, which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3 the between-group PCA (bgPCA which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing 'better' than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA, by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.

  11. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  12. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  13. Genome-wide survey for biologically functional pseudogenes.

    Science.gov (United States)

    Svensson, Orjan; Arvestad, Lars; Lagergren, Jens

    2006-05-01

    According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3), and one from the Spinocerebellar ataxia type 1 protein (ATX1). Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios. PMID:16680195

  14. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2013-04-01

    Full Text Available Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.

  15. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    Science.gov (United States)

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  16. Biosynthesis and biological functions of terpenoids in plants.

    Science.gov (United States)

    Tholl, Dorothea

    2015-01-01

    Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.

  17. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  18. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  19. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    Science.gov (United States)

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc. PMID:27177429

  20. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    Science.gov (United States)

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.

  1. radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar

    Directory of Open Access Journals (Sweden)

    Matkovich Carolyn

    2010-10-01

    Full Text Available Abstract Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card and extracts and retains information of biological relevance (i.e. moving targets. Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.

  2. Clinical, Functional, and Biological Correlates of Cognitive Dimensions in Major Depressive Disorder - Rationale, Design, and Characteristics of the Cognitive Function and Mood Study (CoFaM-Study).

    Science.gov (United States)

    Baune, Bernhard T; Air, Tracy

    2016-01-01

    Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers. PMID:27616997

  3. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  4. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S

    2014-06-12

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world\\'s oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  5. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    Directory of Open Access Journals (Sweden)

    Ari J S Ferreira

    Full Text Available Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  6. Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function

    Science.gov (United States)

    Tang, Wenbo; Kowgier, Matthew; Loth, Daan W.; Soler Artigas, María; Joubert, Bonnie R.; Hodge, Emily; Gharib, Sina A.; Smith, Albert V.; Ruczinski, Ingo; Gudnason, Vilmundur; Mathias, Rasika A.; Harris, Tamara B.; Hansel, Nadia N.; Launer, Lenore J.; Barnes, Kathleen C.; Hansen, Joyanna G.; Albrecht, Eva; Aldrich, Melinda C.; Allerhand, Michael; Barr, R. Graham; Brusselle, Guy G.; Couper, David J.; Curjuric, Ivan; Davies, Gail; Deary, Ian J.; Dupuis, Josée; Fall, Tove; Foy, Millennia; Franceschini, Nora; Gao, Wei; Gläser, Sven; Gu, Xiangjun; Hancock, Dana B.; Heinrich, Joachim; Hofman, Albert; Imboden, Medea; Ingelsson, Erik; James, Alan; Karrasch, Stefan; Koch, Beate; Kritchevsky, Stephen B.; Kumar, Ashish; Lahousse, Lies; Li, Guo; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Lohman, Kurt; Lumley, Thomas; McArdle, Wendy L.; Meibohm, Bernd; Morris, Andrew P.; Morrison, Alanna C.; Musk, Bill; North, Kari E.; Palmer, Lyle J.; Probst-Hensch, Nicole M.; Psaty, Bruce M.; Rivadeneira, Fernando; Rotter, Jerome I.; Schulz, Holger; Smith, Lewis J.; Sood, Akshay; Starr, John M.; Strachan, David P.; Teumer, Alexander; Uitterlinden, André G.; Völzke, Henry; Voorman, Arend; Wain, Louise V.; Wells, Martin T.; Wilk, Jemma B.; Williams, O. Dale; Heckbert, Susan R.; Stricker, Bruno H.; London, Stephanie J.; Fornage, Myriam; Tobin, Martin D.; O′Connor, George T.; Hall, Ian P.; Cassano, Patricia A.

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function. PMID:24983941

  7. Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Directory of Open Access Journals (Sweden)

    Wenbo Tang

    Full Text Available Genome-wide association studies (GWAS have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1 in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7. In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8 at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

  8. A probabilistic model of biological ageing of the lungs for analysing the effects of smoking, asthma and COPD

    Science.gov (United States)

    2013-01-01

    Background Although a large body of literature is available that describes the effects of smoking, asthma and COPD on lung function, most studies are restricted to a small age range and to one factor. As a consequence, available results are incomplete and often difficult to compare, also due to the ways the effects are expressed. Furthermore, current approaches consider one type of measurement only or several types separately. Methods We propose a probabilistic model that expresses the effects as number of years added to chronological age or, in other words, that estimates the biological age of the lungs. Using biological age as a measure of the effects has the advantage of facilitating the understanding of their severity and comparison of results. In our model, chronological age and other factors affecting the health status of the lungs generate biological age, which in turn generates lung function measurements. This structure enables the use of multiple types of measurement to obtain a more precise estimate of the effects and parameter sharing for characterization over large age ranges and of co-occurrence of factors with little data. We treat the parameters that model smoking habits and lung diseases as random variables to obtain uncertainty in the estimated effects. Results We use the model to investigate the effects of smoking, asthma and COPD on the TwinsUK Registry. Our results suggest that the combination of smoking with lung disease(s) has higher effect than smoking or lung disease(s) alone, and that in smokers, co-occurrence of asthma and COPD is more detrimental than asthma or COPD alone. Conclusions The proposed model or other models based on a similar approach could be of help in improving the understanding of factors affecting lung function by enabling characterizations over large age ranges and of co-occurrence of factors with little data and the use of multiple types of measurement. The software implementing the model can be downloaded at the first

  9. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    International Nuclear Information System (INIS)

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  10. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.D.F.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  11. The effects of ropivacaine hydrochloride on platelet function: an assessment using the platelet function analyser (PFA-100).

    LENUS (Irish Health Repository)

    Porter, J

    2012-02-03

    Amide local anaesthetics impair blood clotting in a concentration-dependent manner by inhibition of platelet function and enhanced fibrinolysis. We hypothesised that the presence of ropivacaine in the epidural space could decrease the efficacy of an epidural blood patch, as this technique requires that the injected blood can clot in order to be effective. Ropivacaine is an aminoamide local anaesthetic used increasingly for epidural analgesia during labour. The concentration of local anaesthetic in blood achieved in the epidural space during the performance of an epidural blood patch is likely to be the greatest which occurs (intentionally) in any clinical setting. This study was undertaken to investigate whether concentrations of ropivacaine in blood, which could occur: (i) clinically in the epidural space and (ii) in plasma during an epidural infusion of ropivacaine, alter platelet function. A platelet function analyser (Dade PFA-100, Miami) was employed to assess the effects of ropivacaine-treated blood on platelet function. The greater concentrations of ropivacaine studied (3.75 and 1.88 mg x ml(-1)), which correspond to those which could occur in the epidural space, produced significant inhibition of platelet aggregation. We conclude that the presence of ropivacaine in the epidural space may decrease the efficacy of an early or prophylactic epidural blood patch.

  12. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.

    Science.gov (United States)

    Rahlouni, Fatima; Szarka, Szabolcs; Shulaev, Vladimir; Prokai, Laszlo

    2015-12-01

    Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.

  13. Molecular eco-systems biology: towards an understanding of community function

    OpenAIRE

    Raes, J.; Bork, P.

    2008-01-01

    Systems-biology approaches, which are driven by genome sequencing and high-throughput functional genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we discuss the necessary data types that ar...

  14. The IWOP Technique and Wigner-Function Approach to Quantum Effect of Mesoscopic Biological Cell

    Science.gov (United States)

    Wang, Xiu-Xia

    2014-09-01

    Using the IWOP technique, Wigner function theory and TFD theory, the quantization of a mesoscopic biological cell equivalent circuit is proposed, The quantum fluctuations of the mesoscopic biological cell are researched in thermal vacuum state and vacuum state. It is shown that the IWOP technique, Wigner function theory and Umezawa-Takahashi's TFD theory play the key role in quantizing a mesoscopic biological cell at finite temperature and the fluctuations and uncertainty increase with increasing temperature and decrease with prolonged time.

  15. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the bil

  16. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Science.gov (United States)

    Mitchell, Patrick S; Young, Janet M; Emerman, Michael; Malik, Harmit S

    2015-12-01

    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and

  17. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Directory of Open Access Journals (Sweden)

    Patrick S Mitchell

    2015-12-01

    Full Text Available Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host

  18. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury.

    Science.gov (United States)

    Duan, Hongmei; Ge, Weihong; Zhang, Aifeng; Xi, Yue; Chen, Zhihua; Luo, Dandan; Cheng, Yin; Fan, Kevin S; Horvath, Steve; Sofroniew, Michael V; Cheng, Liming; Yang, Zhaoyang; Sun, Yi E; Li, Xiaoguang

    2015-10-27

    Spinal cord injury (SCI) is considered incurable because axonal regeneration in the central nervous system (CNS) is extremely challenging, due to harsh CNS injury environment and weak intrinsic regeneration capability of CNS neurons. We discovered that neurotrophin-3 (NT3)-loaded chitosan provided an excellent microenvironment to facilitate nerve growth, new neurogenesis, and functional recovery of completely transected spinal cord in rats. To acquire mechanistic insight, we conducted a series of comprehensive transcriptome analyses of spinal cord segments at the lesion site, as well as regions immediately rostral and caudal to the lesion, over a period of 90 days after SCI. Using weighted gene coexpression network analysis (WGCNA), we established gene modules/programs corresponding to various pathological events at different times after SCI. These objective measures of gene module expression also revealed that enhanced new neurogenesis and angiogenesis, and reduced inflammatory responses were keys to conferring the effect of NT3-chitosan on regeneration. PMID:26460053

  19. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica;

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  20. In search of lipid translocases and their biological functions

    NARCIS (Netherlands)

    Hoekstra, D; van Ijzendoorn, SCD

    2003-01-01

    In plasma membranes, lipids distribute asymmetrically across the bilayer, a process that requires proteins. Recent work identified novel lipid translocators in yeast, and their activity was functionally correlated to endocytosis, thus boosting investigations on identity, mechanism, and function of l

  1. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  2. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7.

    Directory of Open Access Journals (Sweden)

    Juliette Adjo Aka

    Full Text Available T47D and MCF7 are two human hormone-dependent breast cancer cell lines which are widely used as experimental models for in vitro and in vivo (tumor xenografts breast cancer studies. Several proteins involved in cancer development were identified in these cell lines by proteomic analyses. Although these studies reported the proteomic profiles of each cell line, until now, their differential protein expression profiles have not been established. Here, we used two-dimensional gel and mass spectrometry analyses to compare the proteomic profiles of the two cell lines, T47D and MCF7. Our data revealed that more than 164 proteins are differentially expressed between them. According to their biological functions, the results showed that proteins involved in cell growth stimulation, anti-apoptosis mechanisms and cancerogenesis are more strongly expressed in T47D than in MCF7. These proteins include G1/S-specific cyclin-D3 and prohibitin. Proteins implicated in transcription repression and apoptosis regulation, including transcriptional repressor NF-X1, nitrilase homolog 2 and interleukin-10, are, on the contrary, more strongly expressed in MCF7 as compared to T47D. Five proteins that were previously described as breast cancer biomarkers, namely cathepsin D, cathepsin B, protein S100-A14, heat shock protein beta-1 (HSP27 and proliferating cell nuclear antigen (PCNA, are found to be differentially expressed in the two cell lines. A list of differentially expressed proteins between T47D and MCF7 was generated, providing useful information for further studies of breast cancer mechanisms with these cell lines as models.

  3. Functional data analyses for the assessment of joint power profiles during gait of stroke subjects.

    Science.gov (United States)

    Andrade, André G P; Polese, Janaine C; Paolucci, Leopoldo A; Menzel, Hans-Joachim K; Teixeira-Salmela, Luci F

    2014-04-01

    Lower extremity kinetic data during walking of 12 people with chronic poststroke were reanalyzed, using functional analysis of variance (FANOVA). To perform the FANOVA, the whole curve is represented by a mathematical function, which spans the whole gait cycle and avoids the need to identify isolated points, as required for traditional parametric analyses of variance (ANOVA). The power variables at the ankle, knee, and hip joints, in the sagittal plane, were compared between two conditions: With and without walking sticks at comfortable and fast speeds. For the ankle joint, FANOVA demonstrated increases in plantar flexion power generation during 60-80% of the gait cycle between fast and comfortable speeds with the use of walking sticks. For the knee joint, the use of walking sticks resulted in increases in the knee extension power generation during 10-30% of the gait cycle. During both speeds, the use of walking sticks resulted in increased power generation by the hip extensors and flexors during 10-30% and 40-70% of the gait cycle, respectively. These findings demonstrated the benefits of applying the FANOVA approach to improve the knowledge regarding the effects of walking sticks on gait biomechanics and encourage its use within other clinical contexts.

  4. Cerenkov Radiation: A Multi-functional Approach for Biological Sciences

    Directory of Open Access Journals (Sweden)

    Xiaowei eMa

    2014-02-01

    Full Text Available Cerenkov radiation (CR has been used in various biological research fields, which has aroused lots of attention in recent years. Combining optical imaging instruments and most of nuclear medicine imaging or radiotherapy probes, the CR was developed as a new imaging modality for biology studies, called Cerenkov luminescence imaging (CLI. On the other hand, it was novelly used as an internal excitation source to activate some fluorophores for energy transfer imaging. However, it also has some shortages such as relatively weak luminescence intensity and low penetration in tissue. Thus some scientific groups demonstrated to optimize the CLI and demonstrated it to three-dimension tomography. In this article, we elaborate on its principle, history, and applications and discuss a number of directions for technical improvements. Then concluded some advantages and shortages of CR and discuss some prospects of it.

  5. Computational Exploration of the Biological Basis of Black-Scholes Expected Utility Function

    OpenAIRE

    Sukanto Bhattacharya; Kuldeep Kumar

    2007-01-01

    It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to minimiz...

  6. Computational Exploration of the Biological Basis of Black-Scholes Expected Utility Function

    OpenAIRE

    Kuldeep Kumar; Sukanto Bhattacharya

    2007-01-01

    It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to mi...

  7. Mapping The Variations Of Moho Depth And Poisson's Ratio In China With Receiver Function Analyses

    Science.gov (United States)

    Chen, Y.; Niu, F.; Liu, R.; Huang, Z.; Chan, W.; Sun, L.

    2007-12-01

    We collected and processed a large amount of high-quality broadband teleseismic waveforms recorded at all 48 stations in the Chinese National Digital Seismic Network (CNDSN) to estimate the lateral variations of Moho depth and crustal Vp/Vs ratio (hence Poisson's ratio) in China by receiver function analyses. A cross-correlation based method was used to select mutually coherent receiver functions, which yielded over 200 traces for most of the stations. Because multiple maxima often present within a thin band in the H-k domain due to the depth- velocity trade-off, we stabilized this method by weighing each H-k grid using the cross-correlation between Ps converted phase and other Moho multiples. An nth-root stacking method was also applied to reduce uncorrelated noise relative to the linear stack. These modifications successfully ruled out any unrealistic results from H-k search. Relatively reliable crustal thickness and Poisson's ratio were consistently obtained from both the RZ (radial and vertical components) and SP (components concentrate SV- and P- wave energy in a skew coordinate system) based receiver function data. Although we utilized average crustal P- wave velocities obtained from Pn/Sn tomographic studies in projecting time to depth, the crustal thickness and Poisson's ratio obtained from receiver functions still show significant discrepancies with those inferred from Pn and Sn waves. For the stations along the east coast of China, the crustal thickness varies from 29km to 37km and the Vp/Vs ratio is about 1.70 on average. While for the stations at the middle section of China across the Sino-Korean platform and the Yangtze platform, the crust turns to be 39km on average, and the Vp/Vs ratios are higher than those to the east coast. The results presented beneath the stations in the west of China well illustrated the complicated and active tectonic complexion in this region. Along the Tianshan fold system, the Moho is at about 53 km on average, whereas in

  8. The practical impact of differential item functioning analyses in a health-related quality of life instrument

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K;

    2009-01-01

    Differential item functioning (DIF) analyses are commonly used to evaluate health-related quality of life (HRQoL) instruments. There is, however, a lack of consensus as to how to assess the practical impact of statistically significant DIF results.......Differential item functioning (DIF) analyses are commonly used to evaluate health-related quality of life (HRQoL) instruments. There is, however, a lack of consensus as to how to assess the practical impact of statistically significant DIF results....

  9. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  10. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  11. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  12. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  13. Non-coding RNAs: Classification, Biology and Functioning.

    Science.gov (United States)

    Hombach, Sonja; Kretz, Markus

    2016-01-01

    One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action. PMID:27573892

  14. Towards Functional Zoning: Importance, Vulnerability and Sectoral Conflict Analyses via GIS

    Science.gov (United States)

    Tanik, A.; Seker, D. Z.; Ozturk, I.

    2011-12-01

    Functional zoning of the Akcakoca District located along the Western Black Sea Coast of Turkey is achieved by implementing the 'Methodology for Spatial Planning for the Coastal Zone' that has been developed specifically for coastal areas by the European Union within the framework of EuropeAid-TACIS project. According to this methodology, the database comprises of three main groups of GIS layers; natural components, social and demographic components, and geographical components. Prior to importance and vulnerability analyses, authors worked on data collection, generation of GIS based digital maps, processing of environmental, socio-economic and land-use information, determination of sectoral conflicts and on displaying the current land-use distribution in the form of maps. For each of the GIS layers under the main group's, importance and vulnerability scores are determined and by the help of these grades, necessary information and maps are produced for spatial planning. Identical grading system has been developed and applied to each GIS layer formed in order to achieve the overall importance and vulnerability maps of the district. Functional zoning map was then produced via these maps together with the information gained through stakeholders meetings and site visits. The findings and the maps produced are targeted to be utilized by the decision-makers to further build up spatial planning of the district. The lack of a national coastal management strategy attracted the interest of all stakeholders participated in the mutual discussions held during the field trips realized during the implementation of the methodology. Public awareness on land-use policy seems to be an essential step towards effective planning and establishment of human-induced activities together with the necessity of setting a national strategy for integrated coastal zone management. All these efforts aimed to put forth the priority uses of both land and water resources of the district.

  15. Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data

    OpenAIRE

    Edoardo Saccenti; Westerhuis, Johan A.; Smilde, Age K.; van der Werf, Mariët J; Jos A Hageman; Hendriks, Margriet M. W. B.

    2011-01-01

    One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simple and interpretable solutions. On the basis of the observation that functional genomics data often contain both informative and non-informative variation, we propose a method that finds sets of va...

  16. Can We Monitor Ecosystem Function Using Keeling Plot Analyses of Nocturnal Cold-Air Drainage?

    Science.gov (United States)

    Bond, B. J.; Ocheltree, T.; Pypker, T.; Unsworth, M. H.; Mix, A. C.; William, R.

    2003-12-01

    The carbon isotope signature of ecosystem respiration, δ 13CR, as measured by the Keeling Plot approach, has been related to short-term variations in weather and ecosystem function in several recent studies. In order to obtain an adequate range of [CO2] and to sample a consistent vegetation type, investigators typically select sampling locations in relatively flat terrain and uniform canopy cover, but these are unusual conditions for many forested ecosystems. In a pilot study, we are collecting samples for Keeling Plot analyses in cold-air drainage systems in small (60-100 ha), deeply-incised watersheds, one covered with old-growth (ca 450-years-old) Douglas-fir/hemlock forest and one covered with young (ca 45-years-old) Douglas-fir forest. We found that the nightly range of [CO2] was typically 380-460 ppm, sufficient to develop good estimates of δ 13CR. At any point in time there was little variation in [CO2] with height through the canopy (0.5-30m), so the required range was obtained by sampling over several hours. There was no indication that samples taken from different heights or at different times of night represented sources with different isotopic signatures. The isotopic signature of respired CO2 in the older watershed averaged about 1 per mil greater than that of the young watershed, and δ 13CR of both locations correlated with modeled stomatal conductance 6 days prior to flask sampling.

  17. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  18. Novel ESCRT functions in cell biology: spiraling out of control?

    Science.gov (United States)

    Campsteijn, Coen; Vietri, Marina; Stenmark, Harald

    2016-08-01

    The endosomal sorting complex required for transport (ESCRT), originally identified for its role in endosomal protein sorting and biogenesis of multivesicular endosomes (MVEs), has proven to be a versatile machinery for involution and scission of narrow membrane invaginations filled with cytosol. Budding of enveloped viruses and cytokinetic abscission were early described functions for the ESCRT machinery, and recently a number of new ESCRT functions have emerged. These include cytokinetic abscission checkpoint control, plasma membrane repair, exovesicle release, quality control of nuclear pore complexes, neuron pruning, and sealing of the newly formed nuclear envelope. Here we review these novel ESCRT mechanisms and discuss similarities and differences between the various ESCRT-dependent activities.

  19. VISUALIZATION APPROACH TO STRUCTURE-FUNCTION RELATIONSHIP IN BIOLOGICAL MACROMOLECULES

    Directory of Open Access Journals (Sweden)

    M. Luetić

    2015-08-01

    Full Text Available Introduction: Most of recent research in the field of education strongly recommends the use of visualization in the daily teacher’s practice, especially when it comes to teaching science. Objectives: We investigated the impact of different kinds of visualization on student’s accomplishments, and the relationship between 2D and 3D visualization on the learning outcomes in biochemistry teaching, as well as gender-related differences in 2D vs 3D perception abilities. Materials and Methods: The research study was conducted on a sample of 149 senior secondary school students, devided into three groups: control group (usual teaching approach, and two experimental groups taught using different kinds of visualization: E1 (2D and 3D static visualization tools, and E2 (3D dynamic visualization tools, in addition. Discussion and results: We measured the students’ learning outcomes in biochemistry, as well as the level of satisfaction with different teaching methods. The data were interpreted by performing statistical measures and analyses. In order to validate our hypothesis, we used one-tail and two-tail ANOVA analyses (along with the t-test.Conclusions: There was no statistical significance regarding 2D vs 3D visualization tools in biochemistry teaching. Although there existed some gender-related differences in students’ achievements (in favor of females, it was not established that they were related to the type of visualization (2D or 3D tools applied. However students from the E2 group (additional computer animations were more interested and involved in this kind of teaching. Although the results do not show a statistical significance in favor of 3D visualization, we must conclude that in teaching biochemistry it is certainly a more efficient approach than traditional teacher-oriented lessons. By using this kind of visualization tools in everyday teaching practice, chemistry teachers are given the opportunity to enlighten students with somewhat

  20. Analysis of Boolean Functions based on Interaction Graphs and their influence in System Biology

    OpenAIRE

    Das, Jayanta Kumar; Rout, Ranjeet Kumar; Choudhury, Pabitra Pal

    2014-01-01

    Interaction graphs provide an important qualitative modeling approach for System Biology. This paper presents a novel approach for construction of interaction graph with the help of Boolean function decomposition. Each decomposition part (Consisting of 2-bits) of the Boolean functions has some important significance. In the dynamics of a biological system, each variable or node is nothing but gene or protein. Their regulation has been explored in terms of interaction graphs which are generate...

  1. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Directory of Open Access Journals (Sweden)

    Stéphane Uroz

    Full Text Available In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France. The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource

  2. Function and significance of bell beaker pottery according to data from residue analyses

    Directory of Open Access Journals (Sweden)

    Guerra Doce, Elisa

    2006-06-01

    Full Text Available Traditionally, Bell Beakers have been thought to contain alcoholic beverages which were consumed in the course of male feasting ceremonies. Recent residue analyses have shed some light on the question of their function. However, whilst beer and mead have been identified from certain examples, not all Beakers were drinking cups. Some were used as reduction pots to smelt copper ores, others have some organic residues associated with food, and still others were employed as funerary urns. Yet, while the evidence points to a diversity of uses, it is argued that an ideological connection can be observed. Beakers were probably a special form of pottery with a ritual character, related to activities that imply some kind of transformation.

    Los vasos campaniformes suelen relacionarse con el consumo de bebidas alcohólicas durante la celebración de banquetes ceremoniales de exaltación masculina. Si bien las analíticas de residuos han identificado cerveza e hidromiel en unos cuantos ejemplares, no todos los campaniformes desempeñaron esta misma función. Algunos hicieron las veces de vasijas-horno para reducir el mineral de cobre, en otros se han detectado restos de alimentos y también se emplearon como urnas funerarias. A pesar de esta diversidad de usos, creemos que existe una conexión ideológica entre ellos, de tal manera que habría que considerar a los campaniformes como una cerámica singular con un carácter ritual, destinada a actividades que conllevan algún tipo de transformación.

  3. MicroRNA function in NK cell biology

    OpenAIRE

    Beaulieu, AM; Bezman, NA; Lee, JE; Matloubian, M; Sun, JC; Lanier, LL

    2013-01-01

    The important role of microRNAs in directing immune responses has become increasingly clear. Here, we highlight discoveries uncovering the role of specific microRNAs in regulating the development and function of natural killer (NK) cells. Furthermore, we discuss the impact of NK cells on the entire immune system during global and specific microRNA ablation in the settings of inflammation, infection, and immune dysregulation. © 2013 John Wiley & Sons A/S.

  4. Functional Nanostructured Platforms for Chemical and Biological Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  5. Language: A Typological, Functional, Cognitive, Biological and Evolutionary Approach.

    OpenAIRE

    Kirtchuk, Pablo

    2009-01-01

    The paper shows the inadequacy of the structuralist method with its climax in generative grammar method when applied to our understanding of langauge. It shows the adequation of the cognitive, typological and functional approach. based on croslinguistically empirical data, i show the intrinsically human nature of language, which distinguishes it from other communication sysrtemss, viz. animal, computer and artificial ones,. Points treated in some detail are : Iconicity, Deixis, Multiple encod...

  6. Subcellular localization and functional analyses of structural domains of COP1 in transgenic tobacco

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Plants have evolved an extremely exquisite light signal regulatory network to adapt to the changing ambient light conditions, in which COP1 plays a critical roleof the light signal transduction. Based on the cloned pea COP1 cDNA sequence and its protein structure, four indi-vidual gene fragments encoding different structural domains of the COP1 were designed to fuse to the GFP gene. The plant expression vectors containing these fusion genes as well as the COP1GFP fusion gene were constructed and used to transform tobacco by Agribacterium as confirmed by South-]ern analyses. Antibodies were raised against the recombi-nant GFP-COP1 overproduced in Escherichia coli. Im-munoblotting results demonstrated that all of the fusion genes were constitutively expressed in transgenic tobacco plants. We systematically investigated the different subcell- ular localization of these fusion proteins and the resulting phenotypic characteristics of these transgenic plants under light and dark conditions. Our data show that (1) the mo-lecular mass of the tobacco endogenous COP1 protein is 76 kD. It is constitutively expressed in all of the tested tissues and the total cellular content of COP1 protein is not noticea-bly affected by light conditions. (2) The nuclear localization signal of COP1 plays a critical role in regulation of its nu-clear-cytoplasmic partitioning. The subcellular localization of the COP1 protein containing nuclear localization signal is regulated by light in the epidermal cells of leaves, but, it is located in nucleus constitutively in root cells. (3) The coiled-coil domain is very critical to the function of COP1 protein, while the zinc binding RING finger domain only plays a supportive role. (4) The WD-40 repeats domain is essential to the COP1 function, but this domain alone does not affect photomorphogenesis. (5) Overexpression of COP1 protein not only inhibits the photomorphogenesis of the stems and leaves of the transgenic tobacco, but also results in the

  7. Functionalization of carbon nanotube and nanofiber electrodes with biological macromolecules: Progress toward a nanoscale biosensor

    Science.gov (United States)

    Baker, Sarah E.

    The integration of nanoscale carbon-based electrodes with biological recognition and electrical detection promises unparalleled biological detection systems. First, biologically modified carbon-based materials have been shown to have superior long-term chemical stability when compared to other commonly used materials for biological detection such as silicon, gold, and glass surfaces. Functionalizing carbon electrodes for biological recognition and using electrochemical methods to transduce biological binding information will enable real-time, hand-held, lower cost and stable biosensing devices. Nanoscale carbon-based electrodes allow the additional capability of fabricating devices with high densities of sensing elements, enabling multi-analyte detection on a single chip. We have worked toward the integration of these sensor components by first focusing on developing and characterizing the chemistry required to functionalize single-walled carbon nanotubes and vertically aligned carbon nanofibers with oligonucleotides and proteins for specific biological recognition. Chemical, photochemical and electrochemical methods for functionalizing these materials with biological molecules were developed. We determined, using fluorescence and colorimetric techniques, that these biologically modified nanoscale carbon electrodes are biologically active, selective, and stable. A photochemical functionalization method enabled facile functionalization of dense arrays vertically aligned carbon nanofiber forests. We found that much of the vertically aligned carbon nanofiber sidewalls were functionalized and biologically accessible by this method---the absolute number of DNA molecules hybridized to DNA-functionalized nanofiber electrodes was ˜8 times higher than the number of DNA molecules hybridized to flat glassy carbon electrodes and implies that nanofiber forest sensors may facilitate higher sensitivity to target DNA sequences per unit area. We also used the photochemical method

  8. Comparing Surface-Based and Volume-Based Analyses of Functional Neuroimaging Data in Patients with Schizophrenia

    OpenAIRE

    Anticevic, Alan; Dierker, Donna L.; Gillespie, Sarah K.; Repovs, Grega; Csernansky, John G.; Van Essen, David C.; Deanna M Barch

    2008-01-01

    A major challenge in functional neuroimaging is to cope with individual variability in cortical structure and function. Most analyses of cortical function compensate for variability using affine or low-dimensional nonlinear volume-based registration (VBR) of individual subjects to an atlas, which does not explicitly take into account the geometry of cortical convolutions. A promising alternative is to use surface-based registration (SBR), which capitalizes on explicit surface representations ...

  9. Is kinase activity essential for biological functions of BRI1?

    Institute of Scientific and Technical Information of China (English)

    Weihui Xu; Juan Huang; Baohua Li; Jiayang Li; Yonghong Wang

    2008-01-01

    Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.

  10. The Acute Effects of Grape Polyphenols Supplementation on Endothelial Function in Adults: Meta-Analyses of Controlled Trials

    OpenAIRE

    Shao-Hua Li; Hong-Bo Tian; Hong-Jin Zhao; Liang-Hua Chen; Lian-Qun Cui

    2013-01-01

    BACKGROUND: The acute effects of grape polyphenols on endothelial function in adults are inconsistent. Here, we performed meta-analyses to determine these acute effects as measured by flow-mediated dilation (FMD). METHODS: Trials were searched in PubMed, Embase and the Cochrane Library database. Summary estimates of weighted mean differences (WMDs) and 95% CIs were obtained by using random-effects models. Meta-regression and subgroup analyses were performed to identify the source of heterogen...

  11. [Dialectic of the interrelationship between structure and function in biology and medicine].

    Science.gov (United States)

    Strukov, A I; Kakturskiĭ, L V

    1977-01-01

    The paper deals with some aspects of the dialectics of structure and function relationships in biological objects normally and pathologically. Idealistic and metaphysical concepts of the structure-function relationships (morphological idealism, holism, physiological idealism, functionalism) are critisized, and historical premises of these concepts are characterized. The principle of indissoluble unity and interconnection of changes in structure and function is emphasized, while the thesis of the primacy of function in the shaping of the form and the concept of functional diseases are rejected. Much attention is paid to the methodological principles of the study of structure and function based on the systemic approach to the investigation of biological objects from the point of view of structural levels and integratism. The groundlessness of the principles of reductionism and organicism in the solution of this problem is indicated. The connection of the concepts of structure and function with categories and laws of materialistic dialectics is dwelt on. PMID:880057

  12. [Adipogenic function and other biologic effects of insulin].

    Science.gov (United States)

    Pankov, Y A

    2016-01-01

    Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by

  13. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  14. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  15. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  16. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss. PMID:22700920

  17. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients. PMID:27035812

  18. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  19. GSK-3: functional insights from cell biology and animal models

    Directory of Open Access Journals (Sweden)

    Oksana eKaidanovich-Beilin

    2011-11-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3’ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knock-out mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior and neuronal fate determination and provide insights into possible therapeutic interventions.

  20. Biological function of activation-induced cytidine deaminase (AID).

    Science.gov (United States)

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  1. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  2. The reflection of life functional entailment and imminence in relational biology

    CERN Document Server

    Louie, A H

    2013-01-01

    A. H. Louie’s The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was ‘What is life?’; the theme of this sequel is “How do two life forms interact?” Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates ‘function dictates structure”, rather than ‘structure implies function’. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolis...

  3. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  4. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    Science.gov (United States)

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-01

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. PMID:23601977

  5. Towards understanding the biological function of hopanoids (Invited)

    Science.gov (United States)

    Doughty, D. M.; Hunter, R.; Summons, R. E.; Newman, D. K.

    2010-12-01

    Rhodopseudomonas palustris TIE-1 expresses bacterial hopanoid lipids that are structurally similar and evolutionarily related to eukaryotic sterols. The genome of R. palustris TIE-1 contains two copies of the hpnN gene (hpnN1 and hpnN2) that are orthologs of genes encoding eukaryotic sterol and lipid transporters. Hopanoid localization to the outer membrane was found to be dependent upon hpnN1. Since the cell cycle of R. palustris TIE-1 is obligately bimodal with each cell division resulting in the generation of one mother and one swarmer cell, evidence was obtained that hopanoids where specifically localized to the outer membrane of mother cells. The sequestration of hopanoids to the mother cells was also disrupted by the deletion of the hpnN1 gene. Mutants lacking the hopanoid transporters were able to grow normally at 30 °C but showed decreased growth at 38 °C. The hopanoid transporter mutant formed cellular filaments when grown at elevated temperature. Because sedimentary steranes and hopanes comprise some of the earliest evidence for the emergence of distinct bacteria and eukaryotic phyla, a better appreciation of the function of hopanoids will improve our ability to interpret the evolution of life on Earth.

  6. The biological effect and medical functions of the Infrared Rays

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-feng

    2001-01-01

    The quantum vibrational energy-spectra including high excited states of the protein molecules have been calculated by new theory of bio-energy transport along the protein molecules and its dynamic equation, discrete nonlinear Schrodinger equation, appropriate to the protein molecules on the basis of the level of molecular structure. This energy-spectra obtained are basically consistent with the experimental values by infrared absorption and radiated measurement of person's hands and laser-Raman spectrum from metabolically active E. Coli.. From this energy-spectra we know that the infrared lights with (1-3)x1000nm and (5-7)x1000nm wavelength can be absorbed by the protein molecules in the living systems.In accordance with the non-linear theory of the bio-energy transport we know that the energy of the infrared light absorbed by the proteins can result in vibrations of amide-I in amino acids and can facilitate the bio-energy transport along the protein molecular chains from one place to other for the growth of living bodies. This processe is non-thermal. This is just non-thermal effect of the infrared lights. According to the mechanism we explained further the medical functions of the infrared lights absorbed.

  7. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe3+ and La3+ ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification

  8. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2011-01-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  9. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  10. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  11. Crucial role of detailed function, task, timeline, link and human vulnerability analyses in HRA. [Human Reliability Analysis (HRA)

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.; Haney, L.N.; Ostrom, L.T.

    1992-01-01

    This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.

  12. Esthetic-functional recovery of permanent posterior tooth using autogenous biological restoration

    Directory of Open Access Journals (Sweden)

    A M Botelho

    2012-01-01

    Full Text Available Occlusal morphology and difficult access for cleaning permanent molars result in the buildup of bacterial plaque and the development of caries. One method known as biological restoration was carried out. This technique known as biological restoration, has as main restorative material a fragment obtained from a duly donated extracted human tooth. This case report describes the restoration of an extensively decayed molar through the bonding of a fragment obtained from a third molar extracted from the patient himself. Biological restoration is a low-cost option that offers satisfactory aesthetic, morphological and functional results.The morphological/functional reestablishment of posterior teeth can be obtained through biological restoration, which allows the recovery of properties inherent to the dental structure, offers satisfactory aesthetic results and low cost.

  13. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation

    OpenAIRE

    Stéphane Uroz; Panos Ioannidis; Juliette Lengelle; Aurélie Cébron; Emmanuelle Morin; Marc Buée; Francis Martin

    2013-01-01

    In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation...

  14. Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Gambari

    2011-01-01

    Full Text Available Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.

  15. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    DEFF Research Database (Denmark)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P;

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes...

  16. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    NARCIS (Netherlands)

    Scott, Robert A.; Lagou, Vasiliki; Welch, Ryan P.; Wheeler, Eleanor; Montasser, May E.; Luan, Jian'an; Maegi, Reedik; Strawbridge, Rona J.; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J.; Yengo, Loic; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C. D.; Jukema, J. Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V.; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J.; Evans, David M.; St Pourcain, Beate; Wu, Ying; Andrews, Jeanette S.; Hui, Jennie; Bielak, Lawrence F.; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R.; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tonu; Mihailov, Evelin; Fraser, Ross M.; Fall, Tove; Voight, Benjamin F.; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M.; Morris, Andrew P.; Rayner, Nigel W.; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S.; Willems, Sara M.; Chines, Peter S.; Jackson, Anne U.; Kang, Hyun Min; Stringham, Heather M.; Song, Kijoung; Tanaka, Toshiko; Peden, John F.; Goel, Anuj; Hicks, Andrew A.; An, Ping; Mueller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J.; Bruinenberg, Marcel; Pankow, James S.; North, Kari E.; Forouhi, Nita G.; Loos, Ruth J. F.; Edkins, Sarah; Varga, Tibor V.; Hallmans, Goeran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J. L.; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B.; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Palmer, Colin N. A.; Doney, Alex S. F.; Willemsen, Gonneke; Smit, Johannes H.; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L.; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L.; Fowkes, Gerard R.; Kovacs, Peter; Lindstrom, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H.; Basart, Hanneke V.; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E.; Boehm, Bernhard O.; Peters, Annette; Pramstaller, Peter P.; Province, Michael A.; Borecki, Ingrid B.; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M.; Bergman, Richard N.; Collins, Francis S.; Tuomilehto, Jaakko; Watanabe, Richard M.; de Geus, Eco J. C.; Penninx, Brenda W.; Hofman, Albert; Oostra, Ben A.; Psaty, Bruce M.; Vollenweider, Peter; Wilson, James F.; Wright, Alan F.; Hovingh, G. Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K. E.; Kyvik, Kirsten O.; Kaprio, Jaakko; Price, Jackie F.; Dedoussis, George V.; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R.; van Duijn, Cornelia M.; Morris, Andrew D.; Toenjes, Anke; Peyser, Patricia A.; Beilby, John P.; Koerner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R.; Schwarz, Peter E. H.; Lakka, Timo A.; Rauramaa, Rainer; Adair, Linda S.; Smith, George Davey; Spector, Tim D.; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Boomsma, Dorret I.; Stefansson, Kari; van der Harst, Pim; Dupuis, Josee; Pedersen, Nancy L.; Sattar, Naveed; Harris, Tamara B.; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L.; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J.; Bouatia-Naji, Nabila; McCarthy, Mark I.; Franks, Paul W.; Meigs, James B.; Teslovich, Tanya M.; Florez, Jose C.; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Ines

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes ri

  17. Metagenomics and in situ analyses reveal Propionivibrio spp. to be abundant GAO in biological wastewater treatment systems

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    to be present at equal levels. Metagenomics was employed to elucidate the identity and recover genomes from the abundant community members. Phylogenetic analyses revealed closely related “Ca. Accumulibacter” and Propionivibrio genera were co-dominant and were both targeted by the PAOmix probes. In situ staining...

  18. An approach to describing and analysing bulk biological annotation quality: a case study using UniProtKB

    OpenAIRE

    Bell, Michael J; Colin S Gillespie; Swan, Daniel; Lord, Phillip

    2012-01-01

    Motivation: Annotations are a key feature of many biological databases, used to convey our knowledge of a sequence to the reader. Ideally, annotations are curated manually, however manual curation is costly, time consuming and requires expert knowledge and training. Given these issues and the exponential increase of data, many databases implement automated annotation pipelines in an attempt to avoid un-annotated entries. Both manual and automated annotations vary in quality between databases ...

  19. N-acylation of phosphatidylethanolamine and its biological functions in mammals

    DEFF Research Database (Denmark)

    Wellner, Niels; Diep, Thi Ai; Janfelt, Christian;

    2013-01-01

    N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesiz...... reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism....

  20. Social inclusion enhances biological motion processing: A functional near-infrared spectroscopy study

    OpenAIRE

    Bolling, Danielle Z.; Pelphrey, Kevin A.; Kaiser, Martha D.

    2012-01-01

    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscop...

  1. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors

    OpenAIRE

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-01-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors a...

  2. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons

    OpenAIRE

    Renato Sobral Monteiro; César Augusto Otero Vaghetti; Osvaldo José M. Nascimento; Jerson Laks; Andrea Camaz Deslandes

    2016-01-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and estab...

  3. Application of femtosecond-pulsed lasers for direct optical manipulation of biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jonghee; Park, Junseong; Jong Choi, Won [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); Choi, Myunghwan [Graduate School of Nanoscience and Technology, KAIST, Daejeon (Korea, Republic of); Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA (United States); Choi, Chulhee [Department of Bio and Brain Engineering, KAIST, Daejeon (Korea, Republic of); KAIST Institute for the BioCentury, KAIST, Daejeon (Korea, Republic of)

    2013-03-15

    Absorption of photon energy by cells or tissue can evoke photothermal, photomechanical, and photochemical effects, depending on the density of the deposited energy. Photochemical effects require a low energy density and can be used for reversible modulation of biological functions. Ultrashort-pulsed lasers have a high intensity due to the short pulse duration, despite its low average energy. Through nonlinear absorption, these lasers can deliver very high peak energy into the submicrometer focus area without causing collateral damage. Absorbed energy delivered by ultrashort-pulsed laser irradiation induces free electrons, which can be readily converted to reactive oxygen species (ROS) and related free radicals in the localized region. Free radicals are best known to induce irreversible biological effects via oxidative modification; however, they have also been proposed to modulate biological functions by releasing calcium ions from intracellular organelles. Calcium can evoke variable biological effects in both excitable and nonexcitable cell types. Controlled stimulation by ultrashort laser pulses generate intracellular calcium waves that can modulate many biological functions, such as cardiomyocyte beat rate, muscle contractility, and blood-brain barrier (BBB) permeability. This article presents optical methods that are useful therapeutic and research tools in the biomedical field and discuss the possible mechanisms responsible for biological modulation by ultrashort-pulsed lasers, especially femtosecond-pulsed lasers. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Impact on disease development, genomic location and biological function of copy number alterations in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yen-Tsung Huang

    Full Text Available Lung cancer, of which more than 80% is non-small cell, is the leading cause of cancer-related death in the United States. Copy number alterations (CNAs in lung cancer have been shown to be positionally clustered in certain genomic regions. However, it remains unclear whether genes with copy number changes are functionally clustered. Using a dense single nucleotide polymorphism array, we performed genome-wide copy number analyses of a large collection of non-small cell lung tumors (n = 301. We proposed a formal statistical test for CNAs between different groups (e.g., non-involved lung vs. tumors, early vs. late stage tumors. We also customized the gene set enrichment analysis (GSEA algorithm to investigate the overrepresentation of genes with CNAs in predefined biological pathways and gene sets (i.e., functional clustering. We found that CNAs events increase substantially from germline, early stage to late stage tumor. In addition to genomic position, CNAs tend to occur away from the gene locations, especially in germline, non-involved tissue and early stage tumors. Such tendency decreases from germline to early stage and then to late stage tumors, suggesting a relaxation of selection during tumor progression. Furthermore, genes with CNAs in non-small cell lung tumors were enriched in certain gene sets and biological pathways that play crucial roles in oncogenesis and cancer progression, demonstrating the functional aspect of CNAs in the context of biological pathways that were overlooked previously. We conclude that CNAs increase with disease progression and CNAs are both positionally and functionally clustered. The potential functional capabilities acquired via CNAs may be sufficient for normal cells to transform into malignant cells.

  5. Molecular Biology at the Quantum Level: Can Modern Density Functional Theory Forge the Path?

    CERN Document Server

    Kolb, Brian; 10.1142/S1793984412300063

    2012-01-01

    Recent years have seen vast improvements in the ability of rigorous quantum-mechanical methods to treat systems of interest to molecular biology. In this review article, we survey common computational methods used to study such large, weakly bound systems, starting from classical simulations and reaching to quantum chemistry and density functional theory. We sketch their underlying frameworks and investigate their strengths and weaknesses when applied to potentially large biomolecules. In particular, density functional theory---a framework that can treat thousands of atoms on firm theoretical ground---can now accurately describe systems dominated by weak van der Waals interactions. This newfound ability has rekindled interest in using this tried-and-true approach to investigate biological systems of real importance. In this review, we focus on some new methods within density functional theory that allow for accurate inclusion of the weak interactions that dominate binding in biological macromolecules. Recent ...

  6. Priority of TCM in Regulating Gene Function as a Whole Through Development of Modern Biology

    Institute of Scientific and Technical Information of China (English)

    Hu zuo-wei; zhou yan-ping; Shen zi-yin

    2004-01-01

    Molecular Biology based on the DNA Double-helix structure has made great progress in 20 century.After Human Genome Project (HGP) completed, Molecular Biology is faced upon more and more challenges, andtake changes from protion concept to integration concept, from linear thinking to complicated thinking. so post-genomics, including functional genomics, proteomics, is gradually established. Among them, System Biology is themost prominent. It is becoming to tend to integration, and infiltrate to each other for the two thinking of genomeand TCM in studying life science, which reflect the inevitablility and importance of integration of TCM and West-ern Medicine. The priority of TCM in treatment as a whole, and regulating functional gene and functional networkmay take greater achievement in post - genomic time.

  7. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  8. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and it

  9. Functional Analyses of the Problems in Non-English Majors' Writings

    Science.gov (United States)

    Li, Shun-ying

    2010-01-01

    Problems in generating and organizing ideas, in coherence and language competence are common in non-English majors' writings, which decrease non-English majors' ability to use English as a tool to realize its pragmatic functions and meta-functions. The exam-centered objective, the product-oriented approach, the inefficient mode of instruction, the…

  10. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  11. Functional performance of a total ankle replacement: thorough assessment by combining gait and fluoroscopic analyses

    OpenAIRE

    Cenni, Francesco; Leardini, Alberto; Pieri, Maddalena; Berti, Lisa; Belvedere, Claudio; Romagnoli, Matteo; Giannini, Sandro

    2013-01-01

    BACKGROUND: A thorough assessment of patients after total ankle replacement during activity of daily living can provide complete evidence of restored function in the overall lower limbs and replaced ankle. This study analyzes how far a possible restoration of physiological mobility in the replaced ankle can also improve the function of the whole locomotor apparatus. METHODS: Twenty patients implanted with an original three-part ankle prosthesis were analyzed 12 months after surgery d...

  12. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  13. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  14. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology.

    Science.gov (United States)

    Price, S A; Schmitz, L

    2016-04-01

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. PMID:26977068

  15. Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-IV Functional Response

    Institute of Scientific and Technical Information of China (English)

    Ji-cai Huang; Dong-mei Xiao

    2004-01-01

    In this paper the dynamical behaviors of a predator-prey system with Holling Type-IV functional response are investigated in detail by using the analyses of qualitative method,bifurcation theory,and numerical simulation.The qualitative analyses and numerical simulation for the model indicate that it has a unique stable limit cycle.The bifurcation analyses of the system exhibit static and dynamical bifurcations including saddlenode bifurcation,Hopf bifurcation,homoclinic bifurcation and bifurcation of cusp-type with codimension two(ie,the Bogdanov-Takens bifurcation),and we show the existence of codimension three degenerated equilibrium and the existence of homoclinic orbit by using numerical simulation.

  16. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons

    Science.gov (United States)

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M.; Laks, Jerson; Deslandes, Andrea Camaz

    2016-01-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  17. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons.

    Science.gov (United States)

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M; Laks, Jerson; Deslandes, Andrea Camaz

    2016-02-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  18. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors

    Directory of Open Access Journals (Sweden)

    Peter David Newell

    2014-11-01

    Full Text Available Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies was compared to that of flies colonized with specific bacteria (gnotobiotic flies as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut.

  19. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    OpenAIRE

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Thomas J Montine; Saykin, Andrew J; Crane, Paul K.

    2014-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative t...

  20. Role of Biological Sex in Normal Cardiac Function and in its Disease Outcome – A Review

    OpenAIRE

    Prabhavathi, K.; Selvi, K.Tamarai; Poornima, K.N.; Sarvanan, A.

    2014-01-01

    Biological sex plays an important role in normal cardiac physiology as well as in the heart‘s response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this is progressively lost when comparing postmenopausal women with age matched men. Animal model of cardiac disease mirror what is seen in humans. Sex hormones contribute significantly to sex based difference in cardiac functioning and in its disease outcome. Es...

  1. Scaling and Spectral Analyses Based on Spatial Correlation Functions of Urban Form

    CERN Document Server

    Chen, Yanguang

    2012-01-01

    Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the valid range of fractal dimension and the relationships between various fractal indicators of cities are not yet revealed in theory. Especially, systematic methods of spatial analysis have not yet been developed for fractal cities. By mathematical deduction and transformation (e.g. Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed '3S analyses' of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable range of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters sugges...

  2. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K;

    2010-01-01

    Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise...

  3. Functional magnetic resonance imaging connectivity analyses reveal efference-copy to primary somatosensory area, BA2

    NARCIS (Netherlands)

    Cui, Fang; Arnstein, Dan; Thomas, Rajat Mani; Maurits, Natasha M; Keysers, C.; Gazzola, Valeria

    2014-01-01

    Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively.

  4. Functional Magnetic Resonance Imaging Connectivity Analyses Reveal Efference-Copy to Primary Somatosensory Area, BA2

    NARCIS (Netherlands)

    Cui, Fang; Arnstein, Dan; Thomas, Rajat Mani; Maurits, Natasha M.; Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively.

  5. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure

    NARCIS (Netherlands)

    Frick, A.; Gingnell, M.; Marquand, A.F.; Howner, K.; Fischer, H.; Kristiansson, M.; Williams, S.C.; Fredrikson, M.; Furmark, T.

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have inv

  6. Flexible gateway constructs for functional analyses of genes in plant pathogenic fungi

    NARCIS (Netherlands)

    Mehrabi, Rahim; Mirzadi Gohari, Amir; Silva, da Gilvan Ferreira; Steinberg, Gero; Kema, Gert H.J.; Wit, de Pierre J.G.M.

    2015-01-01

    Genetic manipulation of fungi requires quick, low-cost, efficient, high-throughput and molecular tools. In this paper, we report 22 entry constructs as new molecular tools based on the Gateway technology facilitating rapid construction of binary vectors that can be used for functional analysis of

  7. PreproVIP-derived peptides in the human female genital tract: expression and biological function

    DEFF Research Database (Denmark)

    Bredkjoer, H E; Palle, C; Ekblad, E;

    1997-01-01

    The aim of the study was to elucidate the localization, distribution, colocalization and biological effect of preproVIP-derived peptides in the human female genital tract. Radioimmunoassays applying antisera against the five functional domains of the VIP precursor in combination with immunohistoc...

  8. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    Science.gov (United States)

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  9. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    Science.gov (United States)

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.

  10. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined. PMID:25115559

  11. Analyses of multiplicity distributions by means of the Modified Negative Binomial Distribution and its KNO scaling function

    OpenAIRE

    OSADA, T; Nakajima, N; Biyajima, M.; Suzuki, N.

    1998-01-01

    We analyze various data of multiplicity distributions by means of the Modified Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in e^+e^- annihilations, h-h collisions and e-p collisions. In the present analyses, we find that the MNBD(discrete distributions) describes the data of charged particles in e^+e^- annihilations much better than the Negative Binomial Distribution (NBD). To investigate...

  12. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and

  13. Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters.

    Science.gov (United States)

    Carrier, David John; Abu Bakar, Norliza Tendot; Lawler, Karen; Dorrian, James Matthew; Haider, Ameena; Bennett, Malcolm John; Kerr, Ian Derek

    2009-01-01

    Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues. We have examined a number of such systems for their efficiency in expressing AUX1 from Arabidopsis thaliana. We find that a eukaryotic system based upon infection of insect cells with recombinant baculovirus provides a high level, easily scalable expression system capable of delivering a functional assay for AUX1. Furthermore, a transient transfection system in mammalian cells enables localization of AUX1 and AUX1-mediated transport of auxin to be investigated. In contrast, we were unable to utilise P. pastoris or L. lactis expression systems to reliably express AUX1.

  14. Aminopyrine breath test for evaluation of liver function. How to analyse the 14CO2 data

    International Nuclear Information System (INIS)

    Previous studies in our laboratory have shown that breath analysis of 14CO2, following administration of specifically labelled 14C-dimethylaminoantipyrine, allows assessment of Vsub(max) and Ksub(m) of in vivo demethylation in the rat. Consequently, this procedure was modified for application in man. Whereas in 23 liver normals the disappearance constant ksub(B) of 14CO2 from breath was 21+-SD4%/h, ksub(B) was significantly reduced in 14 patients with alcoholic cirrhosis (8+-4%/h). Breath analysis is suggested as a non-invasive, convenient and valid method for measuring hepatic microsomal demethylation. Breath analysis discriminates between liver normals and patients with impaired liver function as well as established quantitative liver function tests (disappearance rate of BSP, galactose elimination capacity)

  15. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression

    DEFF Research Database (Denmark)

    Scott, Neil W.; Fayers, Peter M.; Aaronson, Neil K.;

    2010-01-01

    Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....

  16. Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions

    OpenAIRE

    Mochida, Keiichi; Shinozaki, Kazuo

    2011-01-01

    Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progre...

  17. In vitro functional analyses of arrhythmogenic right ventricular cardiomyopathy-associated desmoglein-2-missense variations.

    Directory of Open Access Journals (Sweden)

    Anna Gaertner

    Full Text Available BACKGROUND: Although numerous sequence variants in desmoglein-2 (DSG2 have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC, the functional impact of new sequence variations is difficult to estimate. METHODOLOGY/PRINCIPAL FINDINGS: To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I with respect to prodomain cleavage, adhesion properties and cellular localisation. CONCLUSIONS/SIGNIFICANCE: The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study.

  18. In Vitro Functional Analyses of Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Desmoglein-2-Missense Variations

    Science.gov (United States)

    Gaertner, Anna; Klauke, Baerbel; Stork, Ines; Niehaus, Karsten; Niemann, Gesa; Gummert, Jan; Milting, Hendrik

    2012-01-01

    Background Although numerous sequence variants in desmoglein-2 (DSG2) have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), the functional impact of new sequence variations is difficult to estimate. Methodology/Principal Findings To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I) with respect to prodomain cleavage, adhesion properties and cellular localisation. Conclusions/Significance The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study. PMID:23071725

  19. Functional Genomic Analyses Identify Pathways Dysregulated by Progranulin Deficiency Implicating Wnt Signaling

    OpenAIRE

    Rosen, Ezra Y.; Wexler, Eric M; Versano, Revital; Coppola, Giovanni; Gao, Fuying; Winden, Kellen D.; Oldham, Michael C.; Martens, Lauren Herl; Zhou, Ping; Farese, Robert V; Geschwind, Daniel H.

    2011-01-01

    Progranulin (GRN) mutations cause frontotemporal dementia (FTD), but GRN’s function in the CNS remains largely unknown. To identify the pathways downstream of GRN, we used weighted gene co-expression network analysis (WGCNA) to develop a systems-level view of transcriptional alterations in a human neural progenitor model of GRN-deficiency. This highlighted key pathways such as apoptosis and ubiquitination in GRN deficient human neurons, while revealing an unexpected major role for the Wnt sig...

  20. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    Science.gov (United States)

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation. PMID:26235877

  1. Functional Genomics Assistant (FUGA: a toolbox for the analysis of complex biological networks

    Directory of Open Access Journals (Sweden)

    Ouzounis Christos A

    2011-10-01

    Full Text Available Abstract Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga.

  2. Biological Sampling and Analysis in Sinclair and Dyes Inlets, Washington: Chemical Analyses for 2007 Puget Sound Biota Study

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Suslick, Carolynn R.; Johnston, Robert K.

    2008-10-09

    Evaluating spatial and temporal trends in contaminant residues in Puget Sound fish and macroinvertebrates are the objectives of the Puget Sound Ambient Monitoring Program (PSAMP). In a cooperative effort between the ENVironmental inVESTment group (ENVVEST) and Washington State Department of Fish and Wildlife, additional biota samples were collected during the 2007 PSAMP biota survey and analyzed for chemical residues and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Approximately three specimens of each species collected from Sinclair Inlet, Georgia Basin, and reference locations in Puget Sound were selected for whole body chemical analysis. The muscle tissue of specimens selected for chemical analyses were also analyzed for δ13C and δ15N to provide information on relative trophic level and food sources. This data report summarizes the chemical residues for the 2007 PSAMP fish and macro-invertebrate samples. In addition, six Spiny Dogfish (Squalus acanthias) samples were necropsied to evaluate chemical residue of various parts of the fish (digestive tract, liver, embryo, muscle tissue), as well as, a weight proportional whole body composite (WBWC). Whole organisms were homogenized and analyzed for silver, arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury, 19 polychlorinated biphenyl (PCB) congeners, PCB homologues, percent moisture, percent lipids, δ13C, and δ15N.

  3. To be well - to function well. Health biology at Copenhagen University

    DEFF Research Database (Denmark)

    Rosenkilde, Per

    1995-01-01

    Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion.......Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion....

  4. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.

    Directory of Open Access Journals (Sweden)

    Linda Ambrosio

    Full Text Available Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins.

  5. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome

    Indian Academy of Sciences (India)

    Susana Mariconda; Soon-Young Namgoong; Ki-Hoon Yoon; Hong Jiang; Rasika M Harshey

    2000-12-01

    Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (III and III, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within III also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, III or III domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain III or III function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.

  6. Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses

    Science.gov (United States)

    Basu, Nandita B.; Thompson, Sally E.; Rao, P. Suresh C.

    2011-10-01

    This paper synthesizes a 3-year collaborative effort to characterize the biogeochemical and hydrological features of intensively managed agricultural catchments by combining data analysis, modeling, and preliminary hypothesis testing. The specific focus was on the Midwestern region of the United States. The results suggest that: (1) water management, specifically the homogenization of evapotranspiration losses driven by mono-cultural vegetation cover, and the homogenization of runoff generation driven by artificial drainage, has created engineered, predictable hydrologic systems; (2) nutrient and pesticide management, specifically their regular applications have created two kinds of biogeochemical export regimes: chemostatic (low variability in concentration as exhibited by nitrate) and episodic (high variability in concentration as exhibited by pesticides); (3) coupled mass-balance models for water and solutes reproduce these two regimes as a function of chemical rate constants. Phosphorus transport regimes were found to be episodic at smaller spatial scales, but chemostatic at larger scales. Chemostatic response dominates in transport-limited catchments that have internal sources of the solute to buffer the periodicity in episodic inputs, while episodic response dominates in source-limited catchments. The shift from episodic nitrate export in pristine catchments to chemostatic regimes in managed watersheds was attributed to legacy stores of nitrogen (built from continued fertilizer applications) that buffer interannual variations in biogeochemical processing. Fast degradation kinetics of pesticides prevents the build-up of legacy sources, and leads to episodic export. Analytical expressions were derived for the probability density functions of solute delivery ratio as a function of the stochastics of rainfall-runoff events and biogeochemical controls.

  7. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    rising from zero, then peaking, and finally decaying to a somewhat sustained plateau, mimicking closely observed instantaneous firing rates of monkey visual cortex neurons. The new psychometric function fits well to experimental data in both the present study and in a previous study of single......-letter identification accuracy (Bundesen & Harms, 1999). Also, we conducted a follow-up experiment to test the ability of the psychometric functions to fit single-letter identification data, at different stimulus contrast levels; also in this experiment the new psychometric function prevailed. Further, after insertion...... into Bundesen’s Theory of Visual Attention (Bundesen, 1990), the new psychometric function enables closer fits to data from a previous whole and partial report experiment....

  8. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter;

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork and...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  9. RESPONDING AND ANALYSING: STAGES OF TEACHING FUNCTIONAL GRAMMAR IN INDONESIAN CONTEXT

    Directory of Open Access Journals (Sweden)

    Lala Bumela

    2014-07-01

    Full Text Available Abstract: This paper offers an alternative to the teaching of a functional grammar course in Indonesian TEFL tertiary level context. An issue raised here is whether the course should directly require students to undertake textual analysis or provide them first with subjective reading experiences.  This issue is inspired by Jones and Lock¹s approach to teaching grammar in context (2011. This paper reports on a study that focused on two related phases of dealing with texts: responding and analyzing.  In the first phase, students were encouraged to take a personalised approach in responding to written English texts.  They had the freedom to decide whether the texts were meaningful for them in certain ways. Mckee (2003 and Lehtonen (2000 posit that as the sole decision maker in meaning negotiation, readers perceive the meaningfulness of texts in very diverse ways. In the second phase of the study, the students undertook an individual analysis of different text types.  This study reveals that a successful textual analysis is determined by how students make sense of the texts. The analysis of context of situation, for example, becomes meaningful to students after they demonstrate a proper position as a reader.  This, in turn, helps them in gaining insights into the structure and grammar of those texts.   Keywords: systemic functional linguistics, genre-based approach, textual analysis

  10. Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability

    Energy Technology Data Exchange (ETDEWEB)

    Crellin, Paul K.; Vivian, Julian P.; Scoble, Judith; Chow, Frances M.; West, Nicholas P.; Brammananth, Rajini; Proellocks, Nicholas I.; Shahine, Adam; Le Nours, Jerome; Wilce, Matthew C.J.; Britton, Warwick J.; Coppel, Ross L.; Rossjohn, Jamie; Beddoe, Travis (Monash); (Centenary)

    2010-09-17

    The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG{_}6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG{_}6394, solved to 2.9 {angstrom} resolution, revealed an {alpha}/{beta} hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG{_}6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.

  11. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Tabib-Salazar, Aline; Humphrey, Laurence J; Flack, Joshua E; Olinares, Paul Dominic B; Darst, Seth A; Campbell, Elizabeth A; Paget, Mark S

    2015-06-01

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.

  12. Functional and comparative genomics analyses of pmp22 in medaka fish

    Directory of Open Access Journals (Sweden)

    Kawarabayasi Yutaka

    2009-06-01

    Full Text Available Abstract Background Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A. The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV. Several CMT1A model rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation of the association between pmp22 transcription level and vertebrate myelin formation, and to find the conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed fishes and mammals. Results A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish in the peripheral nerve system (PNS was observed. We successfully confirmed that medaka fish pmp22 has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs. Furthermore, we found novel conserved sequences in the first intron and 3'UTR. Conclusion Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary conserved sequences that contribute to precise regulation of pmp22 expression.

  13. Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters

    International Nuclear Information System (INIS)

    Multi-functionalized single walled carbon nanotubes (SWNTs) were prepared and applied as tumor cell targeting biological transporters. A positive charge was introduced on SWNTs to get high loading efficiency of fluorescein (FAM) labeled short double strands DNA (20 base pairs). The SWNTs were encapsulated with the folic acid modified phospholipids for active targeting into tumor cell. The tumor cell-targeting properties of these multi-functionalized SWNTs were investigated by active targeting into mouse ovarian surface epithelial cells. The experimental results show that these multi-functionalized SWNTs have good tumor cell targeting property

  14. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    Science.gov (United States)

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  15. Liver function in Huntington's disease assessed by blood biochemical analyses in a clinical setting

    DEFF Research Database (Denmark)

    Nielsen, Signe Marie Borch; Vinther-Jensen, Tua; Nielsen, Jørgen E.;

    2016-01-01

    Huntington's disease (HD) is a dominantly inherited, progressive neurological disorder caused by a CAG repeat elongation in the huntingtin gene. In addition to motor-, psychiatric- A nd cognitive dysfunction, peripheral disease manifestations in the form of metabolic changes and cellular dysfunct......Huntington's disease (HD) is a dominantly inherited, progressive neurological disorder caused by a CAG repeat elongation in the huntingtin gene. In addition to motor-, psychiatric- A nd cognitive dysfunction, peripheral disease manifestations in the form of metabolic changes and cellular...... indicated by the Unified Huntington's disease rating scale-Total Functional Capacity Score (UHDRS-TFC). For gamma-glutamyl transferase, elevated levels were more frequent in the manifest groups than in both the HD gene-expansion negative controls and premanifest HD gene-expansion carriers. Finally...

  16. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.

    Science.gov (United States)

    Divi, Uday K; Rahman, Tawhidur; Krishna, Priti

    2016-01-01

    The plant hormone brassinosteroid (BR) plays essential roles in plant growth and development, while also controlling plant stress responses. This dual ability of BR is intriguing from a mechanistic point of view and as a viable solution for stabilizing crop yields under the changing climatic conditions. Here we report a time course analysis of BR responses under both stress and no-stress conditions, the results of which establish that BR incorporates many stress-related features even under no-stress conditions, which are then accompanied by a dynamic stress response under unfavourable conditions. Found within the BR transcriptome were distinct molecular signatures of two stress hormones, abscisic acid and jasmonic acid, which were correlated with enhanced endogenous levels of the two hormones in BR-treated seedlings. The marked presence of genes related to protein metabolism and modification, defence responses and calcium signalling highlights the significance of their associated mechanisms and roles in BR processes. Functional analysis of loss-of-function mutants of a subset of genes selected from the BR transcriptome identified abiotic stress-related roles for ACID PHOSPHATASE5 (ACP5), WRKY33, JACALIN-RELATED LECTIN1-3 (JAC-LEC1-3) and a BR-RESPONSIVE-RECEPTOR-LIKE KINASE (BRRLK). Overall, the results of this study provide a clear link between the molecular changes impacted by BR and its ability to confer broad-range stress tolerance, emphasize the importance of post-translational modification and protein turnover as BR regulatory mechanisms and demonstrate the BR transcriptome as a repertoire of new stress-related regulatory and structural genes.

  17. PLANT LIPIDOMICS: DISCERNING BIOLOGICAL FUNCTION BY PROFILING PLANT COMPLEX LIPIDS USING MASS SPECTROMETRY

    Science.gov (United States)

    Since 2002, plant biologists have begun to apply mass spectrometry to the comprehensive analysis of complex lipids. Such lipidomic analyses have been used to uncover roles for lipids in plant response to stresses and to identify in vivo functions of genes involved in lipid metabolism....

  18. Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.

    Science.gov (United States)

    Pilorge, M; Fassier, C; Le Corronc, H; Potey, A; Bai, J; De Gois, S; Delaby, E; Assouline, B; Guinchat, V; Devillard, F; Delorme, R; Nygren, G; Råstam, M; Meier, J C; Otani, S; Cheval, H; James, V M; Topf, M; Dear, T N; Gillberg, C; Leboyer, M; Giros, B; Gautron, S; Hazan, J; Harvey, R J; Legendre, P; Betancur, C

    2016-07-01

    Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons. GlyRs containing the α2 subunit are highly expressed in the embryonic brain, where they promote cortical interneuron migration and the generation of excitatory projection neurons. We previously identified a rare microdeletion of the X-linked gene GLRA2, encoding the GlyR α2 subunit, in a boy with autism. The microdeletion removes the terminal exons of the gene (GLRA2(Δex8-9)). Here, we sequenced 400 males with ASD and identified one de novo missense mutation, p.R153Q, absent from controls. In vitro functional analysis demonstrated that the GLRA2(Δex8)(-)(9) protein failed to localize to the cell membrane, while the R153Q mutation impaired surface expression and markedly reduced sensitivity to glycine. Very recently, an additional de novo missense mutation (p.N136S) was reported in a boy with ASD, and we show that this mutation also reduced cell-surface expression and glycine sensitivity. Targeted glra2 knockdown in zebrafish induced severe axon-branching defects, rescued by injection of wild type but not GLRA2(Δex8-9) or R153Q transcripts, providing further evidence for their loss-of-function effect. Glra2 knockout mice exhibited deficits in object recognition memory and impaired long-term potentiation in the prefrontal cortex. Taken together, these results implicate GLRA2 in non-syndromic ASD, unveil a novel role for GLRA2 in synaptic plasticity and learning and memory, and link altered glycinergic signaling to social and cognitive

  19. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  20. Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry.

    Science.gov (United States)

    Kalay, Ziya

    2011-08-01

    How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.

  1. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation

    DEFF Research Database (Denmark)

    Sinner, Moritz F; Tucker, Nathan R; Lunetta, Kathryn L;

    2014-01-01

    BACKGROUND: Atrial fibrillation (AF) affects >30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood. METHODS AND RESULTS: To identify new AF......-related genes, we used a multifaceted approach, combining large-scale genotyping in 2 ethnically distinct populations, cis-eQTL (expression quantitative trait loci) mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501; relative...... risk [RR]=1.18; 95% confidence interval [CI], 1.13-1.23; P=6.5×10(-16)), GJA1 (rs13216675; RR=1.10; 95% CI, 1.06-1.14; P=2.2×10(-8)), TBX5 (rs10507248; RR=1.12; 95% CI, 1.08-1.16; P=5.7×10(-11)), and CAND2 (rs4642101; RR=1.10; 95% CI, 1.06-1.14; P=9.8×10(-9)). In Japanese, novel loci were identified...

  2. Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum.

    Science.gov (United States)

    Neves-Ferreira, Ana G C; Perales, Jonas; Fox, Jay W; Shannon, John D; Makino, Débora L; Garratt, Richard C; Domont, Gilberto B

    2002-04-12

    DM43, an opossum serum protein inhibitor of snake venom metalloproteinases, has been completely sequenced, and its disulfide bond pattern has been experimentally determined. It shows homology to human alpha(1)B-glycoprotein, a plasma protein of unknown function and a member of the immunoglobulin supergene family. Size exclusion and dynamic laser light scattering data indicated that two monomers of DM43, each composed of three immunoglobulin-like domains, associated to form a homodimer in solution. Analysis of its glycan moiety showed the presence of N-acetylglucosamine, mannose, galactose, and sialic acid, most probably forming four biantennary N-linked chains. DM43 inhibited the fibrinogenolytic activities of bothrolysin and jararhagin and formed 1:1 stoichiometric stable complexes with both metalloproteinases. DM43 was ineffective against atrolysin C or A. No complex formation was detected between DM43 and jararhagin C, indicating the essential role of the metalloproteinase domain for interaction. Homology modeling based on the crystal structure of a killer cell inhibitory receptor suggested the existence of an I-type Ig fold, a hydrophobic dimerization surface and six surface loops potentially forming the metalloproteinase-binding surface on DM43. PMID:11815628

  3. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    Science.gov (United States)

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

  4. Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Directory of Open Access Journals (Sweden)

    Van Meir Erwin G

    2005-02-01

    Full Text Available Abstract Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10, thrombotic thrombocytopenic purpura (ADAMTS13, and Ehlers-Danlos syndrome type VIIC (ADAMTS2 in humans and belted white-spotting mutation in mice (ADAMTS20. Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu, chordate (Ciona and invertebrate (Drosophila and Caenorhabditis ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15 that may have distinct aggrecanase and angiogenesis functions.

  5. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  6. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  7. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  8. Integrated 'Omics', Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability.

    Science.gov (United States)

    Lutz, Stefanie; Anesio, Alexandre M; Field, Katie; Benning, Liane G

    2015-01-01

    Snow algae are poly-extremophilic microalgae and important primary colonizers and producers on glaciers and snow fields. Depending on their pigmentation they cause green or red mass blooms during the melt season. This decreases surface albedo and thus further enhances snow and ice melting. Although the phenomenon of snow algal blooms has been known for a long time, large aspects of their physiology and ecology sill remain cryptic. This study provides the first in-depth and multi-omics investigation of two very striking adjacent green and red snow fields on a glacier in Svalbard. We have assessed the algal community composition of green and red snow including their associated microbiota, i.e., bacteria and archaea, their metabolic profiles (targeted and non-targeted metabolites) on the bulk and single-cell level, and assessed the feedbacks between the algae and their physico-chemical environment including liquid water content, pH, albedo, and nutrient availability. We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. Green snow represents a wet, carbon and nutrient rich environment and is dominated by the algae Microglena sp. with a metabolic profile that is characterized by key metabolites involved in growth and proliferation. In contrast, the dry and nutrient poor red snow habitat is colonized by various Chloromonas species with a high abundance of storage and reserve metabolites likely to face upcoming severe conditions. Combining a multitude of techniques we demonstrate the power of such complementary approaches in elucidating the function and ecology of extremophiles such as green and red snow algal blooms, which play crucial roles in glacial ecosystems. PMID:26635781

  9. Meta-Analyses of Developing Brain Function in High-Risk and Emerged Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Moon-Soo eLee

    2014-11-01

    Full Text Available Objectives: Identifying early markers of brain function among those at high risk for pediatric bipolar disorder (PBD could serve as a screening measure when children and adolescents present with sub-syndromal clinical symptoms prior to the conversion to bipolar disorder. Studies on the offspring of patients with bipolar disorder who are genetically at high risk (HR have each been limited in establishing a biomarker, while an analytic review in summarizing the findings offers an improvised opportunity towards that goal. Methods: An activation likelihood estimation meta-analysis of mixed cognitive and emotional activities using the GingerALE software from the BrainMap Project was completed. The meta-analysis of all fMRI studies contained a total of 29 reports and included PBD, HR and typically developing (TD groups.Results: The HR group showed significantly greater activation relative to the TD group in the right DLPFC-insular-parietal-cerebellar regions. Similarly, the HR group exhibited greater activity in the right DLPFC and insula as well as the left cerebellum compared to patients with PBD. Patients with PBD, relative to TD, showed greater activation in regions of the right amygdala, parahippocampal gyrus, medial PFC, left ventral striatum, and cerebellum and lower activation in the right VLPFC and the DLPFC.Conclusions: The HR population showed increased activity, presumably indicating greater compensatory deployment, in relation to both the TD and the PBD, in the key cognition and emotion processing regions, such as the DLPFC, insula and parietal cortex. In contrast, patients with PBD, relative to HR and TD, showed decreased activity, which could indicate a decreased effort in multiple PFC regions in addition to widespread subcortical abnormalities, which are suggestive of a more entrenched disease process.

  10. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    Science.gov (United States)

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful. PMID:17157770

  11. Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP).

    Science.gov (United States)

    Lall, Patrick; Lindsay, Andrew J; Hanscom, Sara; Kecman, Tea; Taglauer, Elizabeth S; McVeigh, Una M; Franklin, Edward; McCaffrey, Mary W; Khan, Amir R

    2015-07-24

    Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.

  12. Form and function: Perspectives on structural biology and resources for the future

    International Nuclear Information System (INIS)

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs

  13. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  14. Form and function: Perspectives on structural biology and resources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  15. Influence of Lipid Oxidization on Structures and Functions of Biological Membranes

    OpenAIRE

    Korytowski, Agatha Anna

    2016-01-01

    The primary aim of this thesis is to clarify how the structures and functions of biological membranes are influenced by the oxidative damage mediated by free radicals. As a precisely defined model systems, artificially reconstituted lipid membranes (Langmuir monolayers, vesicles, supported membranes, multilamellar membranes) incorporating two oxidized phospholipids bearing aldehyde or carboxyl groups at the end of truncated sn-2 acyl chains were fabricated. By the combination of various exper...

  16. The SYK tyrosine kinase: a crucial player in diverse biological functions

    OpenAIRE

    Mócsai, Attila; Ruland, Jürgen; Tybulewicz, Victor L.J.

    2010-01-01

    Spleen tyrosine kinase (SYK) has been known to relay adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates novel targets including the CARD9/CARMA1–BCL10–MALT1 pathway and the NLRP3 inflammasome. Drosophila studies indic...

  17. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    Science.gov (United States)

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  18. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation

    Directory of Open Access Journals (Sweden)

    Kathleen H Wood

    2016-05-01

    Full Text Available DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.

  19. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  20. Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface

    Science.gov (United States)

    Hristov, Delyan R.; Rocks, Louise; Kelly, Philip M.; Thomas, Steffi S.; Pitek, Andrzej S.; Verderio, Paolo; Mahon, Eugene; Dawson, Kenneth A.

    2015-12-01

    We have used a silica - PEG based bionanoconjugate synthetic scheme to study the subtle connection between cell receptor specific recognition and architecture of surface functionalization chemistry. Extensive physicochemical characterization of the grafted architecture is capable of capturing significant levels of detail of both the linker and grafted organization, allowing for improved reproducibility and ultimately insight into biological functionality. Our data suggest that scaffold details, propagating PEG layer architecture effects, determine not only the rate of uptake of conjugated nanoparticles into cells but also, more significantly, the specificity of pathways via which uptake occurs.

  1. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  2. Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function.

    Science.gov (United States)

    Rui, Yue; Yi, Hojae; Kandemir, Baris; Wang, James Z; Puri, Virendra M; Anderson, Charles T

    2016-06-01

    Cell walls are likely to be essential determinants of the amazing strength and flexibility of the guard cells that surround each stomatal pore in plants, but surprisingly little is known about cell wall composition, organization, and dynamics in guard cells. Recent analyses of cell wall organization and stomatal function in the guard cells of Arabidopsis thaliana mutants with defects in cellulose and xyloglucan have allowed for the development of new hypotheses about the relative contributions of these components to guard cell function. Advanced image analysis methods can allow for the automated detection of key structures, such as microtubules (MTs) and Cellulose Synthesis Complexes (CSCs), in guard cells, to help determine their contributions to stomatal function. A major challenge in the mechanical modeling of dynamic biological structures, such as guard cell walls, is to connect nanoscale features (e.g., wall polymers and their molecular interactions) with cell-scale mechanics; this challenge can be addressed by applying multiscale computational modeling that spans multiple spatial scales and physical attributes for cell walls.

  3. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  4. Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities

    Directory of Open Access Journals (Sweden)

    Isganitis Timothy

    2006-02-01

    Full Text Available Abstract Background Existing biological databases support a variety of queries such as keyword or definition search. However, they do not provide any measure of relevance for the instances reported, and result sets are usually sorted arbitrarily. Results We describe a system that builds upon the complex infrastructure of the Biozon database and applies methods similar to those of Google to rank documents that match queries. We explore different prominence models and study the spectral properties of the corresponding data graphs. We evaluate the information content of principal and non-principal eigenspaces, and test various scoring functions which combine contributions from multiple eigenspaces. We also test the effect of similarity data and other variations which are unique to the biological knowledge domain on the quality of the results. Query result sets are assessed using a probabilistic approach that measures the significance of coherence between directly connected nodes in the data graph. This model allows us, for the first time, to compare different prominence models quantitatively and effectively and to observe unique trends. Conclusion Our tests show that the ranked query results outperform unsorted results with respect to our significance measure and the top ranked entities are typically linked to many other biological entities. Our study resulted in a working ranking system of biological entities that was integrated into Biozon at http://biozon.org.

  5. Molecular biological approaches to study myosin functions in cytokinesis of Dictyostelium.

    Science.gov (United States)

    Uyeda, T Q; Yumura, S

    2000-04-15

    The cellular slime mold Dictyostelium discoideum is amenable to biochemical, cell biological, and molecular genetic analyses, and offers a unique opportunity for multifaceted approaches to dissect the mechanism of cytokinesis. One of the important questions that are currently under investigation using Dictyostelium is to understand how cleavage furrows or contractile rings are assembled in the equatorial region. Contractile rings consist of a number of components including parallel filaments of actin and myosin II. Phenotypic analyses and in vivo localization studies of cells expressing mutant myosin IIs have demonstrated that myosin II's transport to and localization at the equatorial region does not require regulation by phosphorylation of myosin II, specific amino acid sequences of myosin II, or the motor activity of myosin II. Rather, the transport appears to depend on a myosin II-independent flow of cortical cytoskeleton. What drives the flow of cortical cytoskeleton is still elusive. However, a growing number of mutants that affect assembly of contractile rings have been accumulated. Analyses of these mutations, identification of more cytokinesis-specific genes, and information deriving from other experimental systems, should allow us to understand the mechanism of contractile ring formation and other aspects of cytokinesis. PMID:10816252

  6. Applications of post-translational modifications of FoxO family proteins in biological functions

    Institute of Scientific and Technical Information of China (English)

    Ying Zhao; Yachen Wang; Wei-Guo Zhu

    2011-01-01

    The functions of the FoxO family proteins, in particular their transcriptional activities, are modulated by post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. These PTMs occur in response to different cellular stresses, which in turn regulate the subcellular localization of FoxO family proteins, as well as their half-life, DNA binding, transcriptional activity and ability to interact with other cellular proteins. In this review, we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.%The functions of the FoxO family proteins,in particular their transcriptional activities,are modulated by post-translational modifications (PTMs),including phosphorylation,acetylation,ubiquitination,methylation and glycosylation.These PTMs occur in response to different cellular stresses,which in turn regulate the subceilular localization of FoxO family proteins,as well as their half-life,DNA binding,transcriptional activity and ability to interact with other cellular proteins.In this review,we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.

  7. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones.

    Science.gov (United States)

    Lace, Beatrice; Prandi, Cristina

    2016-08-01

    Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. PMID:27378726

  8. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Kramer Elena M

    2007-04-01

    Full Text Available Abstract Background The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis and grass (e.g., Oryza model species. Results Here we demonstrate the effective use of a reverse genetic technique, virus-induced gene silencing (VIGS, to study gene function in this emerging model plant. Using Agrobacterium mediated transfer of tobacco rattle virus (TRV based vectors, we induce silencing of PHYTOENE DESATURASE (AqPDS in Aquilegia vulgaris seedlings, and ANTHOCYANIDIN SYNTHASE (AqANS and the B-class floral organ identity gene PISTILLATA in A. vulgaris flowers. For all of these genes, silencing phenotypes are associated with consistent reduction in endogenous transcript levels. In addition, we show that silencing of AqANS has no effect on overall floral morphology and is therefore a suitable marker for the identification of silenced flowers in dual-locus silencing experiments. Conclusion Our results show that TRV-VIGS in Aquilegia vulgaris allows data to be rapidly obtained and can be reproduced with effective survival and silencing rates. Furthermore, this method can successfully be used to evaluate the function of early-acting developmental genes. In the future, data derived from VIGS analyses will be combined with large-scale sequencing and microarray experiments already underway in order to address both recent and ancient evolutionary

  9. Functional results after repair of large hiatal hernia by use of a biologic mesh

    Directory of Open Access Journals (Sweden)

    Filimon eAntonakis

    2016-03-01

    Full Text Available Background: The aim of this observational study is to analyze the results of patients with large hiatal hernia and upside-down stomach after surgical closure with a biologic mesh (Permacol®, Covidien, Neustadt an der Donau, Germany. Biologic mesh is used to prevent long-term detrimental effects of artificial meshes and to reduce recurrence rates. Methods: A total of 13 patients with a large hiatal hernia and endothoracic stomach, who underwent surgery between 2010 and 2014, were included. Interviews and upper endoscopy were conducted to determine recurrence, lifestyle restrictions and current complaints. Results: After a mean follow-up of 26+18 months (range 3-58 months 10 patients (three men, mean age 73+13, range 26-81 years were evaluated. A small recurrent axial hernia was found in one patient postoperatively. Dysphagia was the most common complaint (four cases, while in one case the problem was solved after endoscopic dilatation. In three cases bloat and postprandial pain were documented. In one case explantation of the mesh was necessary due to mesh migration and painful adhesions. In one further case with gastroparesis pyloroplasty was performed without success.Conclusion: Recurrence was rare after hernia repair with the biologic mesh Permacol®. Dysphagia, gas bloat and intraabdominal pain were frequent complaints. Despite the small number of patients it can be concluded that a biologic mesh may be an alternative to synthetic meshes to reduce recurrences. Long-term results should be studied in the future in order to assess the potential of biologic meshes to preserve esophageal function as well. This is important since artificial meshes are known to erode the esophagus after 5–10 years.

  10. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Science.gov (United States)

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  11. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  12. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    International Nuclear Information System (INIS)

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes

  13. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  14. Dynamic Associations of Change in Physical Activity and Change in Cognitive Function: Coordinated Analyses of Four Longitudinal Studies

    Directory of Open Access Journals (Sweden)

    Magnus Lindwall

    2012-01-01

    Full Text Available The present study used a coordinated analyses approach to examine the association of physical activity and cognitive change in four longitudinal studies. A series of multilevel growth models with physical activity included both as a fixed (between-person and time-varying (within-person predictor of four domains of cognitive function (reasoning, memory, fluency, and semantic knowledge was used. Baseline physical activity predicted fluency, reasoning and memory in two studies. However, there was a consistent pattern of positive relationships between time-specific changes in physical activity and time-specific changes in cognition, controlling for expected linear trajectories over time, across all four studies. This pattern was most evident for the domains of reasoning and fluency.

  15. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  16. Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses.

    Science.gov (United States)

    Wei, Kaifa; Chen, Juan; Chen, Yanfeng; Wu, LingJuan; Xie, Daoxin

    2012-07-01

    The WRKY transcription factor family plays crucial roles in biotic responses, such as fungi, bacteria, viruses and nematode infections and insect attacks. In this article, multiple-strategy analyses of the three subgroups were performed in order to gain structural and evolutionary proofs of the overall WRKY family and unravel the functions possessed by each group or subgroup. Thus we analyzed the similarity of WRKY factors between maize and Arabidopsis based on homology modelling. The gene structure and motif analyses of Group II demonstrated that specific motifs existing in the given subgroups may contribute to the functional diversification of WRKY proteins and the two types of conserved intron splice sites suggest their evolutionary conservation. The evolutionary divergence time estimation of Group III proteins indicated that the divergence of Group III occurred during the Neogene period. Further, we focused on the roles of maize WRKYs in pathogen responses based on publicly available microarray experiments. The result suggested that some ZmWRKYs are expressed specifically under the infection of certain fungus, among which some are up-regulated and some are down-regulated, indicating their positive or negative roles in pathogen response. Also, some genes remain unchanged upon fungal infection. Pearson correlation coefficient (PCC) analysis was performed using 62 fungal infection experiments to calculate the correlation between each pair of genes. A PCC value higher than 0.6 was regarded as strong correlation - in these circumstances, ninety pairs of genes showed a strong positive correlation, while fifteen pairs of genes displayed a strong negative correlation. These correlated genes form a co-regulatory network and help us investigate the existence of interactions between WRKY proteins.

  17. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available BACKGROUND: As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. METHODOLOGY: We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. RESULTS: Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. CONCLUSION: Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  18. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart.

    Science.gov (United States)

    Hansen, Katrina J; Favreau, John T; Guyette, Jacques P; Tao, Ze-Wei; Coffin, Spencer T; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R; Fitzpatrick, John P; DeMartino, Angelica; Gaudette, Glenn R

    2016-01-01

    Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p  0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was significantly decreased in the unseeded group compared with that in the hMSC-seeded group (p < 0.05). This study demonstrated that hMSC-seeded biological sutures are a method to deliver cells to the infarcted myocardium and have treatment potential. PMID:27610271

  19. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  20. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.

    Science.gov (United States)

    Dirocco, Daniel A; Dykstra, Kevin; Krska, Shane; Vachal, Petr; Conway, Donald V; Tudge, Matthew

    2014-05-01

    The direct CH functionalization of heterocycles has become an increasingly valuable tool in modern drug discovery. However, the introduction of small alkyl groups, such as methyl, by this method has not been realized in the context of complex molecule synthesis since existing methods rely on the use of strong oxidants and elevated temperatures to generate the requisite radical species. Herein, we report the use of stable organic peroxides activated by visible-light photoredox catalysis to achieve the direct methyl-, ethyl-, and cyclopropylation of a variety of biologically active heterocycles. The simple protocol, mild reaction conditions, and unique tolerability of this method make it an important tool for drug discovery.

  1. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    Science.gov (United States)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  2. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  3. Comparing Surface-Based and Volume-Based Analyses of Functional Neuroimaging Data in Patients with Schizophrenia

    Science.gov (United States)

    Anticevic, Alan; Dierker, Donna L.; Gillespie, Sarah K.; Repovs, Grega; Csernansky, John G.; Van Essen, David C.; Barch, Deanna M.

    2008-01-01

    A major challenge in functional neuroimaging is to cope with individual variability in cortical structure and function. Most analyses of cortical function compensate for variability using affine or low-dimensional nonlinear volume-based registration (VBR) of individual subjects to an atlas, which does not explicitly take into account the geometry of cortical convolutions. A promising alternative is to use surface-based registration (SBR), which capitalizes on explicit surface representations of cortical folding patterns in individual subjects. In this study, we directly compare results from SBR and affine VBR in a study of working memory in healthy controls and patients with schizophrenia (SCZ). Each subject's structural scan was used for cortical surface reconstruction using the SureFit method. fMRI data were mapped directly onto individual cortical surface models, and each hemisphere was registered to the population-average PALS-B12 atlas using landmark-constrained SBR. The precision with which cortical sulci were aligned was much greater for SBR than VBR. SBR produced superior alignment precision across the entire cortex, and this benefit was greater in patients with schizophrenia. We demonstrate that spatial smoothing on the surface provides better resolution and signal preservation than a comparable degree of smoothing in the volume domain. Lastly, the statistical power of functional activation in the working memory task was greater for SBR than for VBR. These results indicate that SBR provides significant advantages over affine VBR when analyzing cortical fMRI activations. Furthermore, these improvements can be even greater in disorders that have associated structural abnormalities. PMID:18434199

  4. Myocardial MR tagging. Analysis of regional and global myocardial function; Kardiales MR-Tagging. Analyse regionaler und globaler Myokardfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, U.; Fenchel, M. [Universitaet Tuebingen, Abt. fuer Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Tuebingen (Germany); Hennemuth, A. [Fraunhofer MEVIS, Bremen (Germany)

    2010-06-15

    Myocardial MR tagging is a powerful method which allows for assessment of myocardial function and may become an important tool for clinical evaluation of cardiac dysfunction, particularly in ischemic heart disease. In addition to visual assessment it allows direct quantification of myocardial deformation and strain to measure contractility. The use of myocardial tagging has provided new insights into the (patho)physiology of regional wall motion, and several parameters have been described as being useful to identify an ischemic response of the myocardium. One challenge encountered with tagging at 1.5 T is the fading of tags at end-diastole, greatly limiting the evaluation of myocardial function during diastole. Due to longer T{sub 1} relaxation times of the myocardium, tagging at 3 T has shown to have a higher CNR{sub Tag} and better tag persistence when compared to current clinical gradient-echo tagging protocols at 1.5 T. As a consequence, tagging at higher field strengths may be well suited for the characterization of the diastolic portion of the cardiac cycle in future applications. (orig.) [German] Das myokardiale Tagging mittels der kardialen Magnetresonanztomographie (MRT) stellt ein spezielles Verfahren dar, das eine quantitative Analyse der regionalen Myokardfunktion erlaubt. Mit der Analyse der regionalen Wandbewegung koennen pathologische Bewegungsablaeufe fruehzeitig erkannt und kardiale Dysfunktionen differenziert werden. Neben der visuellen Analyse ist es in erster Linie die quantitative Bestimmung der aus der Echokardiographie bekannten Funktionsparameter, die den Vorteil des Taggings bei der Charakterisierung der myokardialen Funktion ausmachen. Die quantitative Erfassung des Rotations- und Kontraktionsverhaltens mit dem myokardialen Tagging eroeffnet bei verschiedenen Erkrankungen des Herzens neue Einblicke in die Pathophysiologie. Eine intrinsische Limitation dieses Verfahrens besteht in dem insbesondere in der diastolischen Phase des Herzzyklus

  5. The origin of neutron biological effectiveness as a function of energy

    Science.gov (United States)

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-01-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data. PMID:27654349

  6. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    Science.gov (United States)

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  7. The neuronal correlates of digits backward are revealed by voxel-based morphometry and resting-state functional connectivity analyses.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available Digits backward (DB is a widely used neuropsychological measure that is believed to be a simple and effective index of the capacity of the verbal working memory. However, its neural correlates remain elusive. The aim of this study is to investigate the neural correlates of DB in 299 healthy young adults by combining voxel-based morphometry (VBM and resting-state functional connectivity (rsFC analyses. The VBM analysis showed positive correlations between the DB scores and the gray matter volumes in the right anterior superior temporal gyrus (STG, the right posterior STG, the left inferior frontal gyrus and the left Rolandic operculum, which are four critical areas in the auditory phonological loop of the verbal working memory. Voxel-based correlation analysis was then performed between the positive rsFCs of these four clusters and the DB scores. We found that the DB scores were positively correlated with the rsFCs within the salience network (SN, that is, between the right anterior STG, the dorsal anterior cingulate cortex and the right fronto-insular cortex. We also found that the DB scores were negatively correlated with the rsFC within an anti-correlation network of the SN, between the right posterior STG and the left posterior insula. Our findings suggest that DB performance is related to the structural and functional organizations of the brain areas that are involved in the auditory phonological loop and the SN.

  8. Clustering of DNA words and biological function: a proof of principle.

    Science.gov (United States)

    Hackenberg, Michael; Rueda, Antonio; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Oliver, José L

    2012-03-21

    Relevant words in literary texts (key words) are known to be clustered, while common words are randomly distributed. Given the clustered distribution of many functional genome elements, we hypothesize that the biological text per excellence, the DNA sequence, might behave in the same way: k-length words (k-mers) with a clear function may be spatially clustered along the one-dimensional chromosome sequence, while less-important, non-functional words may be randomly distributed. To explore this linguistic analogy, we calculate a clustering coefficient for each k-mer (k=2-9bp) in human and mouse chromosome sequences, then checking if clustered words are enriched in the functional part of the genome. First, we found a positive general trend relating clustering level and word enrichment within exons and Transcription Factor Binding Sites (TFBSs), while a much weaker relation exists for repeats, and no relation at all exists for introns. Second, we found that 38.45% of the 200 top-clustered 8-mers, but only 7.70% of the non-clustered words, are represented in known motif databases. Third, enrichment/depletion experiments show that highly clustered words are significantly enriched in exons and TFBSs, while they are depleted in introns and repetitive DNA. Considering exons and TFBSs together, 1417 (or 72.26%) in human and 1385 (or 72.97%) in mouse of the top-clustered 8-mers showed a statistically significant association to either exons or TFBSs, thus strongly supporting the link between word clustering and biological function. Lastly, we identified a subset of clustered, diagnostic words that are enriched in exons but depleted in introns, and therefore might help to discriminate between these two gene regions. The clustering of DNA words thus appears as a novel principle to detect functionality in genome sequences. As evolutionary conservation is not a prerequisite, the proof of principle described here may open new ways to detect species-specific functional DNA sequences

  9. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  10. Automated methods of predicting the function of biological sequences using GO and BLAST

    Directory of Open Access Journals (Sweden)

    Baumann Ute

    2005-11-01

    Full Text Available Abstract Background With the exponential increase in genomic sequence data there is a need to develop automated approaches to deducing the biological functions of novel sequences with high accuracy. Our aim is to demonstrate how accuracy benchmarking can be used in a decision-making process evaluating competing designs of biological function predictors. We utilise the Gene Ontology, GO, a directed acyclic graph of functional terms, to annotate sequences with functional information describing their biological context. Initially we examine the effect on accuracy scores of increasing the allowed distance between predicted and a test set of curator assigned terms. Next we evaluate several annotator methods using accuracy benchmarking. Given an unannotated sequence we use the Basic Local Alignment Search Tool, BLAST, to find similar sequences that have already been assigned GO terms by curators. A number of methods were developed that utilise terms associated with the best five matching sequences. These methods were compared against a benchmark method of simply using terms associated with the best BLAST-matched sequence (best BLAST approach. Results The precision and recall of estimates increases rapidly as the amount of distance permitted between a predicted term and a correct term assignment increases. Accuracy benchmarking allows a comparison of annotation methods. A covering graph approach performs poorly, except where the term assignment rate is high. A term distance concordance approach has a similar accuracy to the best BLAST approach, demonstrating lower precision but higher recall. However, a discriminant function method has higher precision and recall than the best BLAST approach and other methods shown here. Conclusion Allowing term predictions to be counted correct if closely related to a correct term decreases the reliability of the accuracy score. As such we recommend using accuracy measures that require exact matching of predicted

  11. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  12. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies.

    Science.gov (United States)

    Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M

    2005-12-01

    In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.

  13. Structural characteristics and biological functions of the HIV-1 gp120 V3 region

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recent studies demonstrate that the V3 loop of HIV-1 gp120 plays an important role in the attachment of HIV-1 to the target cells. Several amino acids in this domain are involved in the interaction of gp120 with the co-receptors. The V3 loop elicits one of the earliest antiviral antibody responses in HIV-1 infection and has been identified as the principal neutralizing determinant (PND). A subset of antibodies to V3 loop show a broad range of neutralizing activity. Unfortunately, this loop undergoes broad mutation and is one of the hypervariable regions. Mutations of some amino acids in this PND could affect syncytium formation, virus infectivity and neutralization. Knowing the structural characteristics and biological functions of the V3 region could help us to understand mechanism of HIV infection and to develop new strategy against HIV-1. In this review, the structural characteristics, variation and biological functions of the V3 loop as well as immunological responses to the V3 loop are discussed.

  14. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.

    Directory of Open Access Journals (Sweden)

    Sri Kripa Balakrishnan

    Full Text Available The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADPribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.

  15. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  16. The biology of cancer testis antigens: putative function, regulation and therapeutic potential.

    Science.gov (United States)

    Fratta, Elisabetta; Coral, Sandra; Covre, Alessia; Parisi, Giulia; Colizzi, Francesca; Danielli, Riccardo; Nicolay, Hugues Jean Marie; Sigalotti, Luca; Maio, Michele

    2011-04-01

    Cancer testis antigens (CTA) are a large family of tumor-associated antigens expressed in human tumors of different histological origin, but not in normal tissues except for testis and placenta. This tumor-restricted pattern of expression, together with their strong in vivo immunogenicity, identified CTA as ideal targets for tumor-specific immunotherapeutic approaches, and prompted the development of several clinical trials of CTA-based vaccine therapy. Driven by this practical clinical interest, a more detailed characterization of CTA biology has been recently undertaken. So far, at least 70 families of CTA, globally accounting for about 140 members, have been identified. Most of these CTA are expressed during spermatogenesis, but their function is still largely unknown. Epigenetic events, particularly DNA methylation, appear to be the primary mechanism regulating CTA expression in both normal and transformed cells, as well as in cancer stem cells. In view of the growing interest in CTA biology, the aim of this review is to provide the most recent information on their expression, regulation and function, together with a brief summary of the major clinical trials involving CTA as therapeutic agents. The pharmacologic modulation of CTA expression profiles on neoplastic cells by DNA hypomethylating drugs will also be discussed as a feasible approach to design new combination therapies potentially able to improve the clinical efficacy of currently adopted CTA-based immunotherapeutic regimens in cancer patients.

  17. Biological performance of functionalized biomedical polymers for potential applications as intraocular lens.

    Science.gov (United States)

    Zheng, Zhiwen; Wang, Yingjun; Jiao, Yan; Zhai, Zhichen

    2016-08-01

    To study the biological performance of surface-modified biomedical polymer materials, a model of the functional mechanism of nonspecific adsorption resistance was constructed. Cell behavior on the surface and in vivo transplantation features of intraocular lens (IOL) materials, such as hydrophobic acrylic ester and polymethyl methacrylate (PMMA), were investigated. The results of cell adhesion and proliferation studies showed that the addition of hirudin can significantly resist epithelial cell adhesion, better than the pure amination process, and thereby inhibit excessive proliferation on the surface. Experiments on the eyes of rabbits indicated that the IOL surfaces with hirudin modification reduced the incidence of cell aggregation and inflammation. Combined with a study of protein-resistant layer construction with recombinant hirudin on the material surface, the mechanism of surface functionalization was determined. The biological performance indicated that nonspecific adsorption is greatly decreased due to the existence of amphiphilic ions or hydration layers, which lead to stability and long-term resistance to nonspecific adsorption. These results offer a theoretical basis for the use of traditional biomedical polymer materials in long-term clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1961-1967, 2016.

  18. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology.

    Science.gov (United States)

    Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos

    2014-12-16

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined. PMID:25404136

  19. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2015-02-01

    Full Text Available Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR. Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC, a nucleotide binding (NB-ARC and a leucine rich repeat (LRR domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  20. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    International Nuclear Information System (INIS)

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE

  1. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  2. Functional analyse of GLUT1 and GLUT12 in glucose uptake in goat mammary gland epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qinghua Yu

    Full Text Available Glucose transport, mediated by glucose transporters, is necessary for mammary gland development and lactation. GLUT1 and GLUT12 could both be expressed in the pregnant and lactating mammary gland to participate in the glucose uptake process. In this study, the goat GLUT1 and GLUT12 genes were cloned from Saanen dairy goats and transfected into goat mammary gland epithelial cells to assess their biological functions and distributions. The results showed that both goat GLUT1 and GLUT12 had 12 predicted membrane-spanning helices. Goat GLUT1 and GLUT12 each influenced the mRNA expression of the other transporter and increased the glucose consumption and lactose yield in GLUT1- and GLUT12-transfected goat mammary gland epithelial cells, respectively. The overexpression of GLUT1 or GLUT12 also increased the expression of amino acid transporters SLC1A5, SLC3A2 and SLC7A5 and affected genes expressions in GMGE cells. Using immunofluorescence staining, GLUT1 was detected throughout the cytoplasm and localized to the Golgi apparatus around the nuclear membrane, whereas GLUT12 was mainly distributed in the perinuclear region and cytoplasm. This study contributes to the understanding of how GLUT1 and GLUT12 cooperate in the incorporation of nutrient uptake into mammary gland epithelial cells and the promotion of milk synthesis in the goat mammary gland during lactation.

  3. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    Science.gov (United States)

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  4. How biological soil crusts became recognized as a functional unit: a selective history

    Science.gov (United States)

    Lange, Otto L.; Belnap, Jayne

    2016-01-01

    It is surprising that despite the world-wide distribution and general importance of biological soil crusts (biocrusts), scientific recognition and functional analysis of these communities is a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phyto-sociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970’s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.

  5. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  6. Characterization and functional analyses of a novel chicken CD8α variant X1 (CD8α1).

    Science.gov (United States)

    Truong, A D; Ban, J; Park, B; Hong, Y H; Lillehoj, H S

    2016-07-01

    We provide the first description of cloning and of structural and functional analysis of a novel variant in the chicken cluster of differentiation 8 alpha (CD8a) family, termed the CD8α X1 (CD8α1) gene. Multiple alignments of CD8α1 with known CD8α and CD8β sequences of other species revealed relatively low conservation of AA residues involved in the specific and unique structural domains among CD8α genes. For example, cysteine residues that are involved in disulfide bonding to form the V domain are conserved. In contrast, the O-linked glycosylation sites (XPXX motif) are not found in the chicken CD8α1 sequence, and the A β strand and complementarity-determining region 1 and 2 sequences are poorly conserved between chicken CD8α1 and avian CD8α. Furthermore, the alignment showed that the transmembrane regions show relatively high sequence similarity, whereas the cytoplasmic regions show relatively low similarity, indicating poor conservation. Moreover, the motif (CXCP) that is thought to be responsible for binding the p56 lymphocyte cell kinase subunit (p56) is missing in the CD8α1 sequence. The chicken CD8α1 genomic structure is similar to that of chicken CD8α, but their protein structures differ. Phylogenetic analysis showed that chicken CD8α1 grouped with known avian CD8α sequences but was somewhat distantly related to the CD8α molecules of other species. Moreover, we analyzed the signal transduction and cytokine response to CD8α1 treatment to determine the specific biological functions of chicken CD8α1 in immune cells. The results showed that chicken CD8α1 is a key regulator of the expression of genes that are associated and cooperate with transcription factors in the major histocompatibility complex class I and II promoter regions and activates Janus kinase (JAK) 1/2, signal transducer and activator of transcription (STAT), and suppressor of cytokine signaling (SOCS) 1 signaling-related genes. Immune cells that express functional CD8α1 induce

  7. Identification of distinct biological functions for four 3′-5′ RNA polymerases

    Science.gov (United States)

    Long, Yicheng; Abad, Maria G.; Olson, Erik D.; Carrillo, Elisabeth Y.; Jackman, Jane E.

    2016-01-01

    The superfamily of 3′-5′ polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNAHis guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNAHis maturation reaction, which is distinct from the tRNAHis maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5′-editing in vivo and in vitro, establishing template-dependent 3′-5′ polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3′-5′ polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3′-5′ polymerases in eukaryotes. PMID:27484477

  8. Identification of distinct biological functions for four 3'-5' RNA polymerases.

    Science.gov (United States)

    Long, Yicheng; Abad, Maria G; Olson, Erik D; Carrillo, Elisabeth Y; Jackman, Jane E

    2016-09-30

    The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.

  9. Species composition,distribution patterns and ecological functions of biological soil crusts in the Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.

  10. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    黄一丁; 梁镇和; 冯佑民

    2001-01-01

    To investigate the relationship between the biological activity of recombined single chain insulin and the length of the connecting peptide, we designed and prepared three single chain insulin molecules, namely, PIP, [A]5PIP and [A]10PIP, by site-directed mutagenesis, in which B30 and A1 were linked through dipeptide A-K, heptapeptide A-A-A-A-A-A-K, and dodecapeptide A-A-A-A-A-A-A-A-A-A-A-K, respectively. Their receptor binding capacities were 0.14%, 14.3% and 11.1% of that of insulin respectively and their in vivo biological activities were in consistence with their receptor binding capacity; whereas their growth promoting activities were 17%, 116.3% and 38% of that of insulin. These results suggested the following conclusions. (i) The recombined single chain insulin could also possess the same metabolic and mitogenic function as insulin. (ii) The receptor binding capacity of recombined single chain insulin to insulin receptor was closely related to the length and amino acid composition of the connecting peptide and could change from 0 to 100% of insulin depending on the different connecting peptides. This result further illustrated the necessity of B chain C-terminus swaying away from A chain N-terminus when insulin binds to its receptor. (iii) The mitogenic activity of recombined single chain insulin also depended on the length and the amino acid composition of the connecting peptide and was higher than its metabolic activity.

  11. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.

    Directory of Open Access Journals (Sweden)

    Marc Torrent

    Full Text Available Antimicrobial proteins and peptides (AMPs are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.

  12. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  13. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  14. Restoration of voice function by using biological feedback in laryngeal and hypopharyngeal carcinoma patients

    Science.gov (United States)

    Choinzonov, E. L.; Balatskaya, L. N.; Chizhevskaya, S. Yu.; Meshcheryakov, R. V.; Kostyuchenko, E. Yu.; Ivanova, T. A.

    2016-08-01

    The aim of the research is to develop and introduce a new technique of post-laryngectomy voice rehabilitation of laryngeal and hypopharyngeal carcinoma patients. The study involves comparing and analyzing 82 cases of voice function restoration by using biological feedback based on mathematical modeling of voice production. The advantage of the modern technology-based method in comparison with the conventional one is proved. Restoration of voice function using biofeedback allows taking into account patient's abilities, adjusting parameters of voice trainings, and controlling their efficiency in real-time mode. The data obtained indicate that the new method contributes to the rapid inclusion of self-regulation mechanisms of the body and results in the overall success rate of voice rehabilitation in totally laryngectomized patients reaching 92%, which reduces the rehabilitation period to 18 days, compared to 86% and 38 days in the control group, respectively. Restoration of disturbed functions after successful treatment is an important task of rehabilitation and is crucial in terms of the quality of cancer patients' lives. To assess life quality of laryngeal cancer patients, the EORTC Quality of Life Core Questionnaire (QLQ-C30), and head and neck module (QLQ-H&N35) were used. The analyzed results proved that the technique of biofeedback voice restoration significantly improves the quality of life of laryngectomized patients. It allows reducing the number of disabled people, restoring patients' ability to work-related activities, and significantly improving social adaptation of these patients.

  15. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  16. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Generally,cell signal molecules are classified into the extracellular signal molecules (the first messengers) and the intracellular signal ones (the second messengers).Cyclic adenosine monophosphate (cAMP),calcium ions and calmodulin (CaM) are the traditional intracellular messengers,but they are also present in extracellular matrix (ECM).Some of them have been discovered to act as the first messengers through cell surface receptors.Other second messengers,such as cyclic guanosine monophosphate (cGMP),cyclic adenosine diphosphate ribose (cADPR) and annexin,are also found existing outside animal and plant cells.The existence of these messengers with intracellular-extracellular compatible functions in cells may be a regular biological phenomenon.These compatible messengers might be the communication factors between intracellular and extracellular regions or among the cell populations,and are also important in regulating cell development procedure.

  17. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    Science.gov (United States)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  18. Function of parotid gland following irradiation and its relation to biological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T. (Tohoku Univ., Sendai, Japan); Yamamoto, M.; Takeda, M.

    1980-09-01

    The function of the parotid gland in the mouse (synthesis and secretion of ..cap alpha..-amylase) following X irradiation was analyzed in relation to the parameters of surviving acinar cell fraction, DNA or protein content, and wet weight of the gland. Both synthesis and secretion of amylase in parotid were essentially unchanged when mice were irradiated with a dose of up to 3000 rad. When mice were irradiated and then given a proliferative stimulus of isoproterenol, latent lethal damage in the acinar cell population was expressed and resulted in cell degeneration in a dose-dependent manner. The mean value of amylase activity per gland in similarly treated parotids was, however, totally unaffected. The relationship between amylase activity per gland and the other biological parameters was analyzed by regression analysis. The results indicate that amylase activity per surviving acinar cell increased proportionately to compensate for the loss of acinar cells.

  19. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    Science.gov (United States)

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  20. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies.

    Directory of Open Access Journals (Sweden)

    Nagasundaram N

    Full Text Available The cyclin-dependent kinase 4 (CDK4-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1 and protein-ligand (CDK4-flavopiridol interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.

  1. [Historic and functional biology: the inadequacy of a system theory of evolution].

    Science.gov (United States)

    Regelmann, J P

    1982-01-01

    In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and

  2. Mapping the functional properties of soft biological tissues under shear loading

    Science.gov (United States)

    Buckley, Mark Raymond

    The structure and composition of articular cartilage and other load-bearing biological tissues are highly complex and heterogeneous. As a result, their functional mechanical properties exhibit clear spatial variations. Unlocking the structure-function relationship in these materials is critical for devising strategies to restore tissue impaired by injury or disease and can provide a template for successful implant design. Here, we describe a tissue deformation imaging stage (TDIS) allowing for simultaneous force measurement and visualization of microscale deformation in soft biological tissues under controlled shear strain. In combination with a fast confocal microscope, the TDIS is used to test the microscale response of articular cartilage to shear loading. To obtain the location-specific shear modulus of this tissue, we employ a high-resolution technique that involves tracking the deformation of a line photobleached into a fluorescently stained sample loaded in the TDIS. We find that the quasi-static and dynamic shear moduli are lowest roughly 100 mum below the articular surface. Here, articular cartilage is highly nonlinear, stiffening under increased shear strain and becoming more compliant under increased compressive strain. Using a simple thought model, we relate these results to structural features of the collagen network in articular cartilage. Furthermore, we demonstrate that the region of maximum compliance is also the primary site of shear energy dissipation in articular cartilage. Our findings suggest that damage to or surgical removal of the surface of this tissue will increase the joint's susceptibility to shear-induced damage. Finally, similar experiments are performed on intervertebral disc and growth plate, demonstrating the versatility of our in-situ strain mapping techniques.

  3. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint...

  4. Differential function of lip residues in the mechanism and biology of an anthrax hemophore.

    Directory of Open Access Journals (Sweden)

    MarCia T Ekworomadu

    Full Text Available To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3(10-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3(10-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction

  5. Organic Composition and Morphology of Sea Spray Aerosols as a Function of Biological Life during IMPACTS

    Science.gov (United States)

    Pham, D.; Moffet, R.; Fraund, M. W.; O'Brien, R.; Laskina, O.; Prather, K. A.; Grassian, V. H.; Beall, C.; Wang, X.; Forestieri, S.; Cappa, C. D.

    2015-12-01

    Aerosols influence climate by directly reflecting or absorbing sunlight, or indirectly by affecting clouds. A major source of aerosols is from oceanic wave breaking. Due to their complexity, the effects of marine aerosol on climate are uncertain. To provide more detailed measurements of the chemical composition of marine aerosols, Scanning Transmission X-Ray Microscopy coupled with Near Edge X-Ray Absorption Fine Structure (SXTM-NEXAFS) was used to give spatially resolved molecular information for carbon and oxygen. Application of STXM/NEXAFS to particles collected during a mesocosm study using a unique wave channel facility to generate aerosols shows that the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.18-0.32 μm are a direct function of the biological activity in the sea water. Aerosol organic volume fraction increased from 0.32 for particles generated from seawater containing low biolife to 0.49 and 0.40 for particles produced during phytoplankton blooms. However, the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.56-1 μm did not change with biological activity. Measurements also show that different types of organics can concentrate into aerosols depending on the enzyme activity expressed at the time. Enhanced spectral signatures for aliphatic hydrocarbons were observed during the first phytoplankton bloom compared to a second phytoplankton bloom occurring directly thereafter. The decreased signature of aliphatic organics in the second phytoplankton bloom was correlated with increased lipase activity from heterobacteria. Organic aggregates having similar morphology also differ in composition from their carbon spectra from the two blooms. For July 17, organic aggregates were much richer in hydrocarbons, which showed a remarkably intense C-H absorbance and a broad C-C absorbance. Organic aggregates observed for July 26-27, did not have the C-H and C-C signatures, but contained more polar

  6. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  7. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  8. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  9. Use of Fixed-Film Bioreactors, in Situ Microcosms, and Molecular Biological Analyses to Evaluate Bioremediation of Chlorinated Benzenes By Indigenous Bacteria and a Bioaugmented Dechlorinating Consortium

    Science.gov (United States)

    Lorah, M. M.; Teunis, J. A.

    2014-12-01

    Evaluation of bioremediation is complicated by contaminant mixtures, high concentrations, variable site conditions, and multiple possible degradation pathways. In this study, fixed-film bioreactor experiments, in situ microcosms, and microbial analyses were utilized to evaluate both anaerobic and aerobic biodegradation processes for tri- and dichlorobenzene isomers, monochlorobenzene, and benzene in a wetland. Biofilm-based bioreactors provide a robust assessment tool because of their typically high degree of stability, even with major and repeated perturbations. Two bioreactor units seeded with an anaerobic dechlorinating consortium (WBC-2) and one unit seeded only with bacteria indigenous to the site were operated under flow-through conditions to compare biougmentation and natural attenuation. Electron donor levels were varied to fluctuate between anaerobic and aerobic conditions, and inflow concentrations of total chlorobenzenes were transitioned from 1-10 mg/L to 50-100 mg/L. Biodegradation resulted in removal efficiencies of 80 to 99 percent for the different compounds and inflow concentrations. Degradation efficiency in the native bioreactor was not impacted by cycling between anaerobic and aerobic conditions, although removal rates for monochlorobenzene and benzene increased under aerobic conditions. In situ microcosms were incubated below the wetland surface in sets of 3 treatments—unamended, biostimulated (lactate addition), and bioaugmented (WBC-2 and lactate). Additional treatment sets contained 13C-labeled contaminants to monitor for production of 13C-containing carbon dioxide and cellular material. Microcosm results verified that WBC-2 bioaugmentation can enhance biodegradation, with complete mineralization of chlorobenzene and benzene in bioaugmented and native treatments. Microbial analyses using QuantArrayTM for functional and taxonomic genes indicated potential for co-occurrence of anaerobic and aerobic biodegradation. Compared to the unamended

  10. Nitrification inhibition as measured by RNA- and DNA-based function-specific assays and microbial community structure analyses

    Science.gov (United States)

    Abstract: The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification, which transforms ammonia into nitrate, which in turn is converted into nitrogen gas by denitrifying bacteria. The first step in nitrification, ...

  11. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.

    Science.gov (United States)

    Tsalkova, Tamara; Blumenthal, Donald K; Mei, Fang C; White, Mark A; Cheng, Xiaodong

    2009-08-28

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized "hinge" motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.

  12. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function

    OpenAIRE

    Griffiths, Bryan; Römbke, J.; Schmelz, R. M.; Scheffczyk, A.; Faber, J.H.; Bloem, J.; Peres, G.; Cluzeau, D.; Chabbi, A.; Suhadolc, M.; Sousa, J. P.; Martins da Silva, P.; F. Carvalho; Mendes, S; MORAIS, P.

    2016-01-01

    International audience; Soils provide many ecosystem services that are ultimately dependent on the local diversity and belowground abundance of organisms. Soil biodiversity is affected negatively by many threats and there is a perceived policy requirement for the effective biological monitoring of soils at the European level. The aim of this study was to evaluate and recommend policy relevant, cost-effective soil biological indicators for biodiversity and ecosystem function across Europe. A t...

  13. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    Directory of Open Access Journals (Sweden)

    Zahra YADEGARI

    2015-10-01

    Full Text Available Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate ex-pression of full-length functional recombinant human amelogenin (rhAm in Iranian lizard Leishmania (I.L.L. as an alternative eukaryotic expression system.Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control.Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm sig-nificantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+ multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells.Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future.

  14. SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.

    Science.gov (United States)

    Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl

    2015-12-17

    The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here, we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca(2+) imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function.

  15. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    Science.gov (United States)

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. PMID:27596431

  16. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control.

    Science.gov (United States)

    Medeiros, David B; Daloso, Danilo M; Fernie, Alisdair R; Nikoloski, Zoran; Araújo, Wagner L

    2015-08-01

    Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency. PMID:25689387

  17. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    Science.gov (United States)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  18. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  19. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  20. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.

    Science.gov (United States)

    Apte, Suneel S; Parks, William C

    2015-01-01

    This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes

  1. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    Science.gov (United States)

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies. PMID:20433956

  2. Exploring biological and pathological functions of TGFβ family member activin C

    International Nuclear Information System (INIS)

    Activins and their antagonists inhibins are cytokines of the transforming growth factor β family (TGFβ), with important regulatory functions in a wide array of physiological processes. Activins are homo- or heterodimers consisting of two disulfide-linked β subunits, four mammalian activin β subunits - βA, βB, βC, βE - have been identified in mammalian cells. Inhibins in contrast are heterodimers composed of an β subunit and a β subunit. Whereas the expression of βA and βB subunits is high and widely distributed in many organs, the βC and βE subunits are predominantly expressed in the liver. Activin A is by far the best investigated activin. It has been implicated for instance in reproductive biology, embryonic development, homeostasis, inflammation and tissue repair. In the liver it contributes to regulation of cell growth, apoptosis and tissue architecture. Additionally, deregulation of activin A signaling accounts for pathologic conditions such as hepatic inflammation, fibrosis and carcinogenesis. The biological functions of the other family members and their involvement in liver biology and diseases are still poorly understood. The first part of this work deals with the mRNA expression pattern of the complete inhibin gene family to obtain novel insights into possible functions of activins and inhibins in human hepatocellular carcinogenesis. Using quantitative real-time PCR analysis we found strongly increased inhibin β subunit expression comparing samples of hepatocellular carcinoma and tumor surrounding tissue to samples from healthy donors. All four β subunits were expressed in normal and patient samples, whereas expression of βB subunit increased from normal to malignant samples. This study is the first to report a significant relation of the inhibin β and inhibin βB mRNA levels to human hepatocellular carcinoma. Furthermore, these data, different from those in rodent model systems, suggest a tumor promoting role of inhibin and activin

  3. Along-arc variation in water distribution in the upper mantle beneath Kyushu, Japan, as derived from receiver function analyses

    Science.gov (United States)

    Abe, Y.; Ohkura, T.; Hirahara, K.; Shibutani, T.

    2013-12-01

    The Kyushu district, Japan, under which the Philippine Sea (PHS) plate is subducting in a WNW direction, has several active volcanoes. On the volcanic front in Kyushu, a 110 km long gap in volcanism exists in the central part of Kyushu and volcanic rocks with various degrees of contamination by slab-derived fluid are distributed. To reveal the causes of the gap in volcanism and the chemical properties of volcanic rocks and to understand the process of magma genesis and water transportation, we should reveal along-arc variation in water distribution beneath Kyushu. We investigated the seismic velocity discontinuities in the upper mantle beneath Kyushu, with seismic waveform data from 65 stations of Hi-net, which are established by National Research Institute for Earth Science and Disaster Prevention, and 55 stations of the J-array, which are established by Japan Meteorological Agency, Kyushu University, Kagoshima University and Kyoto University. We used receiver function analyses developed especially for discontinuities with high dipping angles (Abe et al., 2011, GJI). We obtained the geometry and velocity contrasts of the continental Moho, the oceanic Moho, and the upper boundary of the PHS slab. From the geometry of these discontinuities and contrast in S wave velocities, we interpreted that the oceanic crust of the PHS slab has a low S wave velocity and is hydrated to a depth of 70 km beneath south Kyushu, to a depth of 80-90 km beneath central Kyushu, and to a depth of no more than 50 km beneath north Kyushu. We also interpreted that the fore-arc mantle beneath central Kyushu has a low velocity region (Vs < 3.2 km/s) that can contain hydrated materials and free aqueous fluid. Such a low velocity fore-arc mantle does not exist beneath north and south Kyushu. Beneath north Kyushu, the oceanic crust does not appear to convey much water in the mantle wedge. Beneath south Kyushu, water dehydrated from the slab could move to the back-arc side and cause arc volcanism

  4. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  5. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  6. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    Science.gov (United States)

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  7. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  8. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (P<0.001), expression level and breadth (P<0.01), DNA methylation signature (P<0.001) and evolutionary rate (P<0.001). The similar selection pressures and epigenetic trajectories of GKs and POs so implied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  9. The formation, function and regulation of amyloids: insights from structural biology.

    Science.gov (United States)

    Landreh, M; Sawaya, M R; Hipp, M S; Eisenberg, D S; Wüthrich, K; Hartl, F U

    2016-08-01

    Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies. PMID:27237473

  10. Expression of a Magnaporthe grisea Elicitor and Its Biological Function in Activating Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The expression of a protein elicitor from Magnaporthe griesea and its biological function in activating resistance in rice (Oryza sativa L) were reported. The gene of elicitor was expressed in Escherichia coli cells and produced a His6-fusion protein with 42 kD apparent molecular weight on SDS-PAGE. The purified protein could induce the resistance to blast disease, with the control efficiency of 46.47% and 36.41% at the 14th day and the 21st day after blast inoculation, respectively.After treatment with the expressed protein, the phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were promoted in rice plants, meanwhile, the transcription levels of STKM, FAD, PBZ1 and PR1 genes were increased in rice plants. Moreover, after comparing the profile of total rice leaf proteins on two-dimensional eiectrophoresis gel, about 14proteins were found to be increased in expression level after the expressed protein treatment. All the results indicated that the expressed protein could act as an elicitor to trigger the resistance in rice.

  11. Predicting drug-target interaction networks based on functional groups and biological features.

    Directory of Open Access Journals (Sweden)

    Zhisong He

    Full Text Available BACKGROUND: Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. METHODS/PRINCIPAL FINDINGS: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. CONCLUSION/SIGNIFICANCE: Our results indicate that the network prediction system thus established is quite promising and encouraging.

  12. Melatonin and its potential biological functions in the fruits of sweet cherry.

    Science.gov (United States)

    Zhao, Yu; Tan, Dun-Xian; Lei, Qiong; Chen, Hao; Wang, Lin; Li, Qing-tian; Gao, Yinan; Kong, Jin

    2013-08-01

    Melatonin is a well-known molecule which possesses many beneficial effects on human health. Many agriculture products provide natural melatonin in the diet. Cherry is one such fruit as they are rich in melatonin. In order to understand the biological roles of melatonin in cherry fruit, melatonin synthesis and its changes over 24 hr period were systematically monitored both during their development and in the ripe cherries in two cultivars, 'Hongdeng' (Prunus avium L. cv. Hongdeng) and 'Rainier' (Prunus avium L. cv. Rainier). It was found that both darkness and oxidative stress induced melatonin synthesis, which led to dual melatonin synthetic peaks during a 24 hr period. The high levels of malondialdehyde induced by high temperature and high intensity light exposure were directly related to up-regulated melatonin production. A primary function of melatonin in cherry fruits is speculated to be as an antioxidant to protect the cherry from the oxidative stress. Importantly, plant tryptophan decaboxylase gene (PaTDC) was identified in cherry fruits. Our data shows that PaTDC expression is positively related to the melatonin production in the cherry. This provides additional information to suggest that tryptophan decaboxylase is a rate-limiting enzyme of melatonin synthesis in plants. PMID:23480341

  13. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  14. The biology and functional morphology of Macoma biota (Bivalvia: Tellinidae: Macominae

    Directory of Open Access Journals (Sweden)

    Pedro Ribeiro Piffer

    2011-06-01

    Full Text Available Macoma biota Arruda & Domaneschi, 2005, is a recently described species known only from the intertidal zone of Praia da Cidade, Caraguatatuba Bay, in the state of São Paulo, southeastern Brazil. The main purpose of the present paper is to describe the biology of M. biota, beginning with a detailed analysis of its anatomy and functional morphology and how these attributes are correlated with its habitat and life history. The morphology of the organs in the pallial cavity and their sorting devices indicate that this species has efficient mechanisms to process large amounts of particles that enter this cavity via the inhalant current. M. biota can rapidly select the material suitable for ingestion and direct the undesired excess to the rejection mantle tracts. These characteristics along with the siphon's behavior and the digestive tract configuration reveal that this species can be classified primarily as a deposit feeder, like other species of the genus; however, it can also behave as a suspension feeder, depending on the environmental conditions.

  15. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  16. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-01

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  17. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    OpenAIRE

    Luan Yihui; Nunez-Iglesias Juan; Wang Wenhui; Sun Fengzhu

    2009-01-01

    Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results ...

  18. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  19. Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature.

    Science.gov (United States)

    Kamiya, Akira; Takahashi, Tatsuhisa

    2007-06-01

    The branching systems in our body (vascular and bronchial trees) and those in the environment (plant trees and river systems) are characterized by a fractal nature: the self-similarity in the bifurcation pattern. They increase their branch density toward terminals according to a power function with the exponent called fractal dimension (D). From a stochastic model based-on this feature, we formulated the fractal-based integrals to calculate such morphological parameters as aggregated branch length, surface area, and content volume for any given range of radius (r). It was followed by the derivation of branch number and cross-sectional area, by virtue of the logarithmic sectioning of the r axis and of the branch radius-length relation also given by a power function of r with an exponent (alpha). These derivatives allowed us to quantify various hydrodynamic parameters of vascular and bronchial trees as fluid conduit systems, including the individual branch flow rate, mean flow velocity, wall shear rate and stress, internal pressure, and circumferential tension. The validity of these expressions was verified by comparing the outcomes with actual data measured in vivo in the vascular beds. From additional analyses of the terminal branch number, we found a simple equation relating the exponent (m) of the empirical power law (Murray's so-called cube law) to the other exponents as (m=D+alpha). Finally, allometric studies of mammalian vascular trees revealed uniform and scale-independent distributions of terminal arterioles in organs, which afforded an infarct index, reflecting the severity of tissue damage following arterial infarction. PMID:17347385

  20. New method for the determination of the correction function of a hemisperical electron analyser based on elastic electron images

    International Nuclear Information System (INIS)

    Highlights: • Determination of correction function of a hemispherical analyzer (HSA). • Visualization of analysis area using elastic backscattered electron images. • Dependence of analysis area and transmission function with the kinetic energy. • Efficiency of these functions for quantitative interpretations of XPS. • Description of the general methodology to use these functions. - Abstract: The correction function of a hemispherical analyzer (HSA) is determined for quantitative interpretations of electron spectroscopy. In this way, electron elastic images are performed using a scanning electron gun. This new method allowed the determination of the analysis area A(EK) of a HSA for the first time. An important result is the dependence of this analysis area on the electron kinetic energy EK. Indeed, results show that A(EK) varies as EK−1.2 regardless of the spectrometer configuration. This parameter is different from the so-called transmission function and must be taken into account for quantitative interpretation. Moreover, the transmission function T(EK) is also determined in this work and varies as a power function EKx where x is a fitting parameter which depends only on the width in the energy dispersive direction of the hemisphere entrance slit. These two apparatus functions are then validated thanks to XPS measurements by comparing results obtained on two different Ag surfaces. Then a general methodology to use these functions is given

  1. New method for the determination of the correction function of a hemisperical electron analyser based on elastic electron images

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Mohamed Aymen [Clermont Université, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, IP, F-63171 Aubière (France); Monier, Guillaume, E-mail: guillaume.monier@univ-bpclermont.fr [Clermont Université, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, IP, F-63171 Aubière (France); Robert-Goumet, Christine; Bideux, Luc; Gruzza, Bernard [Clermont Université, Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, IP, F-63171 Aubière (France)

    2014-12-15

    Highlights: • Determination of correction function of a hemispherical analyzer (HSA). • Visualization of analysis area using elastic backscattered electron images. • Dependence of analysis area and transmission function with the kinetic energy. • Efficiency of these functions for quantitative interpretations of XPS. • Description of the general methodology to use these functions. - Abstract: The correction function of a hemispherical analyzer (HSA) is determined for quantitative interpretations of electron spectroscopy. In this way, electron elastic images are performed using a scanning electron gun. This new method allowed the determination of the analysis area A(E{sub K}) of a HSA for the first time. An important result is the dependence of this analysis area on the electron kinetic energy E{sub K}. Indeed, results show that A(E{sub K}) varies as E{sub K}{sup −1.2} regardless of the spectrometer configuration. This parameter is different from the so-called transmission function and must be taken into account for quantitative interpretation. Moreover, the transmission function T(E{sub K}) is also determined in this work and varies as a power function E{sub K}{sup x} where x is a fitting parameter which depends only on the width in the energy dispersive direction of the hemisphere entrance slit. These two apparatus functions are then validated thanks to XPS measurements by comparing results obtained on two different Ag surfaces. Then a general methodology to use these functions is given.

  2. Network class superposition analyses.

    Science.gov (United States)

    Pearson, Carl A B; Zeng, Chen; Simha, Rahul

    2013-01-01

    Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30) for the yeast cell cycle process), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141

  3. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  4. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  5. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  6. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  7. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  8. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  9. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator

    Directory of Open Access Journals (Sweden)

    Thomas eHoellinger

    2013-05-01

    Full Text Available The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996 was recently modeled (Barliya et al., 2009 by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  10. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  11. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  12. The first characterization of gene structure and biological function for echinoderm translationally controlled tumor protein (TCTP).

    Science.gov (United States)

    Ren, Chunhua; Chen, Ting; Jiang, Xiao; Wang, Yanhong; Hu, Chaoqun

    2014-12-01

    Translationally controlled tumor protein (TCTP) is a multifunctional protein that existed ubiquitously in different eukaryote species and distributed widely in various tissues and cell types. In this study, the gene structure and biological function of TCTP were first characterized in echinoderm. An echinoderm TCTP named StmTCTP was identified from sea cucumber (Stichopus monotuberculatus) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The StmTCTP cDNA is 1219 bp in length, containing a 5'-untranslated region (UTR) of 77 bp, a 3'-UTR of 623 bp and an open reading frame (ORF) of 519 bp that encoding a protein of 172 amino acids with a deduced molecular weight of 19.80 kDa and a predicted isolectric point of 4.66. Two deduced signal signatures termed TCTP1 and TCTP2, a microtubule binding domain, a Ca(2+) binding domain and the conserved residues forming Rab GTPase binding surface were found in the StmTCTP amino acid sequence. For the gene structure, StmTCTP contains four exons separated by three introns. The anti-oxidation and heat shock protein activities of recombinant TCTP protein were also demonstrated in this study. In addition, the expression of StmTCTP was found to be significantly upregulated by polyriboinosinic polyribocytidylic acid [poly (I:C)], lipopolysaccharides (LPS) or inactivated bacteria challenge in in vitro primary culture experiments of coelomocytes, suggested that the sea cucumber TCTP might play critical roles not only in the defense against oxidative and thermal stresses, but also in the innate immune defense against bacterial and viral infections. PMID:25193395

  13. Functions of nonsuicidal self-injury: exploratory and confirmatory factor analyses in a large community sample of adolescents.

    Science.gov (United States)

    Dahlström, Örjan; Zetterqvist, Maria; Lundh, Lars-Gunnar; Svedin, Carl Göran

    2015-03-01

    Given that nonsuicidal self-injury (NSSI) is prevalent in adolescents, structured assessment is an essential tool to guide treatment interventions. The Functional Assessment of Self-Mutilation (FASM) is a self-report scale that assesses frequency, methods, and functions of NSSI. FASM was administered to 3,097 Swedish adolescents in a community sample. With the aim of examining the underlying factor structure of the functions of FASM in this sample, the adolescents with NSSI who completed all function items (n = 836) were randomly divided into 2 subsamples for cross-validation purposes. An exploratory factor analysis (EFA) was followed by a confirmatory factor analysis (CFA) using the mean and variance adjusted weighted least squares (WLSMV) estimator in the Mplus statistical modeling program. The results of the EFA suggested a 3-factor model (social influence, automatic functions, and nonconformist peer identification), which was supported by a good fit in the CFA. Factors differentiated between social/interpersonal and automatic/intrapersonal functions. Based on learning theory and the specific concepts of negative and positive reinforcement, the nonconformist peer identification factor was then split into 2 factors (peer identification and avoiding demands). The resulting 4-factor model showed an excellent fit. Dividing social functions into separate factors (social influence, peer identification, and avoiding demands) can be helpful in clinical practice, where the assessment of NSSI functions is an important tool with direct implications for treatment. PMID:25558962

  14. Mapping biological soil crusts for understanding their functional relevance in dryland ecosystems

    Science.gov (United States)

    Rodriguez-Caballero, E.; Escribano, P.; Chamizo, S.; Canton, Y.

    2012-04-01

    Biological soil crusts (BSCs) are considered a key element in the functioning of arid and semiarid ecosystems as they modify numerous soil surface properties involved in primary ecosystem processes such as hydrological and erosion processes, and nutrient cycling.. It is known that arid and semiarid ecosystems are conformed by a complex matrix of vegetated and open ground patches usually covered by BSCs. Geomorphic evolution of drylands depends on the individual response of patches and also on the interactions and feedback-processes among patches. These interactions are controlled by patch spatial distribution. On this account, to understand the role of BSCs in the system, it is necessary to introduce their effect at coarser scales, and to have accurate and spatially continuous information of BSC distribution. The inherent complexity and the spatial heterogeneity of drylands make field survey methods very limited for BSC mapping. Images reported by remote sensors are presented as a powerful tool for mapping BSC spatial distribution. Remote sensors provide synoptic and spatially continuous information of the territory. Different indices for mapping BSCs have been published. These indices are based on distinctive spectral characteristic of BSCs and differ in nature and objectives. The aim of this work was to analyze the feasibility of some of these indices in a semiarid area characterized by sparse vegetation cover usually mixed at subpixel level with elements characterized by very similar spectral response (bare soil, BSCs and dry vegetation). These indices were: i) CRCIA, index applied for mapping BSCs from hyperspectral images. ii) CI, index developed for mapping of cyanobacteria-dominated BSCs and iii) BSCI, index for mapping of lichen-dominated BSCs. The multispectral indices (CI and BSCI) classified as BSCs 50% of the pixels dominated by BSCs. The CRCIA hyperspectral index, showed better results than those obtained with multispectral indices. This index

  15. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  16. Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food.

    Science.gov (United States)

    Pasko, Pawel; Gdula-Argasinska, Joanna; Podporska-Carroll, Joanna; Quilty, Brid; Wietecha-Posluszny, Renata; Tyszka-Czochara, Malgorzata; Zagrodzki, Pawel

    2015-08-01

    Suitability assessment of amaranth sprouts as a new functional food was carried out. The optimisation of sprouting process and the influence of selenium supplementation, in doses 10, 15, and 30 mg/l of selenium as sodium selenite, on amaranth growth and fatty acid profile were examined. Methods such as FRAP, DPPH, polyphenols content and GPX activity were applied to characterize antioxidant potential of seeds and sprouts of four different edible amaranth genera. E. coli, S. aureus, C. albicans were used to evaluate amaranth sprouts antimicrobial properties. Interaction between amaranth sprouts and biological systems was assessed by analysing antibacterial and antifungal properties with a disc diffusion test. The studies proved amaranth sprouts to be potentially attractive as functional food. As confirmed by all the data amaranth sprouts are suitable as a moderate selenium accumulator and are rich in essential fatty acids, especially linoleic and alpha-linolenic acids, which are precursors of long chain polyunsaturated fatty acids. Thus, it opens dietary opportunities for amaranth sprouts. They can also serve as a moderate source of antioxidant compounds. Nevertheless, the experiments revealed neither antibacterial, nor antifungal properties of sprouts. In general, amaranth sprouts biological activity under evaluation has failed to prove to be significantly impacted by selenium fertilization.

  17. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding

    Science.gov (United States)

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Jakobs, Oliver; Roski, Christian; Caspers, Svenja; Laird, Angela R.; Fox, Peter T.; Zilles, Karl; Eickhoff, Simon B.

    2016-01-01

    The right temporo-parietal junction (RTPJ) is consistently implicated in two cognitive domains, attention and social cognitions. We conducted multi-modal connectivity-based parcellation to investigate potentially separate functional modules within RTPJ implementing this cognitive dualism. Both task-constrained meta-analytic coactivation mapping and task-free resting-state connectivity analysis independently identified two distinct clusters within RTPJ, subsequently characterized by network mapping and functional forward/reverse inference. Coactivation mapping and resting-state correlations revealed that the anterior cluster increased neural activity concomitantly with a midcingulate–motor–insular network, functionally associated with attention, and decreased neural activity concomitantly with a parietal network, functionally associated with social cognition and memory retrieval. The posterior cluster showed the exact opposite association pattern. Our data thus suggest that RTPJ links two antagonistic brain networks processing external versus internal information. PMID:23689016

  18. 2K09 and Thereafter : The Coming Era of Integrative Bioinformatics, Systems Biology and Intelligent Computing for Functional Genomics and Personalized Medicine Research

    OpenAIRE

    2010-01-01

    Abstract Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Co...

  19. Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia.

    Science.gov (United States)

    Mansha, Muhammad; Carlet, Michela; Ploner, Christian; Gruber, Georg; Wasim, Muhammad; Wiegers, Gerrit Jan; Rainer, Johannes; Geley, Stephan; Kofler, Reinhard

    2010-04-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and are used in the therapy of lymphoid malignancies. SLA (Src-like-adaptor), an inhibitor of T- and B-cell receptor signaling, is a promising candidate derived from expression profiling analyses in children with acute lymphoblastic leukemia (ALL). Over-expression and knock-down experiments in ALL in vitro model revealed that transgenic SLA alone had no effect on survival or cell cycle progression, nor did it affect sensitivity to, or kinetics of, GC-induced apoptosis. Although SLA is a prominent GC response gene, it does not seem to contribute to the anti-leukemic effects of GC.

  20. Mechanism of Epac Activation: STRUCTURAL AND FUNCTIONAL ANALYSES OF Epac2 HINGE MUTANTS WITH CONSTITUTIVE AND REDUCED ACTIVITIES*

    OpenAIRE

    Tsalkova, Tamara; Blumenthal, Donald K.; Mei, Fang C.; White, Mark A.; Cheng, Xiaodong

    2009-01-01

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized “hinge” motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Target...

  1. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  2. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  3. [THE FUNCTIONAL CONSTITUENT OF A BIOLOGICAL COMPONENT IN PROGRAMS FOR TRAINING SPECIALISTS IN THE AREA OF PARASITOLOGY FOR ACCREDITATION].

    Science.gov (United States)

    Dovgalev, A S; Astanina, S Yu; Andreeva, N D

    2015-01-01

    The paper considers the functional aspects of a biological component in programs for training specialists in the area of Parasitology for accreditation within the current enactments, including those on modernization of public health and additional professional education. The working program of the module "Fundamental Disciplines" has been used as an example to outline approaches to molding a medical parasitologist's capacity and readiness to solve professional tasks on the basis of knowledge of fundamental disciplines: biology, immunology, and medical geography. Education fundamentalization is shown to suggest more unsupervised work of a learner in the teaching process. The fundamental constituent of a biological component of the 'programs for training learners in the specialty of Parasitology for accreditation is shown in the interaction of all sections of this area with special and allied subjects.

  4. Best Practices for Promoting Functional Biology Education: Activity-Based, Laboratory-Oriented Instruction

    Directory of Open Access Journals (Sweden)

    Abigail Mgboyibo Osuafor

    2016-08-01

    Full Text Available A major goal of science education is fostering students’ intellectual competencies. This goal can only be achieved when students are actively involved in the teaching-learning process. This study therefore, investigated the extent to which the biology teachers employ pupil-centered activities such as laboratory/practical instructional methods in order to improve the learning outcome of their students. The descriptive survey involved 73 Biology teachers randomly selected from all the six education zones of Anambra state, Nigeria. Four research questions and two hypotheses guided the conduct of the study. A 32-item structured questionnaire which has reliability co-efficient of 0.82 was used to collect data. Data were analyzed using mean, standard deviation and t-test. Results show that Biology teachers adopt practical-oriented strategies in teaching biology, conduct practical activities to a high extent, and perceive practical exercises as essential to effective teaching and learning of the subject. Provision of adequate number of laboratory materials, employment of adequate number of biology teachers, making provision for well designed laboratory activities in the curriculum and training of teachers on how to effectively combine theory with practical are some of the strategies that will encourage biology teachers to conduct practical lessons. There was no significant difference between male and female biology teachers in their responses to the different aspects investigated. Based on these findings, some recommendations were made which include that curriculum designers should incorporate guides for practical activities that go with each topic in the curriculum so as to encourage the teachers to teach theory with practical.

  5. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D.; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea. PMID:27579575

  6. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea. PMID:27579575

  7. An experimental study of the anisotropy of the electron distribution function in an ECR plasma by means of a double retarding field analyser

    International Nuclear Information System (INIS)

    A double retarding field analyser for use in axially inhomogeneous axisymmetric magnetic field configurations is described and applied for measuring anisotropic electron distribution functions in an ECR discharge. The analyser uses the velocity transformation due to the constancy of the magnetic moment at adiabatic motion in an axially varying magnetic field. Its principles of operation and construction are described and discussed. An application to measuring the distribution function of electrons escaping through the mirror throat from an ECR discharge confined by a magnetic mirror trap clearly indicates an anisotropy in the energy distribution. The kinetic temperature of the gyrational motion of the electrons exceeds that of the motion parallel to the field lines. (author)

  8. Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region

    Science.gov (United States)

    Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.

    2008-01-01

    Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.

  9. Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools

    OpenAIRE

    Nina Akrap; Daniel Andersson; Eva Bom; Pernilla Gregersson; Anders Ståhlberg; Göran Landberg

    2016-01-01

    Summary The identification of breast cancer cell subpopulations featuring truly malignant stem cell qualities is a challenge due to the complexity of the disease and lack of general markers. By combining extensive single-cell gene expression profiling with three functional strategies for cancer stem cell enrichment including anchorage-independent culture, hypoxia, and analyses of low-proliferative, label-retaining cells derived from mammospheres, we identified distinct stem cell clusters in b...

  10. A Scattered View of the Earth's Lithosphere: Constraints from Receiver Function Analyses of Temporary Array Data in Western North America

    Science.gov (United States)

    Hansen, Steven M.

    The structure and evolution of the Earth's lithosphere is investigated from seismic data collected by three temporary array deployments of broadband seismometers in western North America. Scattered body waves resulting from velocity heterogeneities are used to image subsurface structures via the receiver function methodology. An abbreviated history and a basic theoretical justification of the receiver function methodology are given. A derivation of a multi-channel and multi-event deconvolution algorithm is presented and includes estimation of the unknown source function via a rough-smooth spectral separation technique. P and S wave receiver functions from the Laramie array are used to constrain the crustal structure in southeast Wyoming. These results suggest north directed crustal imbrication across the Archean-Proterozoic Cheyenne belt suture. The fate of an extinct Cordilleran batholith is investigated using data from two linear array deployments across the Coast Mountains in western British Columbia. Substantial along strike variations in crustal structure are observed and are interpreted to be the result of spatial variation in exhumation and volcanism, potentially related to lower crustal foundering. The structure and topographic support of the Colorado Rocky Mountains and the adjacent Colorado Plateau and High Plains are investigated using seismic data from the Colorado Rocky Mountain Experiment and Seismic Transects (CREST) temporary deployment. Receiver function data are used to show that the highest topography is underlain by the some of the thinnest crust in Colorado and is therefore not supported by a thick crustal root. Crust and mantle densities are estimated from surface wave tomography, using empirical velocity-to-density relations in the crust and temperature modeling in the mantle. These results and flexure modeling show that low density crust and upper mantle is sufficient to support the excess topography. Reduced crustal velocities and densities

  11. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.

    Science.gov (United States)

    Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui

    2016-09-01

    Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity. PMID:26830206

  12. The functional-cognitive framework as a tool for accelerating progress in cognitive neuroscience: On the benefits of bridging rather than reducing levels of analyses.

    Science.gov (United States)

    Vahey, Nigel; Whelan, Robert

    2016-02-01

    The subject matter of neuroscience research is complex, and synthesising the wealth of data from this research to better understand mental processes is challenging. A useful strategy, therefore, may be to distinguish explicitly between the causal effects of the environment on behaviour (i.e. functional analyses) and the mental processes that mediate these effects (i.e. cognitive analyses). In this article, we describe how the functional-cognitive (F-C) framework can accelerate cognitive neuroscience and also advance a functional treatment of brain activity. We first highlight that cognitive neuroscience can particularly benefit from the F-C approach by providing an alternative to the problematic practice of reducing cognitive constructs to behavioural and/or neural proxies. Next, we outline how functional (behaviour-environment) relations can serve as a bridge between cognitive and neural processes by restoring mental constructs to their original role as heuristic tools. Finally, we give some examples of how both cognitive neuroscience and traditional functional approaches can mutually benefit from the F-C framework.

  13. Functional outcomes following ankle arthrodesis in males with haemophilia: analyses using the CDC’s Universal Data Collection surveillance project

    OpenAIRE

    LANE, H.; SIDDIQI, A.-E.-A.; INGRAM-RICH, R.; TOBASE, P.; WARD, R. SCOTT

    2014-01-01

    In persons with haemophilia (PWH), repeated ankle haemarthroses lead to pain, loss of joint range of motion (ROM), and limitations in activity and participation in society. PWH are offered ankle arthrodesis (AA) to eliminate pain. In our experience, PWH are hesitant to proceed to AA due to concerns regarding gait anomalies, functional decline and complete loss of ROM. The aim of this study was to report outcomes in ROM, assistive device (AD)/wheelchair use, activity scale and work/school abse...

  14. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  15. Functional degradation of the water-sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses.

    Science.gov (United States)

    Miao, Chiyuan; Kong, Dongxian; Wu, Jingwen; Duan, Qingyun

    2016-05-01

    Heavy sedimentation has led to the phenomenon of a secondary perched river in the lower reaches of the Yellow River. The water-sediment regulation scheme (WSRS) using the Xiaolangdi Reservoir was first implemented in 2002 to try to solve this problem. In this study, we analyzed the spatial and temporal effects of the current WSRS (2005-2013) on the lower Yellow River. Our results suggest that the current WSRS is exhibiting a tendency towards functional degradation, meaning that the scheme is no longer as effective as it was initially for the lower Yellow River. Although the main river channel has been fully scoured in the lower reaches since the implementation of the WSRS, we found that the degree of erosion declined gradually in a top-down fashion from the braided reach, through the transitional reach, to the meandering reach. Of the total eroded sediment, 69.64% came from the braided reach and only 6.61% came from the meandering reach. In addition, the reduction in riverbed elevation-a key function of the WSRS-has clearly slowed since 2005. We discuss the mechanisms underlying this functional degradation of the current WSRS and future challenges for the management of the lower Yellow River. Insights gained from this study will likely be of use to those weighing up options for future implementations of the WSRS. PMID:26874756

  16. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    Science.gov (United States)

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  17. Effect of side-stream phosphorus recovery on biological phosphorus removal performance investigated by chemical and microbial analyses in a novel BNR-IC process.

    Science.gov (United States)

    Zou, H M; Lu, X W; Li, T

    2014-01-01

    The aim of this study was to assess the effect of side-stream ratio (SSR) on performance of phosphorus (P) removal and recovery in a novel process linking biological nutrients removal (BNR) and induced crystallization (IC). Results showed that P removal efficiency was significantly enhanced when given an appropriate SSR, resulting in effluent P concentrations decreasing from 0.75 to 0.39 mg/L with an increase of SSR from 0 to 35%, where a maximum of 7.19 mg/L P recovery amount was obtained at 35% of SSR. Increasing the SSR can favor the P recovery, while an excessively high SSR (more than 35%) would have a negative effect on the subsequent biological P removal in the BNR-IC system. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis showed that in total, 11 DGGE bands of highest species richness were visually detected and significant changes in microbial community structure were found, with SSR variations ranging from 0 to 55%. Moreover, an increase in SSR can cause an increase in microbial community biodiversity; where microbial populations correspond to the 11 bands, they were generally classified into five different phyla or classes (Beta-, Gamma-, and Deltaproteobacteria, as well as Clostridia and Flavobacteria) based on the evolutionary tree analysis. PMID:25401306

  18. FUNCTION IN BIOLOGY: ETIOLOGICAL AND ORGANIZATIONAL PERSPECTIVES Función en Biología: perspectivas etiológicas y organizacionales

    Directory of Open Access Journals (Sweden)

    CHARBEL NIÑO EL-HANI

    Full Text Available In this paper, we argue for a taxonomy of approaches to function based on different epistemological perspectives assumed with regard to the treatment of this central concept in the life sciences. We distinguish between etiological and organizational perspectives on function, analyzing distinct theories: Wright's selectionist etiological approach and Godfrey-Smith's modern history theory of functions, in the case of the etiological perspective; and Cummins' functional analysis and Collier's interactivist approach to function, among organizational accounts. We explain differences and similarities between these theories and the broader perspectives on function, arguing for a particular way of understanding the consensus without unity in debates about function. While explaining the accounts of function, we also deal with the relationship between this concept and other important biological concepts, such as adaptation, selection, complexity, and autonomy. We also advance an argument for the limits and prospects of the explanatory role of function in evolution. By arguing that changes in functionality are always grounded on changes in systems' organization, we show that function can never explain the origins of traits. Nevertheless, it can explain the spread of traits in populations, but only when we are dealing with functionally novel traits. Finally, we stress that organizational accounts of function are needed to understand how new functions appear by means of changes in systems' organization.En este artículo, argumentamos a favor de una taxonomía de abordajes del concepto función basada en diferentes perspectivas epistemológicas de acuerdo al tratamiento de este concepto central en las ciencias de la vida. Distinguimos entre perspectivas etiológicas y organizacionales sobre la noción de función, analizando teorías distintas: la teoría etiológica seleccionista de Wright y la teoría de la historia moderna de Godfrey-Smith, en el caso de

  19. Human embryonic stem cells : advancing biology and cardiogenesis towards functional applications l

    NARCIS (Netherlands)

    Braam, Stefan Robbert

    2010-01-01

    Human embryonic stem cells (hESC) hold great potential as a model for human development, disease pathology, drug discovery and safety pharmacology. All these applications will depend on comprehensive knowledge of their biology and control of their signaling mechanisms and fate choices. To begin to a

  20. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  1. Swedish State Power Board activities related to man-machine analyses and optimization of the control room function

    International Nuclear Information System (INIS)

    As a result of new government requirements, the accident management of the Swedish State Power Board (SSPB) nuclear power plants is being strengthened as regards safety. This will influence control room environment, emergency operation procedure, training and organization. The paper mainly deals with current activities related to the control room environment. To meet the new requirements SSPB has (1) introduced a new general function/state oriented emergency operating procedure (EOP) for the shift engineer; (2) introduced an advanced safety parameter display system (SPDS); (3) enhanced simulator training of shift management; (4) reinforced the process image for the critical safety functions in the conventional control panels by grouping primary instrumentation. Some examples of retrofitting under way in the conventional control panels are: (a) the new BWRs are being retrofitted with process overview panels to assist operator actions during early stages of a transient; (b) the control panel for reactor vessel instrumentation (critical safety function: core cooling) has been changed in the old BWR to optimize actions when core cooling is jeopardized; (c) development of core cooling instrumentation for PWRs has been studied in simulators and retrofitting and modification are planned. The new EOP, SPDS, control room retrofits have been validated in simulators (and in the real world). Experience from simulator validation has shown that: (1) It is important for the reactor/turbine operator to follow the process response during an accident. It is therefore important that the EOP be simple to follow and the process system image be easy to understand. (2) The advanced SPDS has been valuable in giving the shift supervisor an overview and an independent verification of EOP actions. (3) Reactor pressure vessel instrumentation in PWRs has a positive impact on operator actions (especially those of the shift supervisor) during severe transients if it always reflects the actual

  2. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects.

    Directory of Open Access Journals (Sweden)

    Adam T Szafran

    Full Text Available BACKGROUND: Understanding how androgen receptor (AR function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS, and in the analysis of environmental endocrine disruptors. METHODOLOGY/PRINCIPAL FINDINGS: We report the development of a high throughput (HT image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5-24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear "speckling" were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. CONCLUSIONS/SIGNIFICANCE: HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations.

  3. Differential item functioning in Patient Reported Outcomes Measurement Information System® (PROMIS®) Physical Functioning short forms: Analyses across ethnically diverse groups

    OpenAIRE

    Jones, Richard N.; Doug Tommet; Mildred Ramirez; Roxanne Jensen; Teresi, Jeanne A.

    2016-01-01

    We analyzed physical functioning short form items derived from the PROMIS® item bank (PF16) using data from more than 5,000 recently diagnosed, ethnically diverse cancer patients. Our goal was to determine if the short form items demonstrated evidence of differential item functioning (DIF) according to sociodemographic characteristics in this clinical sample. We evaluated respons-es for evidence of unidimensionality, local independence (given a single common factor), differen-tial item functi...

  4. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  5. Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses.

    Science.gov (United States)

    Costa, Rodrigo; Gomes, Newton C M; Krögerrecklenfort, Ellen; Opelt, Katja; Berg, Gabriele; Smalla, Kornelia

    2007-09-01

    The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas-specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol - 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis. PMID:17686023

  6. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses

    Directory of Open Access Journals (Sweden)

    Larroque Mathieu

    2012-11-01

    provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.

  7. Data on polyphenols and biological activity analyses of an Andean tomato collection and their relationships with tomato traits and geographical origin.

    Science.gov (United States)

    Di Paola Naranjo, Romina D; Otaiza, Santiago; Saragusti, Alejandra C; Baroni, Veronica; Carranza, A V; Peralta, Iris E; Valle, Estela M; Carrari, Fernando; Asis, Ramón

    2016-06-01

    Data provide information about a tomato collection composed of accessions from the Andean Valley, commercial accessions and wild species. Antioxidant metabolites were measured in mature fruits of this collection, and their biological activities were assessed by both in vitro and in vivo methods. In this work, the parameters used to identify and quantify polyphenols compounds in tomato fruit by liquid chromatography coupled to diode array detector and quadrupole time of flight mass spectrometer are described. Moreover, data supporting a procedure to characterize the properties of tomato fruits to revert death by thermal stress in Caenorhabditis elegans are explained in detail. Lastly, principal component analysis and hierarchical cluster analysis of metabolites composition, antioxidant activities (in vivo and in vitro), tomato traits and geographical origin of the tomatoes collection are shown. The data presented here are related to the research article entitled "Hydrophilic antioxidants from Andean Tomato Landraces assessed by their bioactivities in vitro and in vivo" [1]. PMID:27222844

  8. School belongingness and mental health functioning across the primary-secondary transition in a mainstream sample: multi-group cross-lagged analyses.

    Directory of Open Access Journals (Sweden)

    Sharmila Vaz

    Full Text Available The relationship between school belongingness and mental health functioning before and after the primary-secondary school transition has not been previously investigated in students with and without disabilities. This study used a prospective longitudinal design to test the bi-directional relationships between these constructs, by surveying 266 students with and without disabilities and their parents, 6-months before and after the transition to secondary school. Cross-lagged multi-group analyses found student perception of belongingness in the final year of primary school to contribute to change in their mental health functioning a year later. The beneficial longitudinal effects of school belongingness on subsequent mental health functioning were evident in all student subgroups; even after accounting for prior mental health scores and the cross-time stability in mental health functioning and school belongingness scores. Findings of the current study substantiate the role of school contextual influences on early adolescent mental health functioning. They highlight the importance for primary and secondary schools to assess students' school belongingness and mental health functioning and transfer these records as part of the transition process, so that appropriate scaffolds are in place to support those in need. Longer term longitudinal studies are needed to increase the understanding of the temporal sequencing between school belongingness and mental health functioning of all mainstream students.

  9. Biological Soil Crusts Influence Hydrologic Function Differently in Various Deserts And Future Climate and Land Use will Affect These Relationships

    Science.gov (United States)

    Belnap, J.; Wilcox, B.; Barger, N.; Herrick, J.; van Soyoc, M.

    2012-04-01

    Biological soil crusts (biocrusts) can completely cover plant interspaces in dryland regions, and can constitute 70% or more of the living ground cover. In these areas, where precipitation is low and soils have low fertility, native plants often rely on intact biological soil crusts to provide water and nutrient flow to the broadly scattered vegetation. In cool desert systems, well-developed biocrusts (dominated by lichens and mosses) roughen the soil surface, increasing residence time of surface water flow. This results in increased and relatively homogenous infiltration of water into the soils. Filaments associated with cyanobacteria, fungi, mosses and lichens increase aggregate formation and stabilize soils, thus reducing sediment production, with well-developed biocrusts conferring much more stability on soils than less developed cyanobacterial dominated biocrusts. In hot and hyper-arid desert systems, biocrusts are generally less developed and dominated by cyanobacteria. These biocrusts generally increase runoff from plant interspaces to downslope vegetation. While reduced infiltration may seem to be negative, it can actually be advantageous to the downslope plants, as they may require small watersheds above them to provide the needed amount of water and nutrients required for their growth. Thus, infiltration and nutrient additions are more heterogenous than in cool desert systems. Soil surface disturbance and climate change have the potential to dramatically alter the species composition and thereby function of biological soil crusts in different deserts. Compressional disturbances results in reduced cover and a loss of lichen and moss species. Changes in climate regimes, such as an increase in temperature or a shift in the amount, timing, or intensity of rainfall, will influence the composition and physiological functioning of biological soil crusts, as various crust components have different photosynthetic and respiration responses to temperature and

  10. Differential item functioning in Patient Reported Outcomes Measurement Information System® (PROMIS® Physical Functioning short forms: Analyses across ethnically diverse groups

    Directory of Open Access Journals (Sweden)

    Richard N. Jones

    2016-06-01

    Full Text Available We analyzed physical functioning short form items derived from the PROMIS® item bank (PF16 using data from more than 5,000 recently diagnosed, ethnically diverse cancer patients. Our goal was to determine if the short form items demonstrated evidence of differential item functioning (DIF according to sociodemographic characteristics in this clinical sample. We evaluated respons-es for evidence of unidimensionality, local independence (given a single common factor, differen-tial item functioning, and DIF impact. DIF was evaluated attributable to sex, age (middle aged vs. younger and older, race/ethnicity (White vs. Black or African-American, Asian/Pacific Islander, Hispanic and level of education. We used a multiple group confirmatory factor analysis with covariates approach, a multiple indicators multiple causes (MIMIC model. We confirmed essential unidimensionality but some evidence for multidimensionality is present, particularly for basic activities of daily living items, and many instances of local dependence. The presence of local dependence calls for further review of the meaning and measurement of the physical functioning domain among cancer patients. Nearly every item demonstrated statistically significant DIF. In all group comparisons the impact of DIF was negligible. However, the Hispanic subgroup comparison revealed an impact estimate just below an arbitrary threshold for small impact. Within the limitations of local dependency violations, we conclude that items from a static short form derived from the PROMIS physical functioning item bank displayed trivial and ignorable DIF attributable to sex, race, ethnicity, age, and education among cancer patients.

  11. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses.

    Science.gov (United States)

    Kadioglu, Onat; Saeed, Mohamed E M; Valoti, Massimo; Frosini, Maria; Sgaragli, Giampietro; Efferth, Thomas

    2016-03-15

    Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.

  12. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    ) and by production of fast sinking carbon-rich faecal pellets. Hence, the large schools of krill greatly influence the pelagic food web and the flux of organic matter in the sea. However, knowledge of the distribution and feeding biology in krill from northern areas is scarce, although of importance to get a better......Krill is an understudied key group of zooplankton, which transfers energy through the food web by linking lower and higher trophic levels. Furthermore, krill play an important role in the biological pump by transporting carbon out of the euphotic zone to depth by diel vertical migration (DVM...... understanding of the marine ecosystems and food webs. This thesis aimed to gain more knowledge of krill in northern hemisphere and to study their trophic position and grazing impact in a sub-Arctic fjord. The project investigated i) species and population composition of krill in the area of Godthåbsfjord, SW...

  13. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  14. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis.

    Science.gov (United States)

    Damodaran, Srinivasan

    2015-07-01

    Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer. PMID:25888225

  15. Biological rhythms, higher brain function, and behavior: gaps, opportunities and challenges”

    OpenAIRE

    Benca, Ruth; Duncan, Marilyn J.; Frank, Ellen; McClung, Colleen; Nelson, Randy J.; Vicentic, Aleksandra

    2009-01-01

    Increasing evidence suggests that disrupted temporal organization impairs behavior, cognition, and affect; further, disruption of circadian clock genes impairs sleep/wake cycle and social rhythms which may be implicated in mental disorders. Despite this strong evidence, a gap in understanding the neural mechanisms of this interaction obscures whether biological rhythms disturbances are the underlying causes or merely symptoms of these diseases. Here, we review current understanding, emerging ...

  16. Adipocyte-derived basement membrane extract with biological activity: applications in hepatocyte functional augmentation in vitro

    OpenAIRE

    Sharma, Nripen S.; Nagrath, Deepak; Martin L Yarmush

    2010-01-01

    Natural and synthetic biomaterials utilized in tissue engineering applications require a dynamic interplay of complex macromolecular compositions of hydrated extracellular matrices (ECMs) and soluble growth factors. The challenges in utilizing synthetic ECMs is the effective control of temporal and spatial complexity of multiple signal presentation, as compared to natural ECMs that possess the inherent properties of biological recognition, including presentation of receptor-binding ligands, s...

  17. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology

    OpenAIRE

    Carbonell-Ballestero, M.; Duran-Nebreda, S.; Montanez, R.; Sole, R.; Macia, J.; Rodriguez-Caso, C.

    2014-01-01

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses—the so-called transfer function—and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the in...

  18. Mutation screen in the GWAS derived obesity gene SH2B1 including functional analyses of detected variants

    Directory of Open Access Journals (Sweden)

    Volckmar Anna-Lena

    2012-12-01

    Full Text Available Abstract Background The SH2B1 gene (Src-homology 2B adaptor protein 1 gene is a solid candidate gene for obesity. Large scale GWAS studies depicted markers in the vicinity of the gene; animal models suggest a potential relevance for human body weight regulation. Methods We performed a mutation screen for variants in the SH2B1 coding sequence in 95 extremely obese children and adolescents. Detected variants were genotyped in independent childhood and adult study groups (up to 11,406 obese or overweight individuals and 4,568 controls. Functional implications on STAT3 mediated leptin signalling of the detected variants were analyzed in vitro. Results We identified two new rare mutations and five known SNPs (rs147094247, rs7498665, rs60604881, rs62037368 and rs62037369 in SH2B1. Mutation g.9483C/T leads to a non-synonymous, non-conservative exchange in the beta (βThr656Ile and gamma (γPro674Ser splice variants of SH2B1. It was additionally detected in two of 11,206 (extremely obese or overweight children, adolescents and adults, but not in 4,506 population-based normal-weight or lean controls. The non-coding mutation g.10182C/A at the 3’ end of SH2B1 was only detected in three obese individuals. For the non-synonymous SNP rs7498665 (Thr484Ala we observed nominal over-transmission of the previously described risk allele in 705 obesity trios (nominal p = 0.009, OR = 1.23 and an increased frequency of the same allele in 359 cases compared to 429 controls (nominal p = 0.042, OR = 1.23. The obesity risk-alleles at Thr484Ala and βThr656Ile/γPro674Ser had no effect on STAT3 mediated leptin receptor signalling in splice variants β and γ. Conclusion The rare coding mutation βThr656Ile/γPro674Ser (g.9483C/T in SH2B1 was exclusively detected in overweight or obese individuals. Functional analyzes did not reveal impairments in leptin signalling for the mutated SH2B1.

  19. Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice.

    Science.gov (United States)

    Silva, Francisco; Zambre, Ajit; Campello, Maria Paula Cabral; Gano, Lurdes; Santos, Isabel; Ferraria, Ana Maria; Ferreira, Maria João; Singh, Amolak; Upendran, Anandhi; Paulo, António; Kannan, Raghuraman

    2016-04-20

    To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake. PMID:27003101

  20. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH(2), CH(3), and OH functions.

    Science.gov (United States)

    Hirata, Isao; Akamatsu, Mai; Fujii, Eri; Poolthong, Suchit; Okazaki, Masayuki

    2010-08-01

    Hydroxyapatite formation was examined at the surface of self-assembled monolayers (SAMs) modified with four functional groups, -COOH, -NH(2), -CH(3), and -OH. For COOH-SAM and NH(2)-SAM, scanning electron spectroscopic observation showed that flake-like sheet crystals covered the whole wafer and small broccoli-like crystals were observed occasionally on the flake-like crystal base layer. For CH(3)-SAM and OH-SAM, no flake-like sheet crystals were observed; broccoli-like crystals were observed in a dispersed manner for CH(3)-SAM, but in localized spots for OH-SAM. X-ray diffraction patterns showed a strong apatite pattern oriented toward the c-axis direction for COOH-SAM. ESCA analysis revealed distinct Ca, P, O peaks for COOH-, NH(2)-, CH(3)-, and OH-SAM. Surface plasmon resonance (SPR) analysis indicated that during the supply of supersaturated calcium phosphate solution, the deposition of precipitates increased monotonically with time for COOH-SAM, increased slightly for NH(2)-SAM, but little increase in deposition was detected for CH(3)-SAM and OH-SAM.

  1. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    Science.gov (United States)

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.

  2. Physiological and iTRAQ-Based Proteomic Analyses Reveal the Function of Spermidine on Improving Drought Tolerance in White Clover.

    Science.gov (United States)

    Li, Zhou; Zhang, Yan; Xu, Yi; Zhang, Xinquan; Peng, Yan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2016-05-01

    Endogenous spermidine interacting with phytohormones may be involved in the regulation of differentially expressed proteins (DEPs) associated with drought tolerance in white clover. Plants treated with or without spermidine (50 μM) were subjected to 20% PEG 6000 nutrient solution to induce drought stress (50% leaf-relative water content). The results showed that increased endogenous spermidine induced by exogenous spermidine altered endogenous phytohormones in association with improved drought tolerance, as demonstrated by the delay in water-deficit development, improved photosynthesis and water use efficiency, and lower oxidative damage. As compared to untreated plants, Spd-treated plants maintained a higher abundance of DEPs under drought stress involved in (1) protein biosynthesis (ribosomal and chaperone proteins); (2) amino acids synthesis; (3) the carbon and energy metabolism; (4) antioxidant and stress defense (ascorbate peroxidase, glutathione peroxidase, and dehydrins); and (5) GA and ABA signaling pathways (gibberellin receptor GID1, ABA-responsive protein 17, and ABA stress ripening protein). Thus, the findings of proteome could explain the Spd-induced physiological effects associated with drought tolerance. The analysis of functional protein-protein networks further proved that the alteration of endogenous spermidine and phytohormones induced the interaction among ribosome, photosynthesis, carbon metabolism, and amino acid biosynthesis. These differences could contribute to improved drought tolerance. PMID:27030016

  3. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells

    International Nuclear Information System (INIS)

    FOXP3, a forkhead transcription factor is essential for the development and function of CD4+CD25+ regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4+ T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4+ Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of human CD4+CD25- T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3

  4. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316.

    Science.gov (United States)

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  5. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-01-01

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose. PMID:27439730

  6. Resurrecting Brinley Plots for a Novel Use: Meta-Analyses of Functional Brain Imaging Data in Older Adults

    Directory of Open Access Journals (Sweden)

    Ann M. Peiffer

    2008-01-01

    Full Text Available By plotting response times of young and older adults across a variety of tasks, Brinley spurred investigation and debate into the theory of general cognitive slowing. Though controversial, Brinley plots can assess between-task differences, the impact of increasing task demand, and the relationship between responses in two groups of subjects. Since a relationship exists between response times and the blood-oxygen level dependent (BOLD signal of functional MRI (fMRI, Brinley's plotting method could be applied as a meta-analysis tool in fMRI studies of aging. Here, fledgling “Peiffer plots” are discussed for their potential impact on understanding general cognitive brain activity in aging. Preliminary results suggest that general cognitive slowing may be localized at the sensorimotor transformation in the precentral gyrus. Although this meta-analysis method is naturally used with imaging studies of aging, theoretically it may be applied to other study pairs (e.g., schizophrenic versus normal or imaging datasets (e.g., PET.

  7. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316

    Science.gov (United States)

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  8. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  9. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function

    OpenAIRE

    Warde-Farley, David; Sylva L. Donaldson; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George

    2010-01-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis t...

  10. Integrated ‘omics’, targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability

    Directory of Open Access Journals (Sweden)

    Stefanie eLutz

    2015-11-01

    Full Text Available Snow algae are poly-extremophilic microalgae and important primary colonisers and producers on glaciers and snow fields. Depending on their pigmentation they cause green or red mass blooms during the melt season. This decreases surface albedo and thus further enhances snow and ice melting. Although the phenomenon of snow algal blooms has been known for a long time, large aspects of their physiology and ecology sill remain cryptic. This study provides the first in-depth and multi-omics investigation of two very striking adjacent green and red snow fields on a glacier in Svalbard. We have assessed the algal community composition of green and red snow including their associated microbiota, i.e., bacteria and archaea, their metabolic profiles (targeted and non-targeted metabolites on the bulk and single-cell level, and assessed the feedbacks between the algae and their physico-chemical environment including liquid water content, pH, albedo and nutrient availability. We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. Green snow represents a wet, carbon and nutrient rich environment and is dominated by the algae Microglena sp. with a metabolic profile that is characterized by key metabolites involved in growth and proliferation. In contrast, the dry and nutrient poor red snow habitat is colonised by various Chloromonas species with a high abundance of storage and reserve metabolites likely to face upcoming severe conditions. Combining a multitude of techniques we demonstrate the power of such complementary approaches in elucidating the function and ecology of extremophiles such as green and red snow algal blooms, which play crucial roles in glacial ecosystems.

  11. Integrated ‘Omics’, Targeted Metabolite and Single-cell Analyses of Arctic Snow Algae Functionality and Adaptability

    Science.gov (United States)

    Lutz, Stefanie; Anesio, Alexandre M.; Field, Katie; Benning, Liane G.

    2015-01-01

    Snow algae are poly-extremophilic microalgae and important primary colonizers and producers on glaciers and snow fields. Depending on their pigmentation they cause green or red mass blooms during the melt season. This decreases surface albedo and thus further enhances snow and ice melting. Although the phenomenon of snow algal blooms has been known for a long time, large aspects of their physiology and ecology sill remain cryptic. This study provides the first in-depth and multi-omics investigation of two very striking adjacent green and red snow fields on a glacier in Svalbard. We have assessed the algal community composition of green and red snow including their associated microbiota, i.e., bacteria and archaea, their metabolic profiles (targeted and non-targeted metabolites) on the bulk and single-cell level, and assessed the feedbacks between the algae and their physico-chemical environment including liquid water content, pH, albedo, and nutrient availability. We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. Green snow represents a wet, carbon and nutrient rich environment and is dominated by the algae Microglena sp. with a metabolic profile that is characterized by key metabolites involved in growth and proliferation. In contrast, the dry and nutrient poor red snow habitat is colonized by various Chloromonas species with a high abundance of storage and reserve metabolites likely to face upcoming severe conditions. Combining a multitude of techniques we demonstrate the power of such complementary approaches in elucidating the function and ecology of extremophiles such as green and red snow algal blooms, which play crucial roles in glacial ecosystems. PMID:26635781

  12. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. PMID:27265044

  13. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  14. The dynamics of the biological membrane surrounding the buffalo milk fat globule investigated as a function of temperature.

    Science.gov (United States)

    Nguyen, Hanh T H; Madec, Marie-Noëlle; Ong, Lydia; Kentish, Sandra E; Gras, Sally L; Lopez, Christelle

    2016-08-01

    The biological membrane surrounding fat globules in milk (the MFGM) is poorly understood, despite its importance in digestion and in determining the properties of fat globules. In this study, in situ structural investigations of buffalo MFGM were performed as a function of temperature (4-60°C), using confocal microscopy. We demonstrate that temperature and rate of temperature change affected the lipid domains formed in the MFGM with the lateral segregation (i) of high Tm lipids and cholesterol in a Lo phase for both TTm and (ii) of high Tm lipids in a gel phase for Tfunction of temperature, could modulate the functions of fat globules during processing and digestion. PMID:26988511

  15. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  16. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    International Nuclear Information System (INIS)

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms

  17. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    Science.gov (United States)

    Goto, Hiromasa

    2014-03-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms.

  18. Stable Isotope Analyses of Phosphate Oxygen From Micro-samples of Biological Apatite: A new Routine Procedure for Silverphosphate Micro-precipitation and the Removal of Organic Contamination

    Science.gov (United States)

    Wiedemann-Bidlack, F. B.; Colman, A. S.; Fogel, M. L.

    2003-12-01

    Oxygen isotope analyses in bone and teeth of living and fossil animals are widely used for testing hypotheses about variability of diet and habitat. For the analysis of environmental or dietary changes in the past, tooth enamel has become the preferred study material, because its mineral content is higher than bone and dentine, and the relatively large size of the carbonato-apatite crystals of enamel make it more stable against post mortem diagenetic alteration than dentine or bone. Intra-tooth sampling of dental enamel is increasingly used for the investigation of seasonal climate variability, taking advantage of both the high correlation between an animal's drinking water and the δ 18O in its mineralized tissues and the incremental growth pattern of tooth enamel. The different oxygen-containing ions of bioapatite (phosphate, carbonate, and hydroxyl group) incorporate into the mineral lattice at different rates during enamel mineralization, and differ in their susceptibility against post mortem diagenetic alteration. In addition, it is difficult to account for the different reaction chemistries of phosphate, carbonate, and hydroxyl group using isotope analysis techniques that include all oxygen contained in the enamel (e.g., laser ablation). These problems can be addressed analyzing phosphate oxygen only. However, two major factors limit the potential of δ 18O analyses in dental enamel: A) the starting sample size for isotope analyzes often precludes the use of small teeth or the intra-tooth sampling of a given tooth; B) Small amounts of biogenic organic material in tooth enamel (less than 1% by wt) can reduce the precision and lead to anomalous analytical results in δ 18O measurements on Ag3PO4 produced from tooth enamel. A new procedure was developed for the pre-treatment and δ 18O analysis of phosphate from small samples (500 μ g) of tooth enamel containing organic matter. Ag3PO{4} was precipitated quantitatively for analysis of δ 18Ophosphate using a

  19. Biological half-life of iodine in adults with intact thyroid function and in athyreotic persons

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G.H.; Hauck, B.M.; Chamberlain, M.J

    2002-07-01

    A joint project between the Human Monitoring Laboratory (HML) and the Ottawa Hospital has measured the retention of {sup 131}I in patients who have received the radioiodine diagnostically. Thirty-nine subjects with intact thyroid glands and nine athyreotic subjects were measured in the HML's whole-body/thyroid counter to determine the retention of {sup 131}I following its medical administration. The average biological half-life of {sup 131}I in 26 euthyroid subjects was found to be 66.1{+-}6.3 days which may be statistically significantly lower than the ICRP recommended value of 80 days. Nine hyperthyroid patients had a mean biological half-life of 38.2{+-}8.6 days and in three hypothyroid patients the corresponding value was 29.3{+-}8.8 days. Thyroid {sup 131}I uptake was measured in a conventional clinical fashion at the Ottawa Hospital Civic campus 24 h after oral administration of the radioiodine using a collimated thick sodium iodide detector placed over the neck arteriorly. Measured values were 0.144{+-}0.009, 0.314{+-}0.035 and 0.045{+-}0.010 of the administered dose in euthyroid, hyperthyroid and hypothyroid patients respectively. The euthyroid range at the hospital is 0.06-0.22. Uptake was significantly lower for the euthyroid group than the ICRP value of 0.3. The radioiodine retention in athyreotic subjects followed a two compartment model with biological half-lives of 1.0{+-}0.2 days and 18.4{+-}1.1. days. (author)

  20. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects.

    Science.gov (United States)

    Labonte, David; Federle, Walter

    2015-11-28

    Many insects use soft adhesive footpads for climbing. The surface contact of these organs is mediated by small volumes of a liquid secretion, which forms thin films in the contact zone. Here, we investigate the role of viscous dissipation by this secretion and the 'bulk' pad cuticle by quantifying the rate-dependence of the adhesive force of individual pads. Adhesion increased with retraction speed, but this effect was independent of the amount of pad secretion present in the contact zone, suggesting that the secretion's viscosity did not play a significant role. Instead, the rate-dependence can be explained by relating the strain energy release rate to the speed of crack propagation, using an established empirical power law. The 'wet' pads' behaviour was akin to that of 'dry' elastomers, with an equilibrium energy release rate close to that of dry van-der-Waals contacts. We suggest that the secretion mainly serves as a 'release layer', minimising viscous dissipation and thereby reducing the time- and 'loading-history'-dependence of the adhesive pads. In contrast to many commercial adhesives which derive much of their strength from viscous dissipation, we show that the major modulator of adhesive strength in 'wet' biological adhesive pads is friction, exhibiting a much larger effect than retraction speed. A comparison between 'wet' and 'dry' biological adhesives, using both results from this study and the literature, revealed a striking lack of differences in attachment performance under varying experimental conditions. Together, these results suggest that 'wet' and 'dry' biological adhesives may be more similar than previously thought.

  1. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects.

    Science.gov (United States)

    Labonte, David; Federle, Walter

    2015-11-28

    Many insects use soft adhesive footpads for climbing. The surface contact of these organs is mediated by small volumes of a liquid secretion, which forms thin films in the contact zone. Here, we investigate the role of viscous dissipation by this secretion and the 'bulk' pad cuticle by quantifying the rate-dependence of the adhesive force of individual pads. Adhesion increased with retraction speed, but this effect was independent of the amount of pad secretion present in the contact zone, suggesting that the secretion's viscosity did not play a significant role. Instead, the rate-dependence can be explained by relating the strain energy release rate to the speed of crack propagation, using an established empirical power law. The 'wet' pads' behaviour was akin to that of 'dry' elastomers, with an equilibrium energy release rate close to that of dry van-der-Waals contacts. We suggest that the secretion mainly serves as a 'release layer', minimising viscous dissipation and thereby reducing the time- and 'loading-history'-dependence of the adhesive pads. In contrast to many commercial adhesives which derive much of their strength from viscous dissipation, we show that the major modulator of adhesive strength in 'wet' biological adhesive pads is friction, exhibiting a much larger effect than retraction speed. A comparison between 'wet' and 'dry' biological adhesives, using both results from this study and the literature, revealed a striking lack of differences in attachment performance under varying experimental conditions. Together, these results suggest that 'wet' and 'dry' biological adhesives may be more similar than previously thought. PMID:26376599

  2. Iduronic Acid in Chondroitin/Dermatan Sulfate: Biosynthesis and Biological Function

    OpenAIRE

    Malmström, Anders; Bartolini, Barbara; Thelin, Martin A.; Pacheco, Benny; Maccarana, Marco

    2012-01-01

    The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distr...

  3. Interferon-γ: biological function and application for study of cellular immune response

    Directory of Open Access Journals (Sweden)

    A. A. Lutckii

    2015-01-01

    Full Text Available Cellular immune response plays a central role in control of intracellular pathogens like viruses, some bacteria and parasites. Evaluation of presence, specificity and strength of cellular immune response can be done by investigation of reaction of immune cells to specific stimulus, like antigen. The major cellular reactions to antigen stimulation are production of cytokines, proliferation and cytotoxicity. This review is focused on interferon-gamma as one of the central Th1 cytokines: its biology, immunological role and application as marker of cellular immune response.

  4. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies.

    Science.gov (United States)

    de Brevern, Alexandre G; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain

    2015-01-01

    Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries. PMID:26125026

  5. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies

    Directory of Open Access Journals (Sweden)

    Alexandre G. de Brevern

    2015-01-01

    Full Text Available Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.

  6. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    Science.gov (United States)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  7. Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco.

    Directory of Open Access Journals (Sweden)

    Logan Q Kahle

    Full Text Available Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first-what aspects of a bird's biology might make them more likely to fatally strike windows; and second, what characteristics of a building's design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday.

  8. Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco.

    Science.gov (United States)

    Kahle, Logan Q; Flannery, Maureen E; Dumbacher, John P

    2016-01-01

    Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first-what aspects of a bird's biology might make them more likely to fatally strike windows; and second, what characteristics of a building's design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or i