WorldWideScience

Sample records for biological function analyses

  1. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells

    Directory of Open Access Journals (Sweden)

    Dimitriades-Schmutz Beatrice

    2009-02-01

    Full Text Available Abstract Background The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6 and the neurotrophin (NT Nerve Growth Factor (NGF for neuronal differentiation. Results The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes. A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold, regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold, growth differentiation factor 15 (GDF15; 80-fold, platelet-derived growth factor alpha (PDGFA; 69-fold, growth hormone releasing hormone (GHRH; 30-fold, adenylate cyclase activating polypeptide (PACAP; 20-fold and hepatocyte growth factor (HGF; 5-fold. NGF recruits GDF15 (131-fold, transforming growth factor beta 1 (TGFB1; 101-fold and brain-derived neurotrophic factor (BDNF; 89-fold. Both stimuli activate growth-associated protein 43 (GAP-43 indicating that PC12 cells undergo substantial neuronal differentiation. Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold and early growth response 1 (Egr1/Zif268; 3-fold known to play key roles in neuronal differentiation. Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell

  2. Functions in Biological Kind Classification

    Science.gov (United States)

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  3. The relativity of biological function.

    Science.gov (United States)

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.

  4. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  5. Representing and analysing molecular and cellular function using the computer.

    Science.gov (United States)

    van Helden, J; Naim, A; Mancuso, R; Eldridge, M; Wernisch, L; Gilbert, D; Wodak, S J

    2000-01-01

    Determining the biological function of a myriad of genes, and understanding how they interact to yield a living cell, is the major challenge of the post genome-sequencing era. The complexity of biological systems is such that this cannot be envisaged without the help of powerful computer systems capable of representing and analysing the intricate networks of physical and functional interactions between the different cellular components. In this review we try to provide the reader with an appreciation of where we stand in this regard. We discuss some of the inherent problems in describing the different facets of biological function, give an overview of how information on function is currently represented in the major biological databases, and describe different systems for organising and categorising the functions of gene products. In a second part, we present a new general data model, currently under development, which describes information on molecular function and cellular processes in a rigorous manner. The model is capable of representing a large variety of biochemical processes, including metabolic pathways, regulation of gene expression and signal transduction. It also incorporates taxonomies for categorising molecular entities, interactions and processes, and it offers means of viewing the information at different levels of resolution, and dealing with incomplete knowledge. The data model has been implemented in the database on protein function and cellular processes 'aMAZE' (http://www.ebi.ac.uk/research/pfbp/), which presently covers metabolic pathways and their regulation. Several tools for querying, displaying, and performing analyses on such pathways are briefly described in order to illustrate the practical applications enabled by the model.

  6. The biological function of consciousness

    Science.gov (United States)

    Earl, Brian

    2014-01-01

    This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159

  7. Biological couplings: Function, characteristics and implementation mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through rigorous natural selection, biological organisms have evolved exceptional functions highly adaptable to their living environments. Biological organisms can achieve a variety of biological functions efficiently by using the synergic actions of two or more different parts of the body, or the coupling effects of multiple factors, and demonstrate optimal adaptations to the living environment. In this paper, the function, characteristics and types of biological couplings are analyzed, the implementation mechanism and mode of biological coupling functions are revealed from the bionic viewpoint. Finally, the technological prospects of the bionic implementation of biological coupling function are predicted.

  8. Pegasys: software for executing and integrating analyses of biological sequences

    Directory of Open Access Journals (Sweden)

    Lett Drew

    2004-04-01

    Full Text Available Abstract Background We present Pegasys – a flexible, modular and customizable software system that facilitates the execution and data integration from heterogeneous biological sequence analysis tools. Results The Pegasys system includes numerous tools for pair-wise and multiple sequence alignment, ab initio gene prediction, RNA gene detection, masking repetitive sequences in genomic DNA as well as filters for database formatting and processing raw output from various analysis tools. We introduce a novel data structure for creating workflows of sequence analyses and a unified data model to store its results. The software allows users to dynamically create analysis workflows at run-time by manipulating a graphical user interface. All non-serial dependent analyses are executed in parallel on a compute cluster for efficiency of data generation. The uniform data model and backend relational database management system of Pegasys allow for results of heterogeneous programs included in the workflow to be integrated and exported into General Feature Format for further analyses in GFF-dependent tools, or GAME XML for import into the Apollo genome editor. The modularity of the design allows for new tools to be added to the system with little programmer overhead. The database application programming interface allows programmatic access to the data stored in the backend through SQL queries. Conclusions The Pegasys system enables biologists and bioinformaticians to create and manage sequence analysis workflows. The software is released under the Open Source GNU General Public License. All source code and documentation is available for download at http://bioinformatics.ubc.ca/pegasys/.

  9. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  10. Functional quantum biology in photosynthesis and magnetoreception

    CERN Document Server

    Lambert, Neill; Cheng, Yuan-Chung; Li, Che-Ming; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Is there a functional role for quantum mechanics or coherent quantum effects in biological processes? While this question is as old as quantum theory, only recently have measurements on biological systems on ultra-fast time-scales shed light on a possible answer. In this review we give an overview of the two main candidates for biological systems which may harness such functional quantum effects: photosynthesis and magnetoreception. We discuss some of the latest evidence both for and against room temperature quantum coherence, and consider whether there is truly a functional role for coherence in these biological mechanisms. Finally, we give a brief overview of some more speculative examples of functional quantum biology including the sense of smell, long-range quantum tunneling in proteins, biological photoreceptors, and the flow of ions across a cell membrane.

  11. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    Science.gov (United States)

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  12. Treatment of Pica through Multiple Analyses of Its Reinforcing Functions.

    Science.gov (United States)

    Piazza, Cathleen C.; Fisher, Wayne W.; Hanley, Gregory P.; LeBlanc, Linda A.; Worsdell, April S.; And Others

    1998-01-01

    A study conducted functional analyses of the pica of three young children. The pica of one participant was maintained by automatic reinforcement; that of the other two was multiply-controlled by social and automatic reinforcement. Preference and treatment analyses were used to address the automatic function of the pica. (Author/CR)

  13. Training Residential Staff to Conduct Trial-Based Functional Analyses

    Science.gov (United States)

    Lambert, Joseph M.; Bloom, Sarah E.; Kunnavatana, S. Shanun; Collins, Shawnee D.; Clay, Casey J.

    2013-01-01

    We taught 6 supervisors of a residential service provider for adults with developmental disabilities to train 9 house managers to conduct trial-based functional analyses. Effects of the training were evaluated with a nonconcurrent multiple baseline. Results suggest that house managers can be trained to conduct trial-based functional analyses with…

  14. Metacognition: computation, biology and function.

    Science.gov (United States)

    Fleming, Stephen M; Dolan, Raymond J; Frith, Christopher D

    2012-05-19

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape.

  15. Recent Trends in Conducting School-Based Experimental Functional Analyses

    Science.gov (United States)

    Carter, Stacy L.

    2009-01-01

    Demonstrations of school-based experimental functional analyses have received limited attention within the literature. School settings present unique practical and ethical concerns related to the implementation of experimental analyses which were originally developed within clinical settings. Recent examples have made definite contributions toward…

  16. Network Analyses in Systems Biology: New Strategies for Dealing with Biological Complexity

    DEFF Research Database (Denmark)

    Green, Sara; Serban, Maria; Scholl, Raphael;

    2017-01-01

    The increasing application of network models to interpret biological systems raises a number of important methodological and epistemological questions. What novel insights can network analysis provide in biology? Are network approaches an extension of or in conflict with mechanistic research...

  17. Stress Field Analyses of Functionally Gradient Ceramic Tool by FEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cutting properties of the functionally gradient ceramic cutting tools relate closely to the gradient distribution. A cutting model of the functionally gradient ceramic tool is firstly designed in the present paper. The optimum of gradient distribution is obtained by way of the FEM analyses.

  18. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  19. Understanding biological functions through molecular networks

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong Jackie Han

    2008-01-01

    The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.

  20. Inferring Biologically Relevant Models: Nested Canalyzing Functions

    CERN Document Server

    Hinkelmann, Franziska

    2010-01-01

    Inferring dynamic biochemical networks is one of the main challenges in systems biology. Given experimental data, the objective is to identify the rules of interaction among the different entities of the network. However, the number of possible models fitting the available data is huge and identifying a biologically relevant model is of great interest. Nested canalyzing functions, where variables in a given order dominate the function, have recently been proposed as a framework for modeling gene regulatory networks. Previously we described this class of functions as an algebraic toric variety. In this paper, we present an algorithm that identifies all nested canalyzing models that fit the given data. We demonstrate our methods using a well-known Boolean model of the cell cycle in budding yeast.

  1. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  2. Biological Function of REE in Plants & Microbes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Rare earth elements (REE) and their compounds are widely applied in agronomic and medical fields for many years. The bioinorganic chemical research of REE during the past few years indicates that REE play important roles in the promotion of photosynthetic rate as well as root absorption, regulation of hormone and nitrogen metabolism, and suppression of microbes, etc. The metallic or non-metallic targets of key biomolecule in various physiological processes can be chosen by REE for the chelation or replacement, which enables REE to regulate the biological functions or behaviors of those biomolecule and consequently leads to significant embodiment of biological function of REE in plants and microbes.Overdose of REE, however, shows an inhibitory effect on living organisms. Therefore, this paper proposes two suggestions that will be available in the extension of full use of REE's biological function. One is to obey the dose law of REE and control REE concentrations within a safe range. The other is to further test the bioaccumulation and long-period influence of REE on organisms.

  3. Deducing protein function by forensic integrative cell biology.

    Directory of Open Access Journals (Sweden)

    William C Earnshaw

    2013-12-01

    Full Text Available Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  4. Deducing protein function by forensic integrative cell biology.

    Science.gov (United States)

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  5. Functional biology of sympatric krill species

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel

    2016-01-01

    Here we compare the functional biology of the sympatric krill species, Meganyctiphanes norvegica and Thysanoessa inermis. For M. norvegica, we investigated functional responses on diatoms and copepods, together with prey size spectra on plankton ,400 mm and copepods in the size range 500–3220 mm....... For T. inermis, only prey size spectrum on plankton ,400 mm were investigated. The prey size ranges of both species include organisms ,400 mm, and they consequently graze on several trophic levels. However, T. inermis feed on cells ,10 mm equivalent spherical diameter (ESD), whereas M. norvegica only...

  6. Statistical technique for analysing functional connectivity of multiple spike trains.

    Science.gov (United States)

    Masud, Mohammad Shahed; Borisyuk, Roman

    2011-03-15

    A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.

  7. Test-specific control conditions for functional analyses.

    Science.gov (United States)

    Fahmie, Tara A; Iwata, Brian A; Querim, Angie C; Harper, Jill M

    2013-01-01

    Most functional analyses of problem behavior include a common condition (play or noncontingent reinforcement) as a control for both positive and negative reinforcement. However, test-specific conditions that control for each potential source of reinforcement may be beneficial occasionally. We compared responding during alone, ignore, play, and differential reinforcement of other behavior (DRO) control conditions for individuals whose problem behavior was maintained by positive or negative reinforcement. Results showed that all of the conditions were effective controls for problem behavior maintained by positive reinforcement; however, the DRO condition was consistently ineffective as a control for problem behavior maintained by negative reinforcement. Implications for the design of functional analyses and future research are discussed.

  8. Uncovering Biological Network Function via Graphlet Degree Signatures

    Directory of Open Access Journals (Sweden)

    Nataša Pržulj

    2008-01-01

    Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassified proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.

  9. Progressing from initially ambiguous functional analyses: three case examples.

    Science.gov (United States)

    Tiger, Jeffrey H; Fisher, Wayne W; Toussaint, Karen A; Kodak, Tiffany

    2009-01-01

    Most often functional analyses are initiated using a standard set of test conditions, similar to those described by Iwata, Dorsey, Slifer, Bauman, and Richman [Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). Toward a functional analysis of self-injury. Journal of Applied Behavior Analysis, 27, 197-209 (Reprinted from Analysis and Intervention in Developmental Disabilities, 2, 3-20, 1982)]. These test conditions involve the careful manipulation of motivating operations, discriminative stimuli, and reinforcement contingencies to determine the events related to the occurrence and maintenance of problem behavior. Some individuals display problem behavior that is occasioned and reinforced by idiosyncratic or otherwise unique combinations of environmental antecedents and consequences of behavior, which are unlikely to be detected using these standard assessment conditions. For these individuals, modifications to the standard test conditions or the inclusion of novel test conditions may result in clearer assessment outcomes. The current study provides three case examples of individuals whose functional analyses were initially undifferentiated; however, modifications to the standard conditions resulted in the identification of behavioral functions and the implementation of effective function-based treatments.

  10. Marine Carotenoids: Biological Functions and Commercial Applications

    Directory of Open Access Journals (Sweden)

    José M. Vega

    2011-03-01

    Full Text Available Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.

  11. Biological functions of decorin in cancer

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Bi; Wancai Yang

    2013-01-01

    Decorin is a member of the extracellular matrix small leucine-rich proteoglycans family that exists and functions in stromal and epithelial cells.Accumulating evidence suggests that decorin affects the biology of various types of cancer by directly or indirectly targeting the signaling molecules involved in cell growth,survival,metastasis,and angiogenesis.More recent studies show that decorin plays important roles during tumor development and progression and is a potential cancer therapeutic agent.In this article,we summarize recent studies of decorin in cancer and discuss decorin's therapeutic and prognostic value.

  12. Flavonoids: Biosynthesis, Biological functions and Biotechnological applications

    Directory of Open Access Journals (Sweden)

    Maria Lorena eFalcone Ferreyra

    2012-09-01

    Full Text Available Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, bHLH and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.

  13. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Ti...tle Structural and functional analyses of bacterial lipopolysaccharides. Authors

  14. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism.

    Science.gov (United States)

    Parikshak, Neelroop N; Luo, Rui; Zhang, Alice; Won, Hyejung; Lowe, Jennifer K; Chandran, Vijayendran; Horvath, Steve; Geschwind, Daniel H

    2013-11-21

    Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility genes, raising two critical questions: (1) do these genetic loci converge on specific biological processes, and (2) where does the phenotypic specificity of ASD arise, given its genetic overlap with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto coexpression networks representing developmental trajectories and transcriptional profiles representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that implicate distinct biological functions during human cortical development, including early transcriptional regulation and synaptic development. Bioinformatic analyses suggest that translational regulation by FMRP and transcriptional coregulation by common transcription factors connect these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that the patterns of ASD and ID risk genes are distinct, providing a biological framework for further investigating the pathophysiology of ASD.

  15. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    OpenAIRE

    Narayanasamy, Shaman; Muller, Emilie; Sheik, Abdul; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalitie...

  16. Local analyses of Planck maps with Minkowski functionals

    Science.gov (United States)

    Novaes, C. P.; Bernui, A.; Marques, G. A.; Ferreira, I. S.

    2016-09-01

    Minkowski functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional χ2 value, at more than 2.2σ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian deviations. According to our results, these non-Gaussian contributions show signatures that can be associated to the presence of hot or cold spots in such regions. Moreover, some of these non-Gaussian deviations signals suggest the presence of foreground residuals in those regions located near the Galactic plane. Additionally, we confirm that most of the regions revealed in our analyses, but not all, have been recently reported in studies done by the Planck collaboration. Furthermore, we also investigate whether these non-Gaussian deviations can be possibly sourced by systematics, like inhomogeneous noise and beam effect in the released Planck data, or perhaps due to residual Galactic foregrounds.

  17. Local analyses of Planck maps with Minkowski Functionals

    CERN Document Server

    Novaes, C P; Marques, G A; Ferreira, I S

    2016-01-01

    Minkowski Functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional $\\chi^2$ value, at more than $2.2 \\sigma$ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian devia...

  18. CONDUCTING FUNCTIONAL ANALYSES OF PROBLEM BEHAVIOR VIA TELEHEALTH

    Science.gov (United States)

    Wacker, David P.; Lee, John F.; Padilla Dalmau, Yaniz C.; Kopelman, Todd G.; Lindgren, Scott D.; Kuhle, Jennifer; Pelzel, Kelly E.; Waldron, Debra B.

    2017-01-01

    Behavior consultants conducted functional analyses (FAs) via telehealth with 20 young children with autism spectrum disorders between the ages of 29 and 80 months who displayed problem behavior and lived an average of 222 miles from the tertiary hospital that housed the behavior consultants. Participants’ parents conducted all procedures during weekly telehealth consultations in regional clinics located an average of 15 miles from the participants’ homes. Behavior consultants briefly trained parent assistants to provide on-site support for families during consultations. FAs completed within a multielement design identified environmental variables that maintained problem behavior for 18 of the 20 cases, and interrater agreement averaged over 90%. Results suggested that behavior analysts can conduct FAs effectively and efficiently via telehealth. PMID:24114083

  19. Frameworks for programming biological function through RNA parts and devices.

    Science.gov (United States)

    Win, Maung Nyan; Liang, Joe C; Smolke, Christina D

    2009-03-27

    One of the long-term goals of synthetic biology is to reliably engineer biological systems that perform human-defined functions. Currently, researchers face several scientific and technical challenges in designing and building biological systems, one of which is associated with our limited ability to access, transmit, and control molecular information through the design of functional biomolecules exhibiting novel properties. The fields of RNA biology and nucleic acid engineering, along with the tremendous interdisciplinary growth of synthetic biology, are fueling advances in the emerging field of RNA programming in living systems. Researchers are designing functional RNA molecules that exhibit increasingly complex functions and integrating these molecules into cellular circuits to program higher-level biological functions. The continued integration and growth of RNA design and synthetic biology presents exciting potential to transform how we interact with and program biology.

  20. Probing the Xenopus laevis inner ear transcriptome for biological function

    Directory of Open Access Journals (Sweden)

    Powers TuShun R

    2012-06-01

    Full Text Available Abstract Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome

  1. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  2. Dynamics of biomolecules, ligand binding & biological functions

    Science.gov (United States)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  3. Event-based text mining for biology and functional genomics.

    Science.gov (United States)

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research.

  4. Analyses of non-linear systems and their application to biology: a review.

    Science.gov (United States)

    Sato, S

    1994-01-01

    In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.

  5. Twenty years of protein interaction studies for biological function deciphering.

    Science.gov (United States)

    Legrain, Pierre; Rain, Jean-Christophe

    2014-07-31

    Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  6. Interpretation of differential item functioning analyses using external review

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K

    2010-01-01

    considered. Relatively few examples of blinded item reviews were identified, and these were mostly from educational studies. A case study using blinded bilingual reviewers alongside translation DIF analyses of a health-related quality of life instrument is described. Future researchers should consider...

  7. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Ye-Rang Yun

    2010-01-01

    Full Text Available Fibroblast growth factors (FGFs that signal through FGF receptors (FGFRs regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues.

  8. BioFNet: biological functional network database for analysis and synthesis of biological systems.

    Science.gov (United States)

    Kurata, Hiroyuki; Maeda, Kazuhiro; Onaka, Toshikazu; Takata, Takenori

    2014-09-01

    In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures.

  9. Functionalized Nanodiamonds for Biological and Medical Applications.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2015-02-01

    Nanodiamond is a promising material for biological and medical applications, owning to its relatively inexpensive and large-scale synthesis, unique structure, and superior optical properties. However, most biomedical applications, such as drug delivery and bio-imaging, are dependent upon the precise control of the surfaces, and can be significantly affected by the type, distribution and stability of chemical funtionalisations of the nanodiamond surface. In this paper, recent studies on nanodiamonds and their biomedical applications by conjugating with different chemicals are reviewed, while highlighting the critical importance of surface chemical states for various applications.

  10. Determining the impacts of trawling on benthic function in European waters : a biological traits approach

    DEFF Research Database (Denmark)

    Bolam, Stefan; Kenny, Andrew; Garcia, Clement;

    on benthic ecosystem functioning over much larger spatial scales than previously undertaken. Biological traits information from 887 stations across European waters (Norwegian, UK, Belgian, Dutch, Danish waters, the Mediterranean and Black Sea) were analysed to: i) quantify the relationships between infaunal...

  11. FUNCTION IN BIOLOGY: ETIOLOGICAL AND ORGANIZATIONAL PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Nunes Neto Nei Freitas Freitas

    2009-12-01

    -ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    ABSTRACT. In this paper, we argue for a taxonomy of approaches to function based on different epistemological perspectives assumed with regard to the treatment of this central concept in the life sciences. We distinguish between etiological and organizational perspectives on function, analyzing two distinct theories related to each perspective: Wright’s selectionist etiological approach and Godfrey-Smith’s modern history theory of functions, in the case of the etiological perspective; and Cummins’ functional analysis and Collier’s interactivist approach to function, among organizational accounts. We explain differences and similarities between these theories and the broader perspectives on function, arguing for a particular way of understanding the consensus without unity in debates about function. While explaining the accounts of function, we also deal with the relationship between this concept and other important biological concepts, such as adaptation, selection, complexity, and autonomy. We also advance an argument for the limits and prospects of the explanatory role of function in evolution. By arguing that changes in functionality are always grounded on changes in systems’ organization, we show that function can never explain the origins of traits. Nevertheless, it can explain the spread of traits in populations, but only when we are dealing with functionally novel traits. Finally, we stress that organizational accounts of function are needed to understand how new functions appear by means of changes in systems

  12. Function Analyses of Geographic Information System on Rural Distribution Network

    Institute of Scientific and Technical Information of China (English)

    FANG Junlong; FAN Yongcun; ZHANG Chunmei; GU Shumin

    2006-01-01

    With the actuality and characteristic and requirement of rural power enterprise distribution network management, this article introduced the function of geographic information system on the framework of distribution network, in order to develop rural distribution network.

  13. Correlation analyses of clinical and molecular findings identify candidate biological pathways in systemic juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Ling Xuefeng B

    2012-10-01

    Full Text Available Abstract Background Clinicians have long appreciated the distinct phenotype of systemic juvenile idiopathic arthritis (SJIA compared to polyarticular juvenile idiopathic arthritis (POLY. We hypothesized that gene expression profiles of peripheral blood mononuclear cells (PBMC from children with each disease would reveal distinct biological pathways when analyzed for significant associations with elevations in two markers of JIA activity, erythrocyte sedimentation rate (ESR and number of affected joints (joint count, JC. Methods PBMC RNA from SJIA and POLY patients was profiled by kinetic PCR to analyze expression of 181 genes, selected for relevance to immune response pathways. Pearson correlation and Student's t-test analyses were performed to identify transcripts significantly associated with clinical parameters (ESR and JC in SJIA or POLY samples. These transcripts were used to find related biological pathways. Results Combining Pearson and t-test analyses, we found 91 ESR-related and 92 JC-related genes in SJIA. For POLY, 20 ESR-related and 0 JC-related genes were found. Using Ingenuity Systems Pathways Analysis, we identified SJIA ESR-related and JC-related pathways. The two sets of pathways are strongly correlated. In contrast, there is a weaker correlation between SJIA and POLY ESR-related pathways. Notably, distinct biological processes were found to correlate with JC in samples from the earlier systemic plus arthritic phase (SAF of SJIA compared to samples from the later arthritis-predominant phase (AF. Within the SJIA SAF group, IL-10 expression was related to JC, whereas lack of IL-4 appeared to characterize the chronic arthritis (AF subgroup. Conclusions The strong correlation between pathways implicated in elevations of both ESR and JC in SJIA argues that the systemic and arthritic components of the disease are related mechanistically. Inflammatory pathways in SJIA are distinct from those in POLY course JIA, consistent with

  14. Assessing Ecological Impacts of Shrimp and Sewage Effluent: Biological Indicators with Standard Water Quality Analyses

    Science.gov (United States)

    Jones, A. B.; O'Donohue, M. J.; Udy, J.; Dennison, W. C.

    2001-01-01

    Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (δ 15N), and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO-3/NO-2 and PO3-4, compared to NH+4 in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant δ 15N values ranged from 10·4-19·6‰ at the site of sewage discharge to 2·9-4·5‰ at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The δ 15N isotopic signatures and free amino acid composition of inhabitant

  15. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  16. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  17. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  18. Autofluorescence: Biological functions and technical applications.

    Science.gov (United States)

    García-Plazaola, José Ignacio; Fernández-Marín, Beatriz; Duke, Stephen O; Hernández, Antonio; López-Arbeloa, Fernando; Becerril, José María

    2015-07-01

    Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator.

  19. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  20. Soil microbial community structure in diverse land use systems:A comparative study using Biolog,DGGE,and PLFA analyses

    Institute of Scientific and Technical Information of China (English)

    XUE Dong; YAO Huai-Ying; GE De-Yong; HUANG Chang-Yong

    2008-01-01

    Biolog,16S rRNA gene denaturing gradient gel electrophoresis (DGGE),and phospholipid fatty acid (PLFA) analyses were used to assess soil microbial community characteristics in a chronosequence of tea garden systems (8-,50-,and 90year-old tea gardens),an adjacent wasteland,and a 90-year-old forest.Biolog analysis showed that the average well color development (AWCD) of all carbon sources and the functional diversity based on the Shannon index decreased (P<0.05)in the following order:wasteland>forest>tea garden.For the DGGE analysis,the genetic diversity based on the Shannon index was significantly lower in the tea garden soils than in the wasteland.However,compared to the 90-year-old forest,the tea garden soils showed significantly higher genetic diversity.PLFA analysis showed that the ratio of Gram positive bacteria to Gram negative bacteria was significantly higher in the tea garden soils than in the wasteland,and the highest value was found in the 90-year-old forest.Both the fungal PLFA and the ratio of fungi to bacteria were significantly higher in the three tea garden soils than in the wasteland and forest,indicating that fungal PLFA was significantly affected by land-use change.Based on cluster analysis of the soil microbial community structure,all three analytical methods showed that land-use change had a greater effect on soil microbial community structure than tea garden age.

  1. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  2. Head-related transfer function database and its analyses

    Institute of Scientific and Technical Information of China (English)

    XIE BoSun; ZHONG XiaoLi; RAO Dan; LIANG ZhiQiang

    2007-01-01

    Based on the measurements from 52 Chinese subjects (26 males and 26 females), a high-spatial-resolution head-related transfer function (HRTF) database with corresponding anthropornetric parameters is established. By using the database, cues relating to sound source localization, including interaural time difference (ITD),interaural level difference (ILD), and spectral features introduced by pinna, are analyzed. Moreover, the statistical relationship between ITD and anthropometric parameters is estimated. It is proved that the mean values of maximum ITD for male and female are significantly different, so are those for Chinese and western subjects. The difference in ITD is due to the difference in individual anthropometric parameters. It is further proved that the spectral features introduced by pinna strongly depend on individual; while at high frequencies (f ≥ 5.5 kHz), HRTFs are left-right asymmetric. This work is instructive and helpful for the research on binaural hearing and applications on virtual auditory in future.

  3. Head-related transfer function database and its analyses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the measurements from 52 Chinese subjects (26 males and 26 females), a high-spatial-resolution head-related transfer function (HRTF) database with corre- sponding anthropometric parameters is established. By using the database, cues relating to sound source localization, including interaural time difference (ITD), interaural level difference (ILD), and spectral features introduced by pinna, are analyzed. Moreover, the statistical relationship between ITD and anthropometric parameters is estimated. It is proved that the mean values of maximum ITD for male and female are significantly different, so are those for Chinese and western sub- jects. The difference in ITD is due to the difference in individual anthropometric parameters. It is further proved that the spectral features introduced by pinna strongly depend on individual; while at high frequencies (f≥ 5.5 kHz), HRTFs are left-right asymmetric. This work is instructive and helpful for the research on bin- aural hearing and applications on virtual auditory in future.

  4. Thermal post-bunkling analyses of functionally graded material rod

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qun; WANG Zhong-min; LIU Hong-zhao

    2007-01-01

    The non-linear governing differential equations of immovably simply supported functionally graded material (FGM) rod subjected to thermal loads were derived.The thermal post-buckling behaviors of FGM rod made of ZrO2 and Ti-6A1-4Vwere analyzed by shooting method. Firstly, the thermal post-buckling equilibrium paths of the FGM rod with different gradient index in the uniform temperature field were plotted,and compared with the behaviors of the homogeneous rods made of ZrO2 and Ti-6A1-4V materials, respectively. For given value of end rotation angles, the influence of gradient index on the thermal post-buckling behaviors of FGM rod was discussed. Secondly, the thermal post-buckling characteristics of the FGM rod were analyzed when the temperature difference parameter is changed while the bottom temperature parameter remains constant, and when the bottom temperature parameter is changed while the temperature difference parameter remains constant, and compared with the characteristics of the two homogeneous material rods.

  5. Evidence for a Role of Executive Functions in Learning Biology

    Science.gov (United States)

    Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela

    2014-01-01

    Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…

  6. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.

  7. Mimicking biological functionality with polymers for biomedical applications

    Science.gov (United States)

    Green, Jordan J.; Elisseeff, Jennifer H.

    2016-12-01

    The vast opportunities for biomaterials design and functionality enabled by mimicking nature continue to stretch the limits of imagination. As both biological understanding and engineering capabilities develop, more sophisticated biomedical materials can be synthesized that have multifaceted chemical, biological and physical characteristics designed to achieve specific therapeutic goals. Mimicry is being used in the design of polymers for biomedical applications that are required locally in tissues, systemically throughout the body, and at the interface with tissues.

  8. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.

    Science.gov (United States)

    He, Yongqun

    2012-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  9. Toward functional analysis of protein interactome using "in vitro virus": in silico analyses of Fos/Jun interactors.

    Science.gov (United States)

    Miyamoto-Sato, Etsuko; Yanagawa, Hiroshi

    2006-01-01

    Our high-throughput in vitro virus (IVV) method for selection of protein-protein interactions (PPI) and complexes, based on a simple cell-free co-translation and selection followed by computational sequence data analysis, was previously used to identify 31 Fos and Jun interactors. Here, in silico analyses of biological function, localization and phenotype of these AP-1 (Fos/Jun) interactors were performed. The results suggest that Fos and Jun do not necessarily work together, but also interact separately with novel interactors, including products of disease-related genes. Fos showed transcription-related activities, while Jun interacted with motor-related and structural proteins. The reliability of the IVV selection for the Fos interactors was further confirmed by means of in vitro reciprocal prey and bait protein experiments and co-immunoprecipitation. Further study of these novel interactors may provide clues to new pathways or mechanisms of biological functions and diseases.

  10. Biological ensilage of fish - optimization of stability, safety and functionality

    NARCIS (Netherlands)

    Enes Dapkevicius, M.L.N.

    2002-01-01

    This thesis deals with stability, safety, and functionality aspects of biological fish silage (BFS) obtained by lactic acid fermentation. BFS may provide an economically viable, environment friendly way of upgrading fish waste.BFS has been found advantageous when compared to the so-called acid proce

  11. Functional and biological characteristics of asthma in cleaning workers.

    NARCIS (Netherlands)

    Vizcaya, D.; Mirabelli, M.C.; Orriols, R.; Antó, J.M.; Barreiro, E.; Burgos, F.; Arjona, L.; Gomez, F.; Zock, J.P.

    2013-01-01

    Objectives: Cleaning workers have an increased risk of asthma but the underlying mechanisms are largely unknown. We studied functional and biological characteristics in asthmatic cleaners and compared these to healthy cleaners. Methods: Forty-two cleaners with a history of asthma and/or recent respi

  12. Milk protein tailoring to improve functional and biological properties

    Directory of Open Access Journals (Sweden)

    JEAN-MARC CHOBERT

    2012-01-01

    Full Text Available Proteins are involved in every aspects of life: structure, motion, catalysis, recognition and regulation. Today's highly sophisticated science of the modifications of proteins has ancient roots. The tailoring of proteins for food and medical uses precedes the beginning of what is called biochemistry. Chemical modification of proteins was pursued early in the twentieth century as an analytical procedure for side-chain amino acids. Later, methods were developed for specific inactivation of biologically active proteins and titration of their essential groups. Enzymatic modifications were mainly developed in the seventies when many more enzymes became economically available. Protein engineering has become a valuable tool for creating or improving proteins for practical use and has provided new insights into protein structure and function. The actual and potential use of milk proteins as food ingredients has been a popular topic for research over the past 40 years. With today's sophisticated analytical, biochemical and biological research tools, the presence of compounds with biological activity has been demonstrated. Improvements in separation techniques and enzyme technology have enabled efficient and economic isolation and modification of milk proteins, which has made possible their use as functional foods, dietary supplements, nutraceuticals and medical foods. In this review, some chemical and enzymatic modifications of milk proteins are described, with particular focus on their functional and biological properties.

  13. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  14. A structural biology perspective on NMDA receptor pharmacology and function.

    Science.gov (United States)

    Regan, Michael C; Romero-Hernandez, Annabel; Furukawa, Hiro

    2015-08-01

    N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.

  15. Neuroscience in the era of functional genomics and systems biology.

    Science.gov (United States)

    Geschwind, Daniel H; Konopka, Genevieve

    2009-10-15

    Advances in genetics and genomics have fuelled a revolution in discovery-based, or hypothesis-generating, research that provides a powerful complement to the more directly hypothesis-driven molecular, cellular and systems neuroscience. Genetic and functional genomic studies have already yielded important insights into neuronal diversity and function, as well as disease. One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic, genomic and phenotypic data sets, and the development of tools for data integration and mining. Methods for network analysis and systems biology offer the promise of integrating these multiple levels of data, connecting molecular pathways to nervous system function.

  16. Development of Analyses of Biological Steroids Using Chromatography--Special Reference to Vitamin D Compounds and Neurosteroids--

    Institute of Scientific and Technical Information of China (English)

    Kazutake Shimada; Tatsuya Higashi; Kuniko Mitamura

    2003-01-01

    Steroids comprise a large group of natural substances that must frequently be monitored in various biological materials. Due to the metabolic versatility of steroid molecules, extremely complex mixtures are often encountered, necessitating the use of a chromatographic procedure prior to measurement. In this article we present our work, that is, the development of analyses of biological steroids (especially vitamin D compounds and neurosteroids) using gas chromatography/mass spectrometry, high-performance liquid chromatography (including inclusion chromatography using cyclodextrin) and liquid chromatography/mass spectrometry.

  17. Relative influences of establishing operations and reinforcement contingencies on self-injurious behavior during functional analyses.

    OpenAIRE

    Worsdell, A S; Iwata, B A; Conners, J; Kahng, S W; Thompson, R H

    2000-01-01

    In the typical functional analysis in which the antecedent and consequent events associated with problem behavior are manipulated, the control condition involves elimination of both the relevant establishing operation (EO) and its associated contingency through a schedule of noncontingent reinforcement (usually fixed-time [FT] 30 s). In some functional analyses, however, antecedent events are manipulated in the absence of differential consequences, and a common test condition in such analyses...

  18. Morpho-chemistry and functionality of diseased biological tissues

    Science.gov (United States)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  19. EULAR points to consider when establishing, analysing and reporting safety data of biologics registers in rheumatology

    DEFF Research Database (Denmark)

    Dixon, William G; Carmona, Loreto; Finckh, Axel;

    2010-01-01

    upon safety data generated from observational drug registers makes it important to convert the lessons learned from such registers into recommendations for rheumatologists embarking upon the establishment of future registers, or analysing and reporting from new and existing registers....

  20. Utilization of inherent miRNAs in functional analyses of Toxoplasma gondii genes.

    Science.gov (United States)

    Crater, Anna K; Manni, Emad; Ananvoranich, Sirinart

    2015-01-01

    MicroRNAs (miRNAs) are crucial genetic effectors partaking in numerous mechanisms of gene regulation in eukaryotic organisms. Recent discoveries of miRNA in Toxoplasma gondii, an intracellular obligate parasite of the phylum Apicomplexa, suggested possible roles of T. gondii miRNAs (Tg-miRNAs) in the post-transcriptional gene regulation and in the cell biology of the parasite. To gain a better understanding of the involvement of Tg-miRNAs in regulating the parasite gene expression, a dual luciferase reporter system was used in the examination and evaluation of the effects of endogenous Tg-miRNAs, their mimics and inhibitors. A Renilla luciferase (Rnluc) transcript was engineered to carry independent binding sites of two abundant species, namely Tg-miR-60a and Tg-miR-4a, so that the expression of Rnluc was silenced in a sequence specific manner by Tg-miR-60a and Tg-miR-4a. Notably, Tg-miR-60a, but not Tg-miR-4a, caused the levels of Rnluc transcripts to decrease. These findings strongly suggested that T. gondii employs the Tg-miRNA species-specific mode of silencing actions: transcript degradation by Tg-miR-60a, and translational suppression by Tg-miR-4a. Herein we developed a genetic system that exploits and directs the most abundant Tg-miR-60a for loss-of-function analyses in T. gondii. As a proof of principle, we showed that when the binding sites for Tg-miR-60a were introduced into the parasite transcripts via homologous recombination at the locus of (i) DEAD-box RNA helicase (TgHoDI), or (ii) lactate dehydrogenase isoform 1 (TgLDH1), the expression levels of the selected genes can be altered. It was thus proven that inherit Tg-miR-60a could be directed and used to assist in the loss-of-function analyses.

  1. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  2. SU-E-T-54: Benefits of Biological Cost Functions

    Energy Technology Data Exchange (ETDEWEB)

    Demirag, N [Elekta CMS GmbH, Freiburg Im Breisgau, baden wurttemberg (Germany)

    2014-06-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics.

  3. Biological framework for soil aggregation: Implications for ecological functions.

    Science.gov (United States)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  4. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities.

    Science.gov (United States)

    Narayanasamy, Shaman; Muller, Emilie E L; Sheik, Abdul R; Wilmes, Paul

    2015-05-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single 'omes'. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure-function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications.

  5. Ultra-Structure database design methodology for managing systems biology data and analyses

    Directory of Open Access Journals (Sweden)

    Hemminger Bradley M

    2009-08-01

    Full Text Available Abstract Background Modern, high-throughput biological experiments generate copious, heterogeneous, interconnected data sets. Research is dynamic, with frequently changing protocols, techniques, instruments, and file formats. Because of these factors, systems designed to manage and integrate modern biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve. The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution to this problem. By representing both data and processes as formal rules within a database, an Ultra-Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge in both a machine- and human-readable form. End users themselves can change the system's capabilities without programmer intervention, simply by altering database contents; no computer code or schemas need be modified. This provides flexibility in adapting to change, and allows integration of disparate, heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research program for the integration of large proteomic and genomic data sets (proteogenomic mapping. Results We transitioned our proteogenomic mapping information system from a traditional entity-relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data, genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework implemented within a standard relational database system. General software procedures driven by user-modifiable rules can perform tasks such as logical deduction and location-based computations. The system is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any kind of biological research. Conclusion We find

  6. Cell biological analyses of anther morphogenesis and pollen viability in Arabidopsis and rice.

    Science.gov (United States)

    Chang, Fang; Zhang, Zaibao; Jin, Yue; Ma, Hong

    2014-01-01

    Major advances have been made in recent years in our understanding of anther development through a combination of genetic studies, cell biological technologies, biochemical analysis, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize the widely used protocols for pollen viability staining; the investigation of anther morphogenesis by light microscopy of semi-thin sections; TUNEL assay for programmed tapetum cell death; and laser microdissection procedures to obtain specialized cells or cell layers for carrying out transcriptomics.

  7. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  8. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  9. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  10. Mnk kinase pathway: Cellular functions and biological outcomes

    Institute of Scientific and Technical Information of China (English)

    Sonali; Joshi; Leonidas; C; Platanias

    2014-01-01

    The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.

  11. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  12. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.

  13. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  14. IQGAP1 and its binding proteins control diverse biological functions.

    Science.gov (United States)

    White, Colin D; Erdemir, Huseyin H; Sacks, David B

    2012-04-01

    IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.

  15. Biomarkers of Aging: From Function to Molecular Biology.

    Science.gov (United States)

    Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard

    2016-06-02

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  16. Phylogeny, Functional Annotation, and Protein Interaction Network Analyses of the Xenopus tropicalis Basic Helix-Loop-Helix Transcription Factors

    Directory of Open Access Journals (Sweden)

    Wuyi Liu

    2013-01-01

    Full Text Available The previous survey identified 70 basic helix-loop-helix (bHLH proteins, but it was proved to be incomplete, and the functional information and regulatory networks of frog bHLH transcription factors were not fully known. Therefore, we conducted an updated genome-wide survey in the Xenopus tropicalis genome project databases and identified 105 bHLH sequences. Among the retrieved 105 sequences, phylogenetic analyses revealed that 103 bHLH proteins belonged to 43 families or subfamilies with 46, 26, 11, 3, 15, and 4 members in the corresponding supergroups. Next, gene ontology (GO enrichment analyses showed 65 significant GO annotations of biological processes and molecular functions and KEGG pathways counted in frequency. To explore the functional pathways, regulatory gene networks, and/or related gene groups coding for Xenopus tropicalis bHLH proteins, the identified bHLH genes were put into the databases KOBAS and STRING to get the signaling information of pathways and protein interaction networks according to available public databases and known protein interactions. From the genome annotation and pathway analysis using KOBAS, we identified 16 pathways in the Xenopus tropicalis genome. From the STRING interaction analysis, 68 hub proteins were identified, and many hub proteins created a tight network or a functional module within the protein families.

  17. Functionalization of hydroxyl terminated polybutadiene with biologically active fluorescent molecule

    Indian Academy of Sciences (India)

    R Murali Sankar; Subhadeep Saha; K Seeni Meera; Tushar Jana

    2009-10-01

    A biologically active molecule, 2-chloro-4,6-bis(dimethylamino)-1,3,5-triazine (CBDT), has been covalently attached at the terminal carbon atoms of the hydroxyl terminated polybutadiene (HTPB) backbone. The modification of HTPB backbone by CBDT molecule does not affect the unique physico-chemical properties such as fluidity, hydroxyl value and microstructure of the parent HTPB. The formation of hydrogen bonding between the terminal hydroxyl groups and the nitrogen atoms of triazine moiety is the driving force for the terminal attachment chemistry. The functionalized HTPB (HTPB–CBDT) shows a strong fluorescence emission at 385 nm.

  18. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    Science.gov (United States)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  19. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Directory of Open Access Journals (Sweden)

    Timothy G Bromage

    Full Text Available The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the

  20. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth.

    Science.gov (United States)

    Bromage, Timothy G; Idaghdour, Youssef; Lacruz, Rodrigo S; Crenshaw, Thomas D; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  1. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth

    Science.gov (United States)

    Bromage, Timothy G.; Idaghdour, Youssef; Lacruz, Rodrigo S.; Crenshaw, Thomas D.; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  2. Crucial role of detailed function, task, timeline, link and human vulnerability analyses in HRA

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.; Haney, L.N.; Ostrom, L.T.

    1992-10-01

    This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.

  3. Chemical and Biological Analyses of the Essential Oils and Main Constituents of Piper Species

    Directory of Open Access Journals (Sweden)

    Leonor Laura Leon

    2012-02-01

    Full Text Available The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3% and β-elemene (33.1% and in P. duckei oil the major components found were germacrene D (14.7% and trans-caryophyllene (27.1%. P. demeraranum and P. duckei oils exhibited biological activity, with IC50 values between 15 to 76 μg mL−1 against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC50 = 278 μM and caryophyllene (IC50 = 96 μM, were tested against the strains of Leishmania amazonensis, and the IC50 values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs.

  4. Chemical and biological analyses of the essential oils and main constituents of Piper species.

    Science.gov (United States)

    Moura do Carmo, Dominique F; Amaral, Ana Cláudia Fernandes; Machado, Gérzia M C; Leon, Leonor Laura; Silva, Jefferson Rocha de Andrade

    2012-02-13

    The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3%) and β-elemene (33.1%) and in P. duckei oil the major components found were germacrene D (14.7%) and trans-caryophyllene (27.1%). P. demeraranum and P. duckei oils exhibited biological activity, with IC(50) values between 15 to 76 μg mL(-1) against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC(50) = 278 μM) and caryophyllene (IC(50) = 96 μM), were tested against the strains of Leishmania amazonensis, and the IC(50) values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs.

  5. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  6. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.

  7. Diffusion of innovations dynamics, biological growth and catenary function

    Science.gov (United States)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  8. An Improved Computing Method for Analysing the Spatial Resolved Reflectance from Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    来建成; 李振华; 贺安之

    2003-01-01

    A mathematical expression of reflectance point-spread function, which is defined as the spatial distribution of light diffuse-reflected from bio-tissues irradiated by an infinitely narrow photon beam, is derived from the diffusion approximation (DA) theory. With the introduction of reflectance point-spread function to describe the reflectance characteristics of bio-tissues, the convolution method is used to calculate the spatial resolved reflectance from dense and thick tissues irradiated by different photon beams. This is called the DA based convolution method and is used to calculate the responses of the semi-infinite bio-tissues irradiated by a Gaussian beam and a flat beam with different beam radius. The calculation results show that the DA based convolution method has much higher computing efficiency compared to the Monte Carlo method.

  9. Sucrose metabolism gene families and their biological functions.

    Science.gov (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  10. Analysing Symbolic Expressions in Secondary School Chemistry: Their Functions and Implications for Pedagogy

    Science.gov (United States)

    Liu, Yu; Taber, Keith S.

    2016-01-01

    Symbolic expressions are essential resources for producing knowledge, yet they are a source of learning difficulties in chemistry education. This study aims to employ social semiotics to analyse the symbolic representation of chemistry from two complementary perspectives, referred to here as contextual (i.e., historical) and functional. First, the…

  11. Using Additional Analyses to Clarify the Functions of Problem Behavior: An Analysis of Two Cases

    Science.gov (United States)

    Payne, Steven W.; Dozier, Claudia L.; Neidert, Pamela L.; Jowett, Erica S.; Newquist, Matthew H.

    2014-01-01

    Functional analyses (FA) have proven useful for identifying contingencies that influence problem behavior. Research has shown that some problem behavior may only occur in specific contexts or be influenced by multiple or idiosyncratic variables. When these contexts or sources of influence are not assessed in an FA, further assessment may be…

  12. Once upon Multivariate Analyses: When They Tell Several Stories about Biological Evolution.

    Science.gov (United States)

    Renaud, Sabrina; Dufour, Anne-Béatrice; Hardouin, Emilie A; Ledevin, Ronan; Auffray, Jean-Christophe

    2015-01-01

    Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to within-group variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations. We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing 'better' than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.

  13. [Side effects analyses in consideration of renal function for S-1-administered patients].

    Science.gov (United States)

    Iwai, Mina; Kimura, Michio; Yoshimura, Tomoaki; Yasuda, Tadashi

    2011-06-01

    Although many analyses of S-1 side effects are reported, there are no reports where the analyses of side effects were performed in consideration of renal function, which is an important index of medication dose. Therefore, we investigated side effects in consideration of renal function. The subjects were 163 patients administered S-1 at the Department of Surgery of Ogaki Municipal Hospital, between October 2008 and December 2009. The frequency and severity of side effects were high and serious in the groupwhose creatinine clearance was low. A significant difference was observed among 3 groups with regard to thrombocytopenia and dehydration. In conclusion, we think that pharmacists must take renal function into consideration when administering medication, to keepclose medicinal guidance, and to actively observe progress.

  14. DMPD: Type I interferon receptors: biochemistry and biological functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502368 Type I interferon receptors: biochemistry and biological functions. de Wee...(.html) (.csml) Show Type I interferon receptors: biochemistry and biological functions. PubmedID 17502368 T...itle Type I interferon receptors: biochemistry and biological functions. Authors

  15. Biological roles and functional mechanisms of arenavirus Z protein in viral replication.

    Science.gov (United States)

    Wang, Jialong; Danzy, Shamika; Kumar, Naveen; Ly, Hinh; Liang, Yuying

    2012-09-01

    Arenaviruses can cause severe hemorrhagic fever diseases in humans, with limited prophylactic or therapeutic measures. A small RING-domain viral protein Z has been shown to mediate the formation of virus-like particles and to inhibit viral RNA synthesis, although its biological roles in an infectious viral life cycle have not been directly addressed. By taking advantage of the available reverse genetics system for a model arenavirus, Pichinde virus (PICV), we provide the direct evidence for the essential biological roles of the Z protein's conserved residues, including the G2 myristylation site, the conserved C and H residues of RING domain, and the poorly characterized C-terminal L79 and P80 residues. Dicodon substitutions within the late (L) domain (PSAPPYEP) of the PICV Z protein, although producing viable mutant viruses, have significantly reduced virus growth, a finding suggestive of an important role for the intact L domain in viral replication. Further structure-function analyses of both PICV and Lassa fever virus Z proteins suggest that arenavirus Z proteins have similar molecular mechanisms in mediating their multiple functions, with some interesting variations, such as the role of the G2 residue in blocking viral RNA synthesis. In summary, our studies have characterized the biological roles of the Z protein in an infectious arenavirus system and have shed important light on the distinct functions of its domains in virus budding and viral RNA regulation, the knowledge of which may lead to the development of novel antiviral drugs.

  16. Analyses of Dynein Heavy Chain Mutations Reveal Complex Interactions Between Dynein Motor Domains and Cellular Dynein Functions

    Science.gov (United States)

    Sivagurunathan, Senthilkumar; Schnittker, Robert R.; Razafsky, David S.; Nandini, Swaran; Plamann, Michael D.; King, Stephen J.

    2012-01-01

    Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies. PMID:22649085

  17. Discoveries of rhythms in human biological functions: a historical review.

    Science.gov (United States)

    Lemmer, Björn

    2009-08-01

    Though there are very early and ancient observations on the daily variation in physiological and pathophysiological functions (e.g., bronchial asthma), more detailed and scientific reports were not published until the beginning of the 17th century. The aim of this review is to bring those reports to the attention of researchers of chronobiology and chronopharmacology. The ancient books and their contents, which constitute the basis for this review, are part of the personal library collection of the author; numerous observations and reports on biologic rhythms in man are presented here for the first time. The intent of this review is to demonstrate that the fields of chronobiology and chronopharmacology are not only a new and modern branch of science, but that it stands on the shoulders of wonderful and insightful observations and explanations made by our scientific forefathers. It is the hope that the reader will enjoy the richness of the ancient reports that contribute to our present knowledge achieved through astute early biologic rhythm research.

  18. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  19. Genome-wide survey for biologically functional pseudogenes.

    Directory of Open Access Journals (Sweden)

    Orjan Svensson

    2006-05-01

    Full Text Available According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3, and one from the Spinocerebellar ataxia type 1 protein (ATX1. Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios.

  20. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2013-04-01

    Full Text Available Enterococcus faecalis is a Gram-positive commensal member of the gut microbiota of a wide range of organisms. With the advent of antibiotic therapy, it has emerged as a multidrug resistant, hospital-acquired pathogen. Highly virulent strains of E. faecalis express a pore-forming exotoxin, called cytolysin, which lyses both bacterial and eukaryotic cells in response to quorum signals. Originally described in the 1930s, the cytolysin is a member of a large class of lanthionine-containing bacteriocins produced by Gram-positive bacteria. While the cytolysin shares some core features with other lantibiotics, it possesses unique characteristics as well. The current understanding of cytolysin biosynthesis, structure/function relationships, and contribution to the biology of E. faecalis are reviewed, and opportunities for using emerging technologies to advance this understanding are discussed.

  1. Biological Functional Relevance of Asymmetric Dimethylarginine (ADMA in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Sara Franceschelli

    2013-12-01

    Full Text Available There is growing evidence that increased levels of the endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA may contribute to endothelial dysfunction. Studies in animal models as well as in humans have suggested that the increase in ADMA occurs at a time when vascular disease has not yet become clinically evident. ADMA competitively inhibits NO elaboration by displacing L-arginine from NO synthase. In a concentration-dependent manner, it thereby interferes not only with endothelium-dependent, NO-mediated vasodilation, but also with other biological functions exerted by NO. The upshot may be a pro-atherogenic state. Recently, several studies have investigated the effect of various therapeutical interventions on ADMA plasma concentrations.

  2. Functionalized nanoparticles for biological imaging and detection applications

    Science.gov (United States)

    Mei, Bing C.

    Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable in aqueous media and lack simple and reliable means of covalently linking to biomolecules. The focus of this work is to advance the progress of these nanomaterials for biotechnology by synthesizing them, characterizing their optical properties and rendering them water-soluble and functional while maintaining their coveted optical properties. QDs were synthesized by an organometallic chemical procedure that utilizes coordinating solvents to provide brightly luminescent nanoparticles. The optical interactions of these QDs were studied as a function of concentration to identify particle size-dependent optimal concentrations, where scattering and indirection excitation are minimized and the amount light observed per particle is maximized. Both QDs and AuNPs were rendered water-soluble and stable in a broad range of biologically relevant conditions by using a series of ligands composed of dihydrolipoic acid (DHLA) appended to poly(ethylene glycol) methyl ether. By studying the stability of the surface modified AuNPs, we revealed some interesting information regarding the role of the surface ligand on the nanoparticle stability (i.e. solubility in high salt concentration, resistance to dithiothreitol competition and cyanide decomposition). Furthermore, the nanoparticles

  3. The Decoding Toolbox (TDT: A versatile software package for multivariate analyses of functional imaging data

    Directory of Open Access Journals (Sweden)

    Martin Nikolai Hebart

    2015-01-01

    Full Text Available The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns.

  4. Multifunctional surfaces with discrete functionalized regions for biological applications.

    Science.gov (United States)

    Ghosh, Moniraj; Alves, Christina; Tong, Ziqiu; Tettey, Kwadwo; Konstantopoulos, Konstantinos; Stebe, Kathleen J

    2008-08-05

    In this paper we describe a method for creating multifunctional glass surfaces presenting discrete patches of different proteins on an inert PEG-functionalized background. Microcontact printing is used to stamp the substrate with octadecyltrichlorosilane to define the active regions. The substrate is then back-filled with PEG-silane {[[2-methoxypoly(ethyleneoxy)]propyl]trimethoxysilane} to define passive regions. A microfluidics device is subsequently affixed to the substrate to deliver proteins to the active regions, with as many channels as there are proteins to be patterned. Examples of trifunctional surfaces are given which present three terminating functional groups, i.e., protein 1, protein 2, and PEG. These surfaces should be broadly useful in biological studies, as patch size is well established to influence cell viability, growth, and differentiation. Three examples of cellular interactions with the surfaces are demonstrated, including the capture of cells from a single cell suspension, the selective sorting of cells from a mixed suspension, and the adhesion of cells to ligand micropatches at critical shear stresses. Within these examples, we demonstrate that the patterned immobilized proteins are active, as they retain their ability to interact with either antibodies in solution or receptors presented by cells. When appropriate (e.g., for E-selectin), proteins are patterned in their physiological orientations using a sandwich immobilization technique, which is readily accommodated within our method. The protein surface densities are highly reproducible in the patches, as supported by fluorescence intensity measurements. Potential applications include biosensors based on the interaction of cells or of marker proteins with protein patches, fundamental studies of cell adhesion as a function of patch size and shear stress, and studies of cell differentiation as a function of surface cues.

  5. Biosynthesis and biological functions of terpenoids in plants.

    Science.gov (United States)

    Tholl, Dorothea

    2015-01-01

    Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.

  6. Biological Sensitivity to Family Income: Differential Effects on Early Executive Functioning.

    Science.gov (United States)

    Obradović, Jelena; Portilla, Ximena A; Ballard, Parissa J

    2016-01-01

    The study examined how the interplay between children's cortisol response and family income is related to executive function (EF) skills. The sample included one hundred and two 5- to 6-year-olds (64% minority). EF skills were measured using laboratory tasks and observer ratings. Physiological reactivity was assessed via cortisol response during a laboratory visit. A consistent, positive association between family income and EF skills emerged only for children who showed high cortisol response, a marker of biological sensitivity to context. In contrast, family income was not related to EF skills in children who displayed low cortisol response. Follow-up analyses revealed a disordinal interaction, suggesting that differential susceptibility can be detected at the level of basic cognitive and self-regulatory skills that support adaptive functioning.

  7. Gene-based GWAS and biological pathway analysis of the resilience of executive functioning.

    Science.gov (United States)

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K; Gibbons, Laura E; Nho, Kwangsik; Glymour, M Maria; Ertekin-Taner, Nilüfer; Montine, Thomas J; Saykin, Andrew J; Crane, Paul K

    2014-03-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative threshold for genome-wide significance = 0.05/18,123 = 2.8 × 10(-6)) and the gene-set enrichment package GSA-SNP for biological pathway analyses (False discovery rate (FDR) resilience (p = 1.33 × 10(-7)). Genetic pathways involved with dendritic/neuron spine, presynaptic membrane, postsynaptic density, etc., were enriched with association to EF resilience. Although replication of these results is necessary, our findings indicate the potential value of gene- and pathway-based analyses in research on determinants of cognitive resilience.

  8. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    Science.gov (United States)

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.

  9. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  10. Natural killer cells: Biology, functions and clinical relevance

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction. Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1 killer immunoglobulin like receptors-KIR, 2 C-type lectin receptors,3natural citotoxicity receptors-NCR and 4 Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.

  11. Function and regulation of lipid biology in Caenorhabditis elegans aging

    Directory of Open Access Journals (Sweden)

    Nicole Shangming Hou

    2012-05-01

    Full Text Available Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefitting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.

  12. Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging

    Science.gov (United States)

    Hou, Nicole Shangming; Taubert, Stefan

    2012-01-01

    Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefiting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular, and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging. PMID:22629250

  13. Endogenous nitric oxide synthesis: biological functions and pathophysiology.

    Science.gov (United States)

    Bredt, D S

    1999-12-01

    Modern molecular biology has revealed vast numbers of large and complex proteins and genes that regulate body function. By contrast, discoveries over the past ten years indicate that crucial features of neuronal communication, blood vessel modulation and immune response are mediated by a remarkably simple chemical, nitric oxide (NO). Endogenous NO is generated from arginine by a family of three distinct calmodulin- dependent NO synthase (NOS) enzymes. NOS from endothelial cells (eNOS) and neurons (nNOS) are both constitutively expressed enzymes, whose activities are stimulated by increases in intracellular calcium. Immune functions for NO are mediated by a calcium-independent inducible NOS (iNOS). Expression of iNOS protein requires transcriptional activation, which is mediated by specific combinations of cytokines. All three NOS use NADPH as an electron donor and employ five enzyme cofactors to catalyze a five-electron oxidation of arginine to NO with stoichiometric formation of citrulline. The highest levels of NO throughout the body are found in neurons, where NO functions as a unique messenger molecule. In the autonomic nervous system NO functions NO functions as a major non-adrenergic non-cholinergic (NANC) neurotransmitter. This NANC pathway plays a particularly important role in producing relaxation of smooth muscle in the cerebral circulation and the gastrointestinal, urogenital and respiratory tracts. Dysregulation of NOS activity in autonomic nerves plays a major role in diverse pathophysiological conditions including migraine headache, hypertrophic pyloric stenosis and male impotence. In the brain, NO functions as a neuromodulator and appears to mediate aspects of learning and memory. Although endogenous NO was originally appreciated as a mediator of smooth muscle relaxation, NO also plays a major role in skeletal muscle. Physiologically muscle-derived NO regulates skeletal muscle contractility and exercise-induced glucose uptake. nNOS occurs at the

  14. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    Directory of Open Access Journals (Sweden)

    Ari J S Ferreira

    Full Text Available Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  15. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S

    2014-06-12

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world\\'s oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  16. Phytochrome from Green Plants: Properties and biological Function

    Energy Technology Data Exchange (ETDEWEB)

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  17. Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Directory of Open Access Journals (Sweden)

    Wenbo Tang

    Full Text Available Genome-wide association studies (GWAS have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1 in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7. In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8 at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

  18. Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function

    Science.gov (United States)

    Tang, Wenbo; Kowgier, Matthew; Loth, Daan W.; Soler Artigas, María; Joubert, Bonnie R.; Hodge, Emily; Gharib, Sina A.; Smith, Albert V.; Ruczinski, Ingo; Gudnason, Vilmundur; Mathias, Rasika A.; Harris, Tamara B.; Hansel, Nadia N.; Launer, Lenore J.; Barnes, Kathleen C.; Hansen, Joyanna G.; Albrecht, Eva; Aldrich, Melinda C.; Allerhand, Michael; Barr, R. Graham; Brusselle, Guy G.; Couper, David J.; Curjuric, Ivan; Davies, Gail; Deary, Ian J.; Dupuis, Josée; Fall, Tove; Foy, Millennia; Franceschini, Nora; Gao, Wei; Gläser, Sven; Gu, Xiangjun; Hancock, Dana B.; Heinrich, Joachim; Hofman, Albert; Imboden, Medea; Ingelsson, Erik; James, Alan; Karrasch, Stefan; Koch, Beate; Kritchevsky, Stephen B.; Kumar, Ashish; Lahousse, Lies; Li, Guo; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Lohman, Kurt; Lumley, Thomas; McArdle, Wendy L.; Meibohm, Bernd; Morris, Andrew P.; Morrison, Alanna C.; Musk, Bill; North, Kari E.; Palmer, Lyle J.; Probst-Hensch, Nicole M.; Psaty, Bruce M.; Rivadeneira, Fernando; Rotter, Jerome I.; Schulz, Holger; Smith, Lewis J.; Sood, Akshay; Starr, John M.; Strachan, David P.; Teumer, Alexander; Uitterlinden, André G.; Völzke, Henry; Voorman, Arend; Wain, Louise V.; Wells, Martin T.; Wilk, Jemma B.; Williams, O. Dale; Heckbert, Susan R.; Stricker, Bruno H.; London, Stephanie J.; Fornage, Myriam; Tobin, Martin D.; O′Connor, George T.; Hall, Ian P.; Cassano, Patricia A.

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. Methods We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. Results The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. Conclusions In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function. PMID:24983941

  19. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    Science.gov (United States)

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  20. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.

    Science.gov (United States)

    Rahlouni, Fatima; Szarka, Szabolcs; Shulaev, Vladimir; Prokai, Laszlo

    2015-12-01

    Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.

  1. Structural and functional analyses of the putrescine binding protein PotF from Xanthomonas citri

    Energy Technology Data Exchange (ETDEWEB)

    Santana, L.D.F.; Balan, A. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil)

    2012-07-01

    Full text: The focus of our group is to determinate the role of ABC transporters in the physiology and growth of Xanthomonas citri, a phytopathogenic bacteria that infects citrus plants causing significant losses for the economy. One of the ABC transporters identified in the X. citri genome and that was showed to be active during the infection in Citrus sinensis plants was the putrescine transporter. This transporter consists of two internal membrane proteins PotG and PotH that form a pore, a cytoplasmic protein that gives energy for the transport and the periplasmic-binding protein PotF, which is responsible for the affinity and specificity of the system. Its function is associated to the microbial carcinogenesis, biofilm formation, escape from phagolysosomes, bacteriocin production, toxin activity and protection from oxidative and acid stress. In this work, we show for the first time, the expression, purification, functional and structural analyses of the X. citri PotF protein. The PotF was expressed from Escherichia coli cells strain Arctic, as a 40 kDa soluble protein, after induction of IPTG for twenty four hours at thirteen deg C. Using immobilized metal affinity chromatography for purification, the protein was eluted in the fractions with 10-500 mM of imidazole. To test the folding and cability to bind putrescine, spectroscopic analyses were performed using circular dichroism and intrinsic fluorescence. The data showed that PotF suffers conformational changes in presence of ligands and in different pH, suggesting a possible interaction with the tested ligand. Moreover, based on bioinformatics studies and molecular modeling analyses, we showed that X. citri PotF is highly conserved when compared to orthologs present in other bacteria, including the residues that form the ligand-binding site. The production of PotF in a soluble and stable form will allow us to start the crystallization trials in attempt to solve its structure. (author)

  2. To What Extent do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues

    Directory of Open Access Journals (Sweden)

    Florbela M. Calado

    2015-10-01

    Full Text Available Our article proposes a set of six criteria for analysing science-technology-society-environment (STSE issues in regular textbooks as to how they are expected to contribute to students’ scientific literacy. We chose genetics and gene technology as fields prolific in STSE issues. We derived our criteria (including 26 sub-criteria from a literature review of the debate in science education on how to increase scientific literacy. We inspected the textbooks regarding the relationships between science, technology, society, and environment, and considered the presence of the decontextualized and socially neutral view of science as distorted view. We, qualitatively and quantitatively, applied our set of criteria to two German Biology textbooks and identified, in total, 718 STSE statements. Based on the frequencies of different criteria and sub-criteria in the textbooks, we drew conclusions concerning STSE issues and the underlying conceptions of science and technology, which might hinder the furtherance of scientific literacy. The applicability of our approach in other science education contexts is discussed.

  3. The effects of ropivacaine hydrochloride on platelet function: an assessment using the platelet function analyser (PFA-100).

    LENUS (Irish Health Repository)

    Porter, J

    2012-02-03

    Amide local anaesthetics impair blood clotting in a concentration-dependent manner by inhibition of platelet function and enhanced fibrinolysis. We hypothesised that the presence of ropivacaine in the epidural space could decrease the efficacy of an epidural blood patch, as this technique requires that the injected blood can clot in order to be effective. Ropivacaine is an aminoamide local anaesthetic used increasingly for epidural analgesia during labour. The concentration of local anaesthetic in blood achieved in the epidural space during the performance of an epidural blood patch is likely to be the greatest which occurs (intentionally) in any clinical setting. This study was undertaken to investigate whether concentrations of ropivacaine in blood, which could occur: (i) clinically in the epidural space and (ii) in plasma during an epidural infusion of ropivacaine, alter platelet function. A platelet function analyser (Dade PFA-100, Miami) was employed to assess the effects of ropivacaine-treated blood on platelet function. The greater concentrations of ropivacaine studied (3.75 and 1.88 mg x ml(-1)), which correspond to those which could occur in the epidural space, produced significant inhibition of platelet aggregation. We conclude that the presence of ropivacaine in the epidural space may decrease the efficacy of an early or prophylactic epidural blood patch.

  4. Alterations in immune function with biologic therapies for autoimmune disease.

    Science.gov (United States)

    Her, Minyoung; Kavanaugh, Arthur

    2016-01-01

    Autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, and others, are characterized by dysregulation of various aspects of normal immunity and inflammation. Biologic agents targeting key components of the dysregulated immune response have dramatically improved patient outcomes and transformed treatment paradigms for a number of systemic inflammatory autoimmune diseases. Despite their excellent efficacy, because they do affect normal immune responsiveness, biologic agents can potentially be associated with a variety of adverse effects. Important potential adverse effects related to the use of biologic agents include immunosuppression, which might result in outcomes such as infection, and autoimmunity, that could result in paradoxical inflammation or even autoimmune disease. In this article the current clinical evidence and immunologic mechanisms of the adverse effects related to biologic agents are discussed.

  5. Procurement of a Nanoindenter for Structure-Function Analyses of Biologically Inspired High Performance Composite Materials

    Science.gov (United States)

    2012-01-13

    Zavattieri (Purdue University), Dr. Ali Miserez (Nanyang University), Dr. Dimitri Deheyn (Scripps, UCSD), Dr. Masa Rao (UCR). Finally, through the...Chitons. The fourth project, to be performed in collaboration with Professor Masa Rao at UCR, would investigate micro-and nano-mechanical properties...Miserez (Nanyang University), Dr. Dimitri Deheyn (Scripps, UCSD), Dr. Masa Rao (UCR). Finally, through the procurement of this instrument, the data we

  6. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities.

    Science.gov (United States)

    Müller, Susann; Nebe-von-Caron, Gerhard

    2010-07-01

    The still poorly explored world of microbial functioning is about to be uncovered by a combined application of old and new technologies. Bacteria, especially, are still in the dark with respect to their phylogenetic affiliations as well as their metabolic capabilities and functions. However, with the advent of sophisticated flow cytometric and cell sorting technologies in microbiological labs, there is now the possibility to gain this knowledge at the single-cell level without cumbersome cultivation approaches. Cytometry also facilitates the understanding of physiological diversity in seemingly likewise acting populations. Both individuality and diversity lead to the complex and concerted actions of microbial consortia. This review provides an overview of the state of the art in the field. It deals with the handling of microorganisms from the very beginning (i.e. sampling, and detachment and fixation procedures) and goes on to discuss the pitfalls and problems in analysing cells without any further treatment. If information cannot be gained by specific staining procedures, phylogenetic technologies, transcriptomic and proteomic approaches may be options for achieving advanced insights. All in all, flow cytometry will be a mediator technology to gain a deeper insight into the heterogeneity of populations and the functioning of microbial communities.

  7. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Science.gov (United States)

    Mitchell, Patrick S; Young, Janet M; Emerman, Michael; Malik, Harmit S

    2015-12-01

    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and

  8. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Directory of Open Access Journals (Sweden)

    Patrick S Mitchell

    2015-12-01

    Full Text Available Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host

  9. Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte

    Directory of Open Access Journals (Sweden)

    Bishop-Bailey David

    2011-01-01

    Full Text Available Abstract Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP. This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil.

  10. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  11. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7.

    Directory of Open Access Journals (Sweden)

    Juliette Adjo Aka

    Full Text Available T47D and MCF7 are two human hormone-dependent breast cancer cell lines which are widely used as experimental models for in vitro and in vivo (tumor xenografts breast cancer studies. Several proteins involved in cancer development were identified in these cell lines by proteomic analyses. Although these studies reported the proteomic profiles of each cell line, until now, their differential protein expression profiles have not been established. Here, we used two-dimensional gel and mass spectrometry analyses to compare the proteomic profiles of the two cell lines, T47D and MCF7. Our data revealed that more than 164 proteins are differentially expressed between them. According to their biological functions, the results showed that proteins involved in cell growth stimulation, anti-apoptosis mechanisms and cancerogenesis are more strongly expressed in T47D than in MCF7. These proteins include G1/S-specific cyclin-D3 and prohibitin. Proteins implicated in transcription repression and apoptosis regulation, including transcriptional repressor NF-X1, nitrilase homolog 2 and interleukin-10, are, on the contrary, more strongly expressed in MCF7 as compared to T47D. Five proteins that were previously described as breast cancer biomarkers, namely cathepsin D, cathepsin B, protein S100-A14, heat shock protein beta-1 (HSP27 and proliferating cell nuclear antigen (PCNA, are found to be differentially expressed in the two cell lines. A list of differentially expressed proteins between T47D and MCF7 was generated, providing useful information for further studies of breast cancer mechanisms with these cell lines as models.

  12. Cell biology and functional dynamics of the mammalian sperm surface

    NARCIS (Netherlands)

    Gadella, B.M.; Luna, C.

    2014-01-01

    Theriogenology has now a 40-year rich history on covering sperm biological aspects with a special emphasis on farm and husbandry animals. The major and most influential of these contributions will be placed into an evolutionary perspective of ongoing and intriguing progresses made in this field. Alt

  13. Design of Functional Polyesters for Electronic and Biological Applications

    OpenAIRE

    Nelson, Ashley Marie

    2015-01-01

    Melt polymerization and novel monomers enabled the synthesis of polyesters for electronic and biological applications. Inspiration from nature and a passion for environmental preservation instigated an emphasis on the incorporation of renewable resources into polymeric materials. Critical analysis of current research surrounding bisphenol-A replacements and ion-containing segmented polyurethanes aided in identifying benchmark polymers, including limitations, challenges, and future needs. S...

  14. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica;

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  15. Oxidative metabolites of lycopene and their biological functions

    Science.gov (United States)

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  16. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris.

    Science.gov (United States)

    Qian, Wei; Jia, Yantao; Ren, Shuang-Xi; He, Yong-Qiang; Feng, Jia-Xun; Lu, Ling-Feng; Sun, Qihong; Ying, Ge; Tang, Dong-Jie; Tang, Hua; Wu, Wei; Hao, Pei; Wang, Lifeng; Jiang, Bo-Le; Zeng, Shenyan; Gu, Wen-Yi; Lu, Gang; Rong, Li; Tian, Yingchuan; Yao, Zhijian; Fu, Gang; Chen, Baoshan; Fang, Rongxiang; Qiang, Boqin; Chen, Zhu; Zhao, Guo-Ping; Tang, Ji-Liang; He, Chaozu

    2005-06-01

    Xanthomonas campestris pathovar campestris (Xcc) is the causative agent of crucifer black rot disease, which causes severe losses in agricultural yield world-wide. This bacterium is a model organism for studying plant-bacteria interactions. We sequenced the complete genome of Xcc 8004 (5,148,708 bp), which is highly conserved relative to that of Xcc ATCC 33913. Comparative genomics analysis indicated that, in addition to a significant genomic-scale rearrangement cross the replication axis between two IS1478 elements, loss and acquisition of blocks of genes, rather than point mutations, constitute the main genetic variation between the two Xcc strains. Screening of a high-density transposon insertional mutant library (16,512 clones) of Xcc 8004 against a host plant (Brassica oleraceae) identified 75 nonredundant, single-copy insertions in protein-coding sequences (CDSs) and intergenic regions. In addition to known virulence factors, full virulence was found to require several additional metabolic pathways and regulatory systems, such as fatty acid degradation, type IV secretion system, cell signaling, and amino acids and nucleotide metabolism. Among the identified pathogenicity-related genes, three of unknown function were found in Xcc 8004-specific chromosomal segments, revealing a direct correlation between genomic dynamics and Xcc virulence. The present combination of comparative and functional genomic analyses provides valuable information about the genetic basis of Xcc pathogenicity, which may offer novel insight toward the development of efficient methods for prevention of this important plant disease.

  17. Functional data analyses for the assessment of joint power profiles during gait of stroke subjects.

    Science.gov (United States)

    Andrade, André G P; Polese, Janaine C; Paolucci, Leopoldo A; Menzel, Hans-Joachim K; Teixeira-Salmela, Luci F

    2014-04-01

    Lower extremity kinetic data during walking of 12 people with chronic poststroke were reanalyzed, using functional analysis of variance (FANOVA). To perform the FANOVA, the whole curve is represented by a mathematical function, which spans the whole gait cycle and avoids the need to identify isolated points, as required for traditional parametric analyses of variance (ANOVA). The power variables at the ankle, knee, and hip joints, in the sagittal plane, were compared between two conditions: With and without walking sticks at comfortable and fast speeds. For the ankle joint, FANOVA demonstrated increases in plantar flexion power generation during 60-80% of the gait cycle between fast and comfortable speeds with the use of walking sticks. For the knee joint, the use of walking sticks resulted in increases in the knee extension power generation during 10-30% of the gait cycle. During both speeds, the use of walking sticks resulted in increased power generation by the hip extensors and flexors during 10-30% and 40-70% of the gait cycle, respectively. These findings demonstrated the benefits of applying the FANOVA approach to improve the knowledge regarding the effects of walking sticks on gait biomechanics and encourage its use within other clinical contexts.

  18. In search of lipid translocases and their biological functions

    NARCIS (Netherlands)

    Hoekstra, D; van Ijzendoorn, SCD

    2003-01-01

    In plasma membranes, lipids distribute asymmetrically across the bilayer, a process that requires proteins. Recent work identified novel lipid translocators in yeast, and their activity was functionally correlated to endocytosis, thus boosting investigations on identity, mechanism, and function of l

  19. Opposing Biological Functions of Tryptophan Catabolizing Enzymes During Intracellular Infection

    Science.gov (United States)

    Divanovic, Senad; Sawtell, Nancy M.; Trompette, Aurelien; Warning, Jamie I.; Dias, Alexandra; Cooper, Andrea M.; Yap, George S.; Arditi, Moshe; Shimada, Kenichi; DuHadaway, James B.; Prendergast, George C.; Basaraba, Randall J.; Mellor, Andrew L.; Munn, David H.; Aliberti, Julio

    2012-01-01

    Recent studies have underscored physiological and pathophysiological roles for the tryptophan-degrading enzyme indolamine 2,3-dioxygenase (IDO) in immune counterregulation. However, IDO was first recognized as an antimicrobial effector, restricting tryptophan availability to Toxoplasma gondii and other pathogens in vitro. The biological relevance of these findings came under question when infectious phenotypes were not forthcoming in IDO-deficient mice. The recent discovery of an IDO homolog, IDO-2, suggested that the issue deserved reexamination. IDO inhibition during murine toxoplasmosis led to 100% mortality, with increased parasite burdens and no evident effects on the immune response. Similar studies revealed a counterregulatory role for IDO during leishmaniasis (restraining effector immune responses and parasite clearance), and no evident role for IDO in herpes simplex virus type 1 (HSV-1) infection. Thus, IDO plays biologically important roles in the host response to diverse intracellular infections, but the dominant nature of this role—antimicrobial or immunoregulatory—is pathogen-specific. PMID:21990421

  20. Cerenkov Radiation: A Multi-functional Approach for Biological Sciences

    Directory of Open Access Journals (Sweden)

    Xiaowei eMa

    2014-02-01

    Full Text Available Cerenkov radiation (CR has been used in various biological research fields, which has aroused lots of attention in recent years. Combining optical imaging instruments and most of nuclear medicine imaging or radiotherapy probes, the CR was developed as a new imaging modality for biology studies, called Cerenkov luminescence imaging (CLI. On the other hand, it was novelly used as an internal excitation source to activate some fluorophores for energy transfer imaging. However, it also has some shortages such as relatively weak luminescence intensity and low penetration in tissue. Thus some scientific groups demonstrated to optimize the CLI and demonstrated it to three-dimension tomography. In this article, we elaborate on its principle, history, and applications and discuss a number of directions for technical improvements. Then concluded some advantages and shortages of CR and discuss some prospects of it.

  1. The practical impact of differential item functioning analyses in a health-related quality of life instrument

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K;

    2009-01-01

    Differential item functioning (DIF) analyses are commonly used to evaluate health-related quality of life (HRQoL) instruments. There is, however, a lack of consensus as to how to assess the practical impact of statistically significant DIF results.......Differential item functioning (DIF) analyses are commonly used to evaluate health-related quality of life (HRQoL) instruments. There is, however, a lack of consensus as to how to assess the practical impact of statistically significant DIF results....

  2. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  3. Can We Monitor Ecosystem Function Using Keeling Plot Analyses of Nocturnal Cold-Air Drainage?

    Science.gov (United States)

    Bond, B. J.; Ocheltree, T.; Pypker, T.; Unsworth, M. H.; Mix, A. C.; William, R.

    2003-12-01

    The carbon isotope signature of ecosystem respiration, δ 13CR, as measured by the Keeling Plot approach, has been related to short-term variations in weather and ecosystem function in several recent studies. In order to obtain an adequate range of [CO2] and to sample a consistent vegetation type, investigators typically select sampling locations in relatively flat terrain and uniform canopy cover, but these are unusual conditions for many forested ecosystems. In a pilot study, we are collecting samples for Keeling Plot analyses in cold-air drainage systems in small (60-100 ha), deeply-incised watersheds, one covered with old-growth (ca 450-years-old) Douglas-fir/hemlock forest and one covered with young (ca 45-years-old) Douglas-fir forest. We found that the nightly range of [CO2] was typically 380-460 ppm, sufficient to develop good estimates of δ 13CR. At any point in time there was little variation in [CO2] with height through the canopy (0.5-30m), so the required range was obtained by sampling over several hours. There was no indication that samples taken from different heights or at different times of night represented sources with different isotopic signatures. The isotopic signature of respired CO2 in the older watershed averaged about 1 per mil greater than that of the young watershed, and δ 13CR of both locations correlated with modeled stomatal conductance 6 days prior to flask sampling.

  4. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular biological activities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases, which remove phosphate groups from phosphorylated signaling molecules, play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2, a cytoplasmic SH2 domain containing protein tyrosine phosphatase, is involved in the signaling pathways of a variety of growth factors and cytokines. Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus, and is a critical intracellular regulator in mediating cell proliferation and differentiation.

  5. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  6. Multilevel integrative analyses of human behavior: social neuroscience and the complementing nature of social and biological approaches.

    Science.gov (United States)

    Cacioppo, J T; Berntson, G G; Sheridan, J F; McClintock, M K

    2000-11-01

    Social and biological explanations traditionally have been cast as incompatible, but advances in recent years have revealed a new view synthesized from these 2 very different levels of analysis. The authors review evidence underscoring the complementing nature of social and biological levels of analysis and how the 2 together can foster understanding of the mechanisms underlying complex behavior and the mind. Specifically, they review the utility of considering social influences on biological processes that are often viewed as outside the social domain including genetic constitution, gene expression, disease, and autonomic, neuroendocrine, and immune activity. This research underscores the unity of psychology and the importance of retaining multilevel integrative research that spans molar and molecular levels of analysis. Especially needed in the coming years is more research on the mechanisms linking social and biological events and processes.

  7. Neuroscience in the era of functional genomics and systems biology

    OpenAIRE

    Geschwind, Daniel H.; Konopka, Genevieve

    2009-01-01

    Advances in genetics and genomics have fuelled a revolution in discovery-based, or hypothesis-generating, research that provides a powerful complement to the more directly hypothesis-driven molecular, cellular and systems neuroscience. Genetic and functional genomic studies have already yielded important insights into neuronal diversity and function, as well as disease. One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic, gen...

  8. Exosome Function: From Tumor Immunology to Pathogen Biology

    OpenAIRE

    Schorey, Jeffrey S; Bhatnagar, Sanchita

    2008-01-01

    Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multi-vesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remain...

  9. Function and significance of bell beaker pottery according to data from residue analyses

    Directory of Open Access Journals (Sweden)

    Guerra Doce, Elisa

    2006-06-01

    Full Text Available Traditionally, Bell Beakers have been thought to contain alcoholic beverages which were consumed in the course of male feasting ceremonies. Recent residue analyses have shed some light on the question of their function. However, whilst beer and mead have been identified from certain examples, not all Beakers were drinking cups. Some were used as reduction pots to smelt copper ores, others have some organic residues associated with food, and still others were employed as funerary urns. Yet, while the evidence points to a diversity of uses, it is argued that an ideological connection can be observed. Beakers were probably a special form of pottery with a ritual character, related to activities that imply some kind of transformation.

    Los vasos campaniformes suelen relacionarse con el consumo de bebidas alcohólicas durante la celebración de banquetes ceremoniales de exaltación masculina. Si bien las analíticas de residuos han identificado cerveza e hidromiel en unos cuantos ejemplares, no todos los campaniformes desempeñaron esta misma función. Algunos hicieron las veces de vasijas-horno para reducir el mineral de cobre, en otros se han detectado restos de alimentos y también se emplearon como urnas funerarias. A pesar de esta diversidad de usos, creemos que existe una conexión ideológica entre ellos, de tal manera que habría que considerar a los campaniformes como una cerámica singular con un carácter ritual, destinada a actividades que conllevan algún tipo de transformación.

  10. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Directory of Open Access Journals (Sweden)

    Stéphane Uroz

    Full Text Available In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France. The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource

  11. Subcellular localization and functional analyses of structural domains of COP1 in transgenic tobacco

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Plants have evolved an extremely exquisite light signal regulatory network to adapt to the changing ambient light conditions, in which COP1 plays a critical roleof the light signal transduction. Based on the cloned pea COP1 cDNA sequence and its protein structure, four indi-vidual gene fragments encoding different structural domains of the COP1 were designed to fuse to the GFP gene. The plant expression vectors containing these fusion genes as well as the COP1GFP fusion gene were constructed and used to transform tobacco by Agribacterium as confirmed by South-]ern analyses. Antibodies were raised against the recombi-nant GFP-COP1 overproduced in Escherichia coli. Im-munoblotting results demonstrated that all of the fusion genes were constitutively expressed in transgenic tobacco plants. We systematically investigated the different subcell- ular localization of these fusion proteins and the resulting phenotypic characteristics of these transgenic plants under light and dark conditions. Our data show that (1) the mo-lecular mass of the tobacco endogenous COP1 protein is 76 kD. It is constitutively expressed in all of the tested tissues and the total cellular content of COP1 protein is not noticea-bly affected by light conditions. (2) The nuclear localization signal of COP1 plays a critical role in regulation of its nu-clear-cytoplasmic partitioning. The subcellular localization of the COP1 protein containing nuclear localization signal is regulated by light in the epidermal cells of leaves, but, it is located in nucleus constitutively in root cells. (3) The coiled-coil domain is very critical to the function of COP1 protein, while the zinc binding RING finger domain only plays a supportive role. (4) The WD-40 repeats domain is essential to the COP1 function, but this domain alone does not affect photomorphogenesis. (5) Overexpression of COP1 protein not only inhibits the photomorphogenesis of the stems and leaves of the transgenic tobacco, but also results in the

  12. Novel ESCRT functions in cell biology: spiraling out of control?

    Science.gov (United States)

    Campsteijn, Coen; Vietri, Marina; Stenmark, Harald

    2016-08-01

    The endosomal sorting complex required for transport (ESCRT), originally identified for its role in endosomal protein sorting and biogenesis of multivesicular endosomes (MVEs), has proven to be a versatile machinery for involution and scission of narrow membrane invaginations filled with cytosol. Budding of enveloped viruses and cytokinetic abscission were early described functions for the ESCRT machinery, and recently a number of new ESCRT functions have emerged. These include cytokinetic abscission checkpoint control, plasma membrane repair, exovesicle release, quality control of nuclear pore complexes, neuron pruning, and sealing of the newly formed nuclear envelope. Here we review these novel ESCRT mechanisms and discuss similarities and differences between the various ESCRT-dependent activities.

  13. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  14. The functionality of biological knowledge in the workplace. Integrating school and workplace learning about reproduction

    NARCIS (Netherlands)

    Mazereeuw, M.

    2013-01-01

    This thesis reports on a design research project about a learning, supervising and teaching strategy to enable students in agricultural preparatory vocational secondary education (VMBO) to recognize the functionality of biological knowledge of reproduction in work placement sites. Although biologica

  15. VISUALIZATION APPROACH TO STRUCTURE-FUNCTION RELATIONSHIP IN BIOLOGICAL MACROMOLECULES

    Directory of Open Access Journals (Sweden)

    M. Luetić

    2015-08-01

    Full Text Available Introduction: Most of recent research in the field of education strongly recommends the use of visualization in the daily teacher’s practice, especially when it comes to teaching science. Objectives: We investigated the impact of different kinds of visualization on student’s accomplishments, and the relationship between 2D and 3D visualization on the learning outcomes in biochemistry teaching, as well as gender-related differences in 2D vs 3D perception abilities. Materials and Methods: The research study was conducted on a sample of 149 senior secondary school students, devided into three groups: control group (usual teaching approach, and two experimental groups taught using different kinds of visualization: E1 (2D and 3D static visualization tools, and E2 (3D dynamic visualization tools, in addition. Discussion and results: We measured the students’ learning outcomes in biochemistry, as well as the level of satisfaction with different teaching methods. The data were interpreted by performing statistical measures and analyses. In order to validate our hypothesis, we used one-tail and two-tail ANOVA analyses (along with the t-test.Conclusions: There was no statistical significance regarding 2D vs 3D visualization tools in biochemistry teaching. Although there existed some gender-related differences in students’ achievements (in favor of females, it was not established that they were related to the type of visualization (2D or 3D tools applied. However students from the E2 group (additional computer animations were more interested and involved in this kind of teaching. Although the results do not show a statistical significance in favor of 3D visualization, we must conclude that in teaching biochemistry it is certainly a more efficient approach than traditional teacher-oriented lessons. By using this kind of visualization tools in everyday teaching practice, chemistry teachers are given the opportunity to enlighten students with somewhat

  16. A systematic literature review on reviews and meta-analyses of biologically based CAM-practices for cancer patients

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Lunde, Anita; Johannessen, Helle

    2010-01-01

    levels of evidence and were excluded from further evaluation. Among the 32 high-quality reviews the most reviewed practices were soy/plant hormones (7), Chinese herbal medicine (7), antioxidants (5) and mistletoe (4). Fifteen of the 32 reviews included data on the efficacy of biologically-based CAM......-practices against cancer, but none of the reviews concluded a positive effect on the cancer. Reviews including data on quality of life (10) and/or reduction of side effects (12) showed promising, but yet insufficient evidence for Chinese herbal medicine against pain  and side effects of chemotherapy, and mistletoe......Purpose To provide an overview and evaluate the evidence of biologically based CAM-practices for cancer patients. Methods Pubmed, Social Science Citation Index, AMED and the Cochrane library were systematically searched for reviews on effects of biologically based CAM-practices, including herbal...

  17. Social inclusion enhances biological motion processing: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Bolling, Danielle Z; Pelphrey, Kevin A; Kaiser, Martha D

    2013-04-01

    Humans are especially tuned to the movements of other people. Neural correlates of this social attunement have been proposed to lie in and around the right posterior superior temporal sulcus (STS) region, which robustly responds to biological motion in contrast to a variety of non-biological motions. This response persists even when no form information is provided, as in point-light displays (PLDs). The aim of the current study was to assess the ability of functional near-infrared spectroscopy (fNIRS) to reliably measure brain responses to PLDs of biological motion, and determine the sensitivity of these responses to interpersonal contextual factors. To establish reliability, we measured brain activation to biological motion with fNIRS and functional magnetic resonance imaging (fMRI) during two separate sessions in an identical group of 12 participants. To establish sensitivity, brain responses to biological motion measured with fNIRS were subjected to an additional social manipulation where participants were either socially included or excluded before viewing PLDs of biological motion. Results revealed comparable brain responses to biological motion using fMRI and fNIRS in the right supramarginal gyrus. Further, social inclusion increased brain responses to biological motion in right supramarginal gyrus and posterior STS. Thus, fNIRS can reliably measure brain responses to biological motion and can detect social experience-dependent modulations of these brain responses.

  18. Functional Nanostructured Platforms for Chemical and Biological Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  19. Density functional theory across chemistry, physics and biology.

    Science.gov (United States)

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.

  20. Candida albicans mannoprotein influences the biological function of dendritic cells.

    Science.gov (United States)

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  1. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  2. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.

  3. Biochemical and biological functions of class I phosphatidylinositol transfer proteins.

    Science.gov (United States)

    Cockcroft, Shamshad; Carvou, Nicolas

    2007-06-01

    Phosphoinositides function in a diverse array of cellular activities. They include a role as substrate for lipid kinases and phospholipases to generate second messengers, regulators of the cytoskeleton, of enzymes and of ion channels, and docking sites for reversible recruitment of proteins to membranes. Mammalian phosphatidylinositol transfer proteins, PITPalpha and PITPbeta are paralogs that share 77% sequence identity and contain a hydrophobic cavity that can sequester either phosphatidylinositol or phosphatidylcholine. A string of 11 amino acid residues at the C-terminal acts as a "lid" which shields the lipid from the aqueous environment. PITPs in vitro can facilitate inter-membrane lipid transfer and this requires the movement of the "lid" to allow the lipid cargo to be released. Thus PITPs are structurally designed for delivering lipid cargo and could thus participate in cellular events that are dependent on phosphatidylinositol or derivatives of phosphatidylinositol. Phosphatidylinositol, the precursor for all phosphoinositides is synthesised at the endoplasmic reticulum and its distribution to other organelles could be facilitated by PITPs. Here we highlight recent studies that report on the three-dimensional structures of the different PITP forms and suggest how PITPs are likely to dock at the membrane surface for lipid delivery and extraction. Additionally we discuss whether PITPs are important regulators of sphingomyelin metabolism, and finally describe recent studies that link the association of PITPs with diverse functions including membrane traffic at the Golgi, neurite outgrowth, cytokinesis and stem cell growth.

  4. [Adipogenic function and other biologic effects of insulin].

    Science.gov (United States)

    Pankov, Y A

    2016-01-01

    Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by

  5. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements.

    Science.gov (United States)

    Margheri, L; Laschi, C; Mazzolai, B

    2012-06-01

    Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

  6. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  7. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  8. Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Gambari

    2011-01-01

    Full Text Available Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.

  9. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  10. GSK-3: functional insights from cell biology and animal models

    Directory of Open Access Journals (Sweden)

    Oksana eKaidanovich-Beilin

    2011-11-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded in mammals by two genes that generate two related proteins: GSK-3α and GSK-3β. GSK-3 is active in cells under resting conditions and is primarily regulated through inhibition or diversion of its activity. While GSK-3 is one of the few protein kinases that can be inactivated by phosphorylation, the mechanisms of GSK-3 regulation are more varied and not fully understood. Precise control appears to be achieved by a combination of phosphorylation, localization, and sequestration by a number of GSK-3-binding proteins. GSK-3 lies downstream of several major signaling pathways including the phosphatidylinositol 3’ kinase pathway, the Wnt pathway, Hedgehog signaling and Notch. Specific pools of GSK-3, which differ in intracellular localization, binding partner affinity and relative amount are differentially sensitized to several distinct signaling pathways and these sequestration mechanisms contribute to pathway insulation and signal specificity. Dysregulation of signaling pathways involving GSK-3 is associated with the pathogenesis of numerous neurological and psychiatric disorders and there are data suggesting GSK-3 isoform-selective roles in several of these. Here, we review the current knowledge of GSK-3 regulation and targets and discuss the various animal models that have been employed to dissect the functions of GSK-3 in brain development and function through the use of conventional or conditional knock-out mice as well as transgenic mice. These studies have revealed fundamental roles for these protein kinases in memory, behavior and neuronal fate determination and provide insights into possible therapeutic interventions.

  11. Biological function of activation-induced cytidine deaminase (AID).

    Science.gov (United States)

    Kumar, Ritu; DiMenna, Lauren J; Chaudhuri, Jayanta; Evans, Todd

    2014-01-01

    Activation-induced Cytidine Deaminase (AID) is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  12. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    DEFF Research Database (Denmark)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes...... risk (q...

  13. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    NARCIS (Netherlands)

    Scott, Robert A.; Lagou, Vasiliki; Welch, Ryan P.; Wheeler, Eleanor; Montasser, May E.; Luan, Jian'an; Maegi, Reedik; Strawbridge, Rona J.; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J.; Yengo, Loic; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C. D.; Jukema, J. Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V.; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J.; Evans, David M.; St Pourcain, Beate; Wu, Ying; Andrews, Jeanette S.; Hui, Jennie; Bielak, Lawrence F.; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R.; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tonu; Mihailov, Evelin; Fraser, Ross M.; Fall, Tove; Voight, Benjamin F.; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M.; Morris, Andrew P.; Rayner, Nigel W.; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S.; Willems, Sara M.; Chines, Peter S.; Jackson, Anne U.; Kang, Hyun Min; Stringham, Heather M.; Song, Kijoung; Tanaka, Toshiko; Peden, John F.; Goel, Anuj; Hicks, Andrew A.; An, Ping; Mueller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J.; Bruinenberg, Marcel; Pankow, James S.; North, Kari E.; Forouhi, Nita G.; Loos, Ruth J. F.; Edkins, Sarah; Varga, Tibor V.; Hallmans, Goeran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J. L.; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B.; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Palmer, Colin N. A.; Doney, Alex S. F.; Willemsen, Gonneke; Smit, Johannes H.; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L.; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L.; Fowkes, Gerard R.; Kovacs, Peter; Lindstrom, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H.; Basart, Hanneke V.; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E.; Boehm, Bernhard O.; Peters, Annette; Pramstaller, Peter P.; Province, Michael A.; Borecki, Ingrid B.; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M.; Bergman, Richard N.; Collins, Francis S.; Tuomilehto, Jaakko; Watanabe, Richard M.; de Geus, Eco J. C.; Penninx, Brenda W.; Hofman, Albert; Oostra, Ben A.; Psaty, Bruce M.; Vollenweider, Peter; Wilson, James F.; Wright, Alan F.; Hovingh, G. Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K. E.; Kyvik, Kirsten O.; Kaprio, Jaakko; Price, Jackie F.; Dedoussis, George V.; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R.; van Duijn, Cornelia M.; Morris, Andrew D.; Toenjes, Anke; Peyser, Patricia A.; Beilby, John P.; Koerner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R.; Schwarz, Peter E. H.; Lakka, Timo A.; Rauramaa, Rainer; Adair, Linda S.; Smith, George Davey; Spector, Tim D.; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Boomsma, Dorret I.; Stefansson, Kari; van der Harst, Pim; Dupuis, Josee; Pedersen, Nancy L.; Sattar, Naveed; Harris, Tamara B.; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L.; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J.; Bouatia-Naji, Nabila; McCarthy, Mark I.; Franks, Paul W.; Meigs, James B.; Teslovich, Tanya M.; Florez, Jose C.; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Ines

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes ri

  14. Metagenomics and in situ analyses reveal Propionivibrio spp. to be abundant GAO in biological wastewater treatment systems

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    to be present at equal levels. Metagenomics was employed to elucidate the identity and recover genomes from the abundant community members. Phylogenetic analyses revealed closely related “Ca. Accumulibacter” and Propionivibrio genera were co-dominant and were both targeted by the PAOmix probes. In situ staining...

  15. The reflection of life functional entailment and imminence in relational biology

    CERN Document Server

    Louie, A H

    2013-01-01

    A. H. Louie’s The Reflection of Life: Functional Entailment and Imminence in Relational Biology is a continuation of the exploratory journey in relational biology which began with his 2009 monograph More Than Life Itself: A Synthetic Continuation in Relational Biology. The theme of his first book was ‘What is life?’; the theme of this sequel is “How do two life forms interact?” Biology is a subject concerned with organization of relations. Relational biology is the approach that advocates ‘function dictates structure”, rather than ‘structure implies function’. It is mathematics decoded into biological realizations. The book demonstrates some of the powers of the approach of relational biology, and illustrates how pertinent problems in biology can be better addressed this way. In the first volume the theory was developed by using partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs, categories, simple and complex systems, anticipatory systems, and metabolis...

  16. Crucial role of detailed function, task, timeline, link and human vulnerability analyses in HRA. [Human Reliability Analysis (HRA)

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.G.; Haney, L.N.; Ostrom, L.T.

    1992-01-01

    This paper addresses one major cause for large uncertainties in human reliability analysis (HRA) results, that is, an absence of detailed function, task, timeline, link and human vulnerability analyses. All too often this crucial step in the HRA process is done in a cursory fashion using word of mouth or written procedures which themselves may incompletely or inaccurately represent the human action sequences and human error vulnerabilities being analyzed. The paper examines the potential contributions these detailed analyses can make in achieving quantitative and qualitative HRA results which are: (1) creditable, that is, minimize uncertainty, (2) auditable, that is, systematically linking quantitative results and qualitative information from which the results are derived, (3) capable of supporting root cause analyses on human reliability factors determined to be major contributors to risk, and (4) capable of repeated measures and being combined with similar results from other analyses to examine HRA issues transcending individual systems and facilities. Based on experience analyzing test and commercial nuclear reactors, and medical applications of nuclear technology, an iterative process is suggested for doing detailed function, task, timeline, link and human vulnerability analyses using documentation reviews, open-ended and structured interviews, direct observations, and group techniques. Finally, the paper concludes that detailed analyses done in this manner by knowledgeable human factors practitioners, can contribute significantly to the credibility, auditability, causal factor analysis, and combining goals of the HRA.

  17. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2011-01-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  18. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Dilshad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Najam-ul-Haq, Muhammad, E-mail: najamulhaq@bzu.edu.pk [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria); Jabeen, Fahmida; Ashiq, Muhammad N.; Athar, Muhammad [Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Rainer, Matthias; Huck, Christian W.; Bonn, Guenther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, A-6020 Innsbruck (Austria)

    2013-05-02

    Graphical abstract: -- Highlights: •Derivatization of diamond nanopowder as IMAC and RP. •Characterization with SEM, EDX and FT-IR. •Phosphopeptide enrichment from standard as well as real samples. •Desalting and human serum profiling with reproducible results. •MALDI-MS analysis with database identification. -- Abstract: Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe{sup 3+} and La{sup 3+} ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program ( (www.matrixscience.com)) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification.

  19. The biological effect and medical functions of the Infrared Rays

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-feng

    2001-01-01

    The quantum vibrational energy-spectra including high excited states of the protein molecules have been calculated by new theory of bio-energy transport along the protein molecules and its dynamic equation, discrete nonlinear Schrodinger equation, appropriate to the protein molecules on the basis of the level of molecular structure. This energy-spectra obtained are basically consistent with the experimental values by infrared absorption and radiated measurement of person's hands and laser-Raman spectrum from metabolically active E. Coli.. From this energy-spectra we know that the infrared lights with (1-3)x1000nm and (5-7)x1000nm wavelength can be absorbed by the protein molecules in the living systems.In accordance with the non-linear theory of the bio-energy transport we know that the energy of the infrared light absorbed by the proteins can result in vibrations of amide-I in amino acids and can facilitate the bio-energy transport along the protein molecular chains from one place to other for the growth of living bodies. This processe is non-thermal. This is just non-thermal effect of the infrared lights. According to the mechanism we explained further the medical functions of the infrared lights absorbed.

  20. Towards understanding the biological function of hopanoids (Invited)

    Science.gov (United States)

    Doughty, D. M.; Hunter, R.; Summons, R. E.; Newman, D. K.

    2010-12-01

    Rhodopseudomonas palustris TIE-1 expresses bacterial hopanoid lipids that are structurally similar and evolutionarily related to eukaryotic sterols. The genome of R. palustris TIE-1 contains two copies of the hpnN gene (hpnN1 and hpnN2) that are orthologs of genes encoding eukaryotic sterol and lipid transporters. Hopanoid localization to the outer membrane was found to be dependent upon hpnN1. Since the cell cycle of R. palustris TIE-1 is obligately bimodal with each cell division resulting in the generation of one mother and one swarmer cell, evidence was obtained that hopanoids where specifically localized to the outer membrane of mother cells. The sequestration of hopanoids to the mother cells was also disrupted by the deletion of the hpnN1 gene. Mutants lacking the hopanoid transporters were able to grow normally at 30 °C but showed decreased growth at 38 °C. The hopanoid transporter mutant formed cellular filaments when grown at elevated temperature. Because sedimentary steranes and hopanes comprise some of the earliest evidence for the emergence of distinct bacteria and eukaryotic phyla, a better appreciation of the function of hopanoids will improve our ability to interpret the evolution of life on Earth.

  1. Strigolactone biology: genes, functional genomics, epigenetics and applications.

    Science.gov (United States)

    Makhzoum, Abdullah; Yousefzadi, Morteza; Malik, Sonia; Gantet, Pascal; Tremouillaux-Guiller, Jocelyne

    2017-03-01

    Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional role in plant and rhizosphere interactions. These compounds stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. In addition, they are involved in the control of plant architecture by inhibiting bud outgrowth as well as many other morphological and developmental processes together with other plant hormones such as auxins and cytokinins. The biosynthetic pathway of SLs that are derived from carotenoids was partially decrypted based on the identification of mutants from a variety of plant species. Only a few SL biosynthetic and regulated genes and related regulatory transcription factors have been identified. However, functional genomics and epigenetic studies started to give first elements on the modality of the regulation of SLs related genes. Since they control plant architecture and plant-rhizosphere interaction, SLs start to be used for agronomical and biotechnological applications. Furthermore, the genes involved in the SL biosynthetic pathway and genes regulated by SL constitute interesting targets for plant breeding. Therefore, it is necessary to decipher and better understand the genetic determinants of their regulation at different levels.

  2. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  3. Esthetic-functional recovery of permanent posterior tooth using autogenous biological restoration

    Directory of Open Access Journals (Sweden)

    A M Botelho

    2012-01-01

    Full Text Available Occlusal morphology and difficult access for cleaning permanent molars result in the buildup of bacterial plaque and the development of caries. One method known as biological restoration was carried out. This technique known as biological restoration, has as main restorative material a fragment obtained from a duly donated extracted human tooth. This case report describes the restoration of an extensively decayed molar through the bonding of a fragment obtained from a third molar extracted from the patient himself. Biological restoration is a low-cost option that offers satisfactory aesthetic, morphological and functional results.The morphological/functional reestablishment of posterior teeth can be obtained through biological restoration, which allows the recovery of properties inherent to the dental structure, offers satisfactory aesthetic results and low cost.

  4. Bioactive Components and Functional Properties of Biologically Activated Cereal Grains: A Bibliographic Review.

    Science.gov (United States)

    Singh, Arashdeep; Sharma, Savita

    2015-10-14

    Whole grains provide energy, nutrients, fibres and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health promoting compounds and enhanced functional attributes.

  5. Sharing Structure and Function in Biological Design with SBOL 2.0.

    Science.gov (United States)

    Roehner, Nicholas; Beal, Jacob; Clancy, Kevin; Bartley, Bryan; Misirli, Goksel; Grünberg, Raik; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Densmore, Douglas; Gennari, John H; Wipat, Anil; Sauro, Herbert M; Myers, Chris J

    2016-06-17

    The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate.

  6. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  7. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  8. N-acylation of phosphatidylethanolamine and its biological functions in mammals

    DEFF Research Database (Denmark)

    Wellner, Niels; Diep, Thi Ai; Janfelt, Christian;

    2013-01-01

    N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesiz...... reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism....

  9. Functional Analyses of the Problems in Non-English Majors' Writings

    Science.gov (United States)

    Li, Shun-ying

    2010-01-01

    Problems in generating and organizing ideas, in coherence and language competence are common in non-English majors' writings, which decrease non-English majors' ability to use English as a tool to realize its pragmatic functions and meta-functions. The exam-centered objective, the product-oriented approach, the inefficient mode of instruction, the…

  10. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and it

  11. Impact on disease development, genomic location and biological function of copy number alterations in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yen-Tsung Huang

    Full Text Available Lung cancer, of which more than 80% is non-small cell, is the leading cause of cancer-related death in the United States. Copy number alterations (CNAs in lung cancer have been shown to be positionally clustered in certain genomic regions. However, it remains unclear whether genes with copy number changes are functionally clustered. Using a dense single nucleotide polymorphism array, we performed genome-wide copy number analyses of a large collection of non-small cell lung tumors (n = 301. We proposed a formal statistical test for CNAs between different groups (e.g., non-involved lung vs. tumors, early vs. late stage tumors. We also customized the gene set enrichment analysis (GSEA algorithm to investigate the overrepresentation of genes with CNAs in predefined biological pathways and gene sets (i.e., functional clustering. We found that CNAs events increase substantially from germline, early stage to late stage tumor. In addition to genomic position, CNAs tend to occur away from the gene locations, especially in germline, non-involved tissue and early stage tumors. Such tendency decreases from germline to early stage and then to late stage tumors, suggesting a relaxation of selection during tumor progression. Furthermore, genes with CNAs in non-small cell lung tumors were enriched in certain gene sets and biological pathways that play crucial roles in oncogenesis and cancer progression, demonstrating the functional aspect of CNAs in the context of biological pathways that were overlooked previously. We conclude that CNAs increase with disease progression and CNAs are both positionally and functionally clustered. The potential functional capabilities acquired via CNAs may be sufficient for normal cells to transform into malignant cells.

  12. Priority of TCM in Regulating Gene Function as a Whole Through Development of Modern Biology

    Institute of Scientific and Technical Information of China (English)

    Hu zuo-wei; zhou yan-ping; Shen zi-yin

    2004-01-01

    Molecular Biology based on the DNA Double-helix structure has made great progress in 20 century.After Human Genome Project (HGP) completed, Molecular Biology is faced upon more and more challenges, andtake changes from protion concept to integration concept, from linear thinking to complicated thinking. so post-genomics, including functional genomics, proteomics, is gradually established. Among them, System Biology is themost prominent. It is becoming to tend to integration, and infiltrate to each other for the two thinking of genomeand TCM in studying life science, which reflect the inevitablility and importance of integration of TCM and West-ern Medicine. The priority of TCM in treatment as a whole, and regulating functional gene and functional networkmay take greater achievement in post - genomic time.

  13. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness.

    Science.gov (United States)

    Rouleau, Nicolas; Dotta, Blake T

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.

  14. Functional Analyses of Bitter Taste Receptors in Domestic Cats (Felis catus.

    Directory of Open Access Journals (Sweden)

    Weiwei Lei

    Full Text Available Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in

  15. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  16. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    Science.gov (United States)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  17. Quantitative and qualitative validations of a sonication-based DNA extraction approach for PCR-based molecular biological analyses.

    Science.gov (United States)

    Dai, Xiaohu; Chen, Sisi; Li, Ning; Yan, Han

    2016-05-15

    The aim of this study was to comprehensively validate the sonication-based DNA extraction method, in hope of the replacement of the so-called 'standard DNA extraction method' - the commercial kit method. Microbial cells in the digested sludge sample, containing relatively high amount of PCR-inhibitory substances, such as humic acid and protein, were applied as the experimental alternatives. The procedure involving solid/liquid separation of sludge sample and dilution of both DNA templates and inhibitors, the minimum templates for PCR-based analyses, and the in-depth understanding from the bias analysis by pyrosequencing technology were obtained and confirmed the availability of the sonication-based DNA extraction method.

  18. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase.

    Science.gov (United States)

    Tanabe, Maiko; Ishino, Yoshizumi; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.

  19. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    Directory of Open Access Journals (Sweden)

    Maiko Tanabe

    2015-01-01

    Full Text Available DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures.

  20. Structural and functional analyses of disease-causing missense mutations in Bloom syndrome protein.

    Science.gov (United States)

    Guo, Rong-Bing; Rigolet, Pascal; Ren, Hua; Zhang, Bo; Zhang, Xing-Dong; Dou, Shuo-Xing; Wang, Peng-Ye; Amor-Gueret, Mounira; Xi, Xu Guang

    2007-01-01

    Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.

  1. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.

    Science.gov (United States)

    Keith, Todd A; Frisch, Michael J

    2011-11-17

    Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in

  2. Analyses of Bifurcations and Stability in a Predator-prey System with Holling Type-IV Functional Response

    Institute of Scientific and Technical Information of China (English)

    Ji-cai Huang; Dong-mei Xiao

    2004-01-01

    In this paper the dynamical behaviors of a predator-prey system with Holling Type-IV functional response are investigated in detail by using the analyses of qualitative method,bifurcation theory,and numerical simulation.The qualitative analyses and numerical simulation for the model indicate that it has a unique stable limit cycle.The bifurcation analyses of the system exhibit static and dynamical bifurcations including saddlenode bifurcation,Hopf bifurcation,homoclinic bifurcation and bifurcation of cusp-type with codimension two(ie,the Bogdanov-Takens bifurcation),and we show the existence of codimension three degenerated equilibrium and the existence of homoclinic orbit by using numerical simulation.

  3. Item response theory analysis of the life orientation test-revised: age and gender differential item functioning analyses.

    Science.gov (United States)

    Steca, Patrizia; Monzani, Dario; Greco, Andrea; Chiesi, Francesca; Primi, Caterina

    2015-06-01

    This study is aimed at testing the measurement properties of the Life Orientation Test-Revised (LOT-R) for the assessment of dispositional optimism by employing item response theory (IRT) analyses. The LOT-R was administered to a large sample of 2,862 Italian adults. First, confirmatory factor analyses demonstrated the theoretical conceptualization of the construct measured by the LOT-R as a single bipolar dimension. Subsequently, IRT analyses for polytomous, ordered response category data were applied to investigate the items' properties. The equivalence of the items across gender and age was assessed by analyzing differential item functioning. Discrimination and severity parameters indicated that all items were able to distinguish people with different levels of optimism and adequately covered the spectrum of the latent trait. Additionally, the LOT-R appears to be gender invariant and, with minor exceptions, age invariant. Results provided evidence that the LOT-R is a reliable and valid measure of dispositional optimism.

  4. Analyses of functional brain connectivity; Untersuchungen zur funktionellen Konnektivitaet des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, K.E.

    2003-03-01

    This dissertation includes two independent studies that investigate two complementary aspects of functional connectivity in the Macaque and the human brain. In the first study, a computational meta-analysis of published electrophysiological data on context-independent functional brain connectivity was conducted by means of three independent methods. The second study investigated the effects of the atypical antipsychotic substance olanzapine on the functional connectivity of the cerebellum during a simple motor task (self-paced finger tapping). Six schizophrenic patients and six control subjects matched for age and sex were investigated by functional magnetic resonance imaging (fMRI) twice. This study provided the first experimental data on the effects of atypical antipsychotic agents on functional brain connectivity and demonstrated pronounced olanzapine-dependent changes of functional couplings between cerebellum, thalamus, and prefrontal cortex. (orig.) [German] In der hier vorgelegten Arbeit werden zwei komplementaere Aspekte der funktionellen Konnektivitaet - im Gehirn des Makaken und Menschen anhand zweier separater Studien untersucht. In der ersten Studie wurde mittels dreier unabhaengiger Methoden eine Metaanalyse publizierter elektrophysiologischer Daten zur kontextunabhaengigen funktionellen Konnektivitaet des Makakenkortex durchgefuehrt. Diese Studie erbrachte damit zum ersten Mal den Nachweis einer funktionellen Small World-Netzwerkstruktur des Primatenkortex. In der zweiten Studie wurde der Effekt des atypischen Neuroleptikums Olanzapin auf die funktionelle Konnektivitaet des Zerebellums im Kontext einer einfachen motorischen Aufgabe (selbstgesteuertes Fingertrapping) untersucht. Sechs schizophrene Patienten, die Neuroleptika-naiv bzw. -entwoehnt waren, sowie sechs alters- und geschlechtsentprechende Kontrollprobanden wurden im Abstand von jeweils drei Wochen mit funktioneller Magnetresonanztomografie (fMRT) untersucht. Diese Studie lieferte die ersten

  5. BeeSpace Navigator: exploratory analysis of gene function using semantic indexing of biological literature.

    Science.gov (United States)

    Sen Sarma, Moushumi; Arcoleo, David; Khetani, Radhika S; Chee, Brant; Ling, Xu; He, Xin; Jiang, Jing; Mei, Qiaozhu; Zhai, ChengXiang; Schatz, Bruce

    2011-07-01

    With the rapid decrease in cost of genome sequencing, the classification of gene function is becoming a primary problem. Such classification has been performed by human curators who read biological literature to extract evidence. BeeSpace Navigator is a prototype software for exploratory analysis of gene function using biological literature. The software supports an automatic analogue of the curator process to extract functions, with a simple interface intended for all biologists. Since extraction is done on selected collections that are semantically indexed into conceptual spaces, the curation can be task specific. Biological literature containing references to gene lists from expression experiments can be analyzed to extract concepts that are computational equivalents of a classification such as Gene Ontology, yielding discriminating concepts that differentiate gene mentions from other mentions. The functions of individual genes can be summarized from sentences in biological literature, to produce results resembling a model organism database entry that is automatically computed. Statistical frequency analysis based on literature phrase extraction generates offline semantic indexes to support these gene function services. The website with BeeSpace Navigator is free and open to all; there is no login requirement at www.beespace.illinois.edu for version 4. Materials from the 2010 BeeSpace Software Training Workshop are available at www.beespace.illinois.edu/bstwmaterials.php.

  6. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology.

    Science.gov (United States)

    Price, S A; Schmitz, L

    2016-04-05

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart.

  7. Gonad RNA-specific qRT-PCR analyses identify genes with potential functions in schistosome reproduction such as SmFz1 and SmFGFRs

    Directory of Open Access Journals (Sweden)

    Steffen eHahnel

    2014-06-01

    Full Text Available In the search for new strategies to fight schistosomiasis, the unique reproductive biology of Schistosoma mansoni has come into the focus of research. The development of the gonads and the ability of egg production are fundamental not only for continuing the life cycle but also for pathogenicity.Previous studies of schistosome biology demonstrated an influence of pairing on gonad development of the female and on gene expression profiles in both genders. Due to the limited access to specific tissues, however, most of these studies were done at the level of whole worms neglecting individual tissues that may be targets of pairing-dependent processes.Recently, we established a protocol allowing the isolation of testes and ovaries from adult S. mansoni. Here, we describe tissue-specific qRT-PCR analyses comparing transcript levels of selected genes on the basis of RNA from gonads and whole worms. Gene expression in ovary and testes was in some cases found to be significantly influenced by pairing, which was not traceable in whole worms. Among the candidate genes identified as regulated by pairing in gonads were the frizzled homolog SmFz1 and the two fibroblast growth factor receptor homologs SmFGFR-A and SmFGFR-B. First functional characterizations were done, including comparative qRT-PCR analyses, in situ-localization experiments, heterologous expression in Xenopus oocytes (SmFGFR-A/B, and inhibitor studies using the Fz/Dvl-pathway inhibitor 3289-8625, or BIBF1120 blocking FGFR-signaling. Besides confirming gonad localization and receptor functions, inhibitor-induced phenotypes were observed in vitro such as decreased egg production as well as drastic effects on gonad differentiation, morphology, embryogenesis, and survival of adult worms.In summary, these results emphasise the usefulness of tissue specific qRT-PCRs for selection of candidate genes with important roles in reproduction, allowing subsequent studies to determine their suitability as

  8. Biological Sampling and Analysis in Sinclair and Dyes Inlets, Washington: Chemical Analyses for 2007 Puget Sound Biota Study

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Suslick, Carolynn R.; Johnston, Robert K.

    2008-10-09

    Evaluating spatial and temporal trends in contaminant residues in Puget Sound fish and macroinvertebrates are the objectives of the Puget Sound Ambient Monitoring Program (PSAMP). In a cooperative effort between the ENVironmental inVESTment group (ENVVEST) and Washington State Department of Fish and Wildlife, additional biota samples were collected during the 2007 PSAMP biota survey and analyzed for chemical residues and stable isotopes of carbon (δ13C) and nitrogen (δ15N). Approximately three specimens of each species collected from Sinclair Inlet, Georgia Basin, and reference locations in Puget Sound were selected for whole body chemical analysis. The muscle tissue of specimens selected for chemical analyses were also analyzed for δ13C and δ15N to provide information on relative trophic level and food sources. This data report summarizes the chemical residues for the 2007 PSAMP fish and macro-invertebrate samples. In addition, six Spiny Dogfish (Squalus acanthias) samples were necropsied to evaluate chemical residue of various parts of the fish (digestive tract, liver, embryo, muscle tissue), as well as, a weight proportional whole body composite (WBWC). Whole organisms were homogenized and analyzed for silver, arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury, 19 polychlorinated biphenyl (PCB) congeners, PCB homologues, percent moisture, percent lipids, δ13C, and δ15N.

  9. The contribution of town functions to the development of rural areas: empirical analyses for Ethiopia

    NARCIS (Netherlands)

    Tadesse Woeldesenbet, T.

    2012-01-01

    Rural areas in many developing countries often lack infrastructure and institutions. However, rural towns and towns possess some of the major services that rural and town households can use to advance their economic activities. The study of the contribution that towns and their functions make to dif

  10. Classifying social anxiety disorder using multivoxel pattern analyses of brain function and structure

    NARCIS (Netherlands)

    Frick, A.; Gingnell, M.; Marquand, A.F.; Howner, K.; Fischer, H.; Kristiansson, M.; Williams, S.C.; Fredrikson, M.; Furmark, T.

    2014-01-01

    Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have inv

  11. Flexible gateway constructs for functional analyses of genes in plant pathogenic fungi

    NARCIS (Netherlands)

    Mehrabi, Rahim; Mirzadi Gohari, Amir; Silva, da Gilvan Ferreira; Steinberg, Gero; Kema, Gert H.J.; Wit, de Pierre J.G.M.

    2015-01-01

    Genetic manipulation of fungi requires quick, low-cost, efficient, high-throughput and molecular tools. In this paper, we report 22 entry constructs as new molecular tools based on the Gateway technology facilitating rapid construction of binary vectors that can be used for functional analysis of

  12. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.

    Science.gov (United States)

    Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle

    2016-09-01

    Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity

  13. Thermo-Mechanical Analyses of the High Heat Flux Component for ITER Dual Functional Lithium Lead Test Blanket Module

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongli; BAI Yunqing

    2009-01-01

    The finite element code ANSYS is used to calculate the temperature and stress distributions for the first wall of DFLL-TBM (dual functional lithium lead-test blanket module),for testing in ITER. Preliminary analyses indicate that not only the low temperature design rules,the well-known 3Sm rules, are satisfied for the first wall, but the additional high temperature structural design criteria for the creep damage limits and creep-ratcheting limits are met as well.

  14. Genomic translational research: Paving the way to individualized cardiac functional analyses and personalized cardiology.

    Science.gov (United States)

    Pasipoularides, Ares

    2017-03-01

    For most of Medicine's past, the best that physicians could do to cope with disease prevention and treatment was based on the expected response of an average patient. Currently, however, a more personalized/precise approach to cardiology and medicine in general is becoming possible, as the cost of sequencing a human genome has declined substantially. As a result, we are witnessing an era of precipitous advances in biomedicine and bourgeoning understanding of the genetic basis of cardiovascular and other diseases, reminiscent of the resurgence of innovations in physico-mathematical sciences and biology-anatomy-cardiology in the Renaissance, a parallel time of radical change and reformation of medical knowledge, education and practice. Now on the horizon is an individualized, diverse patient-centered, approach to medical practice that encompasses the development of new, gene-based diagnostics and preventive medicine tactics, and offers the broadest range of personalized therapies based on pharmacogenetics. Over time, translation of genomic and high-tech approaches unquestionably will transform clinical practice in cardiology and medicine as a whole, with the adoption of new personalized medicine approaches and procedures. Clearly, future prospects far outweigh present accomplishments, which are best viewed as a promising start. It is now essential for pluridisciplinary health care providers to examine the drivers and barriers to the clinical adoption of this emerging revolutionary paradigm, in order to expedite the realization of its potential. So, we are not there yet, but we are definitely on our way.

  15. Genome-wide identification, classification and functional analyses of the bHLH transcription factor family in the pig, Sus scrofa.

    Science.gov (United States)

    Liu, Wuyi

    2015-08-01

    The basic helix-loop-helix (bHLH) transcription factors are one of the largest families of gene regulatory proteins and play crucial roles in genetic, developmental and physiological processes in eukaryotes. Here, we conducted a survey of the Sus scrofa genome and identified 109 putative bHLH transcription factor members belonging to super-groups A, B, C, D, E, and F, respectively, while four members were orphan genes. We identified 6 most significantly enriched KEGG pathways and 116 most significant GO annotation categories. Further comprehensive surveys in human genome and other 12 medical databases identified 72 significantly enriched biological pathways with these 113 pig bHLH transcription factors. From the functional protein association network analysis 93 hub proteins were identified and 55 hub proteins created a tight network or a functional module within their protein families. Especially, there were 20 hub proteins found highly connected in the functional interaction network. The present study deepens our understanding and provided insights into the evolution and functional aspects of animal bHLH proteins and should serve as a solid foundation for further for analyses of specific bHLH transcription factors in the pig and other mammals.

  16. Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters.

    Science.gov (United States)

    Carrier, David John; Abu Bakar, Norliza Tendot; Lawler, Karen; Dorrian, James Matthew; Haider, Ameena; Bennett, Malcolm John; Kerr, Ian Derek

    2009-01-01

    Biochemical studies of plant auxin transporters in vivo are made difficult by the presence of multiple auxin transporters and auxin-interacting proteins. Furthermore, the expression level of most such transporters in plants is likely to be too low for purification and downstream functional analysis. Heterologous expression systems should address both of these issues. We have examined a number of such systems for their efficiency in expressing AUX1 from Arabidopsis thaliana. We find that a eukaryotic system based upon infection of insect cells with recombinant baculovirus provides a high level, easily scalable expression system capable of delivering a functional assay for AUX1. Furthermore, a transient transfection system in mammalian cells enables localization of AUX1 and AUX1-mediated transport of auxin to be investigated. In contrast, we were unable to utilise P. pastoris or L. lactis expression systems to reliably express AUX1.

  17. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression

    DEFF Research Database (Denmark)

    Scott, Neil W; Fayers, Peter M; Aaronson, Neil K

    2010-01-01

    Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise ...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....

  18. In vitro functional analyses of arrhythmogenic right ventricular cardiomyopathy-associated desmoglein-2-missense variations.

    Directory of Open Access Journals (Sweden)

    Anna Gaertner

    Full Text Available BACKGROUND: Although numerous sequence variants in desmoglein-2 (DSG2 have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC, the functional impact of new sequence variations is difficult to estimate. METHODOLOGY/PRINCIPAL FINDINGS: To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I with respect to prodomain cleavage, adhesion properties and cellular localisation. CONCLUSIONS/SIGNIFICANCE: The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study.

  19. In Vitro Functional Analyses of Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Desmoglein-2-Missense Variations

    Science.gov (United States)

    Gaertner, Anna; Klauke, Baerbel; Stork, Ines; Niehaus, Karsten; Niemann, Gesa; Gummert, Jan; Milting, Hendrik

    2012-01-01

    Background Although numerous sequence variants in desmoglein-2 (DSG2) have been associated with arrhythmogenic right ventricular cardiomyopathy (ARVC), the functional impact of new sequence variations is difficult to estimate. Methodology/Principal Findings To test the functional consequences of DSG2-variants, we established an expression system for the extracellular domain and the full-length DSG2 using the human cell line HT1080. We established new tools to investigate ARVC-associated DSG2 variations and compared wild-type proteins and proteins with one of the five selected variations (DSG2-p.R46Q, -p.D154E, -p.D187G, -p.K294E, -p.V392I) with respect to prodomain cleavage, adhesion properties and cellular localisation. Conclusions/Significance The ARVC-associated DSG2-p.R46Q variation was predicted to be probably damaging by bioinformatics tools and to concern a conserved proprotein convertase cleavage site. In this study an impaired prodomain cleavage and an influence on the DSG2-properties could be demonstrated for the R46Q-variant leading to the classification of the variant as a potential gain-of-function mutant. In contrast, the variants DSG2-p.K294E and -p.V392I, which have an arguable impact on ARVC pathogenesis and are predicted to be benign, did not show functional differences to the wild-type protein in our study. Notably, the variants DSG2-p.D154E and -p.D187G, which were predicted to be damaging by bioinformatics tools, had no detectable effects on the DSG2 protein properties in our study. PMID:23071725

  20. Differential item functioning (DIF) analyses of health-related quality of life instruments using logistic regression

    DEFF Research Database (Denmark)

    Scott, Neil W.; Fayers, Peter M.; Aaronson, Neil K.;

    2010-01-01

    Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....

  1. Functional genomics bridges the gap between quantitative genetics and molecular biology.

    Science.gov (United States)

    Lappalainen, Tuuli

    2015-10-01

    Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field.

  2. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    Science.gov (United States)

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  3. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani.

    Science.gov (United States)

    Chen, Yen-Wei; Lee, Ching-Hung; Huang, Yun-Tzu; Pan, Yih-Jiuan; Lin, Shih-Ming; Lo, Yueh-Yu; Lee, Chien-Hsien; Huang, Lin-Kun; Huang, Yu-Fen; Hsu, Yu-Di; Pan, Rong-Long

    2014-04-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.

  4. Functional and expression analyses of transcripts based on full-length cDNAs of Sorghum bicolor.

    Science.gov (United States)

    Shimada, Setsuko; Makita, Yuko; Kuriyama-Kondou, Tomoko; Kawashima, Mika; Mochizuki, Yoshiki; Hirakawa, Hideki; Sato, Shusei; Toyoda, Tetsuro; Matsui, Minami

    2015-12-01

    Sorghum bicolor is one of the most important crops for food and bioethanol production. Its small diploid genome and resistance to environmental stress make sorghum an attractive model for studying the functional genomics of the Saccharinae and other C4 grasses. We analyzed the domain-based functional annotation of the cDNAs using the gene ontology (GO) categories for molecular function to characterize all the genes cloned in the full-length cDNA library of sorghum. The sorghum cDNA library successfully captured a wide range of cDNA-encoded proteins with various functions. To characterize the protein function of newly identified cDNAs, a search of their deduced domains and comparative analyses in the Oryza sativa and Zea mays genomes were carried out. Furthermore, genes on the sense strand corresponding to antisense transcripts were classified based on the GO of molecular function. To add more information about these genes, we have analyzed the expression profiles using RNA-Seq of three tissues (spikelet, seed and stem) during the starch-filling phase. We performed functional analysis of tissue-specific genes and expression analysis of genes of starch biosynthesis enzymes. This functional analysis of sorghum full-length cDNAs and the transcriptome information will facilitate further analysis of the Saccharinae and grass families.

  5. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    Science.gov (United States)

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.

  6. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.

    Science.gov (United States)

    Ambrosio, Linda; Morriss, Stephanie; Riaz, Ayesha; Bailey, Ryan; Ding, Jian; MacIntosh, Gustavo C

    2014-01-01

    Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins.

  7. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.

    Directory of Open Access Journals (Sweden)

    Linda Ambrosio

    Full Text Available Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins.

  8. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome

    Indian Academy of Sciences (India)

    Susana Mariconda; Soon-Young Namgoong; Ki-Hoon Yoon; Hong Jiang; Rasika M Harshey

    2000-12-01

    Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (III and III, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within III also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, III or III domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain III or III function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.

  9. Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement.

    Science.gov (United States)

    Uenaka, Hidetoshi; Kadota, Akeo

    2007-09-01

    Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.

  10. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and

  11. Functional and comparative genomics analyses of pmp22 in medaka fish

    Directory of Open Access Journals (Sweden)

    Kawarabayasi Yutaka

    2009-06-01

    Full Text Available Abstract Background Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A. The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV. Several CMT1A model rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation of the association between pmp22 transcription level and vertebrate myelin formation, and to find the conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed fishes and mammals. Results A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish in the peripheral nerve system (PNS was observed. We successfully confirmed that medaka fish pmp22 has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs. Furthermore, we found novel conserved sequences in the first intron and 3'UTR. Conclusion Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary conserved sequences that contribute to precise regulation of pmp22 expression.

  12. Analyses of Old Prokaryotic Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    Directory of Open Access Journals (Sweden)

    Anupama eSingh

    2016-03-01

    Full Text Available During evolution, various processes such as duplication, divergence, recombination and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old prokaryotic proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s in the two genomes. Our results suggest that with respect to their genome size, the fraction of old prokaryotic proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old prokaryotic proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old prokaryotic proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old prokaryotic proteins in Arabidopsis and Oryza sativa.

  13. Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Tabib-Salazar, Aline; Humphrey, Laurence J; Flack, Joshua E; Olinares, Paul Dominic B; Darst, Seth A; Campbell, Elizabeth A; Paget, Mark S

    2015-06-01

    Gene expression is highly regulated at the step of transcription initiation, and transcription activators play a critical role in this process. RbpA, an actinobacterial transcription activator that is essential in Mycobacterium tuberculosis (Mtb), binds selectively to group 1 and certain group 2 σ-factors. To delineate the molecular mechanism of RbpA, we show that the Mtb RbpA σ-interacting domain (SID) and basic linker are sufficient for transcription activation. We also present the crystal structure of the Mtb RbpA-SID in complex with domain 2 of the housekeeping σ-factor, σ(A). The structure explains the basis of σ-selectivity by RbpA, showing that RbpA interacts with conserved regions of σ(A) as well as the nonconserved region (NCR), which is present only in housekeeping σ-factors. Thus, the structure is the first, to our knowledge, to show a protein interacting with the NCR of a σ-factor. We confirm the basis of selectivity and the observed interactions using mutagenesis and functional studies. In addition, the structure allows for a model of the RbpA-SID in the context of a transcription initiation complex. Unexpectedly, the structural modeling suggests that RbpA contacts the promoter DNA, and we present in vivo and in vitro studies supporting this finding. Our combined data lead to a better understanding of the mechanism of RbpA function as a transcription activator.

  14. Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability

    Energy Technology Data Exchange (ETDEWEB)

    Crellin, Paul K.; Vivian, Julian P.; Scoble, Judith; Chow, Frances M.; West, Nicholas P.; Brammananth, Rajini; Proellocks, Nicholas I.; Shahine, Adam; Le Nours, Jerome; Wilce, Matthew C.J.; Britton, Warwick J.; Coppel, Ross L.; Rossjohn, Jamie; Beddoe, Travis (Monash); (Centenary)

    2010-09-17

    The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG{_}6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG{_}6394, solved to 2.9 {angstrom} resolution, revealed an {alpha}/{beta} hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG{_}6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.

  15. RESPONDING AND ANALYSING: STAGES OF TEACHING FUNCTIONAL GRAMMAR IN INDONESIAN CONTEXT

    Directory of Open Access Journals (Sweden)

    Lala Bumela

    2014-07-01

    Full Text Available Abstract: This paper offers an alternative to the teaching of a functional grammar course in Indonesian TEFL tertiary level context. An issue raised here is whether the course should directly require students to undertake textual analysis or provide them first with subjective reading experiences.  This issue is inspired by Jones and Lock¹s approach to teaching grammar in context (2011. This paper reports on a study that focused on two related phases of dealing with texts: responding and analyzing.  In the first phase, students were encouraged to take a personalised approach in responding to written English texts.  They had the freedom to decide whether the texts were meaningful for them in certain ways. Mckee (2003 and Lehtonen (2000 posit that as the sole decision maker in meaning negotiation, readers perceive the meaningfulness of texts in very diverse ways. In the second phase of the study, the students undertook an individual analysis of different text types.  This study reveals that a successful textual analysis is determined by how students make sense of the texts. The analysis of context of situation, for example, becomes meaningful to students after they demonstrate a proper position as a reader.  This, in turn, helps them in gaining insights into the structure and grammar of those texts.   Keywords: systemic functional linguistics, genre-based approach, textual analysis

  16. To be well - to function well. Health biology at Copenhagen University

    DEFF Research Database (Denmark)

    Rosenkilde, Per

    1995-01-01

    Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion.......Human Fysiologi, Health biology, Public health, Biology Curriculum, University curriculum, Health promotion....

  17. Functional Genomics Assistant (FUGA: a toolbox for the analysis of complex biological networks

    Directory of Open Access Journals (Sweden)

    Ouzounis Christos A

    2011-10-01

    Full Text Available Abstract Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga.

  18. MRI findings and cognitive functions in a small cohort of myotonic dystrophy type 1: Retrospective analyses.

    Science.gov (United States)

    Bajrami, Arsida; Azman, Filiz; Yayla, Vildan; Cagirici, Sultan; Keskinkiliç, Cahit; Sozer, Nejla

    2017-02-01

    Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease with common cognitive deficits and potential brain involvement in addition to the cardinal muscular and systemic symptoms. Impaired mental function associated with nonspecific pathological findings such as white-matter hyperintense lesions (WMHLs), ventricular enlargement and brain atrophy on brain MRI have been previously reported in DM1 patients. While some studies showed correlation of brain morphological changes with neuropsychological and clinical parameters including CTG repeat sizes and disease severity scales in DM1, others failed. The goal of this study was to retrospectively investigate cranial MR abnormalities, predominantly WMHLs, and their effects on clinical and cognitive deficits in a small, phenotypically or genotypically well-characterized cohort of DM1 patients.

  19. Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies

    Science.gov (United States)

    Frisso, Giulia; Detta, Nicola; Coppola, Pamela; Mazzaccara, Cristina; Pricolo, Maria Rosaria; D’Onofrio, Antonio; Limongelli, Giuseppe; Calabrò, Raffaele; Salvatore, Francesco

    2016-01-01

    Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants (MYBPC3-c.506-2A>C, MYBPC3-c.906-7G>T, MYBPC3-c.2308+3G>C, SCN5A-c.393-5C>A, and ACTC1-c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3-c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 (MYBPC3-G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3-c.2308+3G>C and SCN5A-c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3-c.906-7G>T or ACTC1-c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families. PMID:27834932

  20. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.

    Science.gov (United States)

    Divi, Uday K; Rahman, Tawhidur; Krishna, Priti

    2016-01-01

    The plant hormone brassinosteroid (BR) plays essential roles in plant growth and development, while also controlling plant stress responses. This dual ability of BR is intriguing from a mechanistic point of view and as a viable solution for stabilizing crop yields under the changing climatic conditions. Here we report a time course analysis of BR responses under both stress and no-stress conditions, the results of which establish that BR incorporates many stress-related features even under no-stress conditions, which are then accompanied by a dynamic stress response under unfavourable conditions. Found within the BR transcriptome were distinct molecular signatures of two stress hormones, abscisic acid and jasmonic acid, which were correlated with enhanced endogenous levels of the two hormones in BR-treated seedlings. The marked presence of genes related to protein metabolism and modification, defence responses and calcium signalling highlights the significance of their associated mechanisms and roles in BR processes. Functional analysis of loss-of-function mutants of a subset of genes selected from the BR transcriptome identified abiotic stress-related roles for ACID PHOSPHATASE5 (ACP5), WRKY33, JACALIN-RELATED LECTIN1-3 (JAC-LEC1-3) and a BR-RESPONSIVE-RECEPTOR-LIKE KINASE (BRRLK). Overall, the results of this study provide a clear link between the molecular changes impacted by BR and its ability to confer broad-range stress tolerance, emphasize the importance of post-translational modification and protein turnover as BR regulatory mechanisms and demonstrate the BR transcriptome as a repertoire of new stress-related regulatory and structural genes.

  1. A biomimetic functionalization approach to integration of carbon nanoutbes into biological systems

    Science.gov (United States)

    Chen, Xing; Tam, Un Chong; Bertozzi, Carolyn; Zettl, Alex

    2006-03-01

    Due to their remarkable structural, electrical, and mechanical properties, carbon nanotubes (CNTs) have potential applications in biology ranging from imaging and tissue engineering. To realize these applications, however, new strategies for controlling the interaction between CNTs and biological systems such as proteins and cells are required. Here we describe a biomimetic approach to functionalize CNTs and therefore render them biocompatibility in order to facilitate their integration into biological systems. CNTs were coated with synthetic gycopolymers that mimic cell surface mucin gycoproteins. The functionalized CNTs were soluble in water, resisted non-specific protein binding and bound specifically to biomolecules. The coated CNTs could then be integrated onto mammalian cell surface by virtue of glycan-receptor interactions. Furthermore, the functionalized CNTs are non-toxic to cells. This strategy offers new opportunities for development of biosensor to probe biological processes. References: 1. X. Chen, G. S. Lee, A. Zettl, C. R. Bertozzi, Angewandte Chemie-International Edition 43, 6111 (2004). 2. X. Chen, U. C. Tam, J. L. Czlapanski, G. S. Lee, D. Rabuka, A. Zettl, C. R. Bertozzi, submitted.

  2. The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Nielsen, Torkel Gissel; Munk, Peter

    2011-01-01

    Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the GodthAyenbsfjord (64 degrees N, 51 degrees W) SW Greenland, through a combination of fieldwork...... ration of 1% body C d(-1). Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 mu m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory...

  3. A biologically inspired psychometric function for accuracy of visual identification as a function of exposure duration

    DEFF Research Database (Denmark)

    Petersen, Anders; Andersen, Tobias

    in modelling human performance in whole and partial report tasks in which multiple simultaneously presented letters are to be reported (Shibuya & Bundesen, 1988). Therefore, we investigated visual letter identification as a function of exposure duration. On each trial, a single randomly chosen letter (A......The psychometric function of letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role......-Z) was presented at the centre of the screen. Exposure duration was varied from 5 to 210 milliseconds. The letter was followed by a pattern mask. Three subjects each completed 54,080 trials in a 26-Alternative Forced Choice procedure. We compared the exponential, the gamma and the Weibull psychometric functions...

  4. Closure, function, emergence, semiosis, and life: the same idea? Reflections on the concrete and the abstract in theoretical biology.

    Science.gov (United States)

    Emmeche, C

    2000-01-01

    In this note epistemological problems in general theories about living systems are considered; in particular, the question of hidden connections between different areas of experience, such as folk biology and scientific biology, and hidden connections between central concepts of theoretical biology, such as function, semiosis, closure, and life.

  5. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    Science.gov (United States)

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

  6. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation

    DEFF Research Database (Denmark)

    Sinner, Moritz F; Tucker, Nathan R; Lunetta, Kathryn L;

    2014-01-01

    BACKGROUND: Atrial fibrillation (AF) affects >30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood. METHODS AND RESULTS: To identify new AF......-related genes, we used a multifaceted approach, combining large-scale genotyping in 2 ethnically distinct populations, cis-eQTL (expression quantitative trait loci) mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501; relative...... risk [RR]=1.18; 95% confidence interval [CI], 1.13-1.23; P=6.5×10(-16)), GJA1 (rs13216675; RR=1.10; 95% CI, 1.06-1.14; P=2.2×10(-8)), TBX5 (rs10507248; RR=1.12; 95% CI, 1.08-1.16; P=5.7×10(-11)), and CAND2 (rs4642101; RR=1.10; 95% CI, 1.06-1.14; P=9.8×10(-9)). In Japanese, novel loci were identified...

  7. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    Science.gov (United States)

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  8. Functional evolution of ADAMTS genes: Evidence from analyses of phylogeny and gene organization

    Directory of Open Access Journals (Sweden)

    Van Meir Erwin G

    2005-02-01

    Full Text Available Abstract Background The ADAMTS (A Disintegrin-like and Metalloprotease with Thrombospondin motifs proteins are a family of metalloproteases with sequence similarity to the ADAM proteases, that contain the thrombospondin type 1 sequence repeat motifs (TSRs common to extracellular matrix proteins. ADAMTS proteins have recently gained attention with the discovery of their role in a variety of diseases, including tissue and blood disorders, cancer, osteoarthritis, Alzheimer's and the genetic syndromes Weill-Marchesani syndrome (ADAMTS10, thrombotic thrombocytopenic purpura (ADAMTS13, and Ehlers-Danlos syndrome type VIIC (ADAMTS2 in humans and belted white-spotting mutation in mice (ADAMTS20. Results Phylogenetic analysis and comparison of the exon/intron organization of vertebrate (Homo, Mus, Fugu, chordate (Ciona and invertebrate (Drosophila and Caenorhabditis ADAMTS homologs has elucidated the evolutionary relationships of this important gene family, which comprises 19 members in humans. Conclusions The evolutionary history of ADAMTS genes in vertebrate genomes has been marked by rampant gene duplication, including a retrotransposition that gave rise to a distinct ADAMTS subfamily (ADAMTS1, -4, -5, -8, -15 that may have distinct aggrecanase and angiogenesis functions.

  9. Functional biology and ecological role of krill in Northern marine ecosystems

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard

    Krill is an understudied key group of zooplankton, which transfers energy through the food web by linking lower and higher trophic levels. Furthermore, krill play an important role in the biological pump by transporting carbon out of the euphotic zone to depth by diel vertical migration (DVM......) and by production of fast sinking carbon-rich faecal pellets. Hence, the large schools of krill greatly influence the pelagic food web and the flux of organic matter in the sea. However, knowledge of the distribution and feeding biology in krill from northern areas is scarce, although of importance to get a better...... in regions with colder temperatures. Results from stable isotope analyses and feeding experiments show that there is an overlap in the diet of the species and that they are able to exploit several trophic levels. Trophic positions are related to available prey. However, the size of the krill seemed...

  10. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Ma, Tai-yang; Wu, Jin-ying; Gao, Xiao-ke; Wang, Jing-yuan; Zhan, Xu-liang; Li, Wen-sheng

    2014-10-01

    FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA.

  11. Meta-Analyses of Developing Brain Function in High-Risk and Emerged Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Moon-Soo eLee

    2014-11-01

    Full Text Available Objectives: Identifying early markers of brain function among those at high risk for pediatric bipolar disorder (PBD could serve as a screening measure when children and adolescents present with sub-syndromal clinical symptoms prior to the conversion to bipolar disorder. Studies on the offspring of patients with bipolar disorder who are genetically at high risk (HR have each been limited in establishing a biomarker, while an analytic review in summarizing the findings offers an improvised opportunity towards that goal. Methods: An activation likelihood estimation meta-analysis of mixed cognitive and emotional activities using the GingerALE software from the BrainMap Project was completed. The meta-analysis of all fMRI studies contained a total of 29 reports and included PBD, HR and typically developing (TD groups.Results: The HR group showed significantly greater activation relative to the TD group in the right DLPFC-insular-parietal-cerebellar regions. Similarly, the HR group exhibited greater activity in the right DLPFC and insula as well as the left cerebellum compared to patients with PBD. Patients with PBD, relative to TD, showed greater activation in regions of the right amygdala, parahippocampal gyrus, medial PFC, left ventral striatum, and cerebellum and lower activation in the right VLPFC and the DLPFC.Conclusions: The HR population showed increased activity, presumably indicating greater compensatory deployment, in relation to both the TD and the PBD, in the key cognition and emotion processing regions, such as the DLPFC, insula and parietal cortex. In contrast, patients with PBD, relative to HR and TD, showed decreased activity, which could indicate a decreased effort in multiple PFC regions in addition to widespread subcortical abnormalities, which are suggestive of a more entrenched disease process.

  12. Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP).

    Science.gov (United States)

    Lall, Patrick; Lindsay, Andrew J; Hanscom, Sara; Kecman, Tea; Taglauer, Elizabeth S; McVeigh, Una M; Franklin, Edward; McCaffrey, Mary W; Khan, Amir R

    2015-07-24

    Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.

  13. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning.

    Directory of Open Access Journals (Sweden)

    Eswar Prasad R Iyer

    Full Text Available BACKGROUND: Neurons are one of the most structurally and functionally diverse cell types found in nature, owing in large part to their unique class specific dendritic architectures. Dendrites, being highly specialized in receiving and processing neuronal signals, play a key role in the formation of functional neural circuits. Hence, in order to understand the emergence and assembly of a complex nervous system, it is critical to understand the molecular mechanisms that direct class specific dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS: We have used the Drosophila dendritic arborization (da neurons to gain systems-level insight into dendritogenesis by a comparative study of the morphologically distinct Class-I (C-I and Class-IV (C-IV da neurons. We have used a combination of cell-type specific transcriptional expression profiling coupled to a targeted and systematic in vivo RNAi functional validation screen. Our comparative transcriptomic analyses have revealed a large number of differentially enriched/depleted gene-sets between C-I and C-IV neurons, including a broad range of molecular factors and biological processes such as proteolytic and metabolic pathways. Further, using this data, we have identified and validated the role of 37 transcription factors in regulating class specific dendrite development using in vivo class-specific RNAi knockdowns followed by rigorous and quantitative neurometric analysis. CONCLUSIONS/SIGNIFICANCE: This study reports the first global gene-expression profiles from purified Drosophila C-I and C-IV da neurons. We also report the first large-scale semi-automated reconstruction of over 4,900 da neurons, which were used to quantitatively validate the RNAi screen phenotypes. Overall, these analyses shed global and unbiased novel insights into the molecular differences that underlie the morphological diversity of distinct neuronal cell-types. Furthermore, our class-specific gene expression datasets should prove a

  14. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  15. Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Wenjuan; Yuan, Zhiqin; Lu, Chao

    2015-11-07

    As a well-known environmental pollutant but also an important gaseous transmitter, the specific detection of hydrogen sulfide (H2S) is significant in biological systems. In this study, fluorosurfactant functionalized gold nanorods (FSN-AuNRs) have been proposed to act as selective colorimetric nanoprobes for H2S. With the combination of strong gold-S interactions and small FSN bilayer interstices, FSN-AuNRs demonstrate favorable selectivity and sensitivity toward H2S over other anions and small biological molecules. The practical application of the present method in biological H2S detection was validated with human and mouse serum samples. Moreover, the proposed nanoprobe can also be used for evaluating the activity of H2S synthetase.

  16. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  17. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  18. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  19. Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application.

    Science.gov (United States)

    Yantasee, Wassana; Rutledge, Ryan D; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L; Warner, Marvin G; Fryxell, Glen E; Wiacek, Robert J; Timchalk, Charles; Addleman, R Shane

    2010-10-01

    Surface-functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS), has previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems, suggesting that they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials' biocompatibility, and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e., blood, urine, etc.) Consequentially, thiol-functionalized SAMMS was further analyzed to assess the material's performance under a number of different biologically relevant conditions (i.e., variable pH and ionic strength) to gauge any potentially negative effects resulting from interaction with the sorbent, such as cellular toxicity or the removal of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus nontoxic. The results show that organic ligand functionalized nanoporous silica could be a valuable material for a range of detoxification therapies and potentially other biomedical applications.

  20. Fundamental and functional aspects of mesoscopic architectures with examples in physics, cell biology, and chemistry.

    Science.gov (United States)

    Kalay, Ziya

    2011-08-01

    How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.

  1. High performance hybrid functional Petri net simulations of biological pathway models on CUDA.

    Science.gov (United States)

    Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru

    2011-01-01

    Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.

  2. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  3. Form and function: Perspectives on structural biology and resources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  4. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  5. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  6. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology

    OpenAIRE

    Carbonell-Ballestero, M.; Duran-Nebreda, S.; Montanez, R.; Sole, R.; Macia, J.; Rodriguez-Caso, C.

    2014-01-01

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the in...

  7. New insights in the biology of BDNF synthesis and release: implications in CNS function

    OpenAIRE

    Greenberg, Michael E.; Xu, Baoji; Lu, Bai; Hempstead, Barbara L.

    2009-01-01

    BDNF has pleiotrophic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety–like behaviors. Here we review...

  8. Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Brian [University College, Dublin; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL; Thompson, G. L. [Clemson University; Vertegel, Alexey [ORNL; Hohlbauch, Sophia [Asylum Research, Santa Barbara, CA; Proksch, Roger [Asylum Research, Santa Barbara, CA

    2008-01-01

    Coupling between electrical and mechanical phenomena is extremely common in inorganic materials, and nearly ubiquitous in biological systems, underpinning phenomena and devices ranging from SONAR to cardiac activity and hearing. This paper briefly summarizes the Scanning Probe Microscopy (SPM) approach, referred to as Piezoresponse Force Microscopy (PFM), for probing electromechanical coupling on the nanometer scales, and delineates some existing and emerging applications to probe local structure and functionality in inorganic ferroelectrics, calcified and connective tissues, and complex biosystems based on electromechanical detection.

  9. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    Science.gov (United States)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  10. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, Raymond S.

    2010-10-01

    Functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS) have previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems suggesting they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials biocompatibility and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e. blood, urine, etc.) As a result, thiol SAMMS was further analyzed to assess the material’s performance under a number of different biologically relevant conditions (i.e. variable pH and ionic strength) as well to gauge any potentially negative cellular effects resulting from interaction with the sorbent, such as cellular toxicity or possible chelation of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus non-toxic. As a result, it has been determined that organic ligand-functionalized nanoporous silica materials could be a valuable material for detoxification therapeutics and potentially other biomedical applications as needed.

  11. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation

    Directory of Open Access Journals (Sweden)

    Kathleen H Wood

    2016-05-01

    Full Text Available DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation.

  12. Effective dielectric properties of biological cells: generalization of the spectral density function approach.

    Science.gov (United States)

    Goncharenko, Anatoliy V; Chang, Yia-Chung

    2009-07-23

    We suggest an extension of the spectral density function approach to describe the complex dielectric response of suspensions of arbitrarily shaped particles having a thin shell, in particular, biological cells. The approach is shown to give analytical results in some simple but practically important cases. In the general case, for the 3-phase systems it reduces to determination of the spectral density function for the suspension of a certain kind. Prospects and limitations of the approach, as well as practical examples, are also considered.

  13. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    with nanowire sensors functionalized using different modification schemes. To facilitate functionalization and measurement and as a first step towards integration into a point-of-care device, several microfluidic tools were developed for sample delivery to the sensor surface and as a modular platform......This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  14. Drivers of estuarine benthic species distribution patterns following a restoration of a seagrass bed: a functional trait analyses.

    Science.gov (United States)

    Dolbeth, Marina; Cardoso, Patrícia; Grilo, Tiago; Raffaelli, Dave; Pardal, Miguel Ângelo

    2013-07-15

    We integrate information on functional diversity (FD) patterns from estuarine intertidal benthic communities from different habitats and along a temporal disturbance gradient, to understand the drivers of species coexistence patterns. Species and traits' biomass levels seemed to be first determined by habitat filtering, selecting those traits better adapted to the biologically challenging estuarine environment. Within that subset of traits and within each habitat, biotic interactions were probably high, as evidenced by high α-diversity and community weighted mean differences. The former patterns hold for the disturbance/recovery scenario considered. However, as the estuary recovered, biomass became more distributed among different trait categories, consistent with increases in FD when the seagrass started to increase. Policy towards the restoration of seagrass bed and other biogenic structures, and improving the connectivity within adjacent systems were confirmed and suggested, as this would imply higher FD and potentially higher resilience to disturbance within the estuarine intertidal system.

  15. Deconvolution analyses with tent functions reveal delayed and long-sustained increases of BOLD signals with acupuncture stimulation.

    Science.gov (United States)

    Murase, Tomokazu; Umeda, Masahiro; Fukunaga, Masaki; Tanaka, Chuzo; Higuchi, Toshihiro

    2013-01-01

    We used deconvolution analysis to examine temporal changes in brain activity after acupuncture stimulation and assess brain responses without expected reference functions. We also examined temporal changes in brain activity after sham acupuncture (noninsertive) and scrubbing stimulation. We divided 26 healthy right-handed adults into a group of 13 who received real acupuncture with manual manipulation and a group of 13 who received both tactical stimulations. Functional magnetic resonance imaging (fMRI) sequences consisted of four 15-s stimulation blocks (ON) interspersed between one 30-s and four 45-s rest blocks (OFF) for a total scanning time of 270 s. We analyzed data by using Statistical Parametric Mapping 8 (SPM8), MarsBaR, and Analysis of Functional NeuroImages (AFNI) software. For statistical analysis, we used 3dDeconvolve, part of the AFNI package, to extract the impulse response functions (IRFs) of the fMRI signals on a voxel-wise basis, and we tested the time courses of the extracted IRFs for the stimulations. We found stimulus-specific impulse responses of blood oxygen level-dependent (BOLD) signals in various brain regions. We observed significantly delayed and long-sustained increases of BOLD signals in several brain regions following real acupuncture compared to sham acupuncture and palm scrubbing, which we attribute to peripheral nocireceptors, flare responses, and processing of the central nervous system. Acupuncture stimulation induced continued activity that was stronger than activity after the other stimulations. We used tent function deconvolution to process fMRI data for acupuncture stimulation and found delayed increasing and delayed decreasing changes in BOLD signal in the somatosensory areas and areas related to pain perception. Deconvolution analyses with tent functions are expected to be useful in extracting complicated and associated brain activity that is delayed and sustained for a long period after various stimulations.

  16. Integrating cell biology, image analysis, and computational mechanical modeling to analyze the contributions of cellulose and xyloglucan to stomatal function.

    Science.gov (United States)

    Rui, Yue; Yi, Hojae; Kandemir, Baris; Wang, James Z; Puri, Virendra M; Anderson, Charles T

    2016-06-01

    Cell walls are likely to be essential determinants of the amazing strength and flexibility of the guard cells that surround each stomatal pore in plants, but surprisingly little is known about cell wall composition, organization, and dynamics in guard cells. Recent analyses of cell wall organization and stomatal function in the guard cells of Arabidopsis thaliana mutants with defects in cellulose and xyloglucan have allowed for the development of new hypotheses about the relative contributions of these components to guard cell function. Advanced image analysis methods can allow for the automated detection of key structures, such as microtubules (MTs) and Cellulose Synthesis Complexes (CSCs), in guard cells, to help determine their contributions to stomatal function. A major challenge in the mechanical modeling of dynamic biological structures, such as guard cell walls, is to connect nanoscale features (e.g., wall polymers and their molecular interactions) with cell-scale mechanics; this challenge can be addressed by applying multiscale computational modeling that spans multiple spatial scales and physical attributes for cell walls.

  17. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  18. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  19. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Zhao, Z; Xu, J; Chen, J; Kim, S; Reimers, M; Bacanu, S-A; Yu, H; Liu, C; Sun, J; Wang, Q; Jia, P; Xu, F; Zhang, Y; Kendler, K S; Peng, Z; Chen, X

    2015-05-01

    Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q⩽0.01, 53 genes; q⩽0.05, 213 genes; q⩽0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (Pgenes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing data set of the hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD.

  20. Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology.

    Science.gov (United States)

    Kim, Allen K; DeRose, Robert; Ueno, Tasuku; Lin, Benjamin; Komatsu, Toru; Nakamura, Hideki; Inoue, Takanari

    2016-02-09

    Biological phenomena, such as cellular differentiation and phagocytosis, are fundamental processes that enable cells to fulfill important physiological roles in multicellular organisms. In the field of synthetic biology, the study of these behaviors relies on the use of a broad range of molecular tools that enable the real-time manipulation and measurement of key components in the underlying signaling pathways. This Review will focus on a subset of synthetic biology tools known as bottom-up techniques, which use technologies such as optogenetics and chemically induced dimerization to reconstitute cellular behavior in cells. These techniques have been crucial not only in revealing causal relationships within signaling networks but also in identifying the minimal signaling components that are necessary for a given cellular function. We discuss studies that used these systems in a broad range of cellular and molecular phenomena, including the time-dependent modulation of protein activity in cellular proliferation and differentiation, the reconstitution of phagocytosis, the reconstitution of chemotaxis, and the regulation of actin reorganization. Finally, we discuss the potential contribution of synthetic biology to medicine.

  1. Applications of post-translational modifications of FoxO family proteins in biological functions

    Institute of Scientific and Technical Information of China (English)

    Ying Zhao; Yachen Wang; Wei-Guo Zhu

    2011-01-01

    The functions of the FoxO family proteins, in particular their transcriptional activities, are modulated by post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. These PTMs occur in response to different cellular stresses, which in turn regulate the subcellular localization of FoxO family proteins, as well as their half-life, DNA binding, transcriptional activity and ability to interact with other cellular proteins. In this review, we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.%The functions of the FoxO family proteins,in particular their transcriptional activities,are modulated by post-translational modifications (PTMs),including phosphorylation,acetylation,ubiquitination,methylation and glycosylation.These PTMs occur in response to different cellular stresses,which in turn regulate the subceilular localization of FoxO family proteins,as well as their half-life,DNA binding,transcriptional activity and ability to interact with other cellular proteins.In this review,we summarize the role of PTMs of FoxO family proteins in linking their biological and functional relevance with various diseases.

  2. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    Science.gov (United States)

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  4. Functional results after repair of large hiatal hernia by use of a biologic mesh

    Directory of Open Access Journals (Sweden)

    Filimon eAntonakis

    2016-03-01

    Full Text Available Background: The aim of this observational study is to analyze the results of patients with large hiatal hernia and upside-down stomach after surgical closure with a biologic mesh (Permacol®, Covidien, Neustadt an der Donau, Germany. Biologic mesh is used to prevent long-term detrimental effects of artificial meshes and to reduce recurrence rates. Methods: A total of 13 patients with a large hiatal hernia and endothoracic stomach, who underwent surgery between 2010 and 2014, were included. Interviews and upper endoscopy were conducted to determine recurrence, lifestyle restrictions and current complaints. Results: After a mean follow-up of 26+18 months (range 3-58 months 10 patients (three men, mean age 73+13, range 26-81 years were evaluated. A small recurrent axial hernia was found in one patient postoperatively. Dysphagia was the most common complaint (four cases, while in one case the problem was solved after endoscopic dilatation. In three cases bloat and postprandial pain were documented. In one case explantation of the mesh was necessary due to mesh migration and painful adhesions. In one further case with gastroparesis pyloroplasty was performed without success.Conclusion: Recurrence was rare after hernia repair with the biologic mesh Permacol®. Dysphagia, gas bloat and intraabdominal pain were frequent complaints. Despite the small number of patients it can be concluded that a biologic mesh may be an alternative to synthetic meshes to reduce recurrences. Long-term results should be studied in the future in order to assess the potential of biologic meshes to preserve esophageal function as well. This is important since artificial meshes are known to erode the esophagus after 5–10 years.

  5. Dynamic Associations of Change in Physical Activity and Change in Cognitive Function: Coordinated Analyses of Four Longitudinal Studies

    Directory of Open Access Journals (Sweden)

    Magnus Lindwall

    2012-01-01

    Full Text Available The present study used a coordinated analyses approach to examine the association of physical activity and cognitive change in four longitudinal studies. A series of multilevel growth models with physical activity included both as a fixed (between-person and time-varying (within-person predictor of four domains of cognitive function (reasoning, memory, fluency, and semantic knowledge was used. Baseline physical activity predicted fluency, reasoning and memory in two studies. However, there was a consistent pattern of positive relationships between time-specific changes in physical activity and time-specific changes in cognition, controlling for expected linear trajectories over time, across all four studies. This pattern was most evident for the domains of reasoning and fluency.

  6. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana.

    Science.gov (United States)

    Takano, Akira; Suetsugu, Noriyuki; Wada, Masamitsu; Kohda, Daisuke

    2010-08-01

    An auxilin-like J-domain-containing protein, JAC1, is necessary for chloroplast movement in Arabidopsis thaliana, to capture photosynthetic light efficiently under weak light conditions. Here, we performed crystallographic and functional analyses of the J-domain of JAC1. The crystal structure of the J-domain is quite similar to that of bovine auxilin, and possesses a similar positively charged surface, which probably forms the interface with the Hsp70 chaperone. The mutation of the highly conserved HPD motif of the JAC1 J-domain abrogated the chloroplast photorelocation response. These results suggest that the requirement of JAC1 in chloroplast photorelocation movement is attributable to the J-domain's cochaperone activity.

  7. A Critical Role for Cysteine 57 in the Biological Functions of Selenium Binding Protein-1

    Directory of Open Access Journals (Sweden)

    Qi Ying

    2015-11-01

    Full Text Available The concentration of selenium-binding protein1 (SBP1 is often lower in tumors than in the corresponding tissue and lower levels have been associated with poor clinical outcomes. SBP1 binds tightly selenium although what role selenium plays in its biological functions remains unknown. Previous studies indicated that cysteine 57 is the most likely candidate amino acid for selenium binding. In order to investigate the role of cysteine 57 in SBP1, this amino acid was altered to a glycine and the mutated protein was expressed in human cancer cells. The SBP1 half-life, as well as the cellular response to selenite cytotoxicity, was altered by this change. The ectopic expression of SBP1GLY also caused mitochondrial damage in HCT116 cells. Taken together, these results indicated that cysteine 57 is a critical determinant of SBP1 function and may play a significant role in mitochondrial function.

  8. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    Science.gov (United States)

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  9. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available BACKGROUND: As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. METHODOLOGY: We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. RESULTS: Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. CONCLUSION: Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  10. Myocardial MR tagging. Analysis of regional and global myocardial function; Kardiales MR-Tagging. Analyse regionaler und globaler Myokardfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, U.; Fenchel, M. [Universitaet Tuebingen, Abt. fuer Diagnostische und Interventionelle Radiologie, Radiologische Klinik, Tuebingen (Germany); Hennemuth, A. [Fraunhofer MEVIS, Bremen (Germany)

    2010-06-15

    Myocardial MR tagging is a powerful method which allows for assessment of myocardial function and may become an important tool for clinical evaluation of cardiac dysfunction, particularly in ischemic heart disease. In addition to visual assessment it allows direct quantification of myocardial deformation and strain to measure contractility. The use of myocardial tagging has provided new insights into the (patho)physiology of regional wall motion, and several parameters have been described as being useful to identify an ischemic response of the myocardium. One challenge encountered with tagging at 1.5 T is the fading of tags at end-diastole, greatly limiting the evaluation of myocardial function during diastole. Due to longer T{sub 1} relaxation times of the myocardium, tagging at 3 T has shown to have a higher CNR{sub Tag} and better tag persistence when compared to current clinical gradient-echo tagging protocols at 1.5 T. As a consequence, tagging at higher field strengths may be well suited for the characterization of the diastolic portion of the cardiac cycle in future applications. (orig.) [German] Das myokardiale Tagging mittels der kardialen Magnetresonanztomographie (MRT) stellt ein spezielles Verfahren dar, das eine quantitative Analyse der regionalen Myokardfunktion erlaubt. Mit der Analyse der regionalen Wandbewegung koennen pathologische Bewegungsablaeufe fruehzeitig erkannt und kardiale Dysfunktionen differenziert werden. Neben der visuellen Analyse ist es in erster Linie die quantitative Bestimmung der aus der Echokardiographie bekannten Funktionsparameter, die den Vorteil des Taggings bei der Charakterisierung der myokardialen Funktion ausmachen. Die quantitative Erfassung des Rotations- und Kontraktionsverhaltens mit dem myokardialen Tagging eroeffnet bei verschiedenen Erkrankungen des Herzens neue Einblicke in die Pathophysiologie. Eine intrinsische Limitation dieses Verfahrens besteht in dem insbesondere in der diastolischen Phase des Herzzyklus

  11. Translating inter-individual genetic variation to biological function in complex phenotypes

    DEFF Research Database (Denmark)

    Yadav, Rachita

    examines epigenetic, genetic, transcriptomic and proteomic variations within different multifactorial diseases and this pivotal information is then annotated and associated to its corresponding phenotype. Childhood asthma and obesity are the two main phenotypic themes in this thesis. In the first section......The key objectives of this thesis work are to decipher and prioritise observed variations among different phenotypes. With advancements in high throughput technology leading to a surge in biological data, it is imperative to analyse and interpret this information. Consequently, this thesis work......, Chapter 1 provides an introduction to various methodologies utilised in this thesis work. Subsequently, chapters 2, 3 and 4 in the second section, address finding causal variations in childhood asthma. Chapter 2 focuses on a genome wide association study (GWAS) performed on asthma exacerbation case cohort...

  12. A primer on molecular biology for imagers: III. Proteins: structure and function.

    Science.gov (United States)

    Pandit, Sunil D; Li, King C P

    2004-04-01

    This article along with the first 2 in this series (4,12) completes the discussion on the key molecules and process inside the cell namely, DNA, RNA, and proteins. These 3 articles provide a very basic foundation for understanding molecular biology concepts and summarize some of the work of numerous scientists over the past century. We understand these processes far better now than we did in the past, but clearly this knowledge is by no means complete and a number of basic scientists are working hard to elucidate and understand the fundamental mechanisms that operate within a cell. Genes and gene products work with each other in complex, interconnected pathways, and in perfect harmony to make a functional cell, tissue, and an organism as a whole. There is a lot of cross-talk that happens between different proteins that interact with various other proteins, DNA, and RNA to establish pathways, networks, and molecular systems as a team working to perfection. The past 15 years have seen the rapid development of systems biology approaches. We live in an era that emphasizes multi-disciplinary, cross-functional teams to perform science rather than individual researchers working on the bench on a very specific problem. Global approaches have become more common and the amount of data generated must be managed by trained bioinformatics personnel and large computers. In our subsequent articles, we will discuss these global approaches and the areas of genomics, functional genomics, and proteomics that have revolutionized the way we perform science.

  13. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes.

    Science.gov (United States)

    Peng, Yong Y; Stoichevska, Violet; Schacht, Kristin; Werkmeister, Jerome A; Ramshaw, John A M

    2014-07-01

    Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function.

  14. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  15. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Science.gov (United States)

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  16. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Dipsikha; Sahu, Sumanta K. [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Banerjee, Indranil [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Das, Manasmita [Indian Institute of Technology Kharagpur, Department of Chemistry (India); Mishra, Debashish; Maiti, Tapas K. [Indian Institute of Technology Kharagpur, Department of Biotechnology (India); Pramanik, Panchanan, E-mail: dipsikha.chem@gmail.com [Indian Institute of Technology Kharagpur, Department of Chemistry (India)

    2011-09-15

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T{sub 2} contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T{sub 2} relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  17. New insights in the biology of BDNF synthesis and release: implications in CNS function.

    Science.gov (United States)

    Greenberg, Michael E; Xu, Baoji; Lu, Bai; Hempstead, Barbara L

    2009-10-14

    BDNF has pleiotropic effects on neuronal development and synaptic plasticity that underlie circuit formation and cognitive function. Recent breakthroughs reveal that neuronal activity regulates BDNF cell biology, including Bdnf transcription, dendritic targeting and trafficking of BDNF mRNA and protein, and secretion and extracellular conversion of proBDNF to mature BDNF. Defects in these mechanisms contribute differentially to cognitive dysfunction and anxiety-like behaviors. Here we review recent studies, presented at a symposium at Neuroscience 2009, that describe regulatory mechanisms that permit rapid and dynamic refinement of BDNF actions in neurons.

  18. Systems biology: Functional analysis of natural microbial consortia using community proteomics.

    Science.gov (United States)

    VerBerkmoes, Nathan C; Denef, Vincent J; Hettich, Robert L; Banfield, Jillian F

    2009-03-01

    We know very little about the metabolic functioning and evolutionary dynamics of microbial communities. Recent advances in comprehensive, sequencing-based methods, however, are laying a molecular foundation for new insights into how microbial communities shape the Earth's biosphere. Here we explore the convergence of microbial ecology, genomics, biological mass spectrometry and informatics that form the new field of microbial community proteogenomics. We discuss the first applications of proteogenomics and its potential for studying the physiology, ecology and evolution of microbial populations and communities.

  19. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.

    Science.gov (United States)

    Dirocco, Daniel A; Dykstra, Kevin; Krska, Shane; Vachal, Petr; Conway, Donald V; Tudge, Matthew

    2014-05-05

    The direct CH functionalization of heterocycles has become an increasingly valuable tool in modern drug discovery. However, the introduction of small alkyl groups, such as methyl, by this method has not been realized in the context of complex molecule synthesis since existing methods rely on the use of strong oxidants and elevated temperatures to generate the requisite radical species. Herein, we report the use of stable organic peroxides activated by visible-light photoredox catalysis to achieve the direct methyl-, ethyl-, and cyclopropylation of a variety of biologically active heterocycles. The simple protocol, mild reaction conditions, and unique tolerability of this method make it an important tool for drug discovery.

  20. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    Science.gov (United States)

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  1. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions.

    Science.gov (United States)

    Chang, H; Xiao, X; Li, M

    2017-03-14

    ZNF804A (zinc-finger protein 804A) has been recognized as a schizophrenia risk gene across multiple world populations. Its intronic single-nucleotide polymorphism (SNP) rs1344706 is among one of the strongest susceptibility variants that have achieved genome-wide significance in genome-wide association studies (GWAS) for schizophrenia and has been widely and intensively studied. To elucidate the biological mechanisms underlying the genetic risk conferred by rs1344706, we retrospectively analyzed the progresses in brain gene expression quantitative trait loci (eQTL) analyses, ZNF804A-induced pathway alterations in neural cells and changes in synaptic phenotypes associated with ZNF804A expression. Based on these data, we hypothesize a potential biological mechanism for a genetic risk allele of ZNF804A in schizophrenia pathogenesis. We also review the efforts being made to characterize the affected intermediate phenotypes using neuroimaging and neuropsychological approaches. We then discuss additional common and rare ZNF804A variants in schizophrenia susceptibility and the potential genetic heterogeneity of these genomic loci between Europeans and Asians. This review for we believe the first time systematically presents the evidence for ZNF804A, describing its discovery and likely roles in brain development and schizophrenia pathogenesis. We believe that this work has summarized this information with a systemic and broad assessment of recent findings.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.19.

  2. Relative biological efficiency of 592 MeV protons. Analysis of the biological effect of secondary radiation; Efficacite biologique relative des protons de 592 MeV. Analyse de l'effet biologique du aux rayonnements secondaires

    Energy Technology Data Exchange (ETDEWEB)

    Legeay, G.; Baarli, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; European Organization for Nuclear Research, Geneva (Switzerland)

    1968-07-01

    The relative biological efficiency (RBE) of high energy protons is of importance because of their effects in the field of radioprotection around large accelerators and during space-flights. The nature of the interactions between 592 MeV protons and biological tissues makes it necessary to take into consideration the contribution of secondary radiation to the biological effect. Since it is not possible to obtain from a synchrotron a beam having a sufficiently large cross-section to irradiate large animals, one has to resort to certain devices concerning the mode of exposure when small laboratory animals are used. By irradiating rats individually and in groups, and by using the lethal test as a function of time, the authors show that the value of the RBE is different for animals of the same species having the same biological parameters. Thus there appears an increase in the biological effect due to secondary radiation produced in nuclear cascades which develop in a large volume, for example that of a human being. (author) [French] L'efficacite biologique relative des protons de haute energie doit etre etudiee en raison de leur incidence sur la radioprotection autour des grands accelerateurs et lors des vols spatiaux. La nature des interactions des protons de 592 MeV avec les tissus biologiques rend necessaire d'envisager la contribution des rayonnements secondaires a l'effet biologique. Ne pouvant obtenir aupres d'un synchrotron un faisceau de section importante pour irradier de gros animaux, il est necessaire de faire appel a des artifices portant sur le mode d'exposition lorsque l'on utilise les petits animaux de laboratoire. En irradiant des rats individuellement et en groupe et en utilisant le test de letalite en fonction du temps, les auteurs montrent que la valeur de l'EBR est differente sur des animaux de la meme espece presentant les memes parametres biologiques. Il apparait ainsi un accroissement de l'effet biologique

  3. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  4. The origin of neutron biological effectiveness as a function of energy

    Science.gov (United States)

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-01-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data. PMID:27654349

  5. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses.

    Science.gov (United States)

    Yergeau, Etienne; Hogues, Hervé; Whyte, Lyle G; Greer, Charles W

    2010-09-01

    The fate of the carbon stocked in permafrost following global warming and permafrost thaw is of major concern in view of the potential for increased CH(4) and CO(2) emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but no comprehensive study has yet addressed their composition and functional potential in permafrost. Here, a 2-m deep permafrost sample and its overlying active layer soil were subjected to metagenomic sequencing, quantitative PCR (qPCR) and microarray analyses. The active layer soil and the 2-m permafrost microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two samples also possessed a highly similar spectrum of functional genes, especially when compared with other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both samples in the metagenomic libraries and some (for example, pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2-m permafrost showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated using qPCR and showed that the whole-community genome amplification technique used caused representational biases in the metagenomic libraries by increasing the abundance of Bacteroidetes and decreasing the abundance of Actinobacteria. This study describes for the first time the detailed functional potential of permafrost-affected soils.

  6. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans.

    Science.gov (United States)

    Campbell, Bronwyn E; Nagaraj, Shivashankar H; Hu, Min; Zhong, Weiwei; Sternberg, Paul W; Ong, Eng K; Loukas, Alex; Ranganathan, Shoba; Beveridge, Ian; McInnes, Russell L; Hutchinson, Gareth W; Gasser, Robin B

    2008-01-01

    In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  8. Automated methods of predicting the function of biological sequences using GO and BLAST

    Directory of Open Access Journals (Sweden)

    Baumann Ute

    2005-11-01

    Full Text Available Abstract Background With the exponential increase in genomic sequence data there is a need to develop automated approaches to deducing the biological functions of novel sequences with high accuracy. Our aim is to demonstrate how accuracy benchmarking can be used in a decision-making process evaluating competing designs of biological function predictors. We utilise the Gene Ontology, GO, a directed acyclic graph of functional terms, to annotate sequences with functional information describing their biological context. Initially we examine the effect on accuracy scores of increasing the allowed distance between predicted and a test set of curator assigned terms. Next we evaluate several annotator methods using accuracy benchmarking. Given an unannotated sequence we use the Basic Local Alignment Search Tool, BLAST, to find similar sequences that have already been assigned GO terms by curators. A number of methods were developed that utilise terms associated with the best five matching sequences. These methods were compared against a benchmark method of simply using terms associated with the best BLAST-matched sequence (best BLAST approach. Results The precision and recall of estimates increases rapidly as the amount of distance permitted between a predicted term and a correct term assignment increases. Accuracy benchmarking allows a comparison of annotation methods. A covering graph approach performs poorly, except where the term assignment rate is high. A term distance concordance approach has a similar accuracy to the best BLAST approach, demonstrating lower precision but higher recall. However, a discriminant function method has higher precision and recall than the best BLAST approach and other methods shown here. Conclusion Allowing term predictions to be counted correct if closely related to a correct term decreases the reliability of the accuracy score. As such we recommend using accuracy measures that require exact matching of predicted

  9. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  10. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... function, and this leads to an expanded role of the classical approach applied in microbial physiology. With the increased understanding of the molecular mechanisms it is envisaged that in the future it will be possible to describe the interaction between all the components in the system (the cell), also......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  11. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond.

    Science.gov (United States)

    Niwa, Ryusuke; Niwa, Yuko S

    2014-01-01

    Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.

  12. Importance of N-glycosylation on CD147 for its biological functions.

    Science.gov (United States)

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-04-15

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  13. Functional analyse of GLUT1 and GLUT12 in glucose uptake in goat mammary gland epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qinghua Yu

    Full Text Available Glucose transport, mediated by glucose transporters, is necessary for mammary gland development and lactation. GLUT1 and GLUT12 could both be expressed in the pregnant and lactating mammary gland to participate in the glucose uptake process. In this study, the goat GLUT1 and GLUT12 genes were cloned from Saanen dairy goats and transfected into goat mammary gland epithelial cells to assess their biological functions and distributions. The results showed that both goat GLUT1 and GLUT12 had 12 predicted membrane-spanning helices. Goat GLUT1 and GLUT12 each influenced the mRNA expression of the other transporter and increased the glucose consumption and lactose yield in GLUT1- and GLUT12-transfected goat mammary gland epithelial cells, respectively. The overexpression of GLUT1 or GLUT12 also increased the expression of amino acid transporters SLC1A5, SLC3A2 and SLC7A5 and affected genes expressions in GMGE cells. Using immunofluorescence staining, GLUT1 was detected throughout the cytoplasm and localized to the Golgi apparatus around the nuclear membrane, whereas GLUT12 was mainly distributed in the perinuclear region and cytoplasm. This study contributes to the understanding of how GLUT1 and GLUT12 cooperate in the incorporation of nutrient uptake into mammary gland epithelial cells and the promotion of milk synthesis in the goat mammary gland during lactation.

  14. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    Energy Technology Data Exchange (ETDEWEB)

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W. (Baylor); (UCI); (Cornell); (Rice); (UC)

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  15. Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.

    Directory of Open Access Journals (Sweden)

    Sri Kripa Balakrishnan

    Full Text Available The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADPribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.

  16. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    Science.gov (United States)

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  17. Biological adaptations for functional features of language in the face of cultural evolution.

    Science.gov (United States)

    Christiansen, Morten H; Reali, Florencia; Chater, Nick

    2011-04-01

    Although there may be no true language universals, it is nonetheless possible to discern several family resemblance patterns across the languages of the world. Recent work on the cultural evolution of language indicates the source of these patterns is unlikely to be an innate universal grammar evolved through biological adaptations for arbitrary linguistic features. Instead, it has been suggested that the patterns of resemblance emerge because language has been shaped by the brain, with individual languages representing different but partially overlapping solutions to the same set of nonlinguistic constraints. Here, we use computational simulations to investigate whether biological adaptation for functional features of language, deriving from cognitive and communicative constraints, may nonetheless be possible alongside rapid cultural evolution. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by which previously learned linguistic features might become innate through natural selection across many generations of language users. The results indicate that cultural evolution of language does not necessarily prevent functional features of language from becoming genetically fixed, thus potentially providing a particularly informative source of constraints on cross-linguistic resemblance patterns.

  18. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology.

    Science.gov (United States)

    Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos

    2014-12-16

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined.

  19. Biological performance of functionalized biomedical polymers for potential applications as intraocular lens.

    Science.gov (United States)

    Zheng, Zhiwen; Wang, Yingjun; Jiao, Yan; Zhai, Zhichen

    2016-08-01

    To study the biological performance of surface-modified biomedical polymer materials, a model of the functional mechanism of nonspecific adsorption resistance was constructed. Cell behavior on the surface and in vivo transplantation features of intraocular lens (IOL) materials, such as hydrophobic acrylic ester and polymethyl methacrylate (PMMA), were investigated. The results of cell adhesion and proliferation studies showed that the addition of hirudin can significantly resist epithelial cell adhesion, better than the pure amination process, and thereby inhibit excessive proliferation on the surface. Experiments on the eyes of rabbits indicated that the IOL surfaces with hirudin modification reduced the incidence of cell aggregation and inflammation. Combined with a study of protein-resistant layer construction with recombinant hirudin on the material surface, the mechanism of surface functionalization was determined. The biological performance indicated that nonspecific adsorption is greatly decreased due to the existence of amphiphilic ions or hydration layers, which lead to stability and long-term resistance to nonspecific adsorption. These results offer a theoretical basis for the use of traditional biomedical polymer materials in long-term clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1961-1967, 2016.

  20. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies.

    Science.gov (United States)

    Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M

    2005-12-01

    In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.

  1. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  2. Structural characteristics and biological functions of the HIV-1 gp120 V3 region

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recent studies demonstrate that the V3 loop of HIV-1 gp120 plays an important role in the attachment of HIV-1 to the target cells. Several amino acids in this domain are involved in the interaction of gp120 with the co-receptors. The V3 loop elicits one of the earliest antiviral antibody responses in HIV-1 infection and has been identified as the principal neutralizing determinant (PND). A subset of antibodies to V3 loop show a broad range of neutralizing activity. Unfortunately, this loop undergoes broad mutation and is one of the hypervariable regions. Mutations of some amino acids in this PND could affect syncytium formation, virus infectivity and neutralization. Knowing the structural characteristics and biological functions of the V3 region could help us to understand mechanism of HIV infection and to develop new strategy against HIV-1. In this review, the structural characteristics, variation and biological functions of the V3 loop as well as immunological responses to the V3 loop are discussed.

  3. The biology of cancer testis antigens: putative function, regulation and therapeutic potential.

    Science.gov (United States)

    Fratta, Elisabetta; Coral, Sandra; Covre, Alessia; Parisi, Giulia; Colizzi, Francesca; Danielli, Riccardo; Nicolay, Hugues Jean Marie; Sigalotti, Luca; Maio, Michele

    2011-04-01

    Cancer testis antigens (CTA) are a large family of tumor-associated antigens expressed in human tumors of different histological origin, but not in normal tissues except for testis and placenta. This tumor-restricted pattern of expression, together with their strong in vivo immunogenicity, identified CTA as ideal targets for tumor-specific immunotherapeutic approaches, and prompted the development of several clinical trials of CTA-based vaccine therapy. Driven by this practical clinical interest, a more detailed characterization of CTA biology has been recently undertaken. So far, at least 70 families of CTA, globally accounting for about 140 members, have been identified. Most of these CTA are expressed during spermatogenesis, but their function is still largely unknown. Epigenetic events, particularly DNA methylation, appear to be the primary mechanism regulating CTA expression in both normal and transformed cells, as well as in cancer stem cells. In view of the growing interest in CTA biology, the aim of this review is to provide the most recent information on their expression, regulation and function, together with a brief summary of the major clinical trials involving CTA as therapeutic agents. The pharmacologic modulation of CTA expression profiles on neoplastic cells by DNA hypomethylating drugs will also be discussed as a feasible approach to design new combination therapies potentially able to improve the clinical efficacy of currently adopted CTA-based immunotherapeutic regimens in cancer patients.

  4. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  5. How biological soil crusts became recognized as a functional unit: a selective history

    Science.gov (United States)

    Lange, Otto L.; Belnap, Jayne

    2016-01-01

    It is surprising that despite the world-wide distribution and general importance of biological soil crusts (biocrusts), scientific recognition and functional analysis of these communities is a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phyto-sociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970’s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.

  6. Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture).

    Science.gov (United States)

    Warshel, Arieh

    2014-09-15

    A detailed understanding of the action of biological molecules is a pre-requisite for rational advances in health sciences and related fields. Here, the challenge is to move from available structural information to a clear understanding of the underlying function of the system. In light of the complexity of macromolecular complexes, it is essential to use computer simulations to describe how the molecular forces are related to a given function. However, using a full and reliable quantum mechanical representation of large molecular systems has been practically impossible. The solution to this (and related) problems has emerged from the realization that large systems can be spatially divided into a region where the quantum mechanical description is essential (e.g. a region where bonds are being broken), with the remainder of the system being represented on a simpler level by empirical force fields. This idea has been particularly effective in the development of the combined quantum mechanics/molecular mechanics (QM/MM) models. Here, the coupling between the electrostatic effects of the quantum and classical subsystems has been a key to the advances in describing the functions of enzymes and other biological molecules. The same idea of representing complex systems in different resolutions in both time and length scales has been found to be very useful in modeling the action of complex systems. In such cases, starting with coarse grained (CG) representations that were originally found to be very useful in simulating protein folding, and augmenting them with a focus on electrostatic energies, has led to models that are particularly effective in probing the action of molecular machines. The same multiscale idea is likely to play a major role in modeling of even more complex systems, including cells and collections of cells.

  7. [The biological reaction of inflammation, methylglyoxal of blood plasma, functional and structural alterations in elastic type arteries at the early stage of hypertension disease].

    Science.gov (United States)

    Titov, V N; Dmitriev, V A; Oshchepkov, E V; Balakhonova, T V; Tripoten', M I; Shiriaeva, Iu K

    2012-08-01

    The article deals with studying of the relationship between biologic reaction of inflammation with glycosylation reaction and content of methylglyoxal in blood serum. The positive correlation between pulse wave velocity and content of methylglyoxal, C-reactive protein in intercellular medium and malleolar brachial index value was established. This data matches the experimental results concerning involvement of biological reaction of inflammation into structural changes of elastic type arteries under hypertension disease, formation of arteries' rigidity and increase of pulse wave velocity. The arterial blood pressure is a biological reaction of hydrodynamic pressure which is used in vivo by several biological functions: biological function of homeostasis, function of endoecology, biological function of adaptation and function of locomotion. The biological reaction of hydrodynamic (hydraulic) pressure is a mode of compensation of derangement of several biological functions which results in the very high rate of hypertension disease in population. As a matter of fact, hypertension disease is a syndrome of lingering pathological compensation by higher arterial blood pressure of the biological functions derangements occurring in the distal section at the level of paracrine cenoses of cells. The arterial blood pressure is a kind of in vivo integral indicator of deranged metabolism. The essential hypertension disease pathogenically is a result of the derangement of three biological functions: biological function of homeostasis, biological function of trophology - nutrition (biological reaction of external feeding - exotrophia) and biological function of endoecology. In case of "littering" of intercellular medium in vivo with nonspecific endogenic flogogens a phylogenetically earlier activation of biological reactions of excretion, inflammation and hydrodynamic arterial blood pressure occur. In case of derangement of biological function of homeostasis, decreasing of

  8. Use of Fixed-Film Bioreactors, in Situ Microcosms, and Molecular Biological Analyses to Evaluate Bioremediation of Chlorinated Benzenes By Indigenous Bacteria and a Bioaugmented Dechlorinating Consortium

    Science.gov (United States)

    Lorah, M. M.; Teunis, J. A.

    2014-12-01

    Evaluation of bioremediation is complicated by contaminant mixtures, high concentrations, variable site conditions, and multiple possible degradation pathways. In this study, fixed-film bioreactor experiments, in situ microcosms, and microbial analyses were utilized to evaluate both anaerobic and aerobic biodegradation processes for tri- and dichlorobenzene isomers, monochlorobenzene, and benzene in a wetland. Biofilm-based bioreactors provide a robust assessment tool because of their typically high degree of stability, even with major and repeated perturbations. Two bioreactor units seeded with an anaerobic dechlorinating consortium (WBC-2) and one unit seeded only with bacteria indigenous to the site were operated under flow-through conditions to compare biougmentation and natural attenuation. Electron donor levels were varied to fluctuate between anaerobic and aerobic conditions, and inflow concentrations of total chlorobenzenes were transitioned from 1-10 mg/L to 50-100 mg/L. Biodegradation resulted in removal efficiencies of 80 to 99 percent for the different compounds and inflow concentrations. Degradation efficiency in the native bioreactor was not impacted by cycling between anaerobic and aerobic conditions, although removal rates for monochlorobenzene and benzene increased under aerobic conditions. In situ microcosms were incubated below the wetland surface in sets of 3 treatments—unamended, biostimulated (lactate addition), and bioaugmented (WBC-2 and lactate). Additional treatment sets contained 13C-labeled contaminants to monitor for production of 13C-containing carbon dioxide and cellular material. Microcosm results verified that WBC-2 bioaugmentation can enhance biodegradation, with complete mineralization of chlorobenzene and benzene in bioaugmented and native treatments. Microbial analyses using QuantArrayTM for functional and taxonomic genes indicated potential for co-occurrence of anaerobic and aerobic biodegradation. Compared to the unamended

  9. Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies.

    Directory of Open Access Journals (Sweden)

    Nagasundaram N

    Full Text Available The cyclin-dependent kinase 4 (CDK4-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1 and protein-ligand (CDK4-flavopiridol interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.

  10. Species composition,distribution patterns and ecological functions of biological soil crusts in the Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.

  11. The role of ontologies in biological and biomedical research: a functional perspective.

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N; Gkoutos, Georgios V

    2015-11-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  12. Identification of distinct biological functions for four 3′-5′ RNA polymerases

    Science.gov (United States)

    Long, Yicheng; Abad, Maria G.; Olson, Erik D.; Carrillo, Elisabeth Y.; Jackman, Jane E.

    2016-01-01

    The superfamily of 3′-5′ polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNAHis guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNAHis maturation reaction, which is distinct from the tRNAHis maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5′-editing in vivo and in vitro, establishing template-dependent 3′-5′ polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3′-5′ polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3′-5′ polymerases in eukaryotes. PMID:27484477

  13. Identification of distinct biological functions for four 3'-5' RNA polymerases.

    Science.gov (United States)

    Long, Yicheng; Abad, Maria G; Olson, Erik D; Carrillo, Elisabeth Y; Jackman, Jane E

    2016-09-30

    The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.

  14. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  15. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age

    Science.gov (United States)

    Norman, Amanda; Hulse, Gary Kenneth

    2017-01-01

    Background Amphetamine abuse is becoming more widespread internationally. The possibility that its many cardiovascular complications are associated with a prematurely aged cardiovascular system, and indeed biological organism systemically, has not been addressed. Methods Radial arterial pulse tonometry was performed using the SphygmoCor system (Sydney). 55 amphetamine exposed patients were compared with 107 tobacco smokers, 483 non-smokers and 68 methadone patients (total=713 patients) from 2006 to 2011. A cardiovascular-biological age (VA) was determined. Results The age of the patient groups was 30.03±0.51–40.45±1.15 years. This was controlled for with linear regression. The sex ratio was the same in all groups. 94% of amphetamine exposed patients had used amphetamine in the previous week. When the (log) VA was regressed against the chronological age (CA) and a substance-type group in both cross-sectional and longitudinal models, models quadratic in CA were superior to linear models (both pamphetamine exposure persisted after adjustment for all known cardiovascular risk factors (pamphetamines is associated with an advancement of cardiovascular-organismal age both over age and over time, and is robust to adjustment. That this is associated with power functions of age implies a feed-forward positively reinforcing exacerbation of the underlying ageing process. PMID:28243315

  16. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    黄一丁; 梁镇和; 冯佑民

    2001-01-01

    To investigate the relationship between the biological activity of recombined single chain insulin and the length of the connecting peptide, we designed and prepared three single chain insulin molecules, namely, PIP, [A]5PIP and [A]10PIP, by site-directed mutagenesis, in which B30 and A1 were linked through dipeptide A-K, heptapeptide A-A-A-A-A-A-K, and dodecapeptide A-A-A-A-A-A-A-A-A-A-A-K, respectively. Their receptor binding capacities were 0.14%, 14.3% and 11.1% of that of insulin respectively and their in vivo biological activities were in consistence with their receptor binding capacity; whereas their growth promoting activities were 17%, 116.3% and 38% of that of insulin. These results suggested the following conclusions. (i) The recombined single chain insulin could also possess the same metabolic and mitogenic function as insulin. (ii) The receptor binding capacity of recombined single chain insulin to insulin receptor was closely related to the length and amino acid composition of the connecting peptide and could change from 0 to 100% of insulin depending on the different connecting peptides. This result further illustrated the necessity of B chain C-terminus swaying away from A chain N-terminus when insulin binds to its receptor. (iii) The mitogenic activity of recombined single chain insulin also depended on the length and the amino acid composition of the connecting peptide and was higher than its metabolic activity.

  17. Restoration of voice function by using biological feedback in laryngeal and hypopharyngeal carcinoma patients

    Science.gov (United States)

    Choinzonov, E. L.; Balatskaya, L. N.; Chizhevskaya, S. Yu.; Meshcheryakov, R. V.; Kostyuchenko, E. Yu.; Ivanova, T. A.

    2016-08-01

    The aim of the research is to develop and introduce a new technique of post-laryngectomy voice rehabilitation of laryngeal and hypopharyngeal carcinoma patients. The study involves comparing and analyzing 82 cases of voice function restoration by using biological feedback based on mathematical modeling of voice production. The advantage of the modern technology-based method in comparison with the conventional one is proved. Restoration of voice function using biofeedback allows taking into account patient's abilities, adjusting parameters of voice trainings, and controlling their efficiency in real-time mode. The data obtained indicate that the new method contributes to the rapid inclusion of self-regulation mechanisms of the body and results in the overall success rate of voice rehabilitation in totally laryngectomized patients reaching 92%, which reduces the rehabilitation period to 18 days, compared to 86% and 38 days in the control group, respectively. Restoration of disturbed functions after successful treatment is an important task of rehabilitation and is crucial in terms of the quality of cancer patients' lives. To assess life quality of laryngeal cancer patients, the EORTC Quality of Life Core Questionnaire (QLQ-C30), and head and neck module (QLQ-H&N35) were used. The analyzed results proved that the technique of biofeedback voice restoration significantly improves the quality of life of laryngectomized patients. It allows reducing the number of disabled people, restoring patients' ability to work-related activities, and significantly improving social adaptation of these patients.

  18. FUSE: a profit maximization approach for functional summarization of biological networks

    Directory of Open Access Journals (Sweden)

    Seah Boon-Siew

    2012-03-01

    Full Text Available Abstract Background The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL principle to maximize information gain of the summary graph while satisfying the level of detail constraint. Results We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. Conclusion By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.

  19. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    Science.gov (United States)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  20. The universality and biological significance of signal molecules with intracellular-extracellular compatible functions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Generally,cell signal molecules are classified into the extracellular signal molecules (the first messengers) and the intracellular signal ones (the second messengers).Cyclic adenosine monophosphate (cAMP),calcium ions and calmodulin (CaM) are the traditional intracellular messengers,but they are also present in extracellular matrix (ECM).Some of them have been discovered to act as the first messengers through cell surface receptors.Other second messengers,such as cyclic guanosine monophosphate (cGMP),cyclic adenosine diphosphate ribose (cADPR) and annexin,are also found existing outside animal and plant cells.The existence of these messengers with intracellular-extracellular compatible functions in cells may be a regular biological phenomenon.These compatible messengers might be the communication factors between intracellular and extracellular regions or among the cell populations,and are also important in regulating cell development procedure.

  1. Function of parotid gland following irradiation and its relation to biological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T. (Tohoku Univ., Sendai, Japan); Yamamoto, M.; Takeda, M.

    1980-09-01

    The function of the parotid gland in the mouse (synthesis and secretion of ..cap alpha..-amylase) following X irradiation was analyzed in relation to the parameters of surviving acinar cell fraction, DNA or protein content, and wet weight of the gland. Both synthesis and secretion of amylase in parotid were essentially unchanged when mice were irradiated with a dose of up to 3000 rad. When mice were irradiated and then given a proliferative stimulus of isoproterenol, latent lethal damage in the acinar cell population was expressed and resulted in cell degeneration in a dose-dependent manner. The mean value of amylase activity per gland in similarly treated parotids was, however, totally unaffected. The relationship between amylase activity per gland and the other biological parameters was analyzed by regression analysis. The results indicate that amylase activity per surviving acinar cell increased proportionately to compensate for the loss of acinar cells.

  2. The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions

    Science.gov (United States)

    Steiner, Markus; Huber, Sara; Harrer, Andrea

    2016-01-01

    Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology. PMID:28078302

  3. N-Hexyl-4-aminobutyl glycosides for investigating structures and biological functions of carbohydrates.

    Science.gov (United States)

    Suzuki, Katsuhiko; Tobe, Akifumi; Adachi, Shin; Daikoku, Shusaku; Hasegawa, Yasuko; Shioiri, Yuki; Kobayashi, Mariko; Kanie, Osamu

    2009-11-21

    The potential applications of N-hexyl-4-aminobutyl glycosides in the mass spectrometric investigation of glycan structure and in the investigation of glycan functions were studied. Under collision-induced dissociation (CID) conditions, sodiated glycosides carrying N-hexyl-4-aminobutyl groups effectively produced a hemiacetal species (C-ions), which is important in mass-spectrometry-based structural investigation. The usefulness of N-hexyl-4-aminobutyl glycosides in biological analysis was also confirmed by obtaining a binding constant for the binding of dipyrrometheneboron difluoride C3-labeled N-hexyl-4-aminobutyl beta-lactoside with an Erythrina cristagalli lectin, and by visualizing cellular organelles using a more hydrophobic BODIPY-labeled compound.

  4. Perspectives in the biological function and the technological application of polygalacturonases.

    Science.gov (United States)

    Lang, C; Dörnenburg, H

    2000-04-01

    Polygalacturonases (PG) have evolved in the past years from a pectinase "simply" being used for food processing to an important parameter in plant-fungal interaction. PG-inhibiting proteins (PGIP) that are synthesised in plants as a specific response to PGs of pathogenic fungi, have become a focus as a possible target in resistance breeding, and PGIPs are also a concern as an inhibiting factor in food processing. Plant PGs have been identified as a major factor in fruit ripening, and PG-deficient transgenic plants have been bred. Mainly fungal PGs are used in industrial processes for juice clarification and the range of enzymes is being extended through new recombinant and non-recombinant fungal strains. Finally, novel fields of application can be envisaged for PGs in the production of oligogalacturonides as functional food components. Here we aim to highlight the various fields where PGs are encountered and where they are of biological or technological importance.

  5. Stereoelectronic effects dictate molecular conformation and biological function of heterocyclic amides.

    Science.gov (United States)

    Reid, Robert C; Yau, Mei-Kwan; Singh, Ranee; Lim, Junxian; Fairlie, David P

    2014-08-27

    Heterocycles adjacent to amides can have important influences on molecular conformation due to stereoelectronic effects exerted by the heteroatom. This was shown for imidazole- and thiazole-amides by comparing low energy conformations (ab initio MP2 and DFT calculations), charge distribution, dipole moments, and known crystal structures which support a general principle. Switching a heteroatom from nitrogen to sulfur altered the amide conformation, producing different three-dimensional electrostatic surfaces. Differences were attributed to different dipole and orbital alignments and spectacularly translated into opposing agonist vs antagonist functions in modulating a G-protein coupled receptor for inflammatory protein complement C3a on human macrophages. Influences of the heteroatom were confirmed by locking the amide conformation using fused bicyclic rings. These findings show that stereoelectronic effects of heterocycles modulate molecular conformation and can impart strikingly different biological properties.

  6. Nitrification inhibition as measured by RNA- and DNA-based function-specific assays and microbial community structure analyses

    Science.gov (United States)

    Abstract: The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification, which transforms ammonia into nitrate, which in turn is converted into nitrogen gas by denitrifying bacteria. The first step in nitrification, ...

  7. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities.

    Science.gov (United States)

    Tsalkova, Tamara; Blumenthal, Donald K; Mei, Fang C; White, Mark A; Cheng, Xiaodong

    2009-08-28

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized "hinge" motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.

  8. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  9. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    Science.gov (United States)

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  10. Organic Composition and Morphology of Sea Spray Aerosols as a Function of Biological Life during IMPACTS

    Science.gov (United States)

    Pham, D.; Moffet, R.; Fraund, M. W.; O'Brien, R.; Laskina, O.; Prather, K. A.; Grassian, V. H.; Beall, C.; Wang, X.; Forestieri, S.; Cappa, C. D.

    2015-12-01

    Aerosols influence climate by directly reflecting or absorbing sunlight, or indirectly by affecting clouds. A major source of aerosols is from oceanic wave breaking. Due to their complexity, the effects of marine aerosol on climate are uncertain. To provide more detailed measurements of the chemical composition of marine aerosols, Scanning Transmission X-Ray Microscopy coupled with Near Edge X-Ray Absorption Fine Structure (SXTM-NEXAFS) was used to give spatially resolved molecular information for carbon and oxygen. Application of STXM/NEXAFS to particles collected during a mesocosm study using a unique wave channel facility to generate aerosols shows that the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.18-0.32 μm are a direct function of the biological activity in the sea water. Aerosol organic volume fraction increased from 0.32 for particles generated from seawater containing low biolife to 0.49 and 0.40 for particles produced during phytoplankton blooms. However, the organic volume fraction of aerosols at the aerodynamic diameter size range of 0.56-1 μm did not change with biological activity. Measurements also show that different types of organics can concentrate into aerosols depending on the enzyme activity expressed at the time. Enhanced spectral signatures for aliphatic hydrocarbons were observed during the first phytoplankton bloom compared to a second phytoplankton bloom occurring directly thereafter. The decreased signature of aliphatic organics in the second phytoplankton bloom was correlated with increased lipase activity from heterobacteria. Organic aggregates having similar morphology also differ in composition from their carbon spectra from the two blooms. For July 17, organic aggregates were much richer in hydrocarbons, which showed a remarkably intense C-H absorbance and a broad C-C absorbance. Organic aggregates observed for July 26-27, did not have the C-H and C-C signatures, but contained more polar

  11. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    Science.gov (United States)

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen

  12. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p < 0.05), we found 9-T2DM related genes using extensive data mapping. In our constructed gene-network, T2DM-related differentially expressed seeder genes (9-genes) are found to interact with functionally related gene signatures (31-genes). The genetic interaction network of both T2DM-associated seeder as well as signature genes generally relates well with the disease condition based on toxicogenomic and data curation. Results: These networks showed significant enrichment of insulin signaling, insulin secretion and other T2DM-related pathways including JAK-STAT, MAPK, TGF, Toll-like receptor, p53 and mTOR, adipocytokine, FOXO, PPAR, P13-AKT, and triglyceride metabolic pathways. We found some enriched pathways that are common in different conditions. We recognized 11-signaling pathways as a connecting link between gene signatures in insulin resistance and T2DM. Notably, in the drug-gene network, the interacting genes showed significant overlap with 13-FDA approved and few non-approved drugs. This study demonstrates the value of systems genetics for identifying 18 potential genes associated with T2DM that are probable drug targets. Conclusions: This integrative and network based approaches for finding variants in genomic data expect to accelerate identification of new drug target molecules for different diseases and can speed up drug discovery outcomes. PMID:28179884

  13. Mimicking/extracting structure and functions of natural products: synthetic approaches that address unexplored needs in chemical biology.

    Science.gov (United States)

    Hirai, Go

    2015-04-01

    Natural products are often attractive and challenging targets for synthetic chemists, and many have interesting biological activities. However, synthetic chemists need to be more than simply suppliers of compounds to biologists. Therefore, we have been seeking ways to actively apply organic synthetic methods to chemical biology studies of natural products and their activities. In this personal review, I would like to introduce our work on the development of new biologically active compounds inspired by, or extracted from, the structures of natural products, focusing on enhancement of functional activity and specificity and overcoming various drawbacks of the parent natural products.

  14. Technique for examining biological materials using diffuse reflectance spectroscopy and the kubelka-munk function

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R.; Yang, Yuanlong

    2003-09-02

    Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.

  15. SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.

    Science.gov (United States)

    Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl

    2015-12-17

    The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here, we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca(2+) imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function.

  16. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  17. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    Directory of Open Access Journals (Sweden)

    Zahra YADEGARI

    2015-10-01

    Full Text Available Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate ex-pression of full-length functional recombinant human amelogenin (rhAm in Iranian lizard Leishmania (I.L.L. as an alternative eukaryotic expression system.Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control.Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm sig-nificantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+ multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells.Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future.

  18. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  19. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    Science.gov (United States)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  20. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.

    Science.gov (United States)

    Apte, Suneel S; Parks, William C

    2015-01-01

    This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes

  1. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    Science.gov (United States)

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies.

  2. Network class superposition analyses.

    Directory of Open Access Journals (Sweden)

    Carl A B Pearson

    Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

  3. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules

    Science.gov (United States)

    Linden, Rafael

    2017-01-01

    The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling

  4. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography.

    Science.gov (United States)

    Safford, Ashley S; Hussey, Elizabeth A; Parasuraman, Raja; Thompson, James C

    2010-07-07

    Although it is well documented that the ability to perceive biological motion is mediated by the lateral temporal cortex, whether and when neural activity in this brain region is modulated by attention is unknown. In particular, it is unclear whether the processing of biological motion requires attention or whether such stimuli are processed preattentively. Here, we used functional magnetic resonance imaging, high-density electroencephalography, and cortically constrained source estimation methods to investigate the spatiotemporal effects of attention on the processing of biological motion. Directing attention to tool motion in overlapping movies of biological motion and tool motion suppressed the blood oxygenation level-dependent (BOLD) response of the right superior temporal sulcus (STS)/middle temporal gyrus (MTG), while directing attention to biological motion suppressed the BOLD response of the left inferior temporal sulcus (ITS)/MTG. Similarly, category-based modulation of the cortical current source density estimates from the right STS/MTG and left ITS was observed beginning at approximately 450 ms following stimulus onset. Our results indicate that the cortical processing of biological motion is strongly modulated by attention. These findings argue against preattentive processing of biological motion in the presence of stimuli that compete for attention. Our findings also suggest that the attention-based segregation of motion category-specific responses only emerges relatively late (several hundred milliseconds) in processing.

  5. Single-molecule conformational dynamics of a biologically functional hydroxocobalamin riboswitch.

    Science.gov (United States)

    Holmstrom, Erik D; Polaski, Jacob T; Batey, Robert T; Nesbitt, David J

    2014-12-03

    Riboswitches represent a family of highly structured regulatory elements found primarily in the leader sequences of bacterial mRNAs. They function as molecular switches capable of altering gene expression; commonly, this occurs via a conformational change in a regulatory element of a riboswitch that results from ligand binding in the aptamer domain. Numerous studies have investigated the ligand binding process, but little is known about the structural changes in the regulatory element. A mechanistic description of both processes is essential for deeply understanding how riboswitches modulate gene expression. This task is greatly facilitated by studying all aspects of riboswitch structure/dynamics/function in the same model system. To this end, single-molecule fluorescence resonance energy transfer (smFRET) techniques have been used to directly observe the conformational dynamics of a hydroxocobalamin (HyCbl) binding riboswitch (env8HyCbl) with a known crystallographic structure.1 The single-molecule RNA construct studied in this work is unique in that it contains all of the structural elements both necessary and sufficient for regulation of gene expression in a biological context. The results of this investigation reveal that the undocking rate constant associated with the disruption of a long-range kissing-loop (KL) interaction is substantially decreased when the ligand is bound to the RNA, resulting in a preferential stabilization of the docked conformation. Notably, the formation of this tertiary KL interaction directly sequesters the Shine-Dalgarno sequence (i.e., the ribosome binding site) via base-pairing, thus preventing translation initiation. These results reveal that the conformational dynamics of this regulatory switch are quantitatively described by a four-state kinetic model, whereby ligand binding promotes formation of the KL interaction. The results of complementary cell-based gene expression experiments conducted in Escherichia coli are highly

  6. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  7. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (P<0.001), expression level and breadth (P<0.01), DNA methylation signature (P<0.001) and evolutionary rate (P<0.001). The similar selection pressures and epigenetic trajectories of GKs and POs so implied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  8. Improved normal tissue sparing in head and neck radiotherapy using biological cost function based-IMRT.

    Science.gov (United States)

    Anderson, N; Lawford, C; Khoo, V; Rolfo, M; Joon, D L; Wada, M

    2011-12-01

    Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50_Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

  9. Melanocyte biology and function with reference to oral melanin hyperpigmentation in HIV-seropositive subjects.

    Science.gov (United States)

    Feller, Liviu; Chandran, Rakesh; Kramer, Beverley; Khammissa, Razia A G; Altini, Mario; Lemmer, Johan

    2014-09-01

    The color of normal skin and of oral mucosa is not determined by the number of melanocytes in the epithelium but rather by their melanogenic activity. Pigmented biopolymers or melanins are synthesized in melanosomes. Tyrosinase is the critical enzyme in the biosynthesis of both brown/black eumelanin and yellow/red pheomelanin. The number of the melanosomes within the melanocytes, the type of melanin within the melanosomes, and the efficacy of the transfer of melanosomes from the melanocytes to the neighboring keratinocytes all play an important role in tissue pigmentation. Melanin production is regulated by locally produced factors including proopiomelanocortin and its derivative peptides, particularly alpha-melanocyte-stimulating hormone (α-MSH), melanocortin 1 receptor (MC1R), adrenergic and cholinergic agents, growth factors, cytokines, and nitric oxide. Both eumelanin and pheomelanin can be produced by the same melanocytes, and the proportion of the two melanin types is influenced by the degree of functional activity of the α-MSH/MC1R intracellular pathway. The cause of HIV oral melanosis is not fully understood but may be associated with HIV-induced cytokine dysregulation, with the medications commonly prescribed to HIV-seropositive persons, and with adrenocortical dysfunction, which is not uncommon in HIV-seropositive subjects with AIDS. The purpose of this article is to discuss some aspects of melanocyte biology and HIV-associated oral melanin hyperpigmentation.

  10. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    Science.gov (United States)

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola

    2014-10-01

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.

  11. Expression of a Magnaporthe grisea Elicitor and Its Biological Function in Activating Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The expression of a protein elicitor from Magnaporthe griesea and its biological function in activating resistance in rice (Oryza sativa L) were reported. The gene of elicitor was expressed in Escherichia coli cells and produced a His6-fusion protein with 42 kD apparent molecular weight on SDS-PAGE. The purified protein could induce the resistance to blast disease, with the control efficiency of 46.47% and 36.41% at the 14th day and the 21st day after blast inoculation, respectively.After treatment with the expressed protein, the phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities were promoted in rice plants, meanwhile, the transcription levels of STKM, FAD, PBZ1 and PR1 genes were increased in rice plants. Moreover, after comparing the profile of total rice leaf proteins on two-dimensional eiectrophoresis gel, about 14proteins were found to be increased in expression level after the expressed protein treatment. All the results indicated that the expressed protein could act as an elicitor to trigger the resistance in rice.

  12. The biology and functional morphology of Macoma biota (Bivalvia: Tellinidae: Macominae

    Directory of Open Access Journals (Sweden)

    Pedro Ribeiro Piffer

    2011-06-01

    Full Text Available Macoma biota Arruda & Domaneschi, 2005, is a recently described species known only from the intertidal zone of Praia da Cidade, Caraguatatuba Bay, in the state of São Paulo, southeastern Brazil. The main purpose of the present paper is to describe the biology of M. biota, beginning with a detailed analysis of its anatomy and functional morphology and how these attributes are correlated with its habitat and life history. The morphology of the organs in the pallial cavity and their sorting devices indicate that this species has efficient mechanisms to process large amounts of particles that enter this cavity via the inhalant current. M. biota can rapidly select the material suitable for ingestion and direct the undesired excess to the rejection mantle tracts. These characteristics along with the siphon's behavior and the digestive tract configuration reveal that this species can be classified primarily as a deposit feeder, like other species of the genus; however, it can also behave as a suspension feeder, depending on the environmental conditions.

  13. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  14. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-05

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  15. Structural changes in PVDF fibers due to electrospinning and its effect on biological function.

    Science.gov (United States)

    Damaraju, Sita M; Wu, Siliang; Jaffe, Michael; Arinzeh, Treena Livingston

    2013-08-01

    Polyvinylidine fluoride (PVDF) is being investigated as a potential scaffold for bone tissue engineering because of its proven biocompatibility and piezoelectric property, wherein it can generate electrical activity when mechanically deformed. In this study, PVDF scaffolds were prepared by electrospinning using different voltages (12-30 kV), evaluated for the presence of the piezoelectric β-crystal phase and its effect on biological function. Electrospun PVDF was compared with unprocessed/raw PVDF, films and melt-spun fibers for the presence of the piezoelectric β-phase using differential scanning calorimetry, Fourier transform infrared spectroscopy and x-ray diffraction. The osteogenic differentiation of human mesenchymal stem cells (MSCs) was evaluated on scaffolds electrospun at 12 and 25 kV (PVDF-12 kV and PVDF-25 kV, respectively) and compared to tissue culture polystyrene (TCP). Electrospinning PVDF resulted in the formation of the piezoelectric β-phase with the highest β-phase fraction of 72% for electrospun PVDF at 25 kV. MSCs cultured on both the scaffolds were well attached as indicated by a spread morphology. Cells on PVDF-25 kV scaffolds had the greatest alkaline phosphatase activity and early mineralization by day 10 as compared to TCP and PVDF-12 kV. The results demonstrate the potential for the use of PVDF scaffolds for bone tissue engineering applications.

  16. Molecular mechanism and biological function of miRNA-155 and its target genes on endometriosis

    Institute of Scientific and Technical Information of China (English)

    Na Ji; Li Zhao; Xin Feng; Li-Mei Luo; Ting Liang; Chen-Yu Zhuang; Li-Hua Zhang

    2015-01-01

    Objective:To explore molecular mechanism and biological function of miR-155 and its target genes on endometriosis.Methods: The expression of miR-155 in Ems patient and healthy control were assayed by RT-PCR. After miR-155 mimic and inhibitor were transfected into Ems endometrial cells for 48 h, the viability of cell was detected by MTT assay. Transwell migration and invasion assay were used to detect cell migration and invasion. The expression of cell apoptotic protein Bax and Bcl-2, matrix metalloproteinase (MMP 2) and MMP 9 were assayed by western blot.Results: The expression of miR-155 in Ems patient was more than that in the health control (P<0.01). After miR-155 mimic and inhibitor were transfected into Ems endometrial cells for 48 h, miR-155 over-expression could increase cell viability, and promoted cell migration and invasion, which was related to down-regulation of Bax along with up-regulation of Bcl-2, MMP 2 and MMP 9.Conclusion:These results suggested miR-155 lower expression inhibit endometrial cell proliferation and migration of the Ems.

  17. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    Science.gov (United States)

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century.

  18. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  19. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  20. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets

    NARCIS (Netherlands)

    Wain, Louise V; Shrine, Nick; Artigas, María Soler; Erzurumluoglu, A Mesut; Noyvert, Boris; Bossini-Castillo, Lara; Obeidat, Ma'en; Henry, Amanda P; Portelli, Michael A; Hall, Robert J; Billington, Charlotte K; Rimington, Tracy L; Fenech, Anthony G; John, Catherine; Blake, Tineka; Jackson, Victoria E; Allen, Richard J; Prins, Bram P; Campbell, Archie; Porteous, David J; Jarvelin, Marjo-Riitta; Wielscher, Matthias; James, Alan L; Hui, Jennie; Wareham, Nicholas J; Zhao, Jing Hua; Wilson, James F; Joshi, Peter K; Stubbe, Beate; Rawal, Rajesh; Schulz, Holger; Imboden, Medea; Probst-Hensch, Nicole M; Karrasch, Stefan; Gieger, Christian; Deary, Ian J; Harris, Sarah E; Marten, Jonathan; Rudan, Igor; Enroth, Stefan; Gyllensten, Ulf; Kerr, Shona M; Polasek, Ozren; Kähönen, Mika; Surakka, Ida; Vitart, Veronique; Hayward, Caroline; Lehtimäki, Terho; Raitakari, Olli T; Evans, David M; Henderson, A John; Pennell, Craig E; Wang, Carol A; Sly, Peter D; Wan, Emily S; Busch, Robert; Hobbs, Brian D; Litonjua, Augusto A; Sparrow, David W; Gulsvik, Amund; Bakke, Per S; Crapo, James D; Beaty, Terri H; Hansel, Nadia N; Mathias, Rasika A; Ruczinski, Ingo; Barnes, Kathleen C; Bossé, Yohan; Joubert, Philippe; van den Berge, Maarten; Brandsma, Corry-Anke; Paré, Peter D; Sin, Don D; Nickle, David C; Hao, Ke; Gottesman, Omri; Dewey, Frederick E; Bruse, Shannon E; Carey, David J; Kirchner, H Lester; Jonsson, Stefan; Thorleifsson, Gudmar; Jonsdottir, Ingileif; Gislason, Thorarinn; Stefansson, Kari; Schurmann, Claudia; Nadkarni, Girish; Bottinger, Erwin P; Loos, Ruth J F; Walters, Robin G; Chen, Zhengming; Millwood, Iona Y; Vaucher, Julien; Kurmi, Om P; Li, Liming; Hansell, Anna L; Brightling, Chris; Zeggini, Eleftheria; Cho, Michael H; Silverman, Edwin K; Sayers, Ian; Trynka, Gosia; Morris, Andrew P; Strachan, David P; Hall, Ian P; Tobin, Martin D

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 in

  1. Functionalization of Titanium with Chitosan via Silanation: Evaluation of Biological and Mechanical Performances

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation. PMID:22859940

  2. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Science.gov (United States)

    Renoud, Pauline; Toury, Bérangère; Benayoun, Stéphane; Attik, Ghania; Grosgogeat, Brigitte

    2012-01-01

    Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  3. Functionalization of titanium with chitosan via silanation: evaluation of biological and mechanical performances.

    Directory of Open Access Journals (Sweden)

    Pauline Renoud

    Full Text Available Complications in dentistry and orthopaedic surgery are mainly induced by peri-implant bacterial infections and current implant devices do not prevent such infections. The coating of antibacterial molecules such as chitosan on its surface would give the implant bioactive properties. The major challenge of this type of coating is the attachment of chitosan to a metal substrate. In this study, we propose to investigate the functionalization of titanium with chitosan via a silanation. Firstly, the surface chemistry and mechanical properties of such coating were evaluated. We also verified if the coated chitosan retained its biocompatibility with the peri-implant cells, as well as its antibacterial properties. FTIR and Tof-SIMS analyses confirmed the presence of chitosan on the titanium surface. This coating showed great scratch resistance and was strongly adhesive to the substrate. These mechanical properties were consistent with an implantology application. The Chitosan-coated surfaces showed strong inhibition of Actinomyces naeslundii growth; they nonetheless showed a non significant inhibition against Porphyromonas gingivalis after 32 hours in liquid media. The chitosan-coating also demonstrated good biocompatibility to NIH3T3 fibroblasts. Thus this method of covalent coating provides a biocompatible material with improved bioactive properties. These results proved that covalent coating of chitosan has significant potential in biomedical device implantation.

  4. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  5. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator

    Directory of Open Access Journals (Sweden)

    Thomas eHoellinger

    2013-05-01

    Full Text Available The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996 was recently modeled (Barliya et al., 2009 by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  6. Interaction of hepatitis B virus with tumor suppressor gene p53: its significance and biological function

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mechanism of the interaction of hepatitis B virus (HBV) with tumor suppressor p53 and its role in the hepatocarcinogenesis have been studied by PCR-directed sequencing, gel shift assays and in situ ultraviolet cross-linking assay. The biological function of the interaction of HBV with p53 gene was investigated by co-transfection of chloramphenicol acetyltransferase (CAT) reporter gene, p53 and HBV DNA, and quantitative PCR. Among the 16 primary hepatocellular carcinoma (PHC) samples, 13 were HBV-DNA positive,10 HBxAg positive and 9 p53 protein positive. The p53 gene point mutation was found in 5 samples, one of which had a G to T substitution located at codon 249. After analyzing the HBV genome by a computer program, a p53 response element binding sequence was found in HBV genome at upstream of enhancer I, from 1047 to 1059 nucleotides. This sequence could specifically bind to p53 protein, increase p53 protein accumulation in the PHC cells and stimulate the transactivating activity of p53 and HBV replication .The results also revealed that HBxAg could combine with p53 protein to form a complex in the cells and enhance CAT expression. Immunocytochemical staining showed that p53 protein complex was located in the cytoplasm and the process of p53 entry to nuclei was, in part, blocked. From our results, we conclude that the mutation of p53 gene at codon 249 is infrequent in HBV-associated PHC, the DNA-protein binding between HBV and p53, and the protein-protein binding between HBxAg and p53 might lead to the reduction or inactivation of p53 protein, which in turn resulting in HBV-associated hepatocarcinogenesis.

  7. Biological function of hpsh4590 localized in the plasticity zone of Helicobacter pylori.

    Science.gov (United States)

    Gu, Yu-feng; Li, Yu; Song, Yu; Chang, Xin; Qu, Ye-Min; Wang, Ming-Yi; Gao, Xiao-Zhong

    2016-04-01

    The aim of this study was to determine the biological function of hpsh4590 in Helicobacter pylori. After Hpsh4590 was expressed using a prokaryotic expression system, the cytotoxic effects and IL-8 production of Hpsh4590 were analyzed by co-culturing with GES-1 cells. Meanwhile, the antibody of rHpsh4590, produced by immunizing rabbit, was used for localization and protein interaction studies. Hpsh4590 fusion protein was expressed successfully in Escherichia coli Rosetta (DE3), and the polyclonal antibody was produced at high titers. The MTT assay showed that the inhibition ratio of GES-1 cells cultured with 0.1 μg/mL rHpsh4590 (3.02% ± 0.02%) was significantly lower than that of 20 μg/mL rHpsh4590 (57.57% ± 0.03%, p < 0.01), while DAPI staining showed the cytotoxic effects of rHpsh4590 for GES-1 cells. The up-regulation of cleaved caspase-3 and cleaved PARP was observed after GES-1 cells co-cultured with rHpsh4590 by Western blot. Co-culturing of GES-1 cells with rHpsh0459 (20 μg/mL) led to significant production of IL-8 at 12 h(1097.74 ± 212.37 pg/mL) and 24 h (1379.55 ± 209.58 pg/mL) then at 6 h(134.68 ± 14.64 pg/mL, p < 0.01). These observations suggest that the cytotoxicity of Hpsh4590 occurred in a concentration dependent manner, which is related with IL-8 secretion from gastric mucosal epithelial cells. Hpsh4590 was found localized in the membrane and the periplasm of H. pylori, interacted with zinc finger protein and methionine ABC transporter ATP-binding protein, and potentially regulates DNA uptake or transfer.

  8. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  9. Cellular Signaling Pathways in Insulin Resistance-Systems Biology Analyses of Microarray Dataset Reveals New Drug Target Gene Signatures of Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Muhammad, Syed Aun; Raza, Waseem; Nguyen, Thanh; Bai, Baogang; Wu, Xiaogang; Chen, Jake

    2017-01-01

    Purpose: Type 2 diabetes mellitus (T2DM) is a chronic and metabolic disorder affecting large set of population of the world. To widen the scope of understanding of genetic causes of this disease, we performed interactive and toxicogenomic based systems biology study to find potential T2DM related genes after cDNA differential analysis. Methods: From the list of 50-differential expressed genes (p new drug target molecules for different diseases and can speed up drug discovery outcomes.

  10. 49. Biological dose assessment by the analyses of chromosomal aberrations and CB micronuclei in two victims accidentally exposed to 60Co gamma-rays

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Biological doses were estimated by using the yields of dicentrics plus rings(dic+r) and cytokinesis-block micronuclei (CBMN) for two victims of the 60Co radiation source accident occurred on Mar 6,2001 in the City of Xuchang(victim A), and Jun 26,2001 in the City of Kaifeng(victim B), Henan Province, respectively. The whole blood of the victim A (male, 37 years old) and the victim B (female, 27 years old)

  11. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding

    Science.gov (United States)

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Jakobs, Oliver; Roski, Christian; Caspers, Svenja; Laird, Angela R.; Fox, Peter T.; Zilles, Karl; Eickhoff, Simon B.

    2016-01-01

    The right temporo-parietal junction (RTPJ) is consistently implicated in two cognitive domains, attention and social cognitions. We conducted multi-modal connectivity-based parcellation to investigate potentially separate functional modules within RTPJ implementing this cognitive dualism. Both task-constrained meta-analytic coactivation mapping and task-free resting-state connectivity analysis independently identified two distinct clusters within RTPJ, subsequently characterized by network mapping and functional forward/reverse inference. Coactivation mapping and resting-state correlations revealed that the anterior cluster increased neural activity concomitantly with a midcingulate–motor–insular network, functionally associated with attention, and decreased neural activity concomitantly with a parietal network, functionally associated with social cognition and memory retrieval. The posterior cluster showed the exact opposite association pattern. Our data thus suggest that RTPJ links two antagonistic brain networks processing external versus internal information. PMID:23689016

  12. Mapping biological soil crusts for understanding their functional relevance in dryland ecosystems

    Science.gov (United States)

    Rodriguez-Caballero, E.; Escribano, P.; Chamizo, S.; Canton, Y.

    2012-04-01

    Biological soil crusts (BSCs) are considered a key element in the functioning of arid and semiarid ecosystems as they modify numerous soil surface properties involved in primary ecosystem processes such as hydrological and erosion processes, and nutrient cycling.. It is known that arid and semiarid ecosystems are conformed by a complex matrix of vegetated and open ground patches usually covered by BSCs. Geomorphic evolution of drylands depends on the individual response of patches and also on the interactions and feedback-processes among patches. These interactions are controlled by patch spatial distribution. On this account, to understand the role of BSCs in the system, it is necessary to introduce their effect at coarser scales, and to have accurate and spatially continuous information of BSC distribution. The inherent complexity and the spatial heterogeneity of drylands make field survey methods very limited for BSC mapping. Images reported by remote sensors are presented as a powerful tool for mapping BSC spatial distribution. Remote sensors provide synoptic and spatially continuous information of the territory. Different indices for mapping BSCs have been published. These indices are based on distinctive spectral characteristic of BSCs and differ in nature and objectives. The aim of this work was to analyze the feasibility of some of these indices in a semiarid area characterized by sparse vegetation cover usually mixed at subpixel level with elements characterized by very similar spectral response (bare soil, BSCs and dry vegetation). These indices were: i) CRCIA, index applied for mapping BSCs from hyperspectral images. ii) CI, index developed for mapping of cyanobacteria-dominated BSCs and iii) BSCI, index for mapping of lichen-dominated BSCs. The multispectral indices (CI and BSCI) classified as BSCs 50% of the pixels dominated by BSCs. The CRCIA hyperspectral index, showed better results than those obtained with multispectral indices. This index

  13. Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia.

    Science.gov (United States)

    Mansha, Muhammad; Carlet, Michela; Ploner, Christian; Gruber, Georg; Wasim, Muhammad; Wiegers, Gerrit Jan; Rainer, Johannes; Geley, Stephan; Kofler, Reinhard

    2010-04-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and are used in the therapy of lymphoid malignancies. SLA (Src-like-adaptor), an inhibitor of T- and B-cell receptor signaling, is a promising candidate derived from expression profiling analyses in children with acute lymphoblastic leukemia (ALL). Over-expression and knock-down experiments in ALL in vitro model revealed that transgenic SLA alone had no effect on survival or cell cycle progression, nor did it affect sensitivity to, or kinetics of, GC-induced apoptosis. Although SLA is a prominent GC response gene, it does not seem to contribute to the anti-leukemic effects of GC.

  14. Mechanism of Epac Activation: STRUCTURAL AND FUNCTIONAL ANALYSES OF Epac2 HINGE MUTANTS WITH CONSTITUTIVE AND REDUCED ACTIVITIES*

    OpenAIRE

    Tsalkova, Tamara; Blumenthal, Donald K.; Mei, Fang C.; White, Mark A.; Cheng, Xiaodong

    2009-01-01

    Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized “hinge” motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Target...

  15. Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food.

    Science.gov (United States)

    Pasko, Pawel; Gdula-Argasinska, Joanna; Podporska-Carroll, Joanna; Quilty, Brid; Wietecha-Posluszny, Renata; Tyszka-Czochara, Malgorzata; Zagrodzki, Pawel

    2015-08-01

    Suitability assessment of amaranth sprouts as a new functional food was carried out. The optimisation of sprouting process and the influence of selenium supplementation, in doses 10, 15, and 30 mg/l of selenium as sodium selenite, on amaranth growth and fatty acid profile were examined. Methods such as FRAP, DPPH, polyphenols content and GPX activity were applied to characterize antioxidant potential of seeds and sprouts of four different edible amaranth genera. E. coli, S. aureus, C. albicans were used to evaluate amaranth sprouts antimicrobial properties. Interaction between amaranth sprouts and biological systems was assessed by analysing antibacterial and antifungal properties with a disc diffusion test. The studies proved amaranth sprouts to be potentially attractive as functional food. As confirmed by all the data amaranth sprouts are suitable as a moderate selenium accumulator and are rich in essential fatty acids, especially linoleic and alpha-linolenic acids, which are precursors of long chain polyunsaturated fatty acids. Thus, it opens dietary opportunities for amaranth sprouts. They can also serve as a moderate source of antioxidant compounds. Nevertheless, the experiments revealed neither antibacterial, nor antifungal properties of sprouts. In general, amaranth sprouts biological activity under evaluation has failed to prove to be significantly impacted by selenium fertilization.

  16. Virtual Agonist-antagonist Mechanisms Produce Biological Muscle-like Functions: An Application for Robot Joint Control

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    or torque sensing systems; thereby capable of implementing the model on small legged robots driven by, e.g., standard servo motors. Thus, the VAAM minimizes hardware and reduces system complexity. From this point of view, the model opens up another way of simulating muscle behaviors on artificial machines......Purpose – Biological muscles of animals have a surprising variety of functions, i.e., struts, springs, and brakes. According to this, the purpose of this paper is to apply virtual agonist-antagonist mechanisms to robot joint control allowing for muscle-like functions and variably compliant joint......, variably compliant joint motions can be produced without mechanically bulky and complex mechanisms or complex force/toque sensing at each joint. Moreover, through tuning the damping coefficient of the VAAM, the functions of the VAAM are comparable to biological muscles. Originality/value – The model (i...

  17. Analysing the Stewardship Function in Botswana’s Health System: Reflecting on the Past, Looking to the Future

    Directory of Open Access Journals (Sweden)

    Onalenna Seitio-Kgokgwe

    2016-12-01

    Full Text Available Background In many parts of the world, ongoing deficiencies in health systems compromise the delivery of health interventions. The World Health Organization (WHO identified four functions that health systems need to perform to achieve their goals: Efforts to strengthen health systems focus on the way these functions are carried out. While a number of studies on health systems functions have been conducted, the stewardship function has received limited attention. In this article, we evaluate the extent to which the Botswana Ministry of Health (MoH undertook its stewardship role. Methods We used the WHO Health Systems Performance Assessment Frame (HSPAF to guide analysis of the stewardship function of the Botswana’s MoH focusing on formulation of national health policies, exerting influence through health regulation, and coalition building. Data were abstracted from published and unpublished documents. We interviewed 54 key informants comprising staff of the MoH (N = 40 and stakeholder organizations (N = 14. Data from documents was analyzed through content analysis. Interviews were transcribed and analyzed through thematic analysis. Results A lack of capacity for health policy development was identified. Significant policy gaps existed in some areas. Challenges were reported in policy implementation. While the MoH made efforts in developing various statutes that regulated different aspects of the health system, some gaps existed in the regulatory framework. Poor enforcement of legislation was a challenge. Although the MoH had a high number of stakeholders, the mechanisms for stakeholder engagement in the planning processes were weak. Conclusion Problems in the exercise of the stewardship function posed challenges in ensuring accountability and limited the health system’s ability to benefit from its stakeholders. Ongoing efforts to establish a District Health System under control of the MoH, attempts to improve service delivery at a national

  18. A Functional Model for Teaching Osmosis-Diffusion to Biology Students

    Science.gov (United States)

    Olsen, Richard W.; Petry, Douglas E.

    1976-01-01

    Described is a maternal-fetal model, operated by the student, to teach osmosis-diffusion to biology students. Included are materials needed, assembly instructions, and student operating procedures. (SL)

  19. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  20. Preparation and structure investigation of novel Schiff bases using spectroscopic, thermal analyses and molecular orbital calculations and studying their biological activities.

    Science.gov (United States)

    Zayed, Ehab M; Zayed, M A; El-Desawy, M

    2015-01-05

    Two novel Schiff's bases (EB1 and L1) as new macrocyclic compounds were prepared via condensation reactions between bisaldehyde (2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde): firstly with hydrazine carbothioamide to give (EB1), secondly with 4,6-diaminopyrimidine-2-thiol to give (L1). EB1 has a general formula C₁₈H₂₀N₆O₂S₂ of mole mass=416.520, and IUPAC name ((N,N'Z,N,N'E)-N,N'-(((ethane1,2diylbis(oxy))bis(2,1phenylene))bis(methanylylidene))bis(1hydrazinylmethanethioamide). L1 has a general formula C₂₀H₁₆N₄O₂S of mole mass=376.10; and IUPAC name 1,2-bis(2-vinylphenoxy)ethane4,6-diaminopyrimidine-2-thiol). The structures of the compounds obtained were characterized based on elemental analysis, FT-IR and (1)H NMR spectra, mass, and thermogravimetric analysis (TG, DTG). The activation thermodynamic parameters, such as, ΔE(*), ΔH(*), ΔS(*) and ΔG(*) were calculated from the TG curves using Coats-Redfern method. It is important to investigate their structures to know the active groups and weak bond responsible for their biological activities. The obtained thermal (TA) and mass (MS) practical results are confirmed by semi-empirical MO-calculation using PM3 procedure, on the neutral and positively charged forms of these novel Schiff bases. Therefore, comparison between MS and TA helps in selection of the proper pathway representing the decomposition of these compounds to give indication about their structures and consequently their biological activities. Their biological activities have been tested in vitro against Escherichia coli, Proteus vulgaris, Bacillissubtilies and Staphylococcus aurous bacteria in order to assess their antimicrobial potential.

  1. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets.

    Science.gov (United States)

    Chen, Z; Lönnberg, T; Lahesmaa, R

    2013-08-01

    Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.

  2. [THE FUNCTIONAL CONSTITUENT OF A BIOLOGICAL COMPONENT IN PROGRAMS FOR TRAINING SPECIALISTS IN THE AREA OF PARASITOLOGY FOR ACCREDITATION].

    Science.gov (United States)

    Dovgalev, A S; Astanina, S Yu; Andreeva, N D

    2015-01-01

    The paper considers the functional aspects of a biological component in programs for training specialists in the area of Parasitology for accreditation within the current enactments, including those on modernization of public health and additional professional education. The working program of the module "Fundamental Disciplines" has been used as an example to outline approaches to molding a medical parasitologist's capacity and readiness to solve professional tasks on the basis of knowledge of fundamental disciplines: biology, immunology, and medical geography. Education fundamentalization is shown to suggest more unsupervised work of a learner in the teaching process. The fundamental constituent of a biological component of the 'programs for training learners in the specialty of Parasitology for accreditation is shown in the interaction of all sections of this area with special and allied subjects.

  3. Flow cytometric analyses of the viability, surface marker expression and function of lymphocytes from children following cryopreservation.

    Science.gov (United States)

    Chen, Xi; Zhang, Hui; Mou, Wenjun; Qi, Zhan; Ren, Xiaoya; Wang, Guoliang; Jiao, Hong; Kong, Xiaohui; Gui, Jingang

    2016-11-01

    Flow cytometric analysis is important for the investigation and clinical preparation of lymphocytes from children. However, the strict requirement of cell freshness and inter‑assay variability limits the application of this methodology for pediatric investigations. Therefore, it is necessary to identify a reliable cryopreservative method capable of maintaining high cell viability and proper cell function in lymphocytes from children. In the present study, eight commonly‑used cell cyropreservative methods were used, and their effects on cell viability, surface marker expression and cell function were examined. In addition, how these methods affect the distribution of T‑cell receptor Vβ subfamilies were also determined. The results of the present study provided valuable experimental evidence, based on which the optimal method for the cryopreservation of lymphocytes from children in pediatric investigations and clinical applications can be selected.

  4. The functional-cognitive framework as a tool for accelerating progress in cognitive neuroscience: On the benefits of bridging rather than reducing levels of analyses.

    Science.gov (United States)

    Vahey, Nigel; Whelan, Robert

    2016-02-01

    The subject matter of neuroscience research is complex, and synthesising the wealth of data from this research to better understand mental processes is challenging. A useful strategy, therefore, may be to distinguish explicitly between the causal effects of the environment on behaviour (i.e. functional analyses) and the mental processes that mediate these effects (i.e. cognitive analyses). In this article, we describe how the functional-cognitive (F-C) framework can accelerate cognitive neuroscience and also advance a functional treatment of brain activity. We first highlight that cognitive neuroscience can particularly benefit from the F-C approach by providing an alternative to the problematic practice of reducing cognitive constructs to behavioural and/or neural proxies. Next, we outline how functional (behaviour-environment) relations can serve as a bridge between cognitive and neural processes by restoring mental constructs to their original role as heuristic tools. Finally, we give some examples of how both cognitive neuroscience and traditional functional approaches can mutually benefit from the F-C framework.

  5. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    Science.gov (United States)

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  6. Changes in forebrain function from waking to REM sleep in depression: preliminary analyses of [18F]FDG PET studies.

    Science.gov (United States)

    Nofzinger, E A; Nichols, T E; Meltzer, C C; Price, J; Steppe, D A; Miewald, J M; Kupfer, D J; Moore, R Y

    1999-08-31

    Based on recent functional brain imaging studies of healthy human REM sleep, we hypothesized that alterations in REM sleep in mood disorder patients reflect a functional dysregulation within limbic and paralimbic forebrain structures during that sleep state. Six unipolar depressed subjects and eight healthy subjects underwent separate [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) PET scans during waking and during their first REM period of sleep. Statistical parametric mapping contrasts were performed to detect changes in relative regional cerebral glucose metabolism (rCMRglu) from waking to REM sleep in each group as well as interactions in patterns of change between groups. Clinical and EEG sleep comparisons from an undisturbed night of sleep were also performed. In contrast to healthy control subjects, depressed patients did not show increases in rCMRglu in anterior paralimbic structures in REM sleep compared to waking. Depressed subjects showed greater increases from waking to REM sleep in rCMRglu in the tectal area and a series of left hemispheric areas including sensorimotor cortex, inferior temporal cortex, uncal gyrus-amygdala, and subicular complex than did the control subjects. These observations indicate that changes in limbic and paralimbic function from waking to REM sleep differ significantly from normal in depressed patients.

  7. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D.; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea. PMID:27579575

  8. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  9. Kvalitative analyser ..

    DEFF Research Database (Denmark)

    Boolsen, Merete Watt

    bogen forklarer de fundamentale trin i forskningsprocessen og applikerer dem på udvalgte kvalitative analyser: indholdsanalyse, Grounded Theory, argumentationsanalyse og diskursanalyse......bogen forklarer de fundamentale trin i forskningsprocessen og applikerer dem på udvalgte kvalitative analyser: indholdsanalyse, Grounded Theory, argumentationsanalyse og diskursanalyse...

  10. Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region

    Science.gov (United States)

    Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.

    2008-01-01

    Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.

  11. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    Science.gov (United States)

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome

  12. 3D crustal velocity structure beneath the broadband seismic array in the Gyeongju area of Korea by receiver function analyses

    Science.gov (United States)

    Lee, Dong Hun; Lee, Jung Mo; Cho, Hyun-Moo; Kang, Tae-Seob

    2016-10-01

    A temporary seismic array was in operation between October 2010 and March 2013 in the Gyeongju area of Korea. Teleseismic records of the seismic array appropriate for receiver function analysis were collected, and selected seismograms were split into five groups based on epicenters-the Banda-Molucca, Sumatra, Iran, Aleutian, and Vanuatu groups. 1D velocity structures beneath each seismic station were estimated by inverting the stacked receiver functions for possible groups. The inversion was done by applying a genetic algorithm, whereas surface wave dispersion data were used as constraints to avoid non-uniqueness in the inversion. The composite velocity structure was constructed by averaging the velocity structures weighted by the number of receiver functions used in stacking. The uncertainty analysis for the velocity structures showed that the average of 95% confidence intervals was ± 0.1 km/s. The 3D velocity structure was modeled through interpolation of 1D composite velocity structures. Moho depths were determined in each composite velocity structure based on the AK135-F S-wave velocity model, and the depths were similar to the H-κ analysis results. The deepest Moho depth in the study area was found to be 31.9 km, and the shallowest, was 25.9 km. The Moho discontinuity dips in a southwestward direction beneath the area. A low velocity layer was also detected between 4 and 14 km depth. Adakitic intrusions and/or a high geothermal gradient appear to be the causes of this low velocity layer. The 3D velocity structure can be used to reliably assess seismic hazards in this area.

  13. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects.

    Directory of Open Access Journals (Sweden)

    Adam T Szafran

    Full Text Available BACKGROUND: Understanding how androgen receptor (AR function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS, and in the analysis of environmental endocrine disruptors. METHODOLOGY/PRINCIPAL FINDINGS: We report the development of a high throughput (HT image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5-24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear "speckling" were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. CONCLUSIONS/SIGNIFICANCE: HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations.

  14. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development.

    Science.gov (United States)

    Boscari, Alexandre; Clément, Mathilde; Volkov, Vadim; Golldack, Dortje; Hybiak, Jolanta; Miller, Anthony J; Amtmann, Anna; Fricke, Wieland

    2009-12-01

    It is not known how the uptake and retention of the key osmolyte K(+) in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K(+) channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K(+) transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K(+) channels which are inhibited by Cs(+). Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K(+) or salinity, despite major changes in K(+) concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K(+) relations of growing barley leaf cells are discussed.

  15. The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs.

    Science.gov (United States)

    Horowitz, Brent B; Ospina-Giraldo, Manuel D

    2015-01-01

    Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully understood. It has been found that oomycetes are not capable of penetrating the cell wall solely through mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall. Pectin methylesterases have been suggested to be important for Phytophthora pathogenicity, but no data exist on their role in the P. sojae infection process. We have scanned the newly revised version of the annotated P. sojae genome for the presence of putative pectin methylesterases genes and conducted a sequence analysis of all gene models found. We also searched for potential regulatory motifs in the promoter region of the proposed P. sojae models, and investigated the gene expression levels throughout the early course of infection on soybean plants. We found that P. sojae contains a large repertoire of pectin methylesterase-coding genes and that most of these genes display similar motifs in the promoter region, indicating the possibility of a shared regulatory mechanism. Phylogenetic analyses confirmed the evolutionary relatedness of the pectin methylesterase-coding genes within and across Phytophthora spp. In addition, the gene duplication events that led to the emergence of this gene family appear to have occurred prior to many speciation events in the genus Phytophthora. Our results also indicate that the highest levels of expression occurred in the first 24 hours post inoculation, with expression falling after this time. Our study provides evidence that pectin methylesterases may be important for the early action of the P. sojae infection process.

  16. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses

    Directory of Open Access Journals (Sweden)

    Larroque Mathieu

    2012-11-01

    provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.

  17. Radiotoxicological analyses of {sup 239+240}Pu and {sup 241}Am in biological samples by anion-exchange and extraction chromatography: a preliminary study for internal contamination evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Ridone, S.; Arginelli, D.; Bortoluzzi, S.; Canuto, G.; Montalto, M.; Nocente, M.; Vegro, M. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), Research Centre of Saluggia, Radiation Protection Institute, Saluggia, VC (Italy)

    2006-07-01

    Many biological samples (urines and faeces) have been analysed by means of chromatographic extraction columns, utilising two different resins (AG 1-X2 resin chloride and T.R.U.), in order to detect the possible internal contamination of {sup 239{sup +}}{sup 240}Pu and {sup 241}Am, for some workers of a reprocessing nuclear plant in the decommissioning phase. The results obtained show on one hand the great suitability of the first resin for the determination of plutonium, and on the other the great selectivity of the second one for the determination of americium.

  18. FUNCTION IN BIOLOGY: ETIOLOGICAL AND ORGANIZATIONAL PERSPECTIVES Función en Biología: perspectivas etiológicas y organizacionales

    Directory of Open Access Journals (Sweden)

    CHARBEL NIÑO EL-HANI

    Full Text Available In this paper, we argue for a taxonomy of approaches to function based on different epistemological perspectives assumed with regard to the treatment of this central concept in the life sciences. We distinguish between etiological and organizational perspectives on function, analyzing distinct theories: Wright's selectionist etiological approach and Godfrey-Smith's modern history theory of functions, in the case of the etiological perspective; and Cummins' functional analysis and Collier's interactivist approach to function, among organizational accounts. We explain differences and similarities between these theories and the broader perspectives on function, arguing for a particular way of understanding the consensus without unity in debates about function. While explaining the accounts of function, we also deal with the relationship between this concept and other important biological concepts, such as adaptation, selection, complexity, and autonomy. We also advance an argument for the limits and prospects of the explanatory role of function in evolution. By arguing that changes in functionality are always grounded on changes in systems' organization, we show that function can never explain the origins of traits. Nevertheless, it can explain the spread of traits in populations, but only when we are dealing with functionally novel traits. Finally, we stress that organizational accounts of function are needed to understand how new functions appear by means of changes in systems' organization.En este artículo, argumentamos a favor de una taxonomía de abordajes del concepto función basada en diferentes perspectivas epistemológicas de acuerdo al tratamiento de este concepto central en las ciencias de la vida. Distinguimos entre perspectivas etiológicas y organizacionales sobre la noción de función, analizando teorías distintas: la teoría etiológica seleccionista de Wright y la teoría de la historia moderna de Godfrey-Smith, en el caso de

  19. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  20. Human embryonic stem cells : advancing biology and cardiogenesis towards functional applications l

    NARCIS (Netherlands)

    Braam, Stefan Robbert

    2010-01-01

    Human embryonic stem cells (hESC) hold great potential as a model for human development, disease pathology, drug discovery and safety pharmacology. All these applications will depend on comprehensive knowledge of their biology and control of their signaling mechanisms and fate choices. To begin to a

  1. A functional approach for research on cognitive control: Analysing cognitive control tasks and their effects in terms of operant conditioning.

    Science.gov (United States)

    Liefooghe, Baptist; De Houwer, Jan

    2016-02-01

    Cognitive control is an important mental ability that is examined using a multitude of cognitive control tasks and effects. The present paper presents the first steps in the elaboration of a functional approach, which aims to uncover the communalities and differences between different cognitive control tasks and their effects. Based on the idea that responses in cognitive control tasks qualify as operant behaviour, we propose to reinterpret cognitive control tasks in terms of operant contingencies and cognitive control effects as instances of moderated stimulus control. We illustrate how our approach can be used to uncover communalities between topographically different cognitive control tasks and can lead to novel questions about the processes underlying cognitive control.

  2. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc

    Science.gov (United States)

    Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M. Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D.; Rey, Félix A.

    2016-01-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single “fusion loop”. We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal “tail” that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens. PMID:27783711

  3. Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses.

    Science.gov (United States)

    Kadioglu, Onat; Saeed, Mohamed E M; Valoti, Massimo; Frosini, Maria; Sgaragli, Giampietro; Efferth, Thomas

    2016-03-15

    Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding energy (LBE, kcal/mol) values (mean ± SD) ranging from -11.8 ± 0.54 (valspodar) to -3.98 ± 0.01 (4). Lys234, Ser952 and Tyr953 residues formed H-bonds with most of the compounds. Only 2c docked also at ATP binding site (LBE value of -6.9 ± 0.30 kcal/mol). Inhibition of P-gp-mediated R123 efflux by 12 N,N-bis(cyclohexanolamine)aryl esters and 4 significantly correlated with LBE values. DMD analysis of EPI, (3)H-1EPI, (3)H-2EPI, (14)C-1EPI, (14)C-2EPI, R123 and 2c before and after previous docking of each of them indicated that pre-docking of either 2c or EPI significantly reduced LBE of both EPI and R123, and that of both (3)H-2EPI and (14)C-2EPI, respectively. Since the clusters of DBD amino acid residues interacting with EPI were different, if EPI docked alone or after pre-docking of EPI or 2c, the existence of alternative secondary binding site for EPI on P-gp is credible. In conclusion, 2c may allocate the drug-binding pocket and reduce strong binding of EPI and R123 in agreement with P-gp inhibition experiments, where 2c reduced efflux of EPI and R123.

  4. School belongingness and mental health functioning across the primary-secondary transition in a mainstream sample: multi-group cross-lagged analyses.

    Directory of Open Access Journals (Sweden)

    Sharmila Vaz

    Full Text Available The relationship between school belongingness and mental health functioning before and after the primary-secondary school transition has not been previously investigated in students with and without disabilities. This study used a prospective longitudinal design to test the bi-directional relationships between these constructs, by surveying 266 students with and without disabilities and their parents, 6-months before and after the transition to secondary school. Cross-lagged multi-group analyses found student perception of belongingness in the final year of primary school to contribute to change in their mental health functioning a year later. The beneficial longitudinal effects of school belongingness on subsequent mental health functioning were evident in all student subgroups; even after accounting for prior mental health scores and the cross-time stability in mental health functioning and school belongingness scores. Findings of the current study substantiate the role of school contextual influences on early adolescent mental health functioning. They highlight the importance for primary and secondary schools to assess students' school belongingness and mental health functioning and transfer these records as part of the transition process, so that appropriate scaffolds are in place to support those in need. Longer term longitudinal studies are needed to increase the understanding of the temporal sequencing between school belongingness and mental health functioning of all mainstream students.

  5. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies.

    Science.gov (United States)

    Poppe, Bruce; Vandesompele, Jo; Schoch, Claudia; Lindvall, Charlotta; Mrozek, Krzysztof; Bloomfield, Clara D; Beverloo, H Berna; Michaux, Lucienne; Dastugue, Nicole; Herens, Christian; Yigit, Nurten; De Paepe, Anne; Hagemeijer, Anne; Speleman, Frank

    2004-01-01

    MLL amplification was recently recognized as a recurrent aberration in acute myeloid leukemia (AML) and myelodys-plastic syndrome (MDS), associated with adverse prognosis and karyotype complexity. Here we present detailed results of fluorescence in situ hybridization (FISH) and expression analyses of MLL and 5 selected 11q candidate oncogenes (CBL, DDX6, ETS1, FLI1, and PLZF) in 31 patient samples and one cell line with 11q23 gain. FISH analyses revealed that the 11q23 amplicon invariably encompassed MLL, DDX6, ETS1, and FLI1, whereas expression analyses identified MLL and DDX6 as the most differentially expressed genes among samples with and without 11q23 copy gain or amplification. In MLL-amplified samples, a significant transcriptional up-regulation of MEIS1, PROML1, ADAM10, NKG2D, and ITPA was noted. Further analyses, designed to elucidate a possible role of the 11q overexpressed genes (MLL, DDX6, FLI1, and ETS1) in unselected MDS and AML samples, revealed a significant upregulation of MLL in MDS. Our findings confirm the MLL gene as a prominent target of 11q23 amplification and provide further evidence for an etiologic role for MLL gain of function in myeloid malignancies. In addition, our results indicate that the transcriptional program associated with MLL rearrangements and MLL overexpression displays significant similarities.

  6. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: Gallic acid as model molecule

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and its derivatives are a group of biomolecules (polyphenols) obtained from plants. They have effects which are potentially beneficial to heath, for example they are antioxidant, anticarcinogenic and antibacterial, as recently investigated in many fields such as medicine, food and plant sciences. The main drawbacks of these molecules are both low stability and bioavailability. In this research work the opportunity to graft GA to bioactive glasses is investigated, in order to deliver the undamaged biological molecule into the body, using the biomaterial surfaces as a localized carrier. GA was considered for functionalization since it is a good model molecule for polyphenols and presents several interesting biological activities, like antibacterial, antioxidant and anticarcinogenic properties. Two different silica based bioactive glasses (SCNA and CEL2), with different reactivity, were employed as substrates. UV photometry combined with the Folin&Ciocalteu reagent was adopted to test the concentration of GA in uptake solution after functionalization. This test verified how much GA consumption occurred with surface modification and it was also used on solid samples to test the presence of GA on functionalized glasses. XPS and SEM-EDS techniques were employed to characterize the modification of material surface properties and functional group composition before and after functionalization.

  7. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    Science.gov (United States)

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated.

  8. Differential item functioning in Patient Reported Outcomes Measurement Information System® (PROMIS® Physical Functioning short forms: Analyses across ethnically diverse groups

    Directory of Open Access Journals (Sweden)

    Richard N. Jones

    2016-06-01

    Full Text Available We analyzed physical functioning short form items derived from the PROMIS® item bank (PF16 using data from more than 5,000 recently diagnosed, ethnically diverse cancer patients. Our goal was to determine if the short form items demonstrated evidence of differential item functioning (DIF according to sociodemographic characteristics in this clinical sample. We evaluated respons-es for evidence of unidimensionality, local independence (given a single common factor, differen-tial item functioning, and DIF impact. DIF was evaluated attributable to sex, age (middle aged vs. younger and older, race/ethnicity (White vs. Black or African-American, Asian/Pacific Islander, Hispanic and level of education. We used a multiple group confirmatory factor analysis with covariates approach, a multiple indicators multiple causes (MIMIC model. We confirmed essential unidimensionality but some evidence for multidimensionality is present, particularly for basic activities of daily living items, and many instances of local dependence. The presence of local dependence calls for further review of the meaning and measurement of the physical functioning domain among cancer patients. Nearly every item demonstrated statistically significant DIF. In all group comparisons the impact of DIF was negligible. However, the Hispanic subgroup comparison revealed an impact estimate just below an arbitrary threshold for small impact. Within the limitations of local dependency violations, we conclude that items from a static short form derived from the PROMIS physical functioning item bank displayed trivial and ignorable DIF attributable to sex, race, ethnicity, age, and education among cancer patients.

  9. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst

    DEFF Research Database (Denmark)

    Kharazmi, A; Fomsgaard, A; Conrad, R S;

    1991-01-01

    There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five ...... composition of the LPS molecule may play an important role in biological activity of LPS.......There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five...... no effect on neutrophil chemotaxis and a slight effect on chemiluminescence. The major differences in chemical composition of the LPS from these two strains are in the rhamnose and heptose content of the O side chain and in the alanine content of the core region. These data indicate that chemical...

  10. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues.

  11. Applying genotyping (TILLING and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population

    Directory of Open Access Journals (Sweden)

    Franks Cleve

    2008-10-01

    Full Text Available Abstract Background Sorghum [Sorghum bicolor (L. Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING. Results A sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS. Numerous phenotypes with altered morphological and agronomic traits were observed from M2 and M3 lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid O-methyltransferase (COMT in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (bmr phenotype, a trait associated with altered lignin content and increased digestibility. Conclusion TILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of

  12. Chemical analyses of hydroxyapatite formation on SAM surfaces modified with COOH, NH(2), CH(3), and OH functions.

    Science.gov (United States)

    Hirata, Isao; Akamatsu, Mai; Fujii, Eri; Poolthong, Suchit; Okazaki, Masayuki

    2010-08-01

    Hydroxyapatite formation was examined at the surface of self-assembled monolayers (SAMs) modified with four functional groups, -COOH, -NH(2), -CH(3), and -OH. For COOH-SAM and NH(2)-SAM, scanning electron spectroscopic observation showed that flake-like sheet crystals covered the whole wafer and small broccoli-like crystals were observed occasionally on the flake-like crystal base layer. For CH(3)-SAM and OH-SAM, no flake-like sheet crystals were observed; broccoli-like crystals were observed in a dispersed manner for CH(3)-SAM, but in localized spots for OH-SAM. X-ray diffraction patterns showed a strong apatite pattern oriented toward the c-axis direction for COOH-SAM. ESCA analysis revealed distinct Ca, P, O peaks for COOH-, NH(2)-, CH(3)-, and OH-SAM. Surface plasmon resonance (SPR) analysis indicated that during the supply of supersaturated calcium phosphate solution, the deposition of precipitates increased monotonically with time for COOH-SAM, increased slightly for NH(2)-SAM, but little increase in deposition was detected for CH(3)-SAM and OH-SAM.

  13. Re-engineering an alphoid(tetO)-HAC-based vector to enable high-throughput analyses of gene function.

    Science.gov (United States)

    Kononenko, Artem V; Lee, Nicholas C O; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir

    2013-05-01

    Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by the use of viral-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of tTS chromatin modifiers to its centromeric tetO sequences. This provides unique control for phenotypes induced by genes loaded into the alphoid(tetO)-HAC. However, inactivation of the HAC kinetochore requires transfection of cells by a retrovirus vector, a step that is potentially mutagenic. Here, we describe an approach to re-engineering the alphoid(tetO)-HAC that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. In the new HAC vector, a tTS-EYFP cassette is inserted into a gene-loading site along with a gene of interest. Expression of the tTS generates a self-regulating fluctuating heterochromatin on the alphoid(tetO)-HAC that induces fast silencing of the genes on the HAC without significant effects on HAC segregation. This silencing of the HAC-encoded genes can be readily recovered by adding doxycycline. The newly modified alphoid(tetO)-HAC-based system has multiple applications in gene function studies.

  14. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

    Science.gov (United States)

    Kapeli, Katannya; Pratt, Gabriel A; Vu, Anthony Q; Hutt, Kasey R; Martinez, Fernando J; Sundararaman, Balaji; Batra, Ranjan; Freese, Peter; Lambert, Nicole J; Huelga, Stephanie C; Chun, Seung J; Liang, Tiffany Y; Chang, Jeremy; Donohue, John P; Shiue, Lily; Zhang, Jiayu; Zhu, Haining; Cambi, Franca; Kasarskis, Edward; Hoon, Shawn; Ares, Manuel; Burge, Christopher B; Ravits, John; Rigo, Frank; Yeo, Gene W

    2016-07-05

    The RNA-binding protein (RBP) TAF15 is implicated in amyotrophic lateral sclerosis (ALS). To compare TAF15 function to that of two ALS-associated RBPs, FUS and TDP-43, we integrate CLIP-seq and RNA Bind-N-Seq technologies, and show that TAF15 binds to ∼4,900 RNAs enriched for GGUA motifs in adult mouse brains. TAF15 and FUS exhibit similar binding patterns in introns, are enriched in 3' untranslated regions and alter genes distinct from TDP-43. However, unlike FUS and TDP-43, TAF15 has a minimal role in alternative splicing. In human neural progenitors, TAF15 and FUS affect turnover of their RNA targets. In human stem cell-derived motor neurons, the RNA profile associated with concomitant loss of both TAF15 and FUS resembles that observed in the presence of the ALS-associated mutation FUS R521G, but contrasts with late-stage sporadic ALS patients. Taken together, our findings reveal convergent and divergent roles for FUS, TAF15 and TDP-43 in RNA metabolism.

  15. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    Science.gov (United States)

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.

  16. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316

    Science.gov (United States)

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  17. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies

    Directory of Open Access Journals (Sweden)

    Alexandre G. de Brevern

    2015-01-01

    Full Text Available Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.

  18. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies.

    Science.gov (United States)

    de Brevern, Alexandre G; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain

    2015-01-01

    Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.

  19. Bird-Window Collisions at a West-Coast Urban Park Museum: Analyses of Bird Biology and Window Attributes from Golden Gate Park, San Francisco.

    Science.gov (United States)

    Kahle, Logan Q; Flannery, Maureen E; Dumbacher, John P

    2016-01-01

    Bird-window collisions are a major and poorly-understood generator of bird mortality. In North America, studies of this topic tend to be focused east of the Mississippi River, resulting in a paucity of data from the Western flyways. Additionally, few available data can critically evaluate factors such as time of day, sex and age bias, and effect of window pane size on collisions. We collected and analyzed 5 years of window strike data from a 3-story building in a large urban park in San Francisco, California. To evaluate our window collision data in context, we collected weekly data on local bird abundance in the adjacent parkland. Our study asks two overarching questions: first-what aspects of a bird's biology might make them more likely to fatally strike windows; and second, what characteristics of a building's design contribute to bird-window collisions. We used a dataset of 308 fatal bird strikes to examine the relationships of strikes relative to age, sex, time of day, time of year, and a variety of other factors, including mitigation efforts. We found that actively migrating birds may not be major contributors to collisions as has been found elsewhere. We found that males and young birds were both significantly overrepresented relative to their abundance in the habitat surrounding the building. We also analyzed the effect of external window shades as mitigation, finding that an overall reduction in large panes, whether covered or in some way broken up with mullions, effectively reduced window collisions. We conclude that effective mitigation or design will be required in all seasons, but that breeding seasons and migratory seasons are most critical, especially for low-rise buildings and other sites away from urban migrant traps. Finally, strikes occur throughout the day, but mitigation may be most effective in the morning and midday.

  20. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    Science.gov (United States)

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.

  1. Integrated ‘omics’, targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability

    Directory of Open Access Journals (Sweden)

    Stefanie eLutz

    2015-11-01

    Full Text Available Snow algae are poly-extremophilic microalgae and important primary colonisers and producers on glaciers and snow fields. Depending on their pigmentation they cause green or red mass blooms during the melt season. This decreases surface albedo and thus further enhances snow and ice melting. Although the phenomenon of snow algal blooms has been known for a long time, large aspects of their physiology and ecology sill remain cryptic. This study provides the first in-depth and multi-omics investigation of two very striking adjacent green and red snow fields on a glacier in Svalbard. We have assessed the algal community composition of green and red snow including their associated microbiota, i.e., bacteria and archaea, their metabolic profiles (targeted and non-targeted metabolites on the bulk and single-cell level, and assessed the feedbacks between the algae and their physico-chemical environment including liquid water content, pH, albedo and nutrient availability. We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. Green snow represents a wet, carbon and nutrient rich environment and is dominated by the algae Microglena sp. with a metabolic profile that is characterized by key metabolites involved in growth and proliferation. In contrast, the dry and nutrient poor red snow habitat is colonised by various Chloromonas species with a high abundance of storage and reserve metabolites likely to face upcoming severe conditions. Combining a multitude of techniques we demonstrate the power of such complementary approaches in elucidating the function and ecology of extremophiles such as green and red snow algal blooms, which play crucial roles in glacial ecosystems.

  2. Functional Components of Carob Fruit: Linking the Chemical and Biological Space.

    Science.gov (United States)

    Goulas, Vlasios; Stylos, Evgenios; Chatziathanasiadou, Maria V; Mavromoustakos, Thomas; Tzakos, Andreas G

    2016-11-10

    The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation's capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob's natural components are presented in this review.

  3. Functional Components of Carob Fruit: Linking the Chemical and Biological Space

    Directory of Open Access Journals (Sweden)

    Vlasios Goulas

    2016-11-01

    Full Text Available The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation’s capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob’s natural components are presented in this review.

  4. Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities

    Science.gov (United States)

    2015-09-01

    SIS-ECM scaffold, trimmed to fit the defect, and will serve as their own control. Only one segmental muscle defect will be treated in each subject...Kuklo TR. 2007. Missed Opportunities in Patients with Osteoporosis and Distal Radius Fractures. Clin Orthop Relat Res. Jan;454:202-206. 9. Nesti LJ...Res Sep 25(9):1128-35. 11. Shanti RM, Li WJ, Nesti LJ, Wang X, Tuan RS. Adult Mesenchymal Stem Cells: Biological Properties, Characteristics, and

  5. Estimation of relevant variables on high-dimensional biological patterns using iterated weighted kernel functions.

    Directory of Open Access Journals (Sweden)

    Sergio Rojas-Galeano

    Full Text Available BACKGROUND: The analysis of complex proteomic and genomic profiles involves the identification of significant markers within a set of hundreds or even thousands of variables that represent a high-dimensional problem space. The occurrence of noise, redundancy or combinatorial interactions in the profile makes the selection of relevant variables harder. METHODOLOGY/PRINCIPAL FINDINGS: Here we propose a method to select variables based on estimated relevance to hidden patterns. Our method combines a weighted-kernel discriminant with an iterative stochastic probability estimation algorithm to discover the relevance distribution over the set of variables. We verified the ability of our method to select predefined relevant variables in synthetic proteome-like data and then assessed its performance on biological high-dimensional problems. Experiments were run on serum proteomic datasets of infectious diseases. The resulting variable subsets achieved classification accuracies of 99% on Human African Trypanosomiasis, 91% on Tuberculosis, and 91% on Malaria serum proteomic profiles with fewer than 20% of variables selected. Our method scaled-up to dimensionalities of much higher orders of magnitude as shown with gene expression microarray datasets in which we obtained classification accuracies close to 90% with fewer than 1% of the total number of variables. CONCLUSIONS: Our method consistently found relevant variables attaining high classification accuracies across synthetic and biological datasets. Notably, it yielded very compact subsets compared to the original number of variables, which should simplify downstream biological experimentation.

  6. Human Dopamine Receptors Interaction Network (DRIN): a systems biology perspective on topology, stability and functionality of the network.

    Science.gov (United States)

    Podder, Avijit; Jatana, Nidhi; Latha, N

    2014-09-21

    Dopamine receptors (DR) are one of the major neurotransmitter receptors present in human brain. Malfunctioning of these receptors is well established to trigger many neurological and psychiatric disorders. Taking into consideration that proteins function collectively in a network for most of the biological processes, the present study is aimed to depict the interactions between all dopamine receptors following a systems biology approach. To capture comprehensive interactions of candidate proteins associated with human dopamine receptors, we performed a protein-protein interaction network (PPIN) analysis of all five receptors and their protein partners by mapping them into human interactome and constructed a human Dopamine Receptors Interaction Network (DRIN). We explored the topology of dopamine receptors as molecular network, revealing their characteristics and the role of central network elements. More to the point, a sub-network analysis was done to determine major functional clusters in human DRIN that govern key neurological pathways. Besides, interacting proteins in a pathway were characterized and prioritized based on their affinity for utmost drug molecules. The vulnerability of different networks to the dysfunction of diverse combination of components was estimated under random and direct attack scenarios. To the best of our knowledge, the current study is unique to put all five dopamine receptors together in a common interaction network and to understand the functionality of interacting proteins collectively. Our study pinpointed distinctive topological and functional properties of human dopamine receptors that have helped in identifying potential therapeutic drug targets in the dopamine interaction network.

  7. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  8. Statistical properties of coastal long waves analysed through sea-level time-gradient functions: exemplary analysis of the Siracusa, Italy, tide-gauge data

    Science.gov (United States)

    Bressan, L.; Tinti, S.

    2016-01-01

    This study presents a new method to analyse the properties of the sea-level signal recorded by coastal tide gauges in the long wave range that is in a window between wind/storm waves and tides and is typical of several phenomena like local seiches, coastal shelf resonances and tsunamis. The method consists of computing four specific functions based on the time gradient (slope) of the recorded sea level oscillations, namely the instantaneous slope (IS) as well as three more functions based on IS, namely the reconstructed sea level (RSL), the background slope (BS) and the control function (CF). These functions are examined through a traditional spectral fast Fourier transform (FFT) analysis and also through a statistical analysis, showing that they can be characterised by probability distribution functions PDFs such as the Student's t distribution (IS and RSL) and the beta distribution (CF). As an example, the method has been applied to data from the tide-gauge station of Siracusa, Italy.

  9. [The unity of image recognition of tolite homothetic receptors and glycosylation end product receptors in biologic function in case of diabetes].

    Science.gov (United States)

    Titov, V N; Shiriaeva, Iu K

    2011-08-01

    In compliance with our theory of biologic functions and reactions, pathogenesis of all diseases in formed in the framework of disorder of seven biologic functions: trophology, homeostasis, endoecology, adaptation, locomotion, genus continuation and intelligence. The disorder of biologic function of endoecology ("purity" of intercellular medium in vivo) is the most common basis of pathogenesis of diseases' nosological forms. There are two methods of elimination of disorder of this function. First is the biological reaction of excretion i.e. the removal of minor endogenic phlogogenes (initiators of inflammation) with molecular weightless than 70 amu. The second is the biological function of inflammation i.e. utilization of large endogenic phlogogenes (more than 70 amu) by means of phagocytosis of functional phagocytes. The inherent and acquired immunity are other biological reactions of biological function of endoecology. They overlap with biological reaction of transcytosis and biological reaction of hydrodynamic pressure activating transcytosis. The system of tolite homothetic receptors discriminating molecules of native proteins and endogenic phlogogenes on principle "right-wrong" is the basis of biological function of inherent immunity. In case of hyperglycemia and diabetes glucose becomes the minor biological "refuse". The products of chemical reaction between glucose and proteins and formation of the end products of glycosylation, components of areolar tissue become the major biological "refuse". The accumulation of products of glycosylation of collagen with cross-links in capillaries' wall increases its rigidity and makes it impossible for pericytes to implement the qualities of primary peristaltic pump. Hence the formation of hypoperfusion, condition of hypoxemia in microcirculatory section of blood circulation (muscular type arteriolae, postateriolae with muscular sphincter, metabolic capillaries) resulting in the development of microangiopathies of distal

  10. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects.

    Science.gov (United States)

    Labonte, David; Federle, Walter

    2015-11-28

    Many insects use soft adhesive footpads for climbing. The surface contact of these organs is mediated by small volumes of a liquid secretion, which forms thin films in the contact zone. Here, we investigate the role of viscous dissipation by this secretion and the 'bulk' pad cuticle by quantifying the rate-dependence of the adhesive force of individual pads. Adhesion increased with retraction speed, but this effect was independent of the amount of pad secretion present in the contact zone, suggesting that the secretion's viscosity did not play a significant role. Instead, the rate-dependence can be explained by relating the strain energy release rate to the speed of crack propagation, using an established empirical power law. The 'wet' pads' behaviour was akin to that of 'dry' elastomers, with an equilibrium energy release rate close to that of dry van-der-Waals contacts. We suggest that the secretion mainly serves as a 'release layer', minimising viscous dissipation and thereby reducing the time- and 'loading-history'-dependence of the adhesive pads. In contrast to many commercial adhesives which derive much of their strength from viscous dissipation, we show that the major modulator of adhesive strength in 'wet' biological adhesive pads is friction, exhibiting a much larger effect than retraction speed. A comparison between 'wet' and 'dry' biological adhesives, using both results from this study and the literature, revealed a striking lack of differences in attachment performance under varying experimental conditions. Together, these results suggest that 'wet' and 'dry' biological adhesives may be more similar than previously thought.

  11. Evaluation of the ratio method compared with graphical analyses for estimating nigrostriatal function in human [sup 18]F-dopa PET studies with or without carbidopa

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, M.; Ichiya, Y.; Kuwabara, Y.; Fukumura, T.; Sasaki, M.; Masuda, K. (Kyushu Univ., Fukuoka (Japan). Dept. of Radiology)

    1993-10-01

    The striatal to cerebellar (S/C) activity ratio for estimating nigrostriatal function was compared with the Patlak analyses in [sup 18]F-dopa (FD) positron emission tomography (PET) with pretreatment with 100 mg carbidopa (CD). Two different time-activity curves of plasma FD or cerebellar [sup 18]F were used for the Patlak analyses. The S/C ratio increased linearly with time for 120 min and the ratio at 120 min correlated closely with the uptake constants by the two Patlak analyses in six normal volunteers and six Parkinsons disease patients. The S/C ratio and the uptake constant by the cerebellar Patlak analysis without CD also showed a fairly good correlation. Then, the S/C ratios with and without CD were compared. Since CD increased both the striatal and the cerebellar radioactivities proportionally within each subject, CD did not change the S/C ratios. The S/C ratios both with and without CD were simple and comparable to the uptake constants in the FD PET studies. (author).

  12. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  13. Synthesis, thermal analyses, characterization and biological evaluation of new enrofloxacin vanadium(V) solvates(L) (L = An, DMF, Py, Et3N and o-Tol)

    Science.gov (United States)

    Zordok, Wael A.; Sadeek, Sadeek A.

    2016-09-01

    Five metal complexes of antibacterial agent enrofloxacin with vanadium(V) in the presence of aniline, pyridine, orthotolidine and triethylamine as nitrogen donor molecules and dimethylformamide as oxygen donor molecule have been prepared and characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopes) as well as thermal analysis. The deprotonated enrofloxacin complexes of V(V) were isolated as solids with the general formulas; [VO(Enr)2DMF]Cl·5H2O, [VO(Enr)2An]Cl·2H2O, [VO(Enr)2o-Tol]Cl·H2O, [VO(Enr)2Py]Cl·4H2O and [VO(Enr)2Et3N]Cl·6H2O. The prepared complexes are formed with a metal to ligand ratios as 1:2:1 for all complexes. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The energy barrier for the pyridine complex greater than others complexes while, Et3N complex has lower value. The ligand and their metal complexes were also evaluated for their antibacterial activity against three Gram (+ve) and three Gram (-ve) microorganisms.

  14. Prioritizing conservation effort through the use of biological soil crusts as ecosystem function indicators in an arid region.

    Science.gov (United States)

    Bowker, Matthew A; Miller, Mark E; Belnap, Jayne; Sisk, Thomas D; Johnson, Nancy C

    2008-12-01

    Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging pr