WorldWideScience

Sample records for biological fate transport

  1. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  2. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  3. Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River basin

    Energy Technology Data Exchange (ETDEWEB)

    Abdelghani, A.; Pramar, Y.; Mandal, T.

    1996-05-02

    This project assesses the levels of xenobiotics in Devils Swamp and studies their biological fate, transport, ecotoxicity, and potential toxicity to man. This article reports on the following studies: assessment of the acute toxicity of individual xenobiotics and toxicity of organic compounds hexachlorobutadience (HCB) and hexachlorobenzene (HCBD) on juvenile crayfish; determination of the biotic influence of temperature, salinity, pH, oxidation-reduction potential, and sediment composition on the migration of xenobiotics; development of a pharmacokinetics model for xenobiotic absorption and storage, distribution and excretion by fish and crayfish.

  4. Emerging Pollutants - Part I: Occurrence, Fate and Transport.

    Science.gov (United States)

    Qiu, Lang; Dong, Zhanfeng; Sun, Huan; Li, Hongxiang; Chang, Chein-Chi

    2016-10-01

    Part I: Occurrence, Fate, and Transport (this review) is a sequel of Emerging Pollutants. This review compiles research in 2015 for investigating emerging pollutants in wastewater and environmental sources of emerging pollutants. It investigates the occurrence, fate, transport of emerging pollutants in the environment. This review further discusses the monitoring approaches, modeling, and toxicological impacts of these compounds that are relevant to wastewater. PMID:27620111

  5. Geochemical Fate and Transport of Sildenafil and Vardenafil

    Science.gov (United States)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  6. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  7. Fate and transport of chromium through soil

    International Nuclear Information System (INIS)

    Chromium chemistry relevant to the problem facing state of New Jersey (Usa) was examined. Transport of chromium through soil depends on its chemical forms. Transformation of chromium within bulk of soil depends on soil constituents, soil condition, such as pH, Eh and organic compounds applied onto soil or present in soil. Total chromium in soil can be determined. Speciation of chromium based on ionization, hydrolysis, complex formation, redox reactions and adsorption is predicted using MINIQ program

  8. Building 235-F Goldsim Fate And Transport Model

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D and D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ρCi/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ρCi/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met

  9. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  10. An Integrated Modeling Approach for Describing Fate and Transport of Perfluorinated Compounds (PFCs) in Estuarine Reservoir

    Science.gov (United States)

    Zhang, J.; Nguyen Viet, T.; Wang, X.; Chen, H.; Gin, K. Y. H.

    2014-12-01

    The fate and transport processes of emerging contaminants in aquatic ecosystems are complex, which are not only determined by their own properties but also influenced by the environmental setting, physical, chemical and biological processes. A 3D-emerging contaminant model has been developed based on Delft3D water quality model and coupled with a hydrodynamic model and a catchment-scale 1D- hydrological and hydraulic model to study the possible fate and transport mechanisms of perfluorinated compounds (PFCs) in Marina Reservoir in Singapore. The main processes in the contaminant model include partitioning (among detritus, dissolved organic matter and phytoplankton), settling, resuspension and degradation. We used the integrated model to quantify the distribution of the total PFCs and two major components, namely perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the water, sediments and organisms in the reservoir. The model yielded good agreement with the field measurements when evaluated based on the datasets in 2009 and 2010 as well as recent observations in 2013 and 2014. Our results elucidate that the model can be a useful tool to characterize the occurrence, sources, sinks and trends of PFCs both in the water column and in the sediments in the reservoir. Thisapproach provides a better understanding of mechanisms that influence the fate and transport of emerging contaminants and lays down a framework for future experiments to further explore how the dominant environmental factors change towards mitigation of emerging contaminants in the reservoirs.

  11. Assessing the transport and fate of bioengineered microorganisms in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms.

  12. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  13. Prediction of contaminant fate and transport in potable water systems using H2OFate

    Science.gov (United States)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  14. Transport and Fate of Organic and Inorganic Nitrogen from Biosolids leachates

    Science.gov (United States)

    Ilani, Talli; Trifonov, Pavel; Arye, Gilboa

    2014-05-01

    The use of biosolids as a means to ameliorate soil becomes prevalent in the last few years. In agricultural fields, the application of biosolids will be followed by irrigation; resulting in excessive leaching of the dissolved fraction of the organic matter. The dissolved organic matter (DOM) is one of the major players in the chemical, physical and biological processes in soils. The DOM mainly composed of dissolved organic carbon (DOC) and lower proportions of dissolved organic nitrogen (DON) and phosphate (DOP). The DON is considered to be the primary source of mineralisable nitrogen in the soil and can be used as an estimate of the nitrogen supplying capacity of the organic matter. Most of the researches which are dealing with nitrogen fate in terrestrial environments focused on its inorganic fractions (mainly nitrate and ammonium) and their transport toward the dipper soil layers. Since DON can be the source of the inorganic nitrogen (by providing nutrients and energy to nitrifying microbes, which in turn increases the nitrogen source for plants as nitrate), knowledge about the nature of its transport characteristics in the soil is important in the case of biosolids amendment. In addition, irrigation water quality (e.g. fresh water, wastewater or desalinized water) may significantly affect the transport and fate of the various nitrogen forms. The main objective of this study is to examine the fate and co-transport of organic and inorganics nitrogen, originating from biosolids leachates in the subsoil. The effect of water quality and flow rate under saturated steady-state flow is examined by a series of flow-through soil column experiments. The established breakthrough curves of the co-transport of total nitrogen, organic nitrogen (will be calculated from the differences between the total nitrogen measurements and the inorganic nitrogen measurements), nitrate, ammonium, dissolved organic carbon and chloride is presented and discussed.

  15. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  16. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  17. FATE AND TRANSPORT OF PETROLEUM RELEASED FROM UNDERGROUND STORAGE TANKS in Areas of Karst Topography

    Science.gov (United States)

    The study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers

  18. Geochemical Fate and Transport of Diphenhydramine and Cetirizine in Soil

    Science.gov (United States)

    Wireman, R.; Rutherford, C. J.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    Pharmaceuticals compounds presence in natural soils and water around the world has become a growing concern. These compounds are being discharged into the environment through treated wastewater or municipal sludge applications. The main goal of this study is determine their geochemical fate in natural soils. In this study we investigated sorption and transport behavior of diphenhydramine (DPH) and cetirizine (CTZ) in natural soils. These two commonly-used antihistamines are complex aromatic hydrocarbons with polar functional groups. Two clean acidic soils (pH~4.5) were used for these studies - an A-horizon soil that had higher organic matter content (OM, 7.6%) and a B-horizon soil that had lower OM (1.6%), but higher clay content (5.1%). Sorption isotherms were measured using batch reactor experiments. Data indicated that sorption was nonlinear and that it was stronger in clay-rich soils. The pKa's of DPH and CTZ are 8.98 and 8.27 respectively, i.e., these compounds are predominantly in cationic form at soil pH. In these forms, they preferentially sorb to negatively charged mineral surfaces (e.g., clay) present in the soils. Soil clay mineral characterization indicated that kaolinite was the dominant clay mineral present along with small amount of montmorillonite. The nonlinear sorption isotherms were fitted with Freundlich model. Transport behavior of both compounds was measured using glass chromatography columns. As expected both DPH and CTZ were strongly retained in the clay-rich soil as compared with OM-rich soil. The asymmetrical shape of the breakthrough curves indicated that there were likely two separate sorption sites in the soil, each with different reaction rates with each compound. A two-region advection-dispersion transport code was used to model the transport breakthrough curves. There was no evidence of transformation or degradation of the compounds during our sorption and transport studies.

  19. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  20. An ECHO in biology II: Insights in chondrocyte cell fate

    NARCIS (Netherlands)

    Schivo, S.; Scholma, J.; Huang, X.; Zhong, L.; Pol, van de J.C.; Karperien, H.B.J.; Langerak, R.; Post, J.N.

    2016-01-01

    Purpose: An intricate network of regulatory processes determines the chondrocyte cell fate during development and maintains tissue homeostasis. In the event of a disease such as OA, the regulatory network is critically compromised. To cure the disease, we need to restore the regulatory processes to

  1. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  2. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  3. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  4. Fixable or Fate? Perceptions of the Biology of Depression

    Science.gov (United States)

    Lebowitz, Matthew S.; Ahn, Woo-Kyoung; Nolen-Hoeksema, Susan

    2013-01-01

    Objective: Previous research has shown that biological (e.g., genetic, biochemical) accounts of depression--currently in ascendancy--are linked to the general public's pessimism about the syndrome's prognosis. This research examined for the first time whether people with depressive symptoms would associate biological accounts of depression with…

  5. Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin

    Science.gov (United States)

    Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang

    2014-05-01

    Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.

  6. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  7. Development and validation of a basin scale model PCPF-1@SWAT for simulating fate and transport of rice pesticides

    Science.gov (United States)

    The objective of this study was to develop, verify, and validate a new GIS-based model for simulating the fate and transport of rice pesticides in river basins. A plot scale model simulating pesticide fate and transport in rice paddies (PCPF-1) was incorporated into the Soil and Water Assessment To...

  8. Fate and Transport of Bioaerosols Associated with Livestock Operations and Manures

    Science.gov (United States)

    Airborne microorganisms and microbial byproducts from intensive livestock and manure management systems are a potential health risk to workers and individuals in nearby communities. This report presents information on zoonotic pathogens in animal wastes and the generation, fate, and transport of bi...

  9. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura J.P.; Flores Alsina, Xavier; Plósz, Benedek Gy;

    2014-01-01

    This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics of ph...... approach; and, iii) future pathways to improve the overall modelling of micropollutants...

  10. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions

    Science.gov (United States)

    [1] Laboratory and numerical studies were conducted to investigate the transport and fate of Escherichia coli D21g and coliphage f174 in saturated soils with preferential flow under different solution ionic strength (IS'='1, 5, 20, and 100 mM) conditions. Preferential flow systems were created by em...

  11. ARSENIC TRANSPORT AND FATE IN SULFIDIC ENVIRONMENTS: AS(III) - FES INTERACTIONS: SYMPOSIUM

    Science.gov (United States)

    NRMRL-ADA-01151 Wilkin*, R.T., Ford*, R., and Wallschlaeger, D. "Arsenic Transport and Fate in Sulfidic Environments: As(III) - FeS Interactions." In: Geological Society of America, Abstracts with Programs, Geological Society of America Annual Meeting, Boston, MA, 11/05-08/2001....

  12. Fate and transport of phenol in a packed bed reactor containing simulated solid waste.

    Science.gov (United States)

    Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A

    2012-02-01

    An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls. PMID:22014583

  13. Material transport map of Titan: The fate of dunes

    Science.gov (United States)

    Malaska, Michael J.; Lopes, Rosaly M.; Hayes, Alex G.; Radebaugh, Jani; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-05-01

    Using SAR data from Cassini's RADAR instrument, we examined the orientations of three terrain units on Titan, bright lineated plains, streak-like plains, and linear dunes. From the overall integrated pattern of their orientation, we were able to determine Titan's global material transport vectors. The analysis indicates that, in both the northern and southern hemispheres, materials from 0 to 35 deg latitude are transported poleward to a belt centred at roughly 35 deg. Materials from 60 to 35 deg latitude are transported equatorward to the belt at roughly 35 deg. Comparison with the global topographical gradient (Lorenz, R.D. et al. [2013]. Icarus 225, 367-377) suggests that fluvial transport is not the dominant process for material transport on Titan, or that it is at least overprinted with another transport mechanism. Our results are consistent with aeolian transport being the dominant mechanism in the equatorial and mid-latitude zones. The zone at 35 deg is thus the ultimate sink for materials from the equator to low polar latitudes; materials making up the equatorial dunes will be transported to the latitude 35-deg belts. Only plains units are observed at latitudes of ∼35 deg; dunes and materials with the spectral characteristics of dunes are not observed at these latitudes. This observation suggests that either dune materials are converted or modified into plains units or that the margins of dunes are transport limited.

  14. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    International Nuclear Information System (INIS)

    Highlights: ► Anaerobic column experiments were conducted at 37 °C using a simulated waste mixture. ► Sorption and biodegradation model parameters were determined from batch tests. ► HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. ► The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of ∼2. ► Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.

  15. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2014-12-01

    Full Text Available Soo-Jin Choi,1 Jin-Ho Choy2 1Department of Food Science and Technology, Seoul Women's University, 2Center for Intelligent Nano Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea Abstract: Biokinetic studies of zinc oxide (ZnO nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. Keywords: ZnO nanoparticles, biokinetics, distribution, excretion, fate, interaction

  16. Lithium transport across biological membranes

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1990-01-01

    Li+ is actively transported out of cells, and across different epithelia of both mammalian and amphibian origin. Due to the low affinity of the Na+/K(+)-ATPase for Li+, the transport is most likely energized by exchange and/or cotransport processes. The detailed mechanism by which Li+ is reabsorb...

  17. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  18. Modeling biologically reactive transport in porous media

    International Nuclear Information System (INIS)

    A one-dimensional biofilm-based reactive transport model is developed to simulate biologically mediated substrate metabolism and contaminant destruction in saturated porous media. The resulting equations are solved by a finite-difference based, three-level, operator-split approach. The numerical solution procedure is stable, easy-to-code, and computationally efficient. As an example problem, biological denitrification and fortuitous CT destruction processes in one-dimensional porous media is studied. The simulation results of the example problem show that the present model can be successfully used to predict biological processes and nutrient/contaminant transport in saturated porous media

  19. Bioaerosol release, transport, and fate during land application of manure and biosolid residuals

    Science.gov (United States)

    Bioaerosols (biological aerosols) are environmentally ubiquitous, both in rural and urban settings. Aerosol transport is a critical, mostly un-accounted for, and unseen mechanism of microbial environmental dispersal. Agriculture and other anthropogenic activities contribute to this transport system,...

  20. Transport and fate of trifluoroacetate in upland forest and wetland ecosystems

    OpenAIRE

    Likens, G. E.; Tartowski, S. L.; Berger, T. W.; Richey, D. G.; Driscoll, C. T.; Frank, H. G.; De Klein, A.

    1997-01-01

    Although trifluoroacetate (TFA), a breakdown product of chlorofluorocarbon replacements, is being dispersed widely within the biosphere, its ecological fate is largely unknown. TFA was added experimentally to an upland, northern hardwood forest and to a small forest wetland ecosystem within the Hubbard Brook Experimental Forest in New Hampshire. Inputs of TFA were not transported conservatively through these ecosystems; instead, significant amounts of TFA were retained within the vegetation a...

  1. A mathematical model for the transport and fate of organic chemicals in unsaturated/saturated soils.

    OpenAIRE

    Lindstrom, F T; Piver, W T

    1985-01-01

    A mathematical model, simulating the transport and fate of nonionizable organic compounds in unsaturated/saturated porous media (soils) in a terrestrial microcosm has been developed. Using the principles of water mass, momentum, heat energy and chemical mass balance, the three fields: moisture, temperature, and liquid phase chemical concentration are solved for simultaneously by coupling the soil slab to an environmentally realistic air-soil interface (a dynamic free boundary) conditions and ...

  2. Fate and transport in the subsurface of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2000-01-27

    Disposal of tritium generation wastes in shallow, concrete vaults was modeled to determine aquifer concentrations created by advection and diffusion. A 10,000-year minimum duration was examined, hence material changes in waste containers, vaults and engineered barriers were accommodated in the simulations. Ground-water flow analyses were accomplished in three steady-state stages, representing the intact, cracked, and failed states of the concrete vaults. Radionuclide half-lives and Kds were major inputs to transient transport modeling that was performed to complete the analyses. Contaminant mass fluxes to the water table and concentrations at a hypothetical 100-m down-gradient well from the analyses of two radionuclides were presented displaying distinctively different behaviors.

  3. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  4. TRANSPORT/FATE/ECOLOGICAL EFFECTS OF STEROIDS FROM POULTRY LITTER & EVALUATIONS OF EXISTING/NOVEL MANAGEMENT STRATEGIES

    Science.gov (United States)

    Laboratory assays will clarify exposure criteria required to induce previously observed steroid effects. Controlled field runoff studies will determine the abundance, chemical nature, and environmental fate of litter-associated steroids transported under various cropping stra...

  5. The Occurrence, Fate and Biological Activities of C-glycosyl Flavonoids in the Human Diet.

    Science.gov (United States)

    Courts, Fraser L; Williamson, Gary

    2015-01-01

    The human diet contains a wide variety of plant-derived flavonoids, many of which are glycosylated via an O- or less commonly a C-glycosidic linkage. The distribution, quantity, and biological effects of C-glycosyl flavonoids in the human diet have received little attention in the literature in comparison to their O-linked counterparts, however, despite being present in many common foodstuffs. The structural nature, nomenclature, and distribution of C-glycosyl flavonoids in the human diet are, therefore, reviewed. Forty-three dietary flavonoids are revealed to be C-glycosylated, arising from the dihydrochalcone, flavone, and flavan-3-ol backbones, and distributed among edible fruits, cereals, leaves, and stems. C-linked sugar groups are shown to include arabinose, galactose, glucose, rutinose, and xylose, often being present more than once on a single flavonoid backbone and occasionally in tandem with O-linked glucose or rutinose groups. The pharmacokinetic fate of these compounds is discussed with particular reference to their apparent lack of interaction with hydrolytic mechanisms known to influence the fate of O-glycosylated dietary flavonoids, explaining the unusual but potentially important appearance of intact C-glycosylated flavonoid metabolites in human urine following oral administration. Finally, the potential biological significance of these compounds is reviewed, describing mechanisms of antidiabetic, antiinflammatory, anxiolytic, antispasmodic, and hepatoprotective effects. PMID:24915338

  6. The fate and transport of reproductive hormones and their conjugates in the environment (Invited)

    Science.gov (United States)

    Casey, F. X.; Shrestha, S. L.; Hakk, H.; Smith, D. J.; Larsen, G. L.; Padmanabhan, G.

    2009-12-01

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17β-estradiol (E2) and estrone (E1), undergo various fate and transport processes, and laboratory studies have shown that they do not persist long (hours to few days), and have very little if any mobility in soil. Nonetheless, steroid hormones are detected at frequencies and concentrations of concern in the natural environment that would suggest their moderate persistence and mobility. One theory that may partially explain the disparity between field and laboratory studies is that conjugated forms of hormones are more mobile than their deconjugated counterparts. Glucuronide and sulfate conjugates are found in abundance in animal waste and are more soluble than their deconjugated forms. Laboratory studies were conducted to study the fate of a major urinary E2 conjugate, 17β-estradiol glucuronide (E2G), in a Hamar soil (Sandy, mixed, frigid typic Endoaquolls) from the surface and subsurface horizons. Speciation studies using batch sorption indicated that E2G degraded to E2 and E1 within 24 hours in the upper horizon soil with organic carbon content (OC) of 1.35%; whereas it persisted more in the lower horizon soil containing 0.32% OC. For initial concentrations of 2.8-28 mg/L, more than 15% of the applied dose concentration was still intact in the conjugate form in the aqueous phase for 3 - 14 days, in the lower horizon soil. The decline of E2G in the aqueous phase in the upper horizon soil was approximated with a first-order rate constant (k), which ranged from -0.208 to -0.279/h. The k values ranged from -0.006 to -0.016/h for the lower soil horizon. The differences in k values between the two horizons could be attributed to differences in bacterial activity and/or differences in sorption capacities

  7. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    Science.gov (United States)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  8. Biological contexts for DNA charge transport chemistry

    OpenAIRE

    Merino, Edward J.; Boal, Amie K.; Barton, Jacqueline K.

    2008-01-01

    Many experiments have now shown that double helical DNA can serve as a conduit for efficient charge transport (CT) reactions over long distances in vitro. These results prompt the consideration of biological roles for DNA-mediated CT. DNA CT has been demonstrated to occur in biologically relevant environments such as within the mitochondria and nuclei of HeLa cells as well as in isolated nucleosomes. In mitochondria, DNA damage that results from CT is funneled to a critical regulatory element...

  9. Optimizing Nutrient Uptake in Biological Transport Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  10. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  11. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  12. Monitoring the fate and transport of deicing chemicals in lysimeter experiments

    Science.gov (United States)

    Lißner, H.; Wehrer, M.; Totsche, K. U.

    2012-04-01

    Large amounts of the deicing chemicals (DIC) propylene glycol (PG) and formate are spread for removal of snow and ice on the aircrafts and airfields every winter. A considerable amount of these chemicals are carried into surrounding areas, where they mix with snow and infiltrate in the soil during snowmelt. Even though DIC are easily degradable, the high mobility and the high biological oxygen demand of PG in particular can influence the hydrogeochemistry of the unsaturated and saturated zone. The aims of the study were to evaluate and quantify transport of deicing chemicals during snowmelt under field conditions, and to study effects of DIC degradation on the hydrogeochemistry of the unsaturated zone. Eight undisturbed soil cores (0.3 m x 1 m, 0.071 m3) were retrieved at the Gardermoen Airport, Norway, and installed as non-weighable small scale lysimeters at a nearby field site. Before snowmelt in March 2010, a mix of snow containing 350 g/m2 PG, 71 g/m2 formate, and 17 g/m2 of bromide were added to the lysimeters. To determine the fate and transport of PG we monitored PG and its metabolites, bromide, manganese, and iron in the seepage water. High cumulative infiltration and marginal degradation of PG during the snowmelt period allowed up to 50 % of the PG to leave the upper, microbially most active, region of the soil. Only marginal concentrations of formate were analysed in all lysimeters, indicating fast degradation and favoured metabolism by soil bacteria compared to PG. Low contents of metabolites and the concurrent breakthrough of PG and Br in the seepage water even imply that PG was not significantly degraded before June. Redox values down to 200 mV in April, the detection of propionate and manganese, as well as a rise in pH, suggest partially anearobic localities in the soil, not only during high soil water saturation in April and May but also during summer when PG degradation was very efficient. In the longterm, the intense depletion of electron acceptors

  13. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts.

    Science.gov (United States)

    Schaumann, Gabriele E; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra; Kumahor, Samuel K; Kühn, Melanie; Baumann, Thomas; Lang, Friederike; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in

  14. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. PMID:27432726

  15. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP

  16. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  17. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  18. MODELING THE FATE AND TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN AN UNSTEADY RIVER-ESTUARINE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Su-Chin CHEN; Jan-Tai KUO

    2002-01-01

    This research develops a generalized,one-dimensional,finite difference model for simulating the distribution of toxic substances in a river-estuarine system. The three sub-models for unsteady flow,sediment transport,and the reaction of toxic substances are also presented using an uncoupled numerical method. The paper also includes experimental work for sorption/desorption,field measurements of organic carbon content in the heavily polluted Keelung River,and a laboratory study of cohesive sediment transport for the model calibration and verification. In addition,this study simulates the polycyclic aromatic hydrocarbons (PAHs) in the Keelung River in northern Taiwan as a case study. Encouraging results are obtained,and suggest that the modeling approach could be extended to simulate the fate and transport of sorbed pollutants in tidal river.

  19. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  20. Simulation of the environmental fate and transport of chemical signatures from buried landmines

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1998-03-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine and estimate the subsurface total concentration. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  1. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    International Nuclear Information System (INIS)

    modeling and is defined, in the context of Biological Systems Science research programs under DOE's Office of Biological and Environmental Research (BER), as ''the holistic, multidisciplinary study of complex interactions that specify the function of an entire biological system - whether single cells or a multicellular organism - rather than the reductionist study of individual components.'' In August 2009, BER held the Subsurface Complex System Science Relevant to Contaminant Fate and Transport workshop to assess the merits and limitations of complex systems science approaches to subsurface systems controlled by coupled hydrological, microbiological, and geochemical processes.

  2. A CASE STUDY OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ACCIDENTAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Hunter, C.; Werth, D.; Whiteside, M.; Chen, K.; Mazzola, C.

    2012-08-01

    A train derailment that occurred in Graniteville, South Carolina during the early morning hours of 06 January, 2005 resulted in the prompt release of approximately 60 tons of chlorine to the environment. Comprehensive modeling of the transport and fate of this release was performed including the characterization of the initial three-phased chlorine release, a detailed determination of the local atmospheric conditions acting to generate, disperse, and deplete the chlorine vapor cloud, the establishment of physical exchange mechanisms between the airborne vapor and local surface waters, and local aquatic dilution and mixing.

  3. TREX: Spatially distributed model to assess watershed contaminant transport and fate

    International Nuclear Information System (INIS)

    Contaminant releases from upland areas can have adverse water quality and stream ecology impacts. TREX (Two-dimensional, Runoff, Erosion, and Export) is a spatially distributed, physically-based model to simulate chemical transport and fate at the watershed scale. TREX combines surface hydrology and sediment transport features from the CASC2D watershed model with chemical transport features from the WASP/IPX series of water quality models. In addition to surface runoff and sediment transport, TREX simulates: (1) chemical erosion, advection, and deposition; (2) chemical partitioning and phase distribution; and (3) chemical infiltration and redistribution. Floodplain interactions for water, sediment, and chemicals are also simulated. To demonstrate the potential for using TREX to simulate chemical transport at the watershed scale, a screening-level application was developed for the California Gulch watershed mine-waste site in Colorado. Runoff, sediment transport, and metals (Cu, Cd, Zn) transport were simulated for a calibration event and a validation event. The model reproduced measured peak flows, and times to peak at the watershed outlet and three internal locations. Simulated flow volumes were within approximately 10% of measured conditions. Model results were also generally within measured ranges of total suspended solid and metal concentrations. TREX is an appropriate tool for investigating multimedia environmental problems that involve water, soils, and chemical interactions in a spatially distributed manner within a watershed

  4. Advancements in Modeling Mercury Transport and Fate in a Dynamic Fluvial System

    Science.gov (United States)

    James, A. I.; Warwick, J. J.; Carroll, R. W.; Miller, J. R.

    2001-12-01

    The U.S. EPA designated the Carson River as part of a Superfund site in 1991 due to contamination by mercury used in mining operations in the 19th century. It is estimated that approximately 6.36 x 106 Kg (7,000 tons) of residual mercury is now distributed throughout the river's bank sediments and floodplain deposits. Both bank and water column mercury concentrations are high (64,242 μ g/Kg, and 28,000 ng/L, respectively). More than 95% of the mercury transported in the Carson River is affiliated with particulate matter and so it is necessary to accurately describe bank erosion and sediment transport processes in order to understand mercury transport and fate. Mercury concentrations are significantly higher in fine-grained overbank deposits, and appear to be inversely related to the slope of the channel bottom. The mercury contaminated sediment is believed to enter the system primarily during higher flow events when water levels reach overlying contaminated sediments and erosion processes become significant. The largest recorded flood event on the Carson River occurred in January 1997. This event is estimated to have eroded roughly 10 times the amount of bank material than had been eroded in the period from 1991 to 1996, and subsequently transported an estimated 200,000 tons of sediment and 3,000 lbs. of mercury into Lahontan Reservoir. Three computer models (RIVMOD, WASP5, and MERC4) are used to simulate the transport and fate of mercury within the Carson River system. For this study, inorganic mercury and methyl mercury (MeHg) are modeled and only the soluble forms of are available for chemical transformation. Modifications were made to the computer models to allow prediction of mercury transport and fate during extreme events. Enhancements include new functions that predict bank erosion rates and floodplain sedimentation during overbank flows. The bank erosion rate is modeled as proportional to the shear stress applied to the banks by the flow, while the rate

  5. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  6. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C-H; Chang, Louis W; Lai, W-H; Chang, W-H; Lin Pinpin [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Chang Han [Department of Pathology, Chung Shan Medical University, Taichung, Taiwan (China); Yang, M-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Yang, C-S [Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Taiwan (China)], E-mail: pplin@nhri.org.tw

    2009-05-27

    QD705 is a cadmium/selenium/tellurium (Cd/Se/Te)-based quantum dot with good potential for biomedical applications. Although the biological fate of QD705 is established, its chemical fate in the biological system is still unknown. Since the chemical nature of Cd in QD705 (either stays as bounded Cd or becomes free Cd) is closely related to the toxicity of this nanocrystal, information on its chemical fate is critically needed. In this study we investigated the chemical fate of QD705 in the kidneys of mice. We used the molar ratio of Cd and Te (increased Cd/Te ratio signifies increased Cd release from QD705) and the induction of tissue metallothionein (MT) as markers for elevated free Cd in tissues. Our study indicated that 100% of QD705 (measured as Cd) was still retained in the body 16 weeks after exposure, with significant time redistribution to the kidneys. Furthermore, there were an elevation in both the molar Cd/Te ratio and MT-1 expression in the kidneys, suggesting that free Cd was released from QD705. Thus QD705 is not as stable or biologically inert as many may have once believed. Our study demonstrated that free Cd indeed can be released from QD705 in the kidneys and increases the risk of renal toxicity.

  7. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications

    International Nuclear Information System (INIS)

    QD705 is a cadmium/selenium/tellurium (Cd/Se/Te)-based quantum dot with good potential for biomedical applications. Although the biological fate of QD705 is established, its chemical fate in the biological system is still unknown. Since the chemical nature of Cd in QD705 (either stays as bounded Cd or becomes free Cd) is closely related to the toxicity of this nanocrystal, information on its chemical fate is critically needed. In this study we investigated the chemical fate of QD705 in the kidneys of mice. We used the molar ratio of Cd and Te (increased Cd/Te ratio signifies increased Cd release from QD705) and the induction of tissue metallothionein (MT) as markers for elevated free Cd in tissues. Our study indicated that 100% of QD705 (measured as Cd) was still retained in the body 16 weeks after exposure, with significant time redistribution to the kidneys. Furthermore, there were an elevation in both the molar Cd/Te ratio and MT-1 expression in the kidneys, suggesting that free Cd was released from QD705. Thus QD705 is not as stable or biologically inert as many may have once believed. Our study demonstrated that free Cd indeed can be released from QD705 in the kidneys and increases the risk of renal toxicity.

  8. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  9. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  10. Fen Wetland Hydrology and Constraints on the Fate and Transport of Heavy Metals in the San Juan Mountains, Colorado

    Science.gov (United States)

    McClenning, B. K.; Marcantonio, F.; Giardino, J. R.

    2009-12-01

    The interactions of a variety of geomorphic processes and a complex geology have produced spectacular landscapes throughout the San Juan Mountains. This complex geology abounds in mineral deposits that were mined from the mid 1800s through the 1990s. Unfortunately, much of this early mining impacted the streams, lakes, groundwater, and fens in this environment. Today, mining is waning and interest in restoration of this alpine environment is growing. Thus, sustainable restoration requires understanding dynamic interactions in this environment, which mandates an evaluation of the geomorphic and hydrologic processes that shape the present landscape. Fen wetlands, which have developed in geologic niches produced by the intense glaciation of the San Juans, occur throughout the area. The San Juans primarily exhibit a radial drainage pattern, which continue to feed the wetlands. The hydrology of these wetlands controls the chemical and biological processes and may be the most important factor regulating fen wetland function and development. Hydrological models can be used to simulate these processes and to evaluate management scenarios for fen restoration. Five fens, located along glaciated valley floors at elevations of greater than 3,000 m, range in area from 0.4 km2 to 0.7 km2. These fens were compared to determine the influence of their morphometry on runoff and evapotranspiration. The fen hydrology is dominated by irregularly located and poorly linked pools. We are attempting to combine saturated-unsaturated groundwater flow and transport models to study each fen. Hydrological conditions within the fens, which act as a sink or filter for heavy metals, also play a major role in determining the fate of transport of contaminants associated with prior mining activities. Indeed, preliminary studies have found higher than normal concentrations of aluminum, cadmium, copper, iron, manganese, and zinc occurring throughout the San Juan wetlands. Lead is also thought to occur

  11. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  12. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  13. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    International Nuclear Information System (INIS)

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results

  14. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  15. Biologically inspired water purification through selective transport

    International Nuclear Information System (INIS)

    Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)

  16. Modelling the fate and transport of faecal bacteria in estuarine and coastal waters.

    Science.gov (United States)

    Gao, Guanghai; Falconer, Roger A; Lin, Binliang

    2015-11-15

    This paper details a numerical model developed to predict the fate and transport of faecal bacteria in receiving surface waters. The model was first validated by comparing model predicted faecal bacteria concentrations with available field measurements. The model simulations agreed well with the observation data. After calibration, the model was applied to investigate the effects of different parameters, including: tidal processes, river discharges from the upstream boundaries and bacteria inputs from the upstream boundaries, wastewater treatment works (WwTWs), rivers and combined sewer overflows (CSO), on the concentrations of faecal bacteria in the Ribble Estuary. The results revealed that the tide and upstream boundary bacteria inputs were the primary factors controlling the distribution of faecal bacteria. The bacteria inputs from the WwTWs in the model domain were generally found not to have a significant impact on distribution of faecal bacteria in the estuary. PMID:26384864

  17. Development of Probabilistic Fate and Transport Models for the Mixed Waste Landfill at Sandia National Laboratories

    International Nuclear Information System (INIS)

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (Am-241, Cs-137, Co-60, Pu-238, Pu-239, Ra-226, Rn-222, Sr-90, Th-232, H-3, U-238), heavy metals (lead and cadmium), and volatile organic compounds at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. (authors)

  18. Effect of nonionic surfactant Brij 35 on the fate and transport of oxytetracycline antibiotic in soil.

    Science.gov (United States)

    Elsayed, Eman M; Prasher, Shiv O; Patel, Ramanbhai M

    2013-02-15

    In many parts of the world, river water is used for irrigation. Treated, partially treated, and even untreated water from wastewater treatment plants is discharged directly into rivers, thereby degrading the quality of the water. Consequently, irrigation water may contain surfactants which may affect the fate and transport of chemicals such as pesticides and antibiotics in agricultural soils. A field lysimeter study was undertaken to investigate the effect of the nonionic surfactant, Brij 35, on the fate and transport of an antibiotic, Oxytetracycline, commonly used in cattle farms. Nine PVC lysimeters, 1.0 m long × 0.45 m diameter, were packed with a sandy soil to a bulk density of 1.35 Mg m(-3). Cattle manure, containing Oxytetracycline, was applied at the surface of the lysimeters at the recommended rate of 10 t/ha. Each of three aqueous Brij 35 solutions, 0, 0.5 and 5 g L(-1) (i.e., 'good,' 'poor' and 'very poor' quality irrigation water) were each applied to the lysimeters in triplicate. Over a 90 day period, soil and leachate samples were collected and analyzed. Batch experiment results showed that the presence of the nonionic surfactant Brij 35 significantly reduced the sorption coefficient of OTC from 23.55 mL g(-1) in the aqueous medium to 19.49, 12.49 and 14.53 in the presence of Brij 35 at concentrations of 0.25, 2.5 and 5 g L(-1), respectively. Lysimeter results indicted the significant downward movement of OTC at depths of 60 cm into soil profile and leachate in the presence of surfactant. Thus, the reuse of wastewater containing surfactants might enhance the mobility of contaminants and increase ground water pollution. PMID:23295679

  19. Determining fate and transport parameters for nitroglycerine, 2,4-dinitrotoluine, and nitroguanidine in soils

    Science.gov (United States)

    Gosch, D. L.; Dontsova, K.; Chorover, J.; Ferré, T.; Taylor, S.

    2010-12-01

    During military operations, a small fraction of propellant mass is not consumed during firing and is deposited onto the ground surface (Jenkins et al., 2006). Soluble propellant constituents can be released from particulate residues into the environment. Propellant constituents of interest for this study are nitroglycerine (NG), 2,4-dinitrotoluine (2,4-DNT), 2,6-dinitrotoluine (2,6-DNT), and nitroguanidine (NQ). The goal of this work is to determine fate and transport parameters for these constituents in three soils that represent a range of geographic locations and soil properties. This supports a companion study that looks at dissolution of NG, 2,4-DNT, 2,6-DNT, and NQ from fired and unfired solid propellant formulations and their transport in soils. The three soils selected for the study are Catlin silt loam (fine-silty, mixed, mesic, superactive Oxyaquic Argiudoll), Plymouth sandy loam (mesic, coated Typic Quartzipsamment), and Sassafras loam (fine loamy, siliceous, mesic Typic Hapudult). Two of these soils, Plymouth sandy loam and Sassafras loam, were collected on military installations. Linear adsorption coefficients and transformation rates of propellant constituents were determined in batch kinetic experiments. Soils were mixed with propellant constituent solutions (2 mg L-1) at 4:1 solution/soil mass ratio and equilibrated for 0, 1, 2, 6, 12, 24, 48, and 120 hr at which time samples were centrifuged and supernatant solutions were analyzed for target compounds by high performance liquid chromatography (HPLC) using U.S. EPA Method 8330b for NG, 2,4-DNT, and 2,6-DNT, and Walsh (1989) method for NQ. Adsorption and transformation of propellant constituents were determined from the decrease in solution concentration of these compounds. It was determined that all studied compounds were subjected to sorption by the solid phase and degradation. Catlin soil, with finer texture and high organic matter content, influenced solution concentration of NG, 2,4-DNT, 2,6-DNT

  20. Extending the BSM platform with occurrence, transport and fate of micro-pollutants using the ASM-X framework

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Plósz, Benedek; Lindblom, Erik;

    The objective of this paper is to demonstrate how occurrence, transport and fate of trace chemicals can be assessed when modelling wastewater treatment plants (WWTP). A modified version of the International Water Association (IWA) Benchmark Simulation Model No 1 (BSM1) used to evaluate control st...

  1. Fate and Transport of Elemental Copper (Cu0) Nanoparticles through Saturated Porous Media in the Presence of Organic Materials

    Science.gov (United States)

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...

  2. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    experimentation and modeling and is defined, in the context of Biological Systems Science research programs under DOE's Office of Biological and Environmental Research (BER), as ''the holistic, multidisciplinary study of complex interactions that specify the function of an entire biological system - whether single cells or a multicellular organism - rather than the reductionist study of individual components.'' In August 2009, BER held the Subsurface Complex System Science Relevant to Contaminant Fate and Transport workshop to assess the merits and limitations of complex systems science approaches to subsurface systems controlled by coupled hydrological, microbiological, and geochemical processes.

  3. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  4. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2014-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  5. Geochemical, hydrological and biological cycling of energy residuals. Research plan: subsurface transport program

    International Nuclear Information System (INIS)

    Because natural processes associated with the release and the transport of organic compounds, trace metals, and radionuclides are incompletely understood, research in this area is critical if the long term scientific uncertainties about contaminant transport are to be resolved. The processes that control mobilization and attenuation of energy residuals in soils and geological strata, their hydrological transport to and within ground water regimes, and their accumulation in biological systems require research attention. A summary of DOE's core research program is described. It is designed to provide a base of fundamental scientific information so that the geochemical hydrological, and biophysical mechanics that contribute to the transport and long term fate of energy related contaminants in natural systems can be understood

  6. Modeling watershed-scale solute transport using an integrated, process-based hydrologic model with applications to bacterial fate and transport

    Science.gov (United States)

    Niu, Jie; Phanikumar, Mantha S.

    2015-10-01

    Distributed hydrologic models that simulate fate and transport processes at sub-daily timescales are useful tools for estimating pollutant loads exported from watersheds to lakes and oceans downstream. There has been considerable interest in the application of integrated process-based hydrologic models in recent years. While the models have been applied to address questions of water quantity and to better understand linkages between hydrology and land surface processes, routine applications of these models to address water quality issues are currently limited. In this paper, we first describe a general process-based watershed-scale solute transport modeling framework, based on an operator splitting strategy and a Lagrangian particle transport method combined with dispersion and reactions. The transport and the hydrologic modules are tightly coupled and the interactions among different hydrologic components are explicitly modeled. We test transport modules using data from plot-scale experiments and available analytical solutions for different hydrologic domains. The numerical solutions are also compared with an analytical solution for groundwater transit times with interactions between surface and subsurface flows. Finally, we demonstrate the application of the model to simulate bacterial fate and transport in the Red Cedar River watershed in Michigan and test hypotheses about sources and transport pathways. The watershed bacterial fate and transport model is expected to be useful for making near real-time predictions at marine and freshwater beaches.

  7. Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores

    Science.gov (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K.; Ray, Chittaranjan

    2014-10-01

    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.

  8. Wetland influence on mercury fate and transport in a temperate forested watershed

    International Nuclear Information System (INIS)

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 μg/m2-year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands

  9. A COMPREHENSIVE ANALYSIS OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ENVIRONMENTAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Hunter, C.; Werth, D.; Chen, K.; Whiteside, M.; Mazzola, C.

    2011-05-10

    A train derailment occurred in Graniteville, South Carolina during the early morning of January 6, 2005, and resulted in the release of a large amount of cryogenic pressurized liquid chlorine to the environment in a short time period. A comprehensive evaluation of the transport and fate of the released chlorine was performed, accounting for dilution, diffusion, transport and deposition into the local environment. This involved the characterization of a three-phased chlorine release, a detailed determination of local atmospheric mechanisms acting on the released chlorine, the establishment of atmospheric-hydrological physical exchange mechanisms, and aquatic dilution and mixing. This presentation will provide an overview of the models used in determining the total air-to-water mass transfer estimated to have occurred as a result of the roughly 60 tons of chlorine released into the atmosphere from the train derailment. The assumptions used in the modeling effort will be addressed, along with a comparison with available observational data to validate the model results. Overall, model-estimated chlorine concentrations in the airborne plume compare well with human and animal exposure data collected in the days after the derailment.

  10. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    Science.gov (United States)

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting. PMID:27077530

  11. Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat

    Directory of Open Access Journals (Sweden)

    Barrefelt A

    2013-08-01

    Full Text Available Åsa Barrefelt,1,2,* Maryam Saghafian,2,* Raoul Kuiper,3 Fei Ye,4 Gabriella Egri,5 Moritz Klickermann,5 Torkel B Brismar,1 Peter Aspelin,1 Mamoun Muhammed,4 Lars Dähne,5 Moustapha Hassan2,6 1Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, and Department of Radiology, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 2Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; 3Karolinska Institute Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 4Division of Functional Materials, Department of Materials and Nano Physics, Royal Institute of Technology, Stockholm, Sweden; 5Surflay Nanotec GmbH, Berlin, Germany; 6Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden *These authors contributed equally to this work Background: In the present investigation, we studied the kinetics and biodistribution of a contrast agent consisting of poly(vinyl alcohol (PVA microbubbles containing superparamagnetic iron oxide (SPION trapped between the PVA layers (SPION microbubbles. Methods: The biological fate of SPION microbubbles was determined in Sprague-Dawley rats after intravenous administration. Biodistribution and elimination of the microbubbles were studied in rats using magnetic resonance imaging for a period of 6 weeks. The rats were sacrificed and perfusion-fixated at different time points. The magnetic resonance imaging results obtained were compared with histopathologic findings in different organs. Results: SPION microbubbles could be detected in the liver using magnetic resonance imaging as early as 10 minutes post injection. The maximum signal was detected between 24 hours and one week post injection. Histopathology showed the presence of clustered SPION microbubbles predominantly in the lungs from

  12. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  13. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  14. Groundwater Fate and Transport Modeling for Texarkana Wood Preserving Company Superfund Site, Texarkana, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, Ronald Chester

    1999-08-01

    Fate and transport model results are presented for the Texarkana Wood Preserving Company (TWPC)superfund site. The conceptual model assumes two sources of contamination, specifically, the areas around the old and new process areas. Recent data show the presence of non-aqueous phase liquids (NAPL) in the aquifer that are also sources of dissolved contamination in the aquifer. A flow model was constructed and calibrated against measured hydraulic heads at permanent monitoring wells. Good matches were obtained between model simulated heads and most measured heads. An unexplained exception occurs at monitoring well MW-13 down gradient of the site beyond the measured contaminant plume where the model predicts heads that are more than 2 ft. lower than reported field measurements. Adjusting hydraulic parameters in the model could not account for this anomaly and still preserve the head matches at other wells. There is likely a moderate deficiency in the conceptual model or perhaps a data error. Other information such as substantial amounts of infiltrating surface water in the area or a correction in surveyed elevation would improve the flow model. A particle tracking model calculated a travel time from the new process area to the Day’s Creek discharge location on the order of 40 years. Travel times from the old process area to Day’s Creek were calculated to be on the order of 80 years. While these calculations are subject to some uncertainty, travel times of decades are indicated.

  15. On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system

    International Nuclear Information System (INIS)

    This review paper summarizes current understanding of the transport of organic carbon to, and the fate of organic carbon within, the East Siberian Arctic Shelf (ESAS), and of processes determining carbon dioxide (CO2) and methane (CH4) fluxes from the ESAS to the atmosphere achieved from analyzing the data sets obtained on 20 expeditions performed from 1999 to 2011. This study of the ESAS was aimed at investigating how redistribution of old carbon from degrading terrestrial and sub-sea permafrost and from coastal erosion contributes to the carbon pool of the ESAS, how changes in the hydrological cycle of the surrounding land and alteration of terrestrial carbon cycles affect the hydrological and biogeochemical parameters of shelf water masses, and which factors control CH4 and CO2 emissions from the ESAS. This report describes selected results achieved by a developing international scientific partnership that has been crucial at every stage of the study and will be even more important in the future. (letter)

  16. Fates and transport of PPCPs in soil receiving reclaimed water irrigation.

    Science.gov (United States)

    Chen, Weiping; Xu, Jian; Lu, Sidan; Jiao, Wentao; Wu, Laosheng; Chang, Andrew C

    2013-11-01

    Fates and transport of 9 commonly found PPCPs of the reclaimed water were simulated based on the HYDRUS-1D software that was validated with data generated from field experiments. Under the default scenario in which the model parameters and input data represented the typical conditions of turf grass irrigation in southern California, the adsorption, degradation, and volatilization of clofibric acid, ibuprofen, 4-tert-octylphenol, 4-n-nonylphenol, naproxen, triclosan, diclofenac sodium, bisphenol A and estrone in the receiving soils were tracked for 10 years. At the end, their accumulations in the 90 cm soil profile varied from less than 1 ng g(-1) to about 140 ng g(-1) and their concentrations in the drainage water in the 90 cm soil depth varied from nil to μg L(-1) levels. The adsorption and microbial degradation processes interacted to contain the PPCPs entirely within surface 40 cm of the soil profiles. Leaching and volatilization were not significant processes governing the PPCPs in the soils. The extent of accumulations in the soils did not appear to produce undue ecological risks to the soil biota. PPCPs did not represent any potential environmental harm in reclaimed water irrigation. PMID:24148973

  17. Monitoring Bacterial Water Quality for Application to Watershed and Nearshore Fate and Transport Model Development

    Science.gov (United States)

    Fry, L. M.; Ritzenthaler, A.; Kramer, E.; Anderson, E. J.

    2014-12-01

    There is increasing interest in linking watershed processes with nearshore processes in order to predict the fate and transport of pollutants, including bacteria, for application to management of recreational waters. However, traditional nearshore bacterial water quality monitoring programs are not sufficiently informative for understanding the spatio-temporal variability of water quality at scales that are relevant to process modeling. During the summer and fall of 2012, 2013, and 2014, we conducted increasingly intensive monitoring specifically designed to aid in the development of a linked watershed-hydrodynamics modeling framework for simulating the impacts of Michigan's Clinton River on the nearshore bacterial water quality of Lake St. Clair. Monitoring incorporated multiple sampling "events," including routine weekly sampling at 19 points along 19 km of shoreline, periodic transects perpendicular to the shoreline, periodic offshore sampling corresponding to the shoreline sampling points, repeated shoreline sampling over several 3-day periods, weekly river grab samples, hourly sampling of the river at baseline conditions, and hourly sampling of the river during high flow events. These sampling events allow exploration of the spatiotemporal variability of nearshore water quality resulting from local physiographic factors as well as the temporal variability of water quality in the river outlets. We present results describing the spatiotemporal variability as it relates to the watershed and hydrodynamics processes represented in a linked modeling framework which is under development.

  18. Fate, mass balance, and transport of phosphorus in the septic system drainfields.

    Science.gov (United States)

    Mechtensimer, Sara; Toor, Gurpal S

    2016-09-01

    Septic systems can be a potential source of phosphorus (P) in shallow groundwater. Our objective was to investigate the fate, mass balance, and transport of P in the drainfield of a drip-dispersal septic system. Drainfields were replicated in lysimeters (152.4 cm long, 91.4 cm wide, and 91.4 cm high). Leachate and effluent samples were collected over 67 events (n = 15 daily; n = 52 weekly flow-weighted) and analyzed for total P (TP), orthophosphate (PO4P), and other P (TP - PO4P). Mean TP was 15 mg L(-1) (84% PO4P; 16% other P) in the effluent and 0.16 mg L(-1) (47% PO4P, 53% other P) in the leachate. After one year, 46.8 g of TP was added with effluent and rainfall to each drainfield, of which, 95% in the drainfield. Effluent dispersal increased water extractable P (WEP) in the drainfield from 10 mg kg(-1). Using the P sorption maxima of sand (118 mg kg(-1)) and soil (260 mg kg(-1)), we estimated that ∼18% of the drainfield P sorption capacity was saturated after one year of effluent dispersal. We conclude that despite the low leaching potential of P dispersed with effluent in the first year of drainfield operation, a growing WEP pool in the drainfield and low P sorption capacity of Florida's sandy soils may have the potential to transport P to shallow groundwater in long-running septic systems. PMID:27288645

  19. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    Science.gov (United States)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  20. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  1. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    International Nuclear Information System (INIS)

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate

  2. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  3. An LNG release, transport, and fate model system for marine spills

    International Nuclear Information System (INIS)

    LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially

  4. A two-dimensional contaminant fate and transport model for the lower Athabasca River

    International Nuclear Information System (INIS)

    The lower Athabasca River flows through the Athabasca Oil Sands deposits in northeastern Alberta. Two oil sands mining/extraction/upgrading plants operate near the river downstream from Fort McMurray. Process water is stored in large tailings ponds. One of the plants (Suncor) has a licensed discharge (mostly cooling water) to the river. This effluent contains low concentrations (≤ 1 microg/L) of various polycyclic aromatic compounds (PACs). Several tributary streams which cut through oil sands deposits are potential sources of hydrocarbons to the Athabasca. The authors have found that river suspended sediments give positive responses in a number of toxicity tests, using both direct and indirect (organic-solvent extract) methods. Several environmental impact assessments are required as a result of industry expansion. To provide an assessment tool for PACs, the authors are developing a two-dimensional contaminant fate and transport model for a 120-km portion of the Athabasca River downstream from Fort McMurray. Hydraulic calibration of the model was done using sodium and chloride from a major tributary as tracers. Two groups of compounds are being modelled: (1) PACs from the Suncor effluent, and (2) PACs from natural/background sources. PAC concentrations in the river were typically < 1 ng/L, requiring large volume extractions and highly sensitive analysis. Processes such as sediment-water partitioning and biodegradation are being estimated from field experiments using river water and suspended sediment. Photodegradation is likely unimportant in this turbid river due to low penetration of 280--350 nm light. Initially, volatilization will be modelled using estimated or literature values for Henry's constants, but may require more refined estimates from laboratory experiments

  5. Environmental fate mechanisms influencing biological degradation of coal-tar derived polynuclear aromatic hydrocarbons in soil systems

    International Nuclear Information System (INIS)

    This paper discusses biodegradation, a technically viable and cost effective approach for the reduction and immobilization of polynuclear aromatic hydrocarbons (PAH) present in contaminated soils and sludges associated with coal-tar derived processes. While it is widely reported and accepted that PAH biodegradation in soil systems does occur, the specific controlling mechanisms are not entirely understood. One common observation among published reports is that the more soluble, lower molecular weight PAH compounds are biodegraded to a greater extent than the less soluble, higher molecular weight PAHs. The rate and extent to which PAHs are removed form soil/sludges is influenced by the combined and simultaneously occurring effects of volatilization, sorption and biological oxidation. The degree to which each of these three environmental fate mechanisms occurs is mainly influenced by the physical/chemical characteristics of the contaminated media, the physical/chemical characteristics of the specific PAH compounds, and the design and operation of the particular biological treatment process

  6. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle;

    2014-01-01

    the elaboration of pollution control strategies (including both source control and treatment options) at the small spatial scale of urban areas. Existing and well-established water quality models for the different parts of the IUWS (e.g. ASM models) are extended by adding MP fate processes. These are...... modelled by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic...... example is presented to illustrate the potential of the use of the developed model library for developing, evaluating and comparing strategies for reduction of MP emissions from urban areas....

  7. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    Science.gov (United States)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  8. Numerical Simulation of Pollutants' Transport and Fate in AN Unsteady Flow in Lower Bear River, Box Elder County, Utah

    Science.gov (United States)

    Salha, A. A.; Stevens, D. K.

    2013-12-01

    This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System

  9. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  10. Vadose Zone Contaminant Fate and Transport Analysis for the 216-B-26 Trench

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2004-10-14

    The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial

  11. Vadose Zone Contaminant Fate and Transport Analysis for the 216-B-26 Trench

    International Nuclear Information System (INIS)

    The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial

  12. Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.; Danmowa, N.

    2012-12-01

    The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 d

  13. Container for transport and for storage of biologically damaging waste

    International Nuclear Information System (INIS)

    A container is described for the transport and storage of biologically damaging, particularly radioactive waste, in which it is possible to fill the inside of the container with gas without using complicated shut-off devices. (orig./PW)

  14. Elucidating the fate, transport and processes controlling carbon on the landscape: Biogeochemistry tools for the 21st century

    Science.gov (United States)

    McFarlane, K. J.; Keiluweit, M.; Nico, P. S.; Ognibene, T.; Mayali, X.; Nuccio, E.; Weber, P. K.; Pett-Ridge, J.; Guilderson, T. P.

    2013-12-01

    Globally, more carbon is stored belowground as soil organic matter than in terrestrial vegetation and the atmosphere combined. A critical scientific question is how soils serve as sources and sinks for atmospheric carbon dioxide (CO2) and how these sinks will evolve with expected changes in atmospheric CO2 concentrations, climate, and land-use. Carbon initially enters belowground soil pools as plant detritus, roots, and root exudates. Once in the soil, this organic matter serves as a substrate for decomposer organisms including soil animals, bacteria, and fungi. Most of this carbon is consumed and respired as CO2, but some is converted to microbial biomass and byproducts, which may leave the soil as dissolved organic carbon, be used as a substrate by other microbes, or be stabilized within the soil mineral matrix. Mechanisms that result in the stabilization of soils include: climate stabilization, physical protection within aggregates and organo-mineral complexes, and protection of potential substrates due to physiochemical barriers. These processes, which span broad temporal and spatial scales, are poorly constrained in many dynamic land surface models. At LLNL, we have developed a suite of analytical tools that allow us to follow the movement of carbon at the cell to landscape scale, including: ';Chip-SIP', ';STXM-SIMS', and new sample interfaces for accelerator mass spectrometry (AMS). Experiments, field-based and in vivo, allow us to further the mechanistic understanding of factors that control the fate, transport, and sequestration potential of belowground carbon. The Chip-SIP approach allows us to interrogate which microbial species in a complex community incorporate specific substrates (e.g. cellulose) in order to understand the production of biofuels and better elucidate energy and carbon transfers in wetlands and soils. To disentangle the complex interactions at soil-microbial-film-mineral interfaces with minimal disruption we are using a combination of

  15. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  16. A new multimedia contaminant fate model for China:how important are environmental parameters in influencing chemical persistence and long-range transport potential?

    OpenAIRE

    Zhu, Ying; Price, Oliver R.; Tao, Shu; Jones, Kevin C.; Sweetman, Andrew

    2014-01-01

    We present a new multimedia chemical fate model (SESAMe) which was developed to assess chemical fate and behaviour across China. We apply the model to quantify the influence of environmental parameters on chemical overall persistence (POV) and long-range transport potential (LRTP) in China, which has extreme diversity in environmental conditions. Sobol sensitivity analysis was used to identify the relative importance of input parameters. Physicochemical properties were identified as more infl...

  17. A Reflection on the Fate of Chiral 1,2,4-Triazole Fungicides in Biological Systems

    Science.gov (United States)

    In biological systems, stereoisomers of chiral compounds can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination) and pharmacodynamics (physiological effects). Pharmacokinetic processes (i.e., what the body does to the chemical)...

  18. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport.

    Science.gov (United States)

    Hammes, Julia; Gallego-Urrea, Julián A; Hassellöv, Martin

    2013-09-15

    The current production and use of nanomaterials in consumer products have increased the concern about the possibility that these enter the rivers during their entire life cycle. Further, many aquatic contaminants undergo partitioning to the ubiquitous aquatic colloids. Here is presented the development of a set of European water types for environmental risk assessment of chemicals transported as nanovectors as is the case of environmental fate of manufactured nanoparticles and colloid-bound contaminants. A compilation of river quality geochemical data with information about multi-element composition for near 800 rivers in Europe was used to perform a principal component analysis (PCA) and define 6 contrasting water classes. With the aid of geographical information system algorithms, it was possible to analyse how the different sampling locations were predominantly represented within each European water framework directive drainage basin. These water classes and their associated Debye-Hückel parameter are determining factors to evaluate the large scale fate and behaviour of nanomaterials and other colloid-transported pollutants in the European aquatic environment. PMID:23863373

  19. Pesticide and metabolite fate, release and transport modelling at catchment scale

    Science.gov (United States)

    Gaßmann, Matthias; Olsson, Oliver; Bauer, Melanie

    2010-05-01

    Pesticides are of great concern in hydrological catchments all over the world. On the one hand they are necessary to guarantee stable agricultural production for an increasing population. On the other hand they endanger life of aquatic animals and freshwater resources. However, not only pesticides but also their degradation products, the metabolites, are toxic to the environment, in some cases even more than the parent material. Thus, it is necessary to optimize pesticide application and management of agricultural land (e.g. grass strips, erosion prevention) with respect and according to their behaviour and degradation in hydrological catchments. Modelling provides a sound tool for assessing the impacts of pesticide management changes on pesticide behaviour at the field and in consecutively surface waters. Most of the various models available in literature do not consider metabolism. This study introduces an applicable integrated model assessing the fate and release of a pesticide and one metabolite at the field and in surface waters of a hydrological catchment. For the development of the field release model, the single-equation pesticide release formula by the OECD (2000) was used, which combines sorption and degradation in one equation. The part of the equation calculating the degradation forms the input of a second OECD equation representing the metabolite with its own parameters. A fraction can be specified describing how much of the degradation product is transferred to the specific metabolite. The river network is simulated with a further development of the MOHID River Network model (MRN). The integration of a pesticide type and a metabolite, with their degradation and volatilization processes are the main improvements of the hydrodynamic channel model. Following, the combined model was set up to the Israeli part of the Upper Jordan River basin, especially the Hula valley. According to the local hydrological conditions, a linear storage with a threshold was

  20. Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil

    Science.gov (United States)

    Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.

    2012-12-01

    In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60

  1. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-06-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 11.8 to 36.9 pg m−3 (mean: 26.6 ± 11.0 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–46.8 pg l−1, γ-HCH 0.02–33.2 pg l−1 and β-HCH 0.11–2 pg l−1. HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold condensation and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3759 pg m−2 day−1 and γ-HCH (mean: 1987 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–687 pg m−2 day−1, indicating a multi-hopper transport behavior. Climate change may significantly accelerate the releasing process of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the

  2. Nitrogen transport within an agricultural landscape: insights on how hydrology, biogeochemistry, and the landscape intersect to control the fate and transport of nitrogen in the Mississippi Delta

    Science.gov (United States)

    Barlow, Jeannie R.; Kröger, Robert

    2014-01-01

    Nitrogen (N) is a ubiquitous contaminant throughout agricultural landscapes due to both the application of inorganic and organic fertilizers to agricultural fields and the general persistence of nitrate (NO3 ) in oxygenated aqueous environments (Denver et al. 2010; Domagalski et al. 2008; Green et al. 2008; Coupe 2001; Nolan and Stoner 2000). In order to understand why excess N occurs various hydrologic systems (environments), it is important to consider potential sources, the locations of these sources in the watershed, and the timing of the application of sources with respect to the movement of water. To learn how to manage N in a watershed, it is necessary to identify and quantify flow paths and biogeochemical conditions, which ultimately combine to determine transport and fate. If sources, transport mechanisms, and biogeochemical controls were uniformly distributed, it would be possible to manage N uniformly throughout a watershed. However, uniform conditions are rare to nonexistent in the natural world and in the landscape altered for agricultural production. In order to adjust management activities on the landscape to have the greatest effect, it is important to understand the fate and transport N within the intersection of hydrology and biogeochemistry, that is, to understand the extent and duration of the hydrologic and biogeochemical controls as N is routed through and among each hydrologic compartment.

  3. Auger electron transport calculations in biological matter

    International Nuclear Information System (INIS)

    The talk briefly discussed physical, biophysical, and biological aspects of Auger emitters. A summary of radiationless transition data available in published literature and databases were presented. Data were presented for electron capture (EC), internal conversions (IC), binding energies of some commonly used radionuclides 123I, 124I, 125I, and 158Gd. For each of these Auger emitting radionuclides some examples of Monte Carlo calculated electron spectra of individual decays were presented. Because most Auger electrons emitted in the decay of radionuclides are short range low energy electrons below 1 keV, a brief discussion was presented on most recent development of physics models for energy loss of electrons in condensed phase and compared with other models and gas phase data. Accuracy of electron spectra calculated in the decay of electron shower by Auger emitting radionuclides depends on availability of accurate physics data. Currently, there are many gaps in physics data as input data to computer codes in need of new evaluation. In addition, comparison should be made between deterministic and Monte Carlo methods to access the accuracy and sensitivity of data to methods and the chosen parameters. It has long been recognized that Auger electron show a high-LET like characteristics when radionuclide is very closely bound to DNA. As most Auger electrons are short range low energy electrons and mostly absorbed with the DNA duplex when in close vicinity to DNA duplex, we believe the physical and biological dosimetry are best achieved by using Monte Carlo track structure simulations able to simulate tracks of low energy electrons below 1keV and in particular sub 100 eV in condensed phas

  4. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    International Nuclear Information System (INIS)

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into quasi

  5. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    Directory of Open Access Journals (Sweden)

    Lee JA

    2015-03-01

    Full Text Available Jeong-A Lee,1,* Mi-Kyung Kim,1,* Hyoung-Mi Kim,2,* Jong Kwon Lee,3 Jayoung Jeong,4 Young-Rok Kim,5 Jae-Min Oh,2 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; 3Hazard Substances Analysis Division, Gwangju Regional Food and Drug Administration, Ministry of Food and Drug Safety, Gwangju, Republic of Korea; 4Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea; 5Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea *These authors contributed equally to this work Background: Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics.Methods: We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats.Results: N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen

  6. Spatially distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    Science.gov (United States)

    Bailey, R. T.; Ahmadi, M.; Gates, T. K.; Arabi, M.

    2015-12-01

    Elevated levels of nitrate (NO3) in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2), local (50 km2), and field scales (reactive transport model of a regional-scale study site in the lower Arkansas River valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and natural chemical processes on NO3 groundwater concentration, NO3 mass leaching, and NO3 mass loading to the Arkansas River from the aquifer. Sensitivity indices were computed for the entire study area in aggregate as well as each canal command area, crop type, and individual grid cells. Results suggest that fertilizer loading, crop uptake, and heterotrophic denitrification govern NO3 fate and transport for the majority of the study area, although their order of influence on NO3 groundwater concentration and mass leaching varies according to crop type and command area. Canal NO3 concentration and rates of autotrophic denitrification, nitrification, and humus decomposition also dominate or partially dominate in other locations. Each factor, with the exception of O2 reduction rate, is the dominating influence on NO3 groundwater concentration at one or more locations within the study area. Results can be used to determine critical processes and key management actions for future data collection and remediation strategies, with efforts able to be focused on localized areas.

  7. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-09-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 12 to 37 pg m−3 (mean: 27 ± 11 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–47 pg l−1, γ-HCH 0.02–33 pg l−1 and β-HCH 0.11–9.5 pg l−1. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3800 pg m−2 day−1 and γ-HCH (mean: 2000 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–690 pg m−2 day−1. Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the open oceans. Biological productivities may

  8. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  9. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    Science.gov (United States)

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  10. Transport processes in biological systems: Tumoral cells and human brain

    Science.gov (United States)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  11. A large-scale model for simulating the fate & transport of organic contaminants in river basins.

    Science.gov (United States)

    Lindim, C; van Gils, J; Cousins, I T

    2016-02-01

    We present STREAM-EU (Spatially and Temporally Resolved Exposure Assessment Model for EUropean basins), a novel dynamic mass balance model for predicting the environmental fate of organic contaminants in river basins. STREAM-EU goes beyond the current state-of-the-science in that it can simulate spatially and temporally-resolved contaminant concentrations in all relevant environmental media (surface water, groundwater, snow, soil and sediments) at the river basin scale. The model can currently be applied to multiple organic contaminants in any river basin in Europe, but the model framework is adaptable to any river basin in any continent. We simulate the environmental fate of perfluoroctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the Danube River basin and compare model predictions to recent monitoring data. The model predicts PFOS and PFOA concentrations that agree well with measured concentrations for large stretches of the river. Disagreements between the model predictions and measurements in some river sections are shown to be useful indicators of unknown contamination sources to the river basin. PMID:26414740

  12. Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling

    International Nuclear Information System (INIS)

    Understanding the fate and transport of silver nanoparticles (AgNPs) is of importance due to their widespread use and potential harmful effects on humans and the environment. The present study investigates the fate and transport of widely used Creighton AgNPs in saturated porous media. Previous investigations of AgNP transport in the presence of natural organic matter (NOM) report contradictory results regarding how the presence of NOM affected the stability and mobility of AgNPs. In this work, a nonreactive tracer, AgNPs and a mixture of AgNPs and NOM were injected into a background solution (0.01 mM of NaNO3) flowing through laboratory columns packed with water-saturated glass beads to obtain concentration versus time breakthrough curves. Transport of AgNPs in the presence of NOM was simulated with a model that accounted for both reversible and irreversible attachment. Based upon an analysis of the AgNP breakthrough curves, it was found that addition of NOM at concentrations ranging from 1 to 40 mg L−1 resulted in significant decreases in both the zeroth and first moments of the breakthrough curves. These observations may be attributed to NOM promoting AgNP aggregation and irreversible attachment. Raman and surface-enhanced Raman scattering analysis of NOM-AgNP mixtures revealed that a possible interaction of NOM with AgNP occurred through the carboxylic moieties (–COO−) located in the immediate vicinity of the metallic surface. At higher concentrations of NOM, both the zeroth and first moments of the breakthrough curves increased. Based on modeling and the literature, we hypothesize that as the NOM concentration increases, it begins to coat both the AgNPs and the glass beads, leading to a situation where AgNP transport may be described in the same way that transport of a sorbing hydrophobic compound partitioning to an immobile organic phase is typically described, assuming reversible, rate-limited sorption

  13. Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling

    International Nuclear Information System (INIS)

    Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are ≤ MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than

  14. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and

  15. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms.

    Science.gov (United States)

    Strain, Katherine E; Lydy, Michael J

    2015-08-01

    Genetically engineered crops expressing insecticidal crystalline proteins derived from Bacillus thuringiensis (Bt), were commercialized almost two decades ago as a means to manage agricultural pests. The Bt proteins are highly specific and only lethal upon ingestion, limiting the scope of toxicity to target insects. However, concern of exposure to non-target organisms and negative public perceptions regarding Bt crops has caused controversy surrounding their use. The objective of this research was to monitor the fate and transport of a Bt protein, Cry1Ab, in a large-scale agricultural field containing maize expressing the Cry1Ab protein and a non-Bt near isoline, and in aquatic microcosms. The highest environmental concentrations of the Cry1Ab protein were found in runoff water and sediment, up to 130ngL(-1) and 143ngg(-1) dry weight, respectively, with the Cry1Ab protein detected in both Bt and non-Bt maize fields. As surface runoff and residual crop debris can transport Bt proteins to waterways adjacent to agricultural fields, a series of laboratory experiments were conducted to determine the potential fate of the Cry1Ab protein under different conditions. The results showed that sediment type and temperature can influence the degradation of the Cry1Ab protein in an aquatic system and that the Cry1Ab protein can persist for up to two months. Although Cry1Ab protein concentrations measured in the field soil indicate little exposure to terrestrial organisms, the consistent input of Bt-contaminated runoff and crop debris into agricultural waterways is relevant to understanding potential consequences to aquatic species. PMID:25828252

  16. Fate of dissolved organic nitrogen during biological nutrient removal wastewater treatment processes.

    Science.gov (United States)

    Liu, Bing; Lin, Huirong; Yu, Guozhong; Zhang, Shenghua; Zhao, Chengmei

    2013-04-01

    Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg I(-1) along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight ( 20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis. PMID:24620601

  17. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan; Luo, Jian; Xu, Bin; Zhao, Jianfu

    2009-06-15

    Acid mine drainage (AMD) is often accompanied with elevated concentrations of arsenic, in the forms of arsenite, As(III), and/or arsenate, As(V), due to the high affinity of arsenic for sulfide mineral ores. This review summarizes the major geochemical processes controlling the release, speciation, fate, and distribution of inorganic arsenic in mine drainage and natural systems. Arsenic speciation depends highly on redox potential and pH of the solution, and arsenite can be oxidized to the less toxic arsenate form. Homogeneous oxidation of arsenite occurs rather slowly while its heterogeneous oxidation on mineral surfaces can greatly enhance the reaction rates. Little evidence suggests that precipitation reaction limits the concentrations of arsenic in natural water, while co-precipitation may lead to rapid arsenic removal when large amount of iron hydroxides precipitate out of the aqueous phase upon neutralization of the mine drainage. Both arsenate and arsenite adsorb on common metal oxides and clay minerals through formation of inner-sphere and/or outer-sphere complexes, controlling arsenic concentration in natural water bodies. Arsenite adsorbs less strongly than arsenate in the typical pH range of natural water and is more mobile. Part of the adsorbed arsenic species can be exchanged by common anions (e.g., PO(4)(3-) and SO(4)(2-)), especially phosphate, which leads to their re-mobilization. Understanding the geochemistry of arsenic is helpful for predicting its mobility and fate in AMD and natural systems, and for designing of cost-effective remediation/treatment strategies to reduce the occurrence and risk of arsenic contamination. PMID:19070955

  18. Models for transport and fate of carbon, nutrients and radionuclides in the aquatic ecosystem at Oeregrundsgrepen

    Energy Technology Data Exchange (ETDEWEB)

    Erichsen, Anders Christian; Moehlenberg, Flemming; Closter, Rikke Margrethe; Sandberg, Johannes (DHI, Hoersholm (Denmark))

    2010-06-15

    The aim of the work was to provide supplementary input to the risk assessment of a planned final nuclear waste repository at Forsmark. The main deliverable was a computed water exchange between basins in the Forsmark marine area for the period 6500 BC to 9000 AD - based on the hydrodynamic modelling - to be used as input to the landscape dose model. In addition and what is described in this report, a second deliverable was development and application of high-resolution models for the marine ecosystem and radionuclide processes. The purpose of this deliverable was to illustrate the spatial and temporal variation in important processes and parameters, while constituting a complement to previous modelling approaches and providing supporting information to discussions of the marine ecosystem, parameters and variation (see Chapter 4 and 6).To this end, a hydrodynamic model of high temporal and spatial resolution was constructed and calibrated for the Forsmark area. An ecosystem model was then developed and coupled to the hydrodynamic model. In turn, a detailed radionuclide model was coupled to the ecosystem model to provide detailed predictions of radionuclide transport and accumulation in the coastal ecosystem. The ecosystem and radionuclide models were developed in the equation solver MIKE ECOLab that links seamless to the MIKE3 FM hydrodynamic model. The 'standard' ECOLab ecosystem model was extended with six biological state variables, perennial macroalgae, benthic herbivors, detritus feeders, planktivorus fish and, benthic predators representing the relict isopod Saduria and cod. In contrast to the ecosystem model, the radionuclide model was developed from scratch but building on the structure of the ecosystem model and using the output (process rates linking state variables) from the ecosystem model as input to the radionuclide model. Both the ecosystem model and the radionuclide model were run for several years (5-8 years) to bring state variables into

  19. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

    Indian Academy of Sciences (India)

    M Berlin; M Vasudevan; G Suresh Kumar; Indumathi M Nambi

    2015-04-01

    The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

  20. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon.

    Science.gov (United States)

    Steets, B M; Holden, P A

    2003-02-01

    Fecal coliform (FC) contamination in coastal waters is an ongoing public health problem worldwide. Coastal wetlands and lagoons are typically expected to protect coastal waters by attenuating watershed pollutants including FC bacteria. However, new evidence suggests that coastal lagoons or marshes can also be a source of high indicator organism concentrations in coastal waters. We asked for a Mediterranean-type climate, what is the fate of runoff-associated FC through a coastal lagoon? To address this question, we developed a mass balance-based, mechanistic model of FC concentration through a coastal lagoon and simulated, for summer and winter conditions, FC within the lagoon water column, lagoon sediments, and in the ocean water just downstream of the lagoon mouth. Our model accounts for advective flow and dispersion, decay and sedimentation and resuspension of FC-laden sediments during high flow, erosional conditions. Under low flow conditions that occur in the summer, net FC decay and FC storage in lagoon sediments are predicted. Under high flow conditions that occur in the winter, FC-laden sediments are predicted to erode, resuspend and flow out of the lagoon where they elevate FC concentrations in the coastal ocean. For both seasonal conditions, the predicted water column FC concentrations were within an order of magnitude of field measurements for a reference site in southern California. Our results suggest that there are seasonally varying roles for coastal lagoons in mediating FC contamination to coastal waters. PMID:12688694

  1. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  2. Fate and transport of the ß-adrenergic agonist ractopamine hydrochloride in soil-water systems

    Science.gov (United States)

    The feed additive ractopamine hydrochloride was fortified at four concentrations into batch vials containing soils that differed in both biological activity and organic matter (OM). Sampling of the liquid layer for 14 d demonstrated that ractopamine rapidly dissipated from the liquid layer. Less t...

  3. Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case

    Science.gov (United States)

    Kourafalou, Villy; Androulidakis, Yannis

    2013-04-01

    Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions

  4. Normal and impaired charge transport in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H., E-mail: jhmiller@uh.edu [Department of Physics & Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5005 (United States); Villagrán, Martha Y. Suárez; Maric, Sladjana [Department of Physics & Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5005 (United States); Briggs, James M. [Department of Biology & Biochemistry, University of Houston, Houston, TX 77204-5001 (United States)

    2015-03-01

    We examine the physics behind some of the causes (e.g., hole migration and localization that cause incorrect base pairing in DNA) and effects (due to amino acid replacements affecting mitochondrial charge transport) of disease-implicated point mutations, with emphasis on mutations affecting mitochondrial DNA (mtDNA). First we discuss hole transport and localization in DNA, including some of our quantum mechanical modeling results, as they relate to certain mutations in cancer. Next, we give an overview of electron and proton transport in the mitochondrial electron transport chain, and how such transport can become impaired by mutations implicated in neurodegenerative diseases, cancer, and other major illnesses. In particular, we report on our molecular dynamics (MD) studies of a leucine→arginine amino acid replacement in ATP synthase, encoded by the T→G point mutation at locus 8993 of mtDNA. This mutation causes Leigh syndrome, a devastating maternally inherited neuromuscular disorder, and has been found to trigger rapid tumor growth in prostate cancer cell lines. Our MD results suggest, for the first time, that this mutation adversely affects water channels that transport protons to and from the c-ring of the rotary motor ATP synthase, thus impairing the ability of the motor to produce ATP. Finally, we discuss possible future research topics for biological physics, such as mitochondrial complex I, a large proton-pumping machine whose physics remains poorly understood.

  5. Normal and impaired charge transport in biological systems

    International Nuclear Information System (INIS)

    We examine the physics behind some of the causes (e.g., hole migration and localization that cause incorrect base pairing in DNA) and effects (due to amino acid replacements affecting mitochondrial charge transport) of disease-implicated point mutations, with emphasis on mutations affecting mitochondrial DNA (mtDNA). First we discuss hole transport and localization in DNA, including some of our quantum mechanical modeling results, as they relate to certain mutations in cancer. Next, we give an overview of electron and proton transport in the mitochondrial electron transport chain, and how such transport can become impaired by mutations implicated in neurodegenerative diseases, cancer, and other major illnesses. In particular, we report on our molecular dynamics (MD) studies of a leucine→arginine amino acid replacement in ATP synthase, encoded by the T→G point mutation at locus 8993 of mtDNA. This mutation causes Leigh syndrome, a devastating maternally inherited neuromuscular disorder, and has been found to trigger rapid tumor growth in prostate cancer cell lines. Our MD results suggest, for the first time, that this mutation adversely affects water channels that transport protons to and from the c-ring of the rotary motor ATP synthase, thus impairing the ability of the motor to produce ATP. Finally, we discuss possible future research topics for biological physics, such as mitochondrial complex I, a large proton-pumping machine whose physics remains poorly understood

  6. Fate and Transport of Road Salt During Snowmelt Through a Calcareous Fen: Kampoosa Bog, Stockbridge, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Guswa, A. J.; Pufall, A.

    2007-12-01

    Kampoosa Bog is the largest and most ecologically diverse calcareous lake-basin fen in Massachusetts. Situated within a 4.7 km2 drainage basin, the open fen (approx. 20 acres) consists of a floating mat of sedges (incl. Carex aquatilis and Cladium mariscoides) that overlie peat and lake clay deposits. Mineral weathering of marble bedrock within the drainage basin supplies highly alkaline ground and surface waters to the fen basin. The natural chemistry has been greatly altered by road salt runoff from the Massaschusetts Turnpike, and in question is whether disturbance from the Turnpike and a gas pipline has facilitated aggressive growth by the invasive species Phragmites australis. Considered to be one of the most significant rare species habitats in the state, Massachusetts has designated Kampoosa Bog an Area of Critical Environmental Concern, and a committee representing several local, regional, and state agencies, organizations, and citizens manages the wetland. The purpose of this study is to characterize the hydrologic and chemical response of the wetland during snowmelt events to understand the fate and movement of road salt (NaCl). Concentrations of Na and Cl in the fen groundwater are greatest close to the Turnpike. Concentrations decrease with distance downstream but are still greatly elevated relative to sites upstream of the Turnpike. During snowmelt events, the fen's outlet shows a sharp rise in Na and Cl concentrations at the onset of melting that is soon diluted by the added meltwater. The Na and Cl flux, however, is greatest at peak discharge, suggesting that high-flow events are significant periods of export of dissolved salts from the fen. Pure dissolution of rock salt produces an equal molar ratio between Na and Cl, and sodium and chloride imbalances in stream and ground waters suggest that ~20% of the Na is stored on cation exchange sites within the peat. The largest imbalances between Na and Cl occur deeper within the peat, where the peat is

  7. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  8. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  9. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  10. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  11. Review of Bioassays for Monitoring Fate and Transport ofEstrogenic Endocrine Disrupting Compounds in Water

    Energy Technology Data Exchange (ETDEWEB)

    CGCampbell@lbl.gov

    2004-01-30

    Endocrine disrupting compounds (EDCs) are recognizedcontaminants threatening water quality. Despite efforts in sourceidentification, few strategies exist for characterization or treatment ofthis environmental pollution. Given that there are numerous EDCs that cannegatively affect humans and wildlife, general screening techniques likebioassays and biosensors provide an essential rapid and intensiveanalysis capacity. Commonly applied bioassays include the ELISA and YESassays, but promising technologies include ER-CALUXa, ELRA, Endotecta,RIANA, and IR-bioamplification. Two biosensors, Endotecta and RIANA, arefield portable using non-cellular biological detection strategies.Environmental management of EDCs in water requires integration ofbiosensors and bioassays for monitoring and assessment.

  12. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    Science.gov (United States)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  13. CranSLIK v2.0: improving the stochastic prediction of oil spill transport and fate using approximation methods

    Science.gov (United States)

    Rutherford, R.; Moulitsas, I.; Snow, B. J.; Kolios, A. J.; De Dominicis, M.

    2015-10-01

    Oil spill models are used to forecast the transport and fate of oil after it has been released. CranSLIK is a model that predicts the movement and spread of a surface oil spill at sea via a stochastic approach. The aim of this work is to identify parameters that can further improve the forecasting algorithms and expand the functionality of CranSLIK, while maintaining the run-time efficiency of the method. The results from multiple simulations performed using the operational, validated oil spill model, MEDSLIK-II, were analysed using multiple regression in order to identify improvements which could be incorporated into CranSLIK. This has led to a revised model, namely CranSLIK v2.0, which was validated against MEDSLIK-II forecasts for real oil spill cases. The new version of CranSLIK demonstrated significant forecasting improvements by capturing the oil spill accurately in real validation cases and also proved capable of simulating a broader range of oil spill scenarios.

  14. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Oliver, David M; Muirhead, Richard W; Park, Yongeun; Quilliam, Richard S; Shelton, Daniel R

    2016-09-01

    Natural waters serve as habitat for a wide range of microorganisms, a proportion of which may be derived from fecal material. A number of watershed models have been developed to understand and predict the fate and transport of fecal microorganisms within complex watersheds, as well as to determine whether microbial water quality standards can be satisfied under site-specific meteorological and/or management conditions. The aim of this review is to highlight and critically evaluate developments in the modeling of microbial water quality of surface waters over the last 10 years and to discuss the future of model development and application at the watershed scale, with a particular focus on fecal indicator organisms (FIOs). In doing so, an agenda of research opportunities is identified to help deliver improvements in the modeling of microbial water quality draining through complex landscape systems. This comprehensive review therefore provides a timely steer to help strengthen future modeling capability of FIOs in surface water environments and provides a useful resource to complement the development of risk management strategies to reduce microbial impairment of freshwater sources. PMID:27176652

  15. The Transport and Fate of Helium in Martensitic Steels at Fusion Relevant He/DPA Ratios and DPA Rates

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Richard J.; Odette, George R.; Yamamoto, Takuya; Gelles, David S.; Miao, Pifeng; Oliver, Brian M.

    2007-08-01

    Understanding, modeling and managing the effects of He and displacement damage on microstructural evolution and property changes are primary objectives of fusion materials research. We recently implemented an approach for producing controlled He-to-dpa ratios under neutron irradiation using a novel α-implantation technique. Thin 1-4 µm NiAl coatings were deposited on Eurofer-97 TEM discs to produce a uniform He deposition zone of 6 to 8 µm. The test matrix is aimed at characterizing the transport, fate and consequences of He and He-to-dpa ratio variation on alloys with a wide range of starting microstructure. We explore the effect He-to-dpa ratio and temperature on the microstructure of conventionally processed Eurofer-97. Bubbles were found at all irradiation temperatures, with estimated maximum diameters of ~12, 6.9 and 1.4 nm at 500°C (~9 dpa and 372 appm He), 400°C (~3.9 dpa and 82 appm He) and 300°C (~3.9 dpa and 89 appm He), respectively.

  16. Geochemical Evaluation of Uranium Fate and Transport Guterl Specialty Steel Site, New York - 12077

    International Nuclear Information System (INIS)

    Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Site soils are composed of anthropogenic fill and re-worked, glacially-derived native soil. This overburden is underlain by the weathered and fractured Lockport Dolostone bedrock. Shallow groundwater levels fluctuate seasonally and allow groundwater to contact U contaminated soil, which promotes transport. This condition is exemplified through coincident increases in specific conductivity and groundwater levels, which flush soluble constituents in the fill/soil to groundwater during recharge events. In addition, water-level fluctuations affect reduction-oxidation (redox) conditions at the site. The U in soils is subject to wetting and drying cycles that promote oxidation more than stable redox conditions (e.g., dry soil or fully saturated conditions). This oxidizing mechanism increases uranium solubility and mobility. Site groundwater also receives uranium via leaching from near-surface contaminated fill. The strong correlation between nitrate and uranium in groundwater indicates that uranium is mobile where oxidizing conditions occur. Analytical models of contaminant leaching determined that multiple pathways and transport mechanisms govern site risk. Uranium transport to groundwater involves three mechanisms: 1) direct contact of contaminated soil with groundwater, 2) the oxidation-state or chemical valence of uranium, and 3) the leaching of near-surface contamination to groundwater. These mechanisms require an integrated remedial solution that is sustainable and cost effective. (authors)

  17. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  18. Anomalous transport in the crowded world of biological cells

    Science.gov (United States)

    Höfling, Felix; Franosch, Thomas

    2013-04-01

    A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important

  19. Assessing the impact of hazardous constituents on the mobilization, transport, and fate of radionuclides in RCRA waste disposal units

    International Nuclear Information System (INIS)

    This report discusses the impact that hazardous organic chemical constituents could have on the mobilization, transport, and fate of radionuclides in disposal units regulated by the Resource Conservation and Recovery Act (RCRA). The effect on a radionuclide's distribution coefficient (Kd) is used as an indicator. Many factors can affect Kd, including the chemical form of the radionuclide, pH of the leachate, nature of the organic constituents, porosity of the soil, amount of water in the landfill, infiltration rate of the water, presence of a chelating agent or other chemical species, and age of the landfill. A total of 19 radionuclides were studied. Of these, nine (H-3, C-14, Se-79, Sr-90, Tc-99, I-129, U-238, Np-237, and Am-241) were found to have the potential to reach groundwater and cause contamination; the remaining 10 (Co-60, Ni-63, Sb-125,Cs-137, Sm-151, Eu-152, Eu-154, Th-230, Th-232, and Pu-239) were considered less likely to cause groundwater contamination. It was also found that when organic material is in solution, it tends to lower a radionuclide's Kd (and enhance transport), whereas when it is in a solid phase, it tends to increase the Kd. The study introduces a simple model to estimate effective Kd values on the basis of total organic carbon concentrations in landfill leachate. However, given the fact that the effective Kd values of radionuclides in RCRA disposal units can either increase or decrease as the result of many factors, including the form of the organic matter (solid or in solution), the study concludes that whenever they are available, actual (measured) Kd values rather than modeled values should be used to conduct dose and risk assessments of radionuclides in RCRA disposal units

  20. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Gregoire, Caroline; Capel, Paul D.; Coupe, Richard H.; Kalkhoff, Stephen J.

    2011-01-01

    BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking.

  1. Fate and Transport of 17β-estradiol Beneath Animal Waste Holding Ponds

    Science.gov (United States)

    Gibson, L. A.; Tyner, J. S.; Hawkins, S. A.; Lee, J.; Buchanan, J. R.

    2011-12-01

    Steroidal hormones, such as 17β-estradiol (E2), are prevalent in animal waste and are a common subject of study due to potential stream and groundwater contamination. These particular hormones are labeled as Endocrine Disrupting Chemicals (EDCs) because of their developmental effects in reptiles and amphibians. Dairy waste at concentrated animal feeding operations is typically stored in a pond that is regulated by law to include an underlying soil liner with a minimal hydraulic conductivity to limit leaching beneath the pond, yet some studies have traced stream and groundwater contamination to these ponds. Previous studies have shown that the soil underlying earthen ponds are always unsaturated. This increases the pore water velocity relative to a given flux, which itself is dictated almost entirely by an organic seal that forms at the bottom of a waste pond. This increased velocity results in more rapid transport and less retention time within the vadose zone where E2 could biodegrade into its daughter product, estrone (E1). And since the soil is unsaturated and therefore has a negative pressure, preferential flow should not serve as a method of transport. On the contrary, E2 and E1 may sorb to mobile colloids increasing their mobility. This study will evaluate the use of biochar, an increasingly common activated carbon source, as a soil liner amendment. Biochar has a specific surface area that can exceed 1,500 m2/g and is high in organic matter, which E2 sorbs to strongly. The biochar amendment should be most effective and enduring as a layer located at the bottom of the soil liner so that the leachate has been treated by the soil prior to contact. Another proposed amendment technique is to uniformly mix the biochar within the soil liner to increase the leachate contact time with the biochar, but realistically could prove to be too costly and energy-intensive. Field and laboratory studies were conducted to analyze hormone persistence and transport processes and

  2. Atmospheric transport, deposition, and fate of triazine herbicides and their metabolites in pristine areas at Isle Royale National Park

    Science.gov (United States)

    Thurman, E.M.; Cromwell, A.E.

    2000-01-01

    Trace concentrations of triazine herbicides, used in the Midwestern United States, are being transported atmospherically hundreds of kilometers and deposited by precipitation onto pristine areas, such as Isle Royale National Park (Lake Superior). Atrazine, deethylatrazine, deisopropylatrazine, and cyanazine were detected in Isle Royale rainfall from mid-May to early July (1992-1994) at concentrations of less than 0.005 to 1.8 ??g/L. Analysis of predominant wind direction indicated that the herbicides originated from the upper Midwestern United States. The annual mass of herbicides deposited by rainfall varied between years, from 13.4 ??g/m2/yr for 1992, 3.7 ??g/m2/yr for 1993, and 54 ??g/m2/yr for 1994. Atrazine and deethylatrazine were found also in concentrations of less than 5-22 ng/L in lakes across Isle Royale. Concentrations of atrazine in the surface layer of the lakes increased during deposition periods and decreased later in the year. The fate of triazines in shallow lakes suggests faster degradation and shorter half-lives, while deeper lakes have residence times for atrazine that may exceed 10 years.Trace concentrations of triazine herbicides, used in the Midwestern United States, are being transported atmospherically hundreds of kilometers and deposited by precipitation onto pristine areas, such as Isle Royale National Park (Lake Superior). Atrazine, deethylatrazine, deisopropylatrazine, and cyanazine were detected in Isle Royale rainfall from mid-May to early July (1992-1994) at concentrations of less than 0.005 to 1.8 ??g/L. Analysis of predominant wind direction indicated that the herbicides originated from the upper Midwestern United States. The annual mass of herbicides deposited by rainfall varied between years, from 13.4 ??g/m2/yr for 1992, 3.7 ??g/m2/yr for 1993, and 54 ??g/m2/yr for 1994. Atrazine and deethylatrazine were found also in concentrations of less than 5-22 ng/L in lakes across Isle Royale. Concentrations of atrazine in the surface

  3. Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice.

    Science.gov (United States)

    Silva, Francisco; Zambre, Ajit; Campello, Maria Paula Cabral; Gano, Lurdes; Santos, Isabel; Ferraria, Ana Maria; Ferreira, Maria João; Singh, Amolak; Upendran, Anandhi; Paulo, António; Kannan, Raghuraman

    2016-04-20

    To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake. PMID:27003101

  4. Fate and transport of lignin in the soil-water continuum

    Science.gov (United States)

    Williams, J. S.; Dungait, J.; Bol, R.; Abbott, G. D.

    2011-12-01

    Soils have been identified as having the potential to store greater amounts of carbon (C) in soil organic matter (SOM) through appropriate land uses and management practices to increase the input of recalcitrant components of organic matter, such as lignin. Lignin is allocated to the 'slow' soil C pools with residence times between 15 - 100 yrs. Lignin is 30% of the C fixed by plants and is an important C input to soils. However, Recent research has shown that the configuration of lignin monomers within the lignin macromolecule is not random [1], that lignin degradation is monomer specific [2], and that lignin is preferentially degraded relative to the bulk SOM [3], thereby questioning the role of lignin in C sequestration. Although guaiacyl (G) and syringyl (S) lignin monomers have been identified in fresh, estuarine, and marine waters [4], the initial forms to which lignin is degraded into water-transportable products and lost from the soil C reservoir are not known. The aims of this project are to (i) identify and quantify the lignin-derived products entering the soluble phase in soils, and (ii) determine the rate of lignin degradation into water-soluble components, and their rate of transport through soil. In experiment 1 we tested the best approach to extract and analyse dissolved lignin from outflows from grassland and woodland sites. C18 solid phase extraction (SPE) or freeze-drying (FD) was used to isolate water-borne lignin monomers. Gas chromatography-mass spectrometry (GC-MS) of trimethylsilyl (TMS) derivatives or tetramethylammonium hydroxide (TMAH) thermochemolysis was used to analyse the samples. In a subsequent experiment, we allowed leaves from different vegetation types (Lolium perenne, Ranunculus repens, Fraxinus excelsior, Quercus robur), corresponding to the vegetation at our initial sites in Experiment 1, to degrade in soil lysimeters for 1.5 years to determine the rates of decomposition of different plant material and dominant form of lignin

  5. Long range transport and fate of a stratospheric volcanic cloud from Soufriere Hills volcano, Montserrat

    Directory of Open Access Journals (Sweden)

    A. J. Prata

    2007-04-01

    Full Text Available Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching great heights to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufriere Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S was injected into the stratosphere in the form of SO2: the largest single sulfur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003–0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulfates on climate cooling.

  6. Modelling origin and transport fate of waste materials on the south-eastern Adriatic coast (Croatia

    Directory of Open Access Journals (Sweden)

    M. Tudor

    2014-12-01

    Full Text Available The south-eastern parts of the Adriatic Sea coastline were severely polluted by large amounts of accumulated waste material in the second half of November 2010. The waste, reported by major news agencies, accumulated dominantly during 21 November 2010 by favourable wind – ocean current transport system. In the study we analysed meteorological and oceanographic conditions that lead to the waste deposition using available in situ measurements, remote sensing data as well numerical models of the ocean and the atmosphere. The measured data reveal that an intensive rainfall event from 7 till 10 November 2010, over the parts of Montenegro and Albania, was followed by a substantial increase of the river water levels indicating flash floods that possibly splashed the waste material into a river and after to the Adriatic Sea. In order to test our hypothesis we set a number of numerical drifter experiments with trajectories initiated off the coast of Albania during the intensive rainfall events following their faith in space and time. One of the numerical drifter trajectory experiment resulted with drifters reached right position (south-eastern Adriatic coast and time (exactly by the time the waste was observed when initiated on 00:00 and 12:00 UTC of 10 November 2010 during the mentioned flash flood event.

  7. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    in models can provide a basis for testing hypotheses, guiding experiment design, integrating scientific knowledge on multiple environmental systems into a common framework, and translating this information to support informed decision making and policies. Subsurface behavior typically has been investigated using reductionist, or bottom-up approaches. In these approaches, mechanisms of small-scale processes are quantified, and key aspects of their behaviors are moved up to the prediction scale using scaling laws and models. Reductionism has and will continue to yield essential and comprehensive understanding of the molecular and microscopic underpinnings of component processes. However, system-scale predictions cannot always be made with bottom-up approaches because the behaviors of subsurface environments often simply do not result from the sum of smaller-scale process interactions. Systems exhibiting such behavior are termed complex and can range from the molecular to field scale in size. Complex systems contain many interactive parts and display collective behavior including emergence, feedback, and adaptive mechanisms. Microorganisms - key moderators of subsurface chemical processes - further challenge system understanding and prediction because they are adaptive life forms existing in an environment difficult to observe and measure. A new scientific approach termed complex systems science has evolved from the critical need to understand and model these systems, whose distinguishing features increasingly are found to be common in the natural world. In contrast to reductionist approaches, complexity methods often use a top-down approach to identify key interactions controlling diagnostic variables at the prediction scale; general macroscopic laws controlling system-scale behavior; and essential, simplified models of subsystem interactions that enable prediction. This approach is analogous to systems biology, which emphasizes the tight coupling between

  8. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2015-03-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990–2000 and future (2090–2100 climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of

  9. Fate and transport of monensin in the presence of nonionic surfactant Brij35 in soil.

    Science.gov (United States)

    ElSayed, Eman M; Prasher, Shiv O

    2014-08-15

    As fresh water is a limited resource in many parts of the world, the use of wastewater for irrigation has become an important alternative. Therefore, many countries facing a water deficit, use partially treated, or even untreated, wastewater. This may increase the input of many contaminants into the environment. In the present study, we investigated the effect of using surfactant rich water in irrigation on the mobility of the most commonly-used veterinary antibiotic, monensin. Nine PVC lysimeters, 1.0m long×0.45 m diameter, were packed with a sandy soil to a bulk density of 1.35 Mg m(-3). Cattle manure, containing monensin, was applied at the surface of the lysimeters at the recommended rate of 10t/ha. Each of three aqueous Brij 35 solutions, 0, 0.5 and 5 g L(-1), was applied to the lysimeters in triplicate. Over a 90 day period, soil and leachate samples were collected and analyzed. The results of the laboratory sorption experiment showed that when the nonionic surfactant Brij 35 is present, the sorption coefficient of monensin was reduced significantly from 120.22 mL g(-1) in the aqueous medium to 112.20, 100 and 63.09 mL g(-1) with Brij35 concentrations of 0.25, 2.5 and 5 g L(-1), respectively. The lysimeter results indicated a significant downward movement of monensin at depths of 60 cm in the soil profile and leachate in the presence of the surfactant. Thus, the continuous use of poor quality water could influence the transport of monensin in agricultural soils, and consequently, pose a risk for groundwater pollution. PMID:24887190

  10. Transport and fate of mercury under different hydrologic regimes in polluted stream in mining area

    Institute of Scientific and Technical Information of China (English)

    Yan Lin; Thorjφrm Larssen; Rolf D. Vogt; Xinbin Feng; Hua Zhang

    2011-01-01

    Seepage from Hg mine wastes and calcines contains high concentrations of mercury (Hg).Hg pollution is a major environmental problem in areas with abandoned mercury mines and retorting units.This study evaluates factors, especially the hydrological and sedimentary variables, governing temporal and spatial variation in levels and state of mercury in streams impacted by Hg contaminated runoff.Samples were taken during different flow regimes in the Wanshan Hg mining area in Guizhou Province, China.In its headwaters the sampled streams/rivers pass by several mine wastes and calcines with high concentration of Hg.Seepage causes serious Hg contamination to the downstream area.Concentrations of Hg in water samples showed significant seasonal variations.Periods of higher flow showed high concentrations of total Hg (THg) in water due to more particles being re-suspended and transported.The concentrations of major anions (e.g., CI-, F-, NO3- and 8042-) were lower during higher flow due to dilution.Due to both sedimentation of particles and dilution from tributaries the concentration of THg decreased from 2100 ng/L to background levels (< 50 ng/L) within 10 km distance downstream.Sedimentation is the main reason for the fast decrease of the concentration, it accounts for 69% and 60%for higher flow and lower flow regimes respectively in the upper part of the stream.Speciation calculation of the dissolved Hg fraction (DHg) (using Visual MINTEQ) showed that Hg(OH)2 associated with dissolved organic matter is the main form of Hg in dissolved phase in surface waters in Wanshan (over 95%).

  11. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed.

    Science.gov (United States)

    McCarty, Gregory W; Hapeman, Cathleen J; Rice, Clifford P; Hively, W Dean; McConnell, Laura L; Sadeghi, Ali M; Lang, Megan W; Whitall, David R; Bialek, Krystyna; Downey, Peter

    2014-03-01

    Over 50% of streams in the Chesapeake Bay watershed have been rated as poor or very poor based on the index of biological integrity. The Choptank River estuary, a Bay tributary on the eastern shore, is one such waterway, where corn and soybean production in upland areas of the watershed contribute significant loads of nutrients and sediment to streams. We adopted a novel approach utilizing the relationship between the concentration of nitrate-N and the stable, water-soluble herbicide degradation product MESA {2-[2-ethyl-N-(1-methoxypropan-2-yl)-6-methylanilino]-2-oxoethanesulfonic acid} to distinguish between dilution and denitrification effects on the stream concentration of nitrate-N in agricultural subwatersheds. The ratio of mean nitrate-N concentration/(mean MESA concentration * 1000) for 15 subwatersheds was examined as a function of percent cropland on hydric soil. This inverse relationship (R(2)=0.65, pnitrate-N, but also the stream sampling bias of the croplands caused by extensive drainage ditch networks. MESA was also used to track nitrate-N concentrations within the estuary of the Choptank River. The relationship between nitrate-N and MESA concentrations in samples collected over three years was linear (0.95 ≤ R(2) ≤ 0.99) for all eight sampling dates except one where R(2)=0.90. This very strong correlation indicates that nitrate-N was conserved in much of the Choptank River estuary, that dilution alone is responsible for the changes in nitrate-N and MESA concentrations, and more importantly nitrate-N loads are not reduced in the estuary prior to entering the Chesapeake Bay. Thus, a critical need exists to minimize nutrient export from agricultural production fields and to identify specific conservation practices to address the hydrologic conditions within each subwatershed. In well drained areas, removal of residual N within the cropland is most critical, and practices such as cover crops which sequester the residual N should be strongly encouraged

  12. Fate and transport of some selected PhACs in a river receiving a high load of treated sewage

    Science.gov (United States)

    Bendz, D.; Ginn, T. R.; Paxeus, N.

    2003-04-01

    Pharmaceutical active compounds (PhACs) have lately been acknowledged to constitute a risk for humans and for the terrestrial and aquatic environment. Human and veterinary applications are the main sources of PhACs in the environment and the major pathway are excretion and discharge to the environment. Sewage treatment plants (STPs) play a crucial role for the introduction of the human PhACs in the environment through its removal efficiency and by separating these compounds into two exposure pathways associated with the aquatic and the solid (sludge) phase, respectively. Actually, STPs are recognized as being the main point discharge sources of human PhACs to the aquatic environment. In this study the fate and transport of a selected human PhACs belonging to different therapeutic classes (NSAIDs- non-steroidal antiinflamatory drugs, lipid regulators, antiepileptics, antibiotics and &beta-blockers) are investigated in a small river in the very south of Sweden receiving a high load of treated wastewater. In addition to the PhACs, triclosan (commonly used biocide) was included in this study. Water samples were taken of incoming and outgoing wastewater from the treatment plant, at the effluent in the river, and along the river up to 8 kilometers downstream were the river flows into the sea. After enrichment by solid-phase extraction the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the target compounds a screening analysis of the extracts revealed the presence of other wastewater related pollutants (caffeine, flame retardants, antioxidants). Several of the investigated substances demonstrate a surprising persistence in the aquatic environment. This emphasizes the need for a broader view on the concept of persistence by taking into account the recharge/loading rate in addition to removal mechanisms; transformation, volatility and physical sequestration by solids and the influence of different environmental media (Soil organic

  13. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  14. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  15. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    Science.gov (United States)

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    denitrification were limited, particularly where reducing conditions did not extend throughout the entire thickness of the surficial aquifer allowing NO3 to pass conservatively beneath a wetland along deeper groundwater flow paths. The complexity of N fate and transport associated with depressional wetlands complicates the understanding of their importance to water quality in adjacent streams. Although depressional wetlands often contribute low NO3 water to local streams, their effectiveness as landscape sinks, for N from adjacent agriculture varies with natural conditions, such as the thickness of the aquifer and the extent of reducing conditions. Measurement of such natural geologic, hydrologic, and geochemical conditions are therefore fundamental to understanding N mitigation in individual wetlands.

  16. Impacts of biological diversity on sediment transport in streams

    Science.gov (United States)

    Albertson, L. K.; Cardinale, B. J.; Sklar, L. S.

    2012-12-01

    Over the past decade, an increasing number of studies have shown that biological structures (e.g. plant roots) have large impacts on sediment transport, and that physical models that do not incorporate these biological impacts can produce qualitatively incorrect predictions. But while it is now recognized that biological structures influence sediment transport, work to date has focused primarily on the impacts of individual, usually dominant, species. Here, we ask whether competitive interactions cause multi-species communities to have fundamentally different impacts on sediment mobility than single-species systems. We use a model system with caddisfly larvae, which are insects that live in the benthic habitat of streams where they construct silken catchnets across pore spaces between rocks to filter food particles. Because caddisflies can reach densities of 1,000s per m2 with each larva spinning hundreds of silken threads between rocks, studies have shown that caddisflies reduce the probability of bed movement during high discharge events. To test whether streams with multiple species of caddisfly are stabilized any differently than single-species streams, we manipulated the presence or absence of two common species (Ceratopsyche oslari, Arctopsyche californica) in substrate patches (0.15 m2) in experimental stream channels (50-m long x 1-m wide) with fully controlled hydrology at the Sierra Nevada Aquatic Research Laboratory. This experiment was designed to extend the scale of previous laboratory mesocosm studies, which showed that critical shear stress is 31% higher in a multi-species flume mesocosm compared to a single-species mesocosm. Under these more realistic field conditions, we found that critical shear stress was, on average, 30% higher in streams with caddisflies vs. controls with no caddisflies. However, no differences were detected between treatments with 2 vs. 1 species. We hypothesize that the minimal effect of diversity on critical shear stress

  17. Nonlocal reactive transport with physical, chemical, and biological heterogeneity

    Science.gov (United States)

    Hu, Bill X.; Cushman, John H.; Deng, Fei-Wen

    When a natural porous medium is viewed from an eulerian perspective, incomplete characterization of the hydraulic conductivity, chemical reactivity, and biological activity leads to nonlocal constitutive theories, irrespective of whether the medium has evolving heterogeneity with fluctuations over all scales. Within this framework a constitutive theory involving nonlocal dispersive and convective fluxes and nonlocal sources/sinks is developed for chemicals undergoing random linear nonequilibrium reactions and random equilibrium first-order decay in a random conductivity field. The resulting transport equations are solved exactly in Fourier-Laplace space and then numerically inverted to real space. Mean concentration contours and various spatial moments are presented graphically for several covariance structures. 1997 Published by Elsevier Science Ltd. All rights reserved

  18. The biological transport of radionuclides in grassland and freshwater ecosystems

    International Nuclear Information System (INIS)

    This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)

  19. Gasoline ether oxygenate occurrence in Europe, and a review of their fate and transport characteristics in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Stupp, D.; Gass, M.; Leiteritz, H. [Dr. Stupp Consulting DSC, Tauw, Bergisch Gladbach (Germany); Pijls, C. [TAUW, Apeldoorn (Netherlands); Thornton, S. [University of Sheffield, Sheffield (United Kingdom); Smith, J.; Dunk, M.; Grosjean, T.; Den Haan, K. [CONCAWE, Brussels (Belgium)

    2012-06-15

    Ether oxygenates are added to certain gasoline (petrol) formulations to improve combustion efficiency and to increase the octane rating. In this report the term gasoline ether oxygenates (GEO) refers collectively to methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), diisopropyl ether (DIPE), tertiary amyl ethyl ether (TAEE), tertiary hexyl methyl ether (THxME), and tertiary hexyl ethyl ether (THxEE), as well as the associated tertiary butyl alcohol (TBA). This report presents newly collated data on the production capacities and use of MTBE, ETBE, TAME, DIPE and TBA in 30 countries (27 EU countries and Croatia, Norway and Switzerland) to inform continued and effective environmental management practices for GEO by CONCAWE members. The report comprises data on gasoline use in Europe that were provided by CONCAWE and obtained from the European Commission. Furthermore Societe Generale de Surveillance (SGS) provided detailed analytical data (more than 1,200 sampling campaigns) on the GEO composition of gasoline in European countries in the period 2000-2010. Another major aspect of this report is the investigation of GEO distribution in groundwater, drinking water, surface water, runoff water, precipitation (rain/snow) and air in the European environment. Apart from the general sources of literature for the study, local environmental authorities and institutes in the 30 European countries have been contacted for additional information. Finally, a review of the international literature on GEO natural attenuation processes was undertaken with a focus on international reports and peer-reviewed scientific publications to give an overview on the known fate, transport and degradation mechanisms of GEO in the subsurface, to inform risk-management strategies that may rely on natural attenuation processes. The literature reveals that all GEO compounds used in fuels are highly water soluble and weakly retarded by aquifer

  20. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ying Guangguo [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Yu Xiangyang [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S. [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  1. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  2. Transport and fate of radionuclides in aquatic environments - the use of ecosystem modelling for exposure assessments of nuclear facilities

    International Nuclear Information System (INIS)

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and K d). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides

  3. Fate and transport of planar and mono-ortho polychlorinated biphenyls and polychlorinated naphthalenes in Southern California sediments

    OpenAIRE

    Venkatesan, M. Indira

    2003-01-01

    Polychlorinated biphenyls (PCBs) are an important class of industrial pollutants that areubiquitous in the marine and freshwater environments (NAS, 1979). Although the “planar” or“non-ortho” PCB congeners are present in much lower concentrations than other PCBcongeners, they can be responsible for much of the dioxin-like (TCDD) toxicity in the marineecosystem. Further, their environmental fate may be different from other PCBs. Theirdetermination is, therefore, crucial for assessment of contam...

  4. Effect of Biogeochemical Redox Processes on the Fate and Transport of As and U at an Abandoned Uranium Mine Site: an X-ray Absorption Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Troyer, Lyndsay D.; Stone, James J.; Borch, Thomas

    2014-01-28

    Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. equential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.

  5. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Timothy, Ginn R. [Univ. of California, Davis, CA (United States); Sani, Rajesh K. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2013-08-14

    citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the Rifle field site and have measured elevated U concentrations in oxic iron-rich sediments. To translate experimental results into numerical analysis of U fate and transport, a reaction network was developed based on Sani et al. (2004) to simulate U(VI) bioreduction with concomitant UO2 reoxidation in the presence of hematite or ferrihydrite. The reduction phase considers SRB reduction (using lactate) with the reductive dissolution of Fe(III) solids, which is set to be microbially mediated as well as abiotically driven by sulfide. Model results show the oxidation of HS– by Fe(III) directly competes with UO2 reoxidation as Fe(III) oxidizes HS– preferentially over UO2. The majority of Fe reduction is predicted to be abiotic, with ferrihydrite becoming fully consumed by reaction with sulfide. Predicted total dissolved carbonate concentrations from the degradation of lactate are elevated (log(pCO2) ~ –1) and, in the hematite system, yield close to two orders-of-magnitude higher U(VI) concentrations than under initial carbonate concentrations of 3 mM. Modeling of U(VI) bioreduction with concomitant reoxidation of UO2 in the presence of ferrihydrite was also extended to a two-dimensional field-scale groundwater flow and biogeochemically reactive transport model for the South Oyster site in eastern Virginia. This model was developed to simulate the field-scale immobilization and subsequent reoxidation of U by a biologically mediated reaction network.

  6. Spatially-distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    Science.gov (United States)

    Bailey, R. T.; Ahmadi, M.; Gates, T. K.; Arabi, M.

    2015-02-01

    Elevated levels of nitrate (NO3) in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2), local (50 km2), and field scales (< 1 km2). Specifically, the revised Morris sensitivity analysis method was applied to a finite-difference nitrogen cycling and reactive transport model of a regional-scale study site in the Lower Arkansas River Valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and natural chemical processes on NO3 groundwater concentration, NO3 mass leaching, and NO3 mass loading to the Arkansas River from the aquifer. Sensitivity indices were computed for the entire study area in aggregate as well as each canal command area, crop type, and individual grid cells. Results suggest that fertilizer loading, crop uptake, and heterotrophic denitrification govern NO3 fate and transport for the majority of the study area, while canal NO3 concentration and rates of autotrophic denitrification, nitrification, and humus decomposition dominate or partially dominate in several canal command areas. Also, NO3 leaching and groundwater concentration in adjacent cultivated fields often are governed by different processes and mass inputs/outputs. Results can be used to determine critical processes and key management actions for future data collection and remediation strategies, with efforts able to be focused on localized areas.

  7. Spatially-distributed influence of agro-environmental factors governing nitrate fate and transport in an irrigated stream-aquifer system

    Directory of Open Access Journals (Sweden)

    R. T. Bailey

    2015-02-01

    Full Text Available Elevated levels of nitrate (NO3 in groundwater systems pose a serious risk to human populations and natural ecosystems. As part of an effort to remediate NO3 contamination in irrigated stream-aquifer systems, this study elucidates agricultural and environmental parameters and processes that govern NO3 fate and transport at the regional (500 km2, local (50 km2, and field scales (2. Specifically, the revised Morris sensitivity analysis method was applied to a finite-difference nitrogen cycling and reactive transport model of a regional-scale study site in the Lower Arkansas River Valley in southeastern Colorado. The method was used to rank the influence of anthropogenic activities and natural chemical processes on NO3 groundwater concentration, NO3 mass leaching, and NO3 mass loading to the Arkansas River from the aquifer. Sensitivity indices were computed for the entire study area in aggregate as well as each canal command area, crop type, and individual grid cells. Results suggest that fertilizer loading, crop uptake, and heterotrophic denitrification govern NO3 fate and transport for the majority of the study area, while canal NO3 concentration and rates of autotrophic denitrification, nitrification, and humus decomposition dominate or partially dominate in several canal command areas. Also, NO3 leaching and groundwater concentration in adjacent cultivated fields often are governed by different processes and mass inputs/outputs. Results can be used to determine critical processes and key management actions for future data collection and remediation strategies, with efforts able to be focused on localized areas.

  8. Organic geochemical investigation of sources, transport and fate of terrestrial organic matter in the southeast Laptev Sea

    OpenAIRE

    Karlsson, Emma

    2012-01-01

    Permafrost carbon stores have been suggested to react to warming trends with increased terrestrial loading to its coastal waters. Presently, the warming has been seen to be especially high in the East Siberian Arctic and the fate of the major release of terrestrial matter to these coasts is yet to be detailed. Our work is focused on the East Siberian Shelf (ESS) – which is the largest continental shelf in the world. It receives substantial inputs of terrestrial organic matter both from the la...

  9. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport.

    Science.gov (United States)

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2016-04-01

    One dimensional column experiments were conducted using saturated porous media containing residual trichloroethylene (TCE) to understand the effects of non-aqueous phase liquids (NAPLs) and chemical oxidation on perfluoroalkyl acid (PFAA) fate and transport. Observed retardation factors and data from supporting batch studies suggested that TCE provides additional sorption capacity that can increase PFAA retardation (i.e., decreased mobility), though the mechanisms remain unclear. Treatment with persulfate activated with FeCl2 and citric acid, catalyzed hydrogen peroxide (CHP), or permanganate did not result in oxidative transformations of PFAAs. However, impacts on PFAA sorption were apparent, and enhanced sorption was substantial in the persulfate-treated columns. In contrast, PFAA transport was accelerated in permanganate- and CHP-treated columns. Ultimately, PFAA transport in NAPL contaminated groundwater is likely influenced by porous media properties, NAPL characteristics, and water quality properties, each of which can change due to chemical oxidant treatment. For contaminated sites for which ISCO is a viable treatment option, changes to PFAA transport and the implications thereof should be included as a component of the remediation evaluation and selection process. PMID:26854608

  10. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  11. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    Science.gov (United States)

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. PMID:26881733

  12. Development of a multimedia model (POPsLTEA) to assess the influence of climate change on the fate and transport of polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2016-11-01

    A dynamic multimedia model (POPsLTEA) for an East Asia region was developed and evaluated to quantitatively assess how climate change (CC) alters the environmental fate and transport dynamics of 16 polycyclic aromatic hydrocarbons (PAHs) in air, water, soil, and sediment. To cover the entire model domain (25°N-50°N and 98°E-148°E) where China, Japan, and South and North Koreas are of primary concern, a total of 5000 main cells of 50km×50km size were used while 1008 cells of a finer spatial resolution (12.5km×12.5km) was nested for South Korea (33°N-38°N and 126°E-132°E). Most of the predicted concentrations agreed with the observed values within one order of magnitude with a tendency of overestimation for air and sediment. Prediction of the atmospheric concentration was statistically significant in both coincidence and association, suggesting the model's potential to successfully predict the fate and transport of the PAHs as influenced by CC. An example study of benzo(a)pyrene demonstrates that direction and strength of the CC influence on the pollution levels vary with the location and environmental media. As compared to the five year period of 2011 to 2015, the changes across the model domain in the annual geometric mean concentration over the years of 2021 through 2100 were predicted to range from 88% to 304%, from 84% to 109%, from 32% to 362%, and from 49% to 303%, in air, soil, surface water, and sea water, respectively, under the scenario of RCP8.5. PMID:27380393

  13. A 3D hydrodynamic fate and transport model for herbicides in Sacca di Goro coastal lagoon (Northern Adriatic).

    Science.gov (United States)

    Carafa, R; Marinov, D; Dueri, S; Wollgast, J; Ligthart, J; Canuti, E; Viaroli, P; Zaldívar, J M

    2006-10-01

    Sacca di Goro is a shallow coastal microtidal lagoon with a surface area of 26 km2, and an average depth of about 1.5m. Fresh water pollutant loads from Po River branches and several drainage canals lead to anthropogenic eutrophication, frequent summer anoxia crises and chemical contamination. Such events not only affect the lagoon ecosystem but also cause serious economic losses, the lagoon being the second largest producer of clams in Italy. The present work aims at using a fate model coupled with COHERENS 3D hydrodynamic model to simulate and to explain the spatial distribution and temporal variations of s-triazines herbicides in the Sacca di Goro lagoon. The simulation results of spatial and temporal dynamic behaviour of atrazine, simazine and terbuthylazine have been compared with experimental data obtained during an annual monitoring programme. PMID:16643962

  14. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application.

    Science.gov (United States)

    Wang, Jianmei; Lin, Hui; Sun, Wanchun; Xia, Yun; Ma, Junwei; Fu, Jianrong; Zhang, Zulin; Wu, Huizhen; Qian, Mingrong

    2016-03-01

    The fate of sulfamethoxazole (SMZ), norfloxacin (NOR) and doxycycline (DOX) and their biological effects in radish and pakchoi culture systems were investigated. DOX dissipated more rapidly than SMZ and NOR, while radish and pakchoi cultivation increased the removal of residual DOX in soils. Dissipation of NOR was accelerated in radish soils but was slowed down slightly in pakchoi soils. Vegetable cultivation exerted an insignificant effect on SMZ removal. Investigation of antibiotic bioaccumulation showed that the uptake of DOX by radish and pakchoi was undetectable, but the radish accumulated more SMZ and NOR than pakchoi. Among the three antibiotics, only SMZ use exhibited an apparent suspension of plant seed germination, up-ground plant growth and soil microbial diversity. Pakchoi responded more sensitively to SMZ than did the radish. Principal component analysis (PCA) based on MicroRESP™ indicated that the sampling time and antibiotic treatments could influence the soil microbial community. Only in the pakchoi soils did antibiotic application exert a more robust effect on the microbial community than the sampling time; SMZ treatments and DOX treatments could be clearly discriminated from the control treatments. These results are crucial for an assessment of the potential risks of antibiotics to culture system practices and suggest that good agricultural practices help to limit or even reduce antibiotic pollution. PMID:26546703

  15. Study of Transport of Biologically Important Compounds in\

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šestáková, Ivana; Vodičková, H.; Jaklová Dytrtová, Jana; Gál, M.

    Singapore: IACSIT Press, 2015, s. 43-50. (International Proceedings of Chemical, Biological & Environmental Engineering. Vol. 90). ISBN 978-981-09-7382-7. [International Conference on Environment, Chemistry and Biology (ICECB 2015) /4./. Auckland (NZ), 19.11.2015-21.11.2015] R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : membrane * cell * protoplast Subject RIV: CG - Electrochemistry

  16. Development of Nested, Heterogeneous Ground-Water Flow Models for Study of Transport and Fate of Agricultural Chemicals, Merced County, California

    Science.gov (United States)

    Phillips, S. P.; Green, C. T.; Zamora, C.

    2006-05-01

    Multi-scale models of ground-water flow were developed as part of a study of the transport and fate of agricultural chemicals by the National Water-Quality Assessment (NAWQA) Program of the US Geological Survey. Agricultural chemicals of interest included forms of nitrogen and selected pesticides A three- dimensional local-scale model (17 square km) surrounds a well-instrumented, 1-km transect near the Merced River within a principally agricultural land-use setting. This model is nested within a regional-scale model (2,700 square km) of northeastern San Joaquin Valley, California, which provides hydrologically reasonable boundary conditions for the local model. Boundary fluxes were passed from the regional to local model using a hydraulic-conductivity-weighted distribution. The heterogeneity of aquifer materials was incorporated explicitly into the regional and local models. Three-dimensional kriging was used to interpolate sediment texture data from about 3,500 drillers' logs in the regional model area. The resulting distribution of sediment texture was used to estimate hydraulic parameters for each cell in the 16-layer regional model. A subset of these data was used to generate multiple transition-probability-based realizations of hydrofacies distributions for the 110-layer local model. Explicit depiction of heterogeneity in hydraulic conductivity and porosity in the local model incorporates macro-scale hydrodynamic dispersion into the flow model, allowing more direct comparison of particle-tracking results to tracer-derived estimates of ground-water age. Water levels measured in multi-depth wells along the 1-km transect were used to calibrate the local model (median error 0.12 m). Two-dimensional heat-flow models calibrated using continuous multi-depth temperature data from below the bed of the Merced River suggest an annual range of ground-water inflow of about 0-2.4 cm/d for water year 2005. This estimate compares reasonably well to the 4 cm/d simulated in the

  17. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴‑⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  18. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  19. Molecular motor traffic: From biological nanomachines to macroscopic transport

    Science.gov (United States)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  20. Comparison of Atmospheric Travel Distances of Several PAHs Calculated by Two Fate and Transport Models (The Tool and ELPOS with Experimental Values Derived from a Peat Bog Transect

    Directory of Open Access Journals (Sweden)

    Sabine Thuens

    2014-05-01

    Full Text Available Multimedia fate and transport models are used to evaluate the long range transport potential (LRTP of organic pollutants, often by calculating their characteristic travel distance (CTD. We calculated the CTD of several polycyclic aromatic hydrocarbons (PAHs and metals using two models: the OECD POV& LRTP Screening Tool (The Tool, and ELPOS. The absolute CTDs of PAHs estimated with the two models agree reasonably well for predominantly particle-bound congeners, while discrepancies are observed for more volatile congeners. We test the performance of the models by comparing the relative ranking of CTDs with the one of experimentally determined travel distances (ETDs. ETDs were estimated from historical deposition rates of pollutants to peat bogs in Eastern Canada. CTDs and ETDs of PAHs indicate a low LRTP. To eliminate the high influence on specific model assumptions and to emphasize the difference between the travel distances of single PAHs, ETDs and CTDs were analyzed relative to the travel distances of particle-bound compounds. The ETDs determined for PAHs, Cu, and Zn ranged from 173 to 321 km with relative uncertainties between 26% and 46%. The ETDs of two metals were shorter than those of the PAHs. For particle-bound PAHs the relative ETDs and CTDs were similar, while they differed for Chrysene.

  1. A preliminary assessment of biological transport of radionuclides dumped at deep sea bottom

    International Nuclear Information System (INIS)

    In hazard evaluation of deep sea disposal of solid radioactive wastes, biological transport through food chains has not so far been fully considered. In the present paper we examined how to include in the computation of nuclide concentration in predator species the transport of nuclide through prey organisms and obtained two equations. Then a model network was constructed to describe food chain from detritus up to main commercial species in northwest Pacific, supposed disposal area. Biological transport through this model network was then calculated using two equations for nuclides released at sea bottom of 5 km deep. Influence of changes in various conditions and values of parameters was examined

  2. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study

  3. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, S.O.; Sondrup, A.J.

    1998-07-01

    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.

  4. Superfund TIO videos: Set C. Ground water: Fate and transport of contaminants in ground water. Part 5. Audio-Visual

    International Nuclear Information System (INIS)

    The videotape explains how to assess the primary modes of interaction that might be expected between a contaminant and the soil/solids matrix or the fluid phase. An overview of general hydrology and the physical, chemical, and biological processes of contaminants in ground water are discussed

  5. Modelling of biological transport of radionuclides in human body

    International Nuclear Information System (INIS)

    The paper presents several camera models describing biological transfer processes of manmade radionuclides in the human body. Two dosimetric camera models of the respiratory system are shown. The models are valid for aerosols with Activity Median Aerodynamic Diameter (AMAD) from 0.1 μ to 10 μ (ICRP Publication 30) and from 0.001 mm to 100 mm (ICRP Publication 66) respectively. The gastrointestinal tract model (ICRP Publication 30) is briefly described. From the systemic models for radionuclides transfer from body fluids to different organs and tissues, the Cesium model (ICRP Publication 30) is presented in details

  6. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  7. Transport and characterization of ambient biological aerosol near Laurel, MD

    Directory of Open Access Journals (Sweden)

    J. L. Santarpia

    2010-09-01

    Full Text Available Bacterial aerosol have been observed and studied in the ambient environment since the mid nineteenth century. These studies have sought to provide a better understanding of the diversity, variability and factors that control the biological aerosol population. In this study, we show comparisons between diversity of culturable bacteria and fungi, using culture and clinical biochemical tests, and 16S rRNA diversity using Affymetrix PhyloChips. Comparing the culturable fraction and surveying the total 16S rRNA of each sample provides a comprehensive look at the bacterial population studied and allows comparison with previous studies. Thirty-six hour back-trajectories of the air parcels sampled, over the two day period beginning 4 November 2008, provide information on the sources of aerosol sampled on the campus of Johns Hopkins University Applied Physics Laboratory in Laurel, MD. This study indicates that back-trajectory modeling of air parcels may provide insights into the observed diversity of biological aerosol.

  8. Characterization of crushed tuff for the evaluation of the fate of tracers in transport studies in the unsaturated zone

    International Nuclear Information System (INIS)

    Results of field-scale (caisson) transport studies under unsaturated moisture and steady and nonsteady flow conditions indicate variability and a lack of conservation of mass in solute transport. The tuff materials used in that study were analyzed for the presence of tracers and of freshly precipitated material to help explain the variability and lack of conservation of mass. Selected tuff samples were characterized by neutron activation analysis for tracer identification, by x-ray diffraction for mineral identification, by petrographic analysis for identification of freshly precipitated material, and by x-ray fluorescence analysis for identification of major and trace elements. The results of these analyses indicate no obvious presence of freshly precipitated material that would retard tracer movement. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of the nonsorbing tracers (bromide and iodide) suggest the retention of these tracers in immobile water. The presence of sorbing and nonsorbing tracers on the tuff at some locations (even cesium at the 415-cm depth) and not at others suggests variability in transport. 15 refs., 14 figs., 9 tabs

  9. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag+ and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag+ to AgNPs

  10. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Zhongwu; Yan, Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Guo, Zhi; Huang, Zhenzhen; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-03-21

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag{sup +} and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag{sup +} to AgNPs.

  11. Air-Sea Exchange of Legacy POPs in the North Sea Based on Results of Fate and Transport, and Shelf-Sea Hydrodynamic Ocean Models

    Directory of Open Access Journals (Sweden)

    Kieran O'Driscoll

    2014-04-01

    Full Text Available The air-sea exchange of two legacy persistent organic pollutants (POPs, γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization, wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009. The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.

  12. Transport and fate of ammonium and its impact on uranium and other trace elements at a former uranium mill tailing site

    International Nuclear Information System (INIS)

    Highlights: • Nitrification of ammonium evidenced by stable isotopes of nitrate at a mining site. • Concentrations of uranium and other trace elements related to ammonium conc. • Observed impact of ammonium on redox, pH, and possibly complexation. • Proposed impact of transformation of NO3 and NH4 on trace elements. - Abstract: The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium–nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site

  13. Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment.

    Science.gov (United States)

    Pullan, S P; Whelan, M J; Rettino, J; Filby, K; Eyre, S; Holman, I P

    2016-09-01

    This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8h) pesticide monitoring data and to five larger catchments (479-1653km(2)) with sampling approximately every 14days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally >0.59 and PBIAS operational and strategic risk assessments. PMID:27151500

  14. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    OpenAIRE

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2015-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and de...

  15. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  16. Oxygen Transport Across Space-Filling Biological Membranes

    Science.gov (United States)

    Hou, Chen

    2005-03-01

    Space-filling fractal surfaces play a fundamental role in how organisms function and in how structure determines function at various levels. In this project we developed an efficient and powerful algorithm, rope-walk algorithm, for solving diffusion equations of transport of species across the space-filling fractal surface. We performed analytic computations of the oxygen current across the alveolar membranes in the lung, as a function of diffusion coefficient and membrane permeability, using the rope-walk algorithm, without adjustable parameters. The analytic calculation identifies the four cases as sharply delineated screening regimes and finds that the lung operates in the partial-screening regime, close to the transition to no screening, and in the no-screening regime, for respiration at rest and in exercise respectively. The gas exchange satisfies six criteria of optimal design: maximum current; minimum waste of surface area; minimum permeability; maximum fault tolerance; minimum waiting time and maximum current increase when going from rest to exercise. This extraordinary, multiply optimized performance is a direct consequence of the space-filling membrane architecture.

  17. Molecular cell biology and physiology of solute transport

    Science.gov (United States)

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  18. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr

    International Nuclear Information System (INIS)

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. Over time, water infiltrates the wastes, and releases metals and radionuclides causing transport into the surrounding environment. We propose that fermentative microorganisms are active in these sites and may control metal and radionuclide migration from source zones (Figure 1). The following overarching hypothesis will drive our research: 'Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic compounds can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms.' The objective of our research is to determine the effect of carbon and energy flow through simulated waste environments on metal and radionuclide migration from waste pits and trenches across the DOE complex. Metals and radionuclides can be mobilized by infiltration of water into waste storage sites. Cellulolytic and non-cellulolytic fermentative microorganisms have been chosen as the focus of this research because their activity is a critical first step that we hypothesize will control subsequent fate and transport in contaminated natural systems. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These

  19. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Apel, William A. [Idaho National Lab., Idaho Falls, ID (United States)

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  20. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    International Nuclear Information System (INIS)

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  1. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  2. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    OpenAIRE

    Peter Emanuel; Kyle Hubbard; Gregory Pellar

    2011-01-01

    There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS) transport media based on sample recovery, viability, an...

  3. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear

    OpenAIRE

    Arwa Kurabi; Kwang K. Pak; Marlen Bernhardt; Andrew Baird; Ryan, Allen F.

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of ...

  4. Geochemical, hydrological and biological cycling of energy residuals. Research plan: Subsurface Transport Program. Revision

    International Nuclear Information System (INIS)

    Energy development and production, particularly the generation of various waste products, have resulted in a need for long-term scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation or biotransformation of contaminants in subsurface environments. This plan describes proposed research goals and specific research directions intended to address these scientific questions. Research needs are grouped into three areas: (1) biogeochemical mobilization; (2) hydrological transport in subsurface systems; and (3) biological uptake and food chain transfer

  5. Research plan: geochemical, hydrological and biological cycling of energy residuals. Subsurface Transport Program

    International Nuclear Information System (INIS)

    Energy development and production, particularly the generation of various waste products, have resulted in a need for long term scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation or biotransformation of contaminants in subsurface environments. This plan describes proposed research goals and specific research directions intended to address these scientific questions. Research needs are grouped into three areas: (1) biogeo-chemical mobilization; (2) hydrological transport in subsurface systems; and (3) biological uptake and food chain transfer

  6. Modelling the influence of intermittent rain events on long-term fate and transport of organic air pollutants

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Hauschild, Michael Zwicky

    2005-01-01

    The deposition of particles and substances in air is under strong influence of the precipitation patterns of the atmosphere. Most multimedia models, like type III Mackay models, treat rain as a continuous phenomenon. This may cause severe overestimation of the substance removal from the atmosphere...... through wet deposition, and an underestimation of travel distances, leading to the following questions: How strong is the influence of the intermittent character of rain on concentrations, residence times, deposited fractions and characteristic transport distances of different substances in air? Is there...... an expression which can provide an accurate approximation to be used in steady state multimedia models? Assuming a periodically intermittent rain, the mass of an emitted substance which is present in the air compartment is calculated as a function of the deposition rate constants during dry and wet...

  7. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  8. Estimation of light transport parameters in biological media using coherent backscattering

    Indian Academy of Sciences (India)

    S Anantha Ramakrishna; K Divakara Rao

    2000-02-01

    The suitability of using the angular peak shape of the coherent backscattered light for estimating the light transport parameters of biological media has been investigated. Milk and methylene blue doped milk were used as tissue phantoms for the measurements carried out with a He–Ne laser (632.8 nm). Results indicate that while the technique accurately estimates the transport length, it can determine the absorption coefficient only when the absorption is moderately high ( > 1 cm-1) for the long transport lengths typical of tissues. Further, the possibility of determining the anisotropy factor by estimating the single scattering contribution to the diffuse background is examined.

  9. CranSLIK v1.0: stochastic prediction of oil spill transport and fate using approximation methods

    Directory of Open Access Journals (Sweden)

    B. J. Snow

    2014-07-01

    Full Text Available This paper investigates the development of a model, called CranSLIK, to predict the transport and transformations of a point mass oil spill via a stochastic approach. Initially the various effects on destination are considered and key parameters are chosen which are expected to dominate the displacement. The variables considered are: wind velocity, surface water velocity, spill size, and spill age. For a point mass oil spill, it is found that the centre of mass can be determined by the wind and current data only, and the spill size and age can then be used to reconstruct the surface of the spill. These variables are sampled and simulations are performed using an open-source Lagrangian approach-based code, MEDSLIK II. Regression modelling is applied to create two sets of polynomials: one for the centre of mass, and one for the spill size. Simulations performed for a real oil spill case show that a minimum of approximately 80% of the oil is captured by CranSLIK. Finally, Monte Carlo simulation is implemented to allow for consideration of the most likely destination for the oil spill, when the distributions for the oceanographic conditions are known.

  10. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  11. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    . The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.

  12. Use of a Metolachlor Metabolite (MESA) to Assess Agricultural Nitrate-N Fate and Transport in Choptank River Watershed, Maryland USA

    Science.gov (United States)

    McCarty, Greg; Hapeman, Cathleen; Rice, Clifford; Hively, Dean; McConnell, Laura; Sadeghi, Ali; Lang, Megan; Whitall, David; Bialek, Krystyna; Downey, Peter

    2014-05-01

    A majority of streams in the Chesapeake Bay watershed have been rated as poor or very poor based on biological assessments. The Choptank River estuary, a Bay tributary on the eastern shore, is an example, where crop production in upland areas of the watershed contribute significant loads of nutrients to streams. We used a novel approach based on the relationship between the concentration of nitrate-N and the stable, water-soluble herbicide degradation product MESA {2-[2-ethyl-N-(1-methoxypropan-2-yl) -6-methylanilino]-2-oxoethanesulfonic acid} to distinguish between dilution and denitrification effects on the stream concentration of nitrate-N in agricultural subwatersheds. The ratio of mean nitrate-N concentration/(mean MESA concentration * 1000) for 15 subwatersheds was examined as a function of percent cropland on hydric soil. The observed inverse relationship (R2 = 0.65, p nitrate-N, but also the stream sampling bias of the croplands caused by extensive drainage ditch networks. MESA was also used to track nitrate-N fate within the estuary of the Choptank River. The relationship between nitrate-N and MESA concentrations in samples collected over three years was linear (0.95 ≤ R2 ≤ 0.99) for all eight sampling dates except one where R2 = 0.90. This very strong correlation indicates that nitrate-N was conserved in much of the Choptank River estuary, that dilution alone is responsible for the changes in nitrate-N and MESA concentrations, and more importantly nitrate-N loads are not reduced in the estuary prior to entering the Chesapeake Bay.

  13. Water-Rock Interactions Influencing Mercury Fate and Transport from an Abandoned Mine Site to an Aquatic Ecosystem

    Science.gov (United States)

    Jewett, D. G.; Engle, M. A.; Reller, G. J.; Bauman, J. B.; Manges, E.

    2001-12-01

    Clear Lake and screened in waste rock material. These high Hg concentrations are present in a mixture of pit outflow and infiltrating meteoric water based on conservative, dissolved constituent and stable isotope data. Results of filtration sampling experiments indicate that while particulate transport of mercury at the site does occur, it may not be a significant component of mercury flux through ground water at SBMM. (This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.)

  14. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  15. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  16. Bioinformatics for transporter pharmacogenomics and systems biology: data integration and modeling with UML.

    Science.gov (United States)

    Yan, Qing

    2010-01-01

    Bioinformatics is the rational study at an abstract level that can influence the way we understand biomedical facts and the way we apply the biomedical knowledge. Bioinformatics is facing challenges in helping with finding the relationships between genetic structures and functions, analyzing genotype-phenotype associations, and understanding gene-environment interactions at the systems level. One of the most important issues in bioinformatics is data integration. The data integration methods introduced here can be used to organize and integrate both public and in-house data. With the volume of data and the high complexity, computational decision support is essential for integrative transporter studies in pharmacogenomics, nutrigenomics, epigenetics, and systems biology. For the development of such a decision support system, object-oriented (OO) models can be constructed using the Unified Modeling Language (UML). A methodology is developed to build biomedical models at different system levels and construct corresponding UML diagrams, including use case diagrams, class diagrams, and sequence diagrams. By OO modeling using UML, the problems of transporter pharmacogenomics and systems biology can be approached from different angles with a more complete view, which may greatly enhance the efforts in effective drug discovery and development. Bioinformatics resources of membrane transporters and general bioinformatics databases and tools that are frequently used in transporter studies are also collected here. An informatics decision support system based on the models presented here is available at http://www.pharmtao.com/transporter . The methodology developed here can also be used for other biomedical fields. PMID:20419428

  17. Electronic and Transport Properties of Quasi-1D Wires of Biological Molecules

    Science.gov (United States)

    Oetzel, Björn; Matthes, Lars; Tandetzky, Falk; Ortmann, Frank; Bechstedt, Friedhelm; Hannewald, Karsten

    2010-03-01

    In the search for organic materials with good charge-transport properties, artificial stacks of biological molecules are considered attractive candidates [1,2]. In this spirit, we present ab-initio DFT calculations of the structural, electronic, and quantum-transport properties of quasi-1D wires based on guanine and eumelanin molecules [3]. Hereby, a special focus is put on the results for the electronic bandwidths and the consequences for potential applications. [4pt] [1] R. di Felice et al., Phys. Rev. B 65, 045104 (2001) [0pt] [2] P. Meredith et al., Pigment Cell Res. 19, 572 (2006) [0pt] [3] B. Oetzel et al. (unpublished)

  18. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  19. Fate and transport of cyanobacteria and associated toxins and taste-and-odor compounds from upstream reservoir releases in the Kansas River, Kansas, September and October 2011

    Science.gov (United States)

    Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.

    2012-01-01

    Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from

  20. A transport and fate model of C-14 in a bay of the Baltic Sea at SFR. Today and in future

    International Nuclear Information System (INIS)

    The environmental transport and fate of a hypothetical release of radioactive carbon-14 from SFR-1 (the final repository for radioactive operational waste) was investigated using an ecosystem modelling approach. The approach involved identification, quantification and dynamic modelling of the main flows and storages of carbon both in the physical environment and in the food web. Carbon-14 was in the model introduced into the food web via photosynthesising organisms. Contamination of the aquatic ecosystem above SFR-1 was then assessed assuming a release of 5.13 x 107 Bq/year for 1,000 years. Modelling results were used to estimate steady-state C-14 concentrations in biota, exposure (Gy) of biota and dose (Sv) to humans consuming contaminated organisms both if the discharge occurred today (2000 AD)and if it occurred in the future (4000 AD). Since the modelled area is characterised by a fast water exchange, most of the discharged C-14 was flushed out of the system more or less immediately (99.8% and 98.4% at 2000 AD and 4000 AD, respectively). However, a small fraction of the discharge was assimilated by primary producers (0.18% and 2.11%), which enabled subsequent transfer of C-14 to organisms at higher trophic levels (e.g. fish, seals and humans). The exported C-14 from the area was diluted to very low concentrations in the large recipient outside. Estimated exposures were very low, and differed significantly among the studied biota (17.2 x 10-12 to 2.3 x 10-6 Gy). In general the highest exposures were observed in benthic plants and benthic grazers followed by fish and benthos. Humans consuming large quantities of locally produced food (e.g.fish, mussels and algae) will receive an exposure in case of C-14 contamination. Estimated doses to humans were approximately 10-100 nSv per year, which is significantly lower than restrictions by the authorities. The developed model was also used to evaluate implications of various assumptions concerning the route of C-14 entry

  1. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.; Girvin, Donald C.; Resch, Charles T.; Campbell, James A.; Fredrickson, Herbert L.; Thompson, Karen T.; Crocker, Fiona H.; Qasim, Mohammad M.; Gamerdinger, Amy P.; Lemond, Luke A.

    2005-06-01

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurface terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates

  2. A transport and fate model of C-14 in a bay of the Baltic Sea at SFR. Today and in future

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, L. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2001-06-01

    The environmental transport and fate of a hypothetical release of radioactive carbon-14 from SFR-1 (the final repository for radioactive operational waste) was investigated using an ecosystem modelling approach. The approach involved identification, quantification and dynamic modelling of the main flows and storages of carbon both in the physical environment and in the food web. Carbon-14 was in the model introduced into the food web via photosynthesising organisms. Contamination of the aquatic ecosystem above SFR-1 was then assessed assuming a release of 5.13 x 10{sup 7} Bq/year for 1,000 years. Modelling results were used to estimate steady-state C-14 concentrations in biota, exposure (Gy) of biota and dose (Sv) to humans consuming contaminated organisms both if the discharge occurred today (2000 AD)and if it occurred in the future (4000 AD). Since the modelled area is characterised by a fast water exchange, most of the discharged C-14 was flushed out of the system more or less immediately (99.8% and 98.4% at 2000 AD and 4000 AD, respectively). However, a small fraction of the discharge was assimilated by primary producers (0.18% and 2.11%), which enabled subsequent transfer of C-14 to organisms at higher trophic levels (e.g. fish, seals and humans). The exported C-14 from the area was diluted to very low concentrations in the large recipient outside. Estimated exposures were very low, and differed significantly among the studied biota (17.2 x 10{sup -12} to 2.3 x 10{sup -6} Gy). In general the highest exposures were observed in benthic plants and benthic grazers followed by fish and benthos. Humans consuming large quantities of locally produced food (e.g.fish, mussels and algae) will receive an exposure in case of C-14 contamination. Estimated doses to humans were approximately 10-100 nSv per year, which is significantly lower than restrictions by the authorities. The developed model was also used to evaluate implications of various assumptions concerning the

  3. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study

    Directory of Open Access Journals (Sweden)

    King John R

    2010-03-01

    Full Text Available Abstract Background Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. Results In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Conclusions Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  4. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    The objective of these studies is to develop a basic understanding of radionuclide chemical behavior in soil systems and determine biological availability and transport through ecological pathways defining basic mechanisms at the chemical, cellular, and organism level, enables the incorporation of information into predictive models, which are subsequently validated in the field at reactor and waste management sites. Through investigations of critical geochemical, microbial, and plant phenomena, the precision with which human dose assessments are made is improved. The biologically and chemically mediated transport processes and food-chain pathways are studied rather than the purely physical forms of contaminant transport, such as transport by wind and water. Results can also be used to predict the behavior of non-nuclear pollutants such as heavy metals, and to provide a basis for new designs and remedial measures (chemical treatments, biobarriers) that will minimize hazards associated with extended waste disposal and isolation

  5. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  6. Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003

    Science.gov (United States)

    Williams, Shannon D.; Ladd, David E.; Farmer, James

    2006-01-01

    In 2002 and 2003, the U.S. Geological Survey (USGS), by agreement with the National Park Service (NPS), investigated the effects of oil and gas production operations on ground-water quality at Big South Fork National River and Recreation Area (BISO) with particular emphasis on the fate and transport of petroleum hydrocarbons in soils and ground water. During a reconnaissance of ground-water-quality conditions, samples were collected from 24 different locations (17 springs, 5 water-supply wells, 1 small stream, and 1 spring-fed pond) in and near BISO. Benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were not detected in any of the water samples, indicating that no widespread contamination of ground-water resources by dissolved petroleum hydrocarbons probably exists at BISO. Additional water-quality samples were collected from three springs and two wells for more detailed analyses to obtain additional information on ambient water-quality conditions at BISO. Soil gas, soil, water, and crude oil samples were collected at three study sites in or near BISO where crude oil had been spilled or released (before 1993). Diesel range organics (DRO) were detected in soil samples from all three of the sites at concentrations greater than 2,000 milligrams per kilogram. Low concentrations (less than 10 micrograms per kilogram) of BTEX compounds were detected in lab-analyzed soil samples from two of the sites. Hydrocarbon-degrading bacteria counts in soil samples from the most contaminated areas of the sites were not greater than counts for soil samples from uncontaminated (background) sites. The elevated DRO concentrations, the presence of BTEX compounds, and the low number of -hydrocarbon-degrading bacteria in contaminated soils indicate that biodegradation of petroleum hydrocarbons in soils at these sites is incomplete. Water samples collected from the three study sites were analyzed for BTEX and DRO. Ground-water samples were collected from three small springs at the

  7. Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R

    NARCIS (Netherlands)

    Soetaert, K.; Meysman, F.

    2012-01-01

    The concentrations of many natural compounds are altered by chemical and biological transformations, and physical processes such as adsorption and transport. Their fate can be predicted using reactive transport models that describe reaction and advective and dispersive movement of these components i

  8. Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters

    International Nuclear Information System (INIS)

    Multi-functionalized single walled carbon nanotubes (SWNTs) were prepared and applied as tumor cell targeting biological transporters. A positive charge was introduced on SWNTs to get high loading efficiency of fluorescein (FAM) labeled short double strands DNA (20 base pairs). The SWNTs were encapsulated with the folic acid modified phospholipids for active targeting into tumor cell. The tumor cell-targeting properties of these multi-functionalized SWNTs were investigated by active targeting into mouse ovarian surface epithelial cells. The experimental results show that these multi-functionalized SWNTs have good tumor cell targeting property

  9. Constructing Soliton and Kink Solutions of PDE Models in Transport and Biology

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Vladimirov

    2006-06-01

    Full Text Available We present a review of our recent works directed towards discovery of a periodic, kink-like and soliton-like travelling wave solutions within the models of transport phenomena and the mathematical biology. Analytical description of these wave patterns is carried out by means of our modification of the direct algebraic balance method. In the case when the analytical description fails, we propose to approximate invariant travelling wave solutions by means of an infinite series of exponential functions. The effectiveness of the method of approximation is demonstrated on a hyperbolic modification of Burgers equation.

  10. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    International Nuclear Information System (INIS)

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport

  11. Ion Transport Characteristics of Individual Single-walled Carbon Nanotubes Mimic Those of Biological Ion Channels

    Science.gov (United States)

    Amiri, Hasti; Shepard, Kenneth; Nuckolls, Colin

    2014-03-01

    Transmembrane ionic channels play a crucial role in vital cellular activities by regulating the transport of ions and fluid across the cell membrane. Their structural complexity and flexibility as well as their many unique operational features, however, make their investigation extremely difficult. The simple, atomically smooth and well-defined structure of carbon nanotubes (CNTs) provides an excellent template for studying molecular transport at nanoscale. Additionally, CNTs have been suggested as analogues to biological pores since they share several common features such as nanometer size diameter, hydrophobic core and ultrafast water flow. Functionalizing the nanotube entrance can also mimic the selectivity filter of ion channels. In this work, we experimentally study ionic transport through individual single-walled CNTs connecting two fluid reservoirs as a function of pore properties and electrolyte type and concentration. We provide strong evidence that the electrostatic potentials arising from the ionized carboxyl groups at the pore entrance significantly influence the ion permeation in a manner consistent with a simple electrostatic mechanism. Lastly, the similarities of ionic transport mechanisms between individual single-walled CNTs and protein ion channels are discussed.

  12. Proton transport in biological systems can be probed by two-dimensional infrared spectroscopy

    Science.gov (United States)

    Liang, Chungwen; Jansen, Thomas L. C.; Knoester, Jasper

    2011-01-01

    We propose a new method to determine the proton transfer (PT) rate in channel proteins by two-dimensional infrared (2DIR) spectroscopy. Proton transport processes in biological systems, such as proton channels, trigger numerous fundamental biochemical reactions. Due to the limitation in both spatial and time resolution of the traditional experimental approaches, describing the whole proton transport process and identifying the rate limiting steps at the molecular level is challenging. In the present paper, we focus on proton transport through the Gramicidin A channel. Using a kinetic PT model derived from all-atom molecular dynamics simulations, we model the amide I region of the 2DIR spectrum of the channel protein to examine its sensitivity to the proton transport process. We demonstrate that the 2DIR spectrum of the isotope-labeled channel contain information on the PT rate, which may be extracted by analyzing the antidiagonal linewidth of the spectral feature related to the labeled site. Such experiments in combination with detailed numerical simulations should allow the extraction of site dependent PT rates, providing a method for identifying possible rate limiting steps for proton channel transfer.

  13. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    Science.gov (United States)

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  14. Entropic transport in confined media: a challenge for computational studies in biological and soft-matter systems

    OpenAIRE

    PaoloMalgaretti

    2013-01-01

    Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and trea...

  15. Biological transport of persistent organic pollutants (POPs) to Lake Ellasjoeen, Bjoernoeya (Bear Island), Norway

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, A.; Christensen, G. [Akvaplan-niva, Tromso (Norway); Kallenborn, R. [Norwegian Inst. for Air Research, Kjeller (Norway); Herzke, D. [Norwegian Inst. for Air Research, Tromso (Norway)

    2004-09-15

    During recent years, multidisciplinary studies have been carried out on Bjoernoeya (Bear Island, Norway), elucidating the fate and the presence of persistent organic pollutants (POPs) in this pristine Arctic environment. High concentrations of POPs, like polychlorinated biphenyls (PCBs), dichloro-diphenyl-dichlorethane (DDE) and polybrominated diphenyl ethers (PBDEs) have been measured in sediment and biota from Ellasjoeen, a lake located in the southern, mountainous part of Bjoernoeya. In Lake Oeyangen, located only 6 km north of Ellasjoeen on the central plains of the island, levels of POPs are several times lower than in Ellasjoeen. One reason for the different POP contamination levels in Ellasjoeen and Oeyangen is probably differences in precipitation regime between the southern mountainous part of the island and the central plains further north, leading to differences in the deposition of air transported contaminants. Another possible source for contaminants to Ellasjoeen is the large colonies of seabirds (mainly kittiwake (Rissa tridactyla), little auk (Alle alle) and glaucous gull (Larus hyperboreus)), which are situated close to the lake during the ice-free period (early June - October). These seabirds feed in the marine environment, and deposit large amounts of guano (excrements) directly into the lake or in the catchment area of the lake. Oeyangen is not influenced by seabirds. There are two ways in which input from seabirds can lead to higher levels of POPs in Ellasjoeen: direct input of POPs through allochthonous material (guano, bird remains) a change in trophic state of the lake as a result of nutrient loadings from the seabirds. The aim of the present study was to investigate the role of guano as a transport medium for POPs to Ellasjoeen. Two main approaches were followed: an investigation of the trophic status of Ellasjoeen, as well as the reference lake, Oeyangen, through analyses of stable isotopes of carbon and nitrogen, analyses of selected

  16. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment

    International Nuclear Information System (INIS)

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have bio-dosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective bio-dosimetric response in cases of radiological or nuclear emergencies. (authors)

  17. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.

    Science.gov (United States)

    Dey, Bibaswan; Sekhar, G P Raja

    2016-04-21

    This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values. PMID:26851443

  18. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Science.gov (United States)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  19. Multidisciplinary investigation of the fate, transport, and remediation of chlorinated solvents in fractured rocks at the former Naval Air Warfare Center (NAWC): Scientific and management challenges, and strategies for a successful research program

    Science.gov (United States)

    Tiedeman, C. R.; Goode, D. J.; Shapiro, A. M.; Lacombe, P. J.; Chapelle, F. H.; Bradley, P. M.; Imbrigiotta, T. E.; Williams, J. H.; Curtis, G. P.; Hsieh, P. A.

    2008-12-01

    At the former Naval Air Warfare Center (NAWC) in West Trenton NJ, the U.S. Geological Survey, in cooperation with the U.S. Navy and under support from the Strategic Environmental Research and Development Program (SERDP), is investigating the fate, transport, and remediation of trichloroethylene (TCE) and its daughter products in dipping, fractured mudstones underlying the site. TCE concentrations in ground water are as high as ~100 mg/L. Objectives of multidisciplinary research at the NAWC include (1) understanding the physical, chemical, and microbiological processes and properties affecting the fate, transport, and removal of chlorinated solvents in fractured rocks, (2) assessing the efficiency of different remediation methods (pump and treat, natural and enhanced biodegradation), and (3) transferring the results to help remediate other contaminated fractured rock aquifers. There are numerous scientific and technical challenges to meeting these goals, including the extreme spatial variability of flow and transport properties at the NAWC and the complex distribution of contaminants, geochemical constituents, and microorganisms in fractures and the rock matrix. In addition, there are management challenges that are equally important to address in order to achieve a successful research program. These include balancing the requirements of the many parties involved at the site, including researchers, the site owner, and regulatory agencies; and ensuring that limited research funds are directed towards work that addresses the most important scientific questions as well as stakeholder concerns. Strategies for the scientific challenges at NAWC include developing a carefully planned program to characterize spatial variability in rock properties and groundwater constituents so that the data obtained are applicable to solving research questions focused on remediation. Strategies for the management challenges include fostering open lines of communication among all parties and

  20. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear.

    Science.gov (United States)

    Kurabi, Arwa; Pak, Kwang K; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 10(10th) 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  1. [How do transport and metabolism affect the biological effects of polycyclic aromatic hydrocarbons?].

    Science.gov (United States)

    Bekki, Kanae; Toriba, Akira; Tang, Ning; Kameda, Takayuki; Takigami, Hidetaka; Suzuki, Go; Hayakawa, Kazuichi

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs), some of which are carcinogenic/mutagenic, are generated by combustion of fossil fuels and also released through tanker or oilfield accident to cause a large scale environmental pollution. PAHs concentration in China is especially high in East Asia because of many kinds of generation sources such as coal heating systems, vehicles and factories without exhaust gas/particulate treatment systems. So, the atmospheric pollution caused by PAHs in China has been seriously concerned from the view point of health effects. Like yellow sand and sulfur oxide, PAHs exhausted in China are also transported to Japan. Additionally, strongly mutagenic nitrated PAHs (NPAHs), estrogenic/antiestrogenic PAH hydroxides (PAHOHs) and reactive oxygen species-producing PAH quinones (PAHQs) are formed from PAHs by the chemical reaction during the transport. Furthermore these PAHOHs and PAHQs are produced by the metabolism in animal body. In the biological activities caused by the above PAH derivatives, the structure-activity relationship was observed. In this review, our recent results on the generation of PAH derivatives by atmospheric transport and metabolism are reported. Also, the existing condition of PAHs as atmospheric pollutants is considered. PMID:22382837

  2. Physics of Transport and Traffic Phenomena in Biology: from molecular motors and cells to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2005-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitaive analysis of model...

  3. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  4. Effects of spray-irrigated treated effluent on water quantity and quality, and the fate and transport of nitrogen in a small watershed, New Garden Township, Chester County, Pennsylvania

    Science.gov (United States)

    Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.

    2005-01-01

    An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application

  5. Analysis of photon transport in biological tissue and the subsequent heating effects

    International Nuclear Information System (INIS)

    Analysis of laser interaction with matter revealed the possibilities of many industrial and therapeutic applications. This research article discusses the theoretical aspects of laser beam interaction with biological tissues. It introduces the numerical analysis of photon distribution and transport in the tissue and its bio-thermal heating effects. The Monte Carlo method has been applied to simulate the variation of photon distribution and photon fluence with the radial distance from the point of interaction as well as laser powers and tissue thickness. For a specific wavelength, the variation of diffuse reflectance with the absorption coefficient was depicted for different values of the anisotropy factor. It has also been used to simulate the bio-heat transfer to obtain the temperature variation with the heating depth. On the other hand, finite difference method (FDM) has been applied to simulate the heating effect resulted from the incident laser beam on the tissue based on Penne's bio-heat equation combined with the obtained photon distribution and transport parameters from the MC method. The heating effect of the laser beam and hence the occurred thermal damage in the tissue was depicted. A linear relationship between the temperature and the rate of thermal damage has been manifested. This result can be used as a threshold reference for various medical applications of lasers. (authors)

  6. The fate and importance of radionuclides produced in nuclear events

    International Nuclear Information System (INIS)

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  7. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  8. The Environmental Fate Simulator: A tool for predicting the degradation pathways of organic chemicals in groundwater aquifers

    Science.gov (United States)

    Development of the Environmental Fate Simulator (EFS): • High throughput computational system for providing molecular and environmental descriptors for consumption by EF&T models Requires:  Knowledge of the process science controlling chemical fate and transport  The abil...

  9. Fate of pollutants

    International Nuclear Information System (INIS)

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  10. Fate and transport of veterinary antibiotics, antibiotic-resistant bacteria, and antibiotic resistance gene from fields receiving poultry manure during storm events

    Science.gov (United States)

    Antimicrobials are used in production agriculture to treat disease and promote animal growth, but the presence of antibiotics in the environment raises concern about widespread antibiotic resistance. This study documents the occurrence and transport of tylosin, tetracycline, enterococci resistant to...

  11. Nearshore transport processes affecting the dilution and fate of energy-related contaminants. Progress report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, J. O.

    1980-07-15

    Research was conducted on physical oceanograhic processes off the Georgia Coast. Spatral variations in momentum and salt flux were measured to determine their importance in generating flow and salt transport. Analyses of data are presently underway.

  12. Nearshore transport processes affecting the dilution and fate of energy-related contaminants. Progress report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Research was conducted on physical oceanograhic processes off the Georgia Coast. Spatral variations in momentum and salt flux were measured to determine their importance in generating flow and salt transport. Analyses of data are presently underway

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    International Nuclear Information System (INIS)

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV

  14. Fate and transport modeling with American Petroleum Institute decision support system applied in a site assessment for residual crude oil in unconsolidated sediments: Case study in Kern County, California

    International Nuclear Information System (INIS)

    Historical crude oil leaks from a pipeline affected unconsolidated alluvial sediments near a sensitive groundwater recharge area in Kern County, California. The residual crude oil is confined to the vadose zone and occurs from ∼3 m below ground surface (BGS) to a maximum depth of 24 m BGS. The water table beneath the affected sediments is currently 46 m BGS. The site is irrigated regularly for agriculture. To date, the residual crude oil has not impacted groundwater quality. Future groundwater recharge plans may raise the water table to 15 m BGS in the area affected by the crude oil. Fate and transport modeling using site-specific data shows that the existing hydrocarbons in the subsurface do not pose a significant risk to groundwater quality. The computer models selected for this project are incorporated as modules in the American Petroleum Institute's Exposure and Risk Assessment Decision Support System. Transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) is modeled using Seasonal Soil (SESOIL) for the unsaturated zone coupled with AT123D for the saturated zone. The SESOIL model is calibrated using actual soil moisture measurements and groundwater recharge estimates based on applied irrigation. Peak BTEX concentrations in groundwater predicted for the site are well below maximum contaminant levels. A sensitivity analysis confirms that aerobic biodegradation significantly reduces BTEX compounds. Due to the high availability of dissolved oxygen in groundwater at this site, natural attenuation may be the most favorable mechanism to remediate BTEX in the subsurface

  15. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV.

  16. Development of dual-purpose transport packing set with biological protection made of depleted uranium for transportation and long-term storage of 36 RFRA of WWER-1000

    International Nuclear Information System (INIS)

    The report is devoted to the problem of development of a promising design of a dual-purpose transport packing set (TPS-117) with biological protection made of depleted uranium for transportation and long-term storage (not less than 50 years) of RNF of WWER-1000 reactors. Use of depleted uranium as effective gamma-protection and use of siloxane rubber as a solid neutron protection in TPS-117 design allow to reach the maximum loading of container with retired nuclear fuel at the given dimensions of TPS with compliance to all requirements of the IAEA on safety. (author)

  17. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  18. Atrazine dissipation in s-Triazine-adapted and Non-adapted soil from Coloroado and Mississippi: Implications of enhanced degradation on atrazine fate and transport parameters

    Science.gov (United States)

    Modelers and regulatory agencies typically use default atrazine half-life values of 60 to 120 d to predict the herbicide’s transport; however, if atrazine persistence is reduced in soils exhibiting enhanced degradation, but modelers continue to use historic atrazine persistence estimates, then accur...

  19. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  20. Coupling and Testing the Fate and Transport of Heavy Metals and Other Ionic Species in a Groundwater Setting at Oak Ridge, TN - 13498

    International Nuclear Information System (INIS)

    Historical data show that heavy metals (including mercury) were released from Y -12 National Security Complex (NSC) at Oak Ridge, Tennessee, to the surrounding environments during its operation in 1950's. Studies have also shown that metals accumulated in the soil, rock, and groundwater, and are, at the present time, sources of contamination to nearby rivers and creeks (e.g., East Fork Poplar Creek, Bear Creek). For instance, mercury (Hg), zinc (Zn), cadmium (Cd) and lead (Pb) have been found and reported on the site groundwater. The groundwater type at the site is Ca-Mg-HCO3. This paper presents a modeling application of PHREEQC, a model that simulates geochemical processes and couples them to flow and transport settings. The objective was to assess the capability of PHREEQC to simulate the transport of ionic species in groundwater at Oak Ridge, Tennessee; data were available from core holes and monitoring wells over a 736-m distance, within 60-300 m depths. First, predictions of the transport of major ionic species (i.e., Ca2+ and Mg2+) in the water were made between monitoring wells and for GW-131. Second, the model was used to assess hypotheses under two scenarios of transport for Zn, Cd, Pb and Hg, in Ca-Mg-HCO3 water, as influenced by the following solid-liquid interactions: a) the role of ion exchange and b) the role of both ion exchange and sorption, the latter via surface complexation with Fe(OH)3. The transport scenario with ion exchange suggests that significant ion exchange is expected to occur for Zn, Cd and Pb concentrations, with no significant impact on Hg, within the first 100 m. Predictions match the expected values of the exchange coefficients relative to Ca2+ and Mg2+ (e.g., KCa/Zn = KCa/Cd > KCa/Pb > KCa/Hg). The scenario with both ion exchange and sorption does affect the concentrations of Zn and Cd to a small extent within the first 100 m, but does more meaningfully reduce the concentration of Pb, within the same distance, and also decreases

  1. The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

    OpenAIRE

    Shahzad, Zaigham; Gosti, Françoise; Frérot, Hélène; Lacombe, Eric; Roosens, Nancy; Saumitou-Laprade, Pierre; Berthomieu, Pierre

    2010-01-01

    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn2+/H+ an...

  2. Entropic transport in confined media: a challenge for computational studies in biological and soft-matter systems

    Directory of Open Access Journals (Sweden)

    PaoloMalgaretti

    2013-11-01

    Full Text Available Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.

  3. Entropic transport in confined media: a challenge for computational studies in biological and soft-matter systems

    Science.gov (United States)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J. Miguel

    2013-11-01

    Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.

  4. EMT and MET as paradigms for cell fate switching

    Institute of Scientific and Technical Information of China (English)

    Jiekai Chen; Qingkai Han; Duanqing Pei

    2012-01-01

    Cell fate determination is a major unsolved problem in cell and developmental biology,The discovery of reprogramming by pluripotent factors offers a rational system to investigate the molecular mechanisms associated with cell fate decisions.The idea that reprogramming of fibroblasts starts with a mesenchymal-epithelial transition (MET) suggests that the process is perhaps a reversal of epithelial to mesenchymal transition (EMT) found frequently during early embryogenesis,As such,we believe that investigations into MET-EMT may yield detailed molecular insights into cell fate decisions,not only for the switching between epithelial and mesenchymal cells,but also other cell types.

  5. Inhibition of post-translational N-glycosylation by HRD1 that controls the fate of ABCG5/8 transporter

    OpenAIRE

    Suzuki, Shingo; Shuto, Tsuyoshi; Sato, Takashi; Kaneko, Masayuki; Takada, Tappei; Suico, Mary Ann; Cyr, Douglas M; Suzuki, Hiroshi; Kai, Hirofumi

    2014-01-01

    N-glycosylation of proteins in endoplasmic reticulum is critical for protein quality control. We showed here a post-translational N-glycosylation affected by the HRD1 E3 ubiquitin ligase. Both WT- and E3-defective C329S-HRD1 decreased the level of high mannose form of ABCG8, a protein that heterodimerizes with ABCG5 to control sterol balance. Meanwhile, HRD1 increased the non-glycosylated ABCG8 regardless of its E3 activity, thereby suppressing full maturation of ABCG5/8 transporter. Pulse ch...

  6. Estimates of direct biological transport of radioactive waste in the deep sea with special reference to organic carbon budgets

    International Nuclear Information System (INIS)

    Calculations can be made for the maximum theoretical transport of pollutants such as radionuclides by movement of organisms out of a deep-sea benthic boundary layer dump site based on a presumption of a steady state organic carbon budget and estimated biological concentration factors. A calculated flux rate depends on the difference between a limiting input of organic matter and that carbon used by the biota or accumulating in the sediment. On average, the potential biological mass transport is low compared to physical transport. Exceptions to this generalization are possible in the far field after spatial gradients are obliterated or if natural mass migrations or periodic spawning concentrations occur in the near field. Biologically mediated fluxes of contaminants due to mixing of sediments by bioturbation or vertical flux due to scavenging by sinking particles are significant for movements of pollutants to and from sediments. These pathways contribute to the direct input of contaminants into food webs which may contain harvestable species. These fluxes are unimportant for mass transfers in the ocean but they determine the exposure of critical groups to contaminants

  7. The biological fate of glipizide (II)

    International Nuclear Information System (INIS)

    The isolation and characteristics of metabolites excreted in rat urine and other small animals were studied following oral administration of 14C-glipizide. Five metabolites and a small amount of the unchanged compound were isolated from the urine and their structures were elucidated by thin-layer chromatography and by various spectroscopic analyses. 3-cis-, 4-trans-hydroxycyclohexyl derivatives, decyclohexyl derivative, hydroxymethyl derivative and hydroxyethyl derivative were identified or suggested. The relative amount of each metabolite excreted differed markedly according to the species of animals used. In the rat and the mouse, major metabolites were 4-trans-, 3-cis-hydroxycyclohexyl derivatives and decyclohexyl derivative; in the guinea-pig 4-trans-, 3-cis-hydroxycyclohexyl derivatives and hydroxymethyl derivative; and in the rabbit hydroxymethyl derivative. In the dog, the cat and the monkeys N-(4-carboxymethyl-benzenesulfonyl)-N'-cyclohexyl-urea was suggested to be a major metabolite. (auth.)

  8. Denitrification-coupled iron(ii) oxidation: a key process regulating the fate and transport of nitrate, phosphate, and arsenic in a wastewater-contaminated aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Hart, C. P.

    2008-01-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  9. Global 3-D model of oceanic mercury coupled to carbon biogeochemistry and particle dynamics: application to the transport and fate or riverine mercury

    Science.gov (United States)

    Zhang, Y.; Jacob, D. J.; Dutkiewicz, S.; Amos, H. M.; Long, M. S.; Sunderland, E. M.

    2014-12-01

    Rivers are estimated to deliver 27 Mmol a-1 of mercury (Hg) to ocean margins, which is comparable to the global atmospheric deposition flux of Hg to the ocean. Previous studies presumed that most of this riverine Hg is sequestered by settling to the coastal regions. However, there has been little investigation of the mechanism and efficiency with which this sequestration takes place, and the implications for riverine influence in different ocean regions. Here we develop a global 3-D chemical transport model for Hg in the ocean (MITgcm-Hg) with ecology (DARWIN model). We track offshore export of the discharged Hg from heterogeneous river systems over different ocean regions, and how it is influenced by the interaction of Hg in a variety of geochemical forms with carbon and suspended particles. We constrain our model assumptions with available offshore observations that bear strong riverine signals. Modeling results suggest that some of the riverine Hg is highly refractory, sorbs strongly to particles and does not follow equilibrium partitioning with the dissolved phase. Simulated global Hg evasion from riverine sources is 50 times larger without this refractory particulate pool, which results in a total evasion flux two times larger than our current best estimate. Based on a typology system of global rivers, we calculate that 10% to 60% of the particulate Hg from different rivers settles in ocean margin sediments because of subgrid sedimentation processes. The remaining 7.5 Mmol a-1 (28% of total river discharge) is available for offshore transport, where it undergoes further sedimentation to the shelf (5.3 Mmol a-1) as well as evasion to the atmosphere (0.44 Mmol a-1). Only 1.7 Mmol a-1 (6.4% of the global riverine Hg) reaches the open ocean, although that fraction varies from 2.6% in East Asia because of the blockage of Korean Peninsula to 25% in east North America facilitated by the Gulf Stream. We find large riverine influences over coastal oceans off East Asia

  10. Denitrification-Coupled Iron(II) Oxidation: A Key Process Regulating the Fate and Transport of Nitrate, Phosphate, and Arsenic in a Wastewater-Contaminated Aquifer

    Science.gov (United States)

    Smith, R. L.; Kent, D. B.; Repert, D. A.; Hart, C. P.

    2007-12-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  11. Two- and Three-Dimensional Depiction of Subsurface Geology Using Commercial Software for Support of Groundwater Contaminant Fate and Transport Analysis - 13345

    Energy Technology Data Exchange (ETDEWEB)

    Ivarson, Kristine A. [North Wind, Inc. Richland, Washington 99352 (United States); Miller, Charles W.; Arola, Craig C. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2013-07-01

    Groundwater contamination by hexavalent chromium and other nuclear reactor operation-related contaminants has resulted in the need for groundwater remedial actions within the Hanford Site reactor areas (the Hanford Site 100 Area). The large geographic extent of the resultant contaminant plumes requires an extensive level of understanding of the aquifer structure, characteristics, and configuration to support assessment and design of remedial alternatives within the former 100-D, 100-H, and 100-K reactor areas. The authors have prepared two- and three-dimensional depictions of the key subsurface geologic structures at two Hanford Site reactor operable units (100-K and 100-D/H). These depictions, prepared using commercial-off-the-shelf (COTS) visualization software, provide a basis for expanding the understanding of groundwater contaminant migration pathways, including identification of geologically-defined preferential groundwater flow pathways. These identified preferential flow pathways support the conceptual site model and help explain both historical and current contaminant distribution and transport. (authors)

  12. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane

    Science.gov (United States)

    Burns, Jonathan R.; Seifert, Astrid; Fertig, Niels; Howorka, Stefan

    2016-02-01

    Biological ion channels are molecular gatekeepers that control transport across cell membranes. Recreating the functional principle of such systems and extending it beyond physiological ionic cargo is both scientifically exciting and technologically relevant to sensing or drug release. However, fabricating synthetic channels with a predictable structure remains a significant challenge. Here, we use DNA as a building material to create an atomistically determined molecular valve that can control when and which cargo is transported across a bilayer. The valve, which is made from seven concatenated DNA strands, can bind a specific ligand and, in response, undergo a nanomechanical change to open up the membrane-spanning channel. It is also able to distinguish with high selectivity the transport of small organic molecules that differ by the presence of a positively or negatively charged group. The DNA device could be used for controlled drug release and the building of synthetic cell-like or logic ionic networks.

  13. Monitoring of Emerging and Legacy Contaminants in Groundwater and Tap Water of the Karst Region in Northern Puerto Rico for Assessment of Sources and Fate and Transport Processes

    Science.gov (United States)

    Padilla, I. Y.; Cotto, I.; Torres, P. M.

    2014-12-01

    tap water (30%). Results indicated that most CVOCs on tap water come from groundwater sources. Spatial-temporal analysis of CVOC data shows that transport through karst system is highly heterogeneous variable, and reflect high capacity of the system to store and slowly release contaminants through rate-limited mass transport process.

  14. Transport and fate of labelled molecules after application of 14C-gibberellic acid to the young leaves of tomato plants

    International Nuclear Information System (INIS)

    After application of 14C-GA3 to the distal leaflet of young leaves (2.5 cm long) of tomato plants, labelled molecules are exported by the donor leaflet. In the first stage, the transport was basipetal, and preferably took place in the tissues of foliar traces; the tracers moved toward the roots at an average speed greater than 4 cm.h-1. One part of the tracers seemed to accumulate in the elongating internodes, whereas a more important part went into the vessels and then was driven upwards to the leaves by the transpiration stream. A high concentration of tracers was localized in the extremity of some leaflets. The guttated fluid contained labelled molecules having for the most part a Rsub(t) value similar or nearly similar to the Rsub(f) value of GA3 according to the solvent systems. The exportation of 14C, which was at first very low, continued during the development of the donor leaf

  15. Origin, transport and fate of the dissolved organic matter produced in the watershed of the Paraíba do Sul River, Brazil.

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Soares Gonçalves Serafim, Tassiana; Gomes de Almeida, Marcelo; Dittmar, Thorsten; de Rezende, Carlos Eduardo

    2015-04-01

    The Paraíba do Sul River (PSR) is an important river from Southeastern Brazil that flows through the states of São Paulo, Minas Gerais and Rio de Janeiro. The PSR is responsible for the water supply of over 14 million of the habitants. Due the human occupation and anthropic pressure, only 8% of it is original forest cover remains in the form of small fragmented patches. The remaining of the basin is mostly covered by grasses, such as pasture and sugar cane. Isotopic studies allows the monitoring of ecosystem changes and promotes specific links between ecology, land use and biogeochemical processes. We investigated the isotopic composition of the dissolved organic matter (DOM) in PSR. Our objective was to identify how extensive land use changes, from forest (C3 Plants) to pasture and sugar cane (C4 Plants), have affected river biogeochemistry of organic matter transported by PSR. Water samples were collected at 24 sites along the main channel of the PSR, 14 sites samples at the tributaries and 21 sites samples in the estuarine and marine environmental until 35km of the coast. Sampling was performed in the wet season of the 2013 and the dry season of the 2013. The fluvial and estuarine samples were processed with conventional filtration and the marine samples were processed with the cross-flow filtration. The dissolved organic matter (DOM) was isolated by solid-phase extraction (SPE) with the PPL cartridges (Styrene divinyl benzene polymer). Isotope measurements, organic carbon and nitrogen concentration were performed with a isotope-ratio mass spectrometry (Thermo Finningan). The 13C and the 15N values ranged from -20.0‰ and -29.0‰, and from -0.80 to 4.59 respectively, while the (C/N)a ratio varied between 8 and 41. The 13C were depleted in 13C at the river samples from the wet season, and in the estuary and marine areas as well. The 13C average values observed during the wet season in the PSR and in the estuarine samples are close to those

  16. Fate Mapping Mammalian Corneal Epithelia.

    Science.gov (United States)

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  17. Evaluating local and regional scales of environmental change from sediment characteristics of a tributary of the upper Chesapeake Bay: a geospatial approach to understanding the role of humans on elemental transport and fate

    Science.gov (United States)

    Krahforst, C.; Hartman, S.; Eisen-Cuadra, A.; Bruce, S.; Sherman, L.; Kehm, K.

    2013-12-01

    Most of our coastal systems have experienced changes in ecosystem quality due to increased anthropogenic activities, often resulting in the degradation of water and habitat quality. Estuaries are often the first of marine systems that experience these changes. The distribution of trace elements (V, Cr, Cu, Ni, Pb, As, Sn, Ag, Zn, and Cd) and other sediment characteristics in surface sediments and sediment cores from the Chester River - an estuary located in a predominantly agricultural watershed of the upper Chesapeake Bay, USA - is being determined in order to add to the understanding of contaminant transport and fate and evaluate the likelihood for success of strategies designed to meet or improve the ecological condition of estuaries. The high amount of suspended sediment in the Chester River (10-20 mg L-1) is an important factor controlling water quality conditions and a prime focus for environmental management. Sources of suspended mater and its elemental composition are the result of local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. Preliminary results from multivariate analytic and geospatial mapping analyses of sediment surface grabs display significant covariance with Al for many of the elements investigated which may indicate limited exogenic sources of contamination for of sediments of this watershed. For example total Pb sediment concentrations were mostly below the NOAA's low toxic effects level (94%) and appear to be dominated by crustal weathering or from accelerated soil erosion (Pb vs. Al, r2 = 0.84). These analyses, coupled with sequential leaching of elements from these sediments, sediment organic carbon, activities of selected radionuclides of sediment cores and main stem water quality surveys provide added information of the roles of local land use and region scale processes on ecosystem condition and may direct future management for improving environmental quality of estuaries.

  18. Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium

    International Nuclear Information System (INIS)

    The successive order scattering approximation method is used to study the radiative transfer equation. By separating the coherent component of the scattered flux, the transport equation is represented in terms of each order scattering flux and a simplified solution is obtained with this approach. The method is then used to calculate the reflected flux and the transmitted flux with three different phase functions. A new boundary condition has been added for the first order forwardly scattered flux. Thus it becomes possible to study the transmittance. We compare our results with the available data for a biological medium. (orig.)

  19. Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium

    Energy Technology Data Exchange (ETDEWEB)

    Akcay, Huseyi [Baskent Univ. Baglica Kampusu, Ankara (Turkey)

    2012-03-15

    The successive order scattering approximation method is used to study the radiative transfer equation. By separating the coherent component of the scattered flux, the transport equation is represented in terms of each order scattering flux and a simplified solution is obtained with this approach. The method is then used to calculate the reflected flux and the transmitted flux with three different phase functions. A new boundary condition has been added for the first order forwardly scattered flux. Thus it becomes possible to study the transmittance. We compare our results with the available data for a biological medium. (orig.)

  20. Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants – examples of DDT and γ-HCH

    Directory of Open Access Journals (Sweden)

    J. Feichter

    2005-12-01

    Full Text Available A global multicompartment model which is based on a 3-D atmospheric general circulation model (ECHAM5 coupled to 2-D soil, vegetation and sea surface mixed layer reservoirs, is used to simulate the atmospheric transports and total environmental fate of dichlorodiphenyltrichloroethane (DDT and γ-hexachlorocyclohexane (γ-HCH, lindane. Emissions into the model world reflect the substance's agricultural usage in 1980 and 1990 and same amounts in sequential years are applied. Four scenarios of DDT usage and atmospheric decay and one scenario of γ-HCH are studied over a decade. The global environment is predicted to be contaminated by the substances within ca. 2 a (years. DDT reaches quasi-steady state within 3–4 a in the atmosphere and vegetation compartments, ca. 6 a in the sea surface mixed layer and near to or slightly more than 10 a in soil. Lindane reaches quasi-steady state in the atmosphere and vegetation within 2 a, in soils within 8 years and near to or slightly more than 10 a and in the sea surface mixed layer. The substances' differences in environmental behaviour translate into differences in the compartmental distribution and total environmental residence time, τoverall. τoverall≈0.8 a for γ-HCH's and ≈1.0–1.3 a for the various DDT scenarios. Both substances' distributions are predicted to migrate in northerly direction, 5–12° for DDT and 6.7° for lindane between the first and the tenth year in the environment. Cycling in various receptor regions is a complex superposition of influences of regional climate, advection, and the substance's physico-chemical properties. As a result of these processes the model simulations show that remote boreal regions are not necessarily less contaminated than tropical receptor regions. Although the atmosphere accounts for only 1% of the total contaminant burden, transport and transformation in the atmosphere is key for the distribution in other compartments. Hence, besides the physico

  1. The international transportation of zoo animals: conserving biological diversity and protecting animal welfare

    Directory of Open Access Journals (Sweden)

    Peter Linhart†

    2008-03-01

    Full Text Available Issues pertaining to the long distance transportation of animals are examined according to the aspirations of the world’s zoo community. Guidance comes from the World Association of Zoos and Aquariums (WAZA, the civil society organisation that provides ‘leadership and support for zoos, aquariums and partner organisations of the world in animal care and welfare, conservation of biodiversity, environmental education and global sustainability’. The authors describe why it is necessary to transport zoo animals over long distances and how animal welfare can be protected during the process. Transportation of animals among zoos is essential for the cooperative breeding programmes undertaken for the ex situ conservation of wildlife with the help of WAZA studbooks. The challenge is to satisfy the entwined ethical imperatives of safeguarding animal welfare and protecting biodiversity.

  2. Modeling non-equilibrium mass transport in biologically reactive porous media

    OpenAIRE

    Davit, Yohan; Debenest, Gérald; Wood, Brian D.; Quintard, Michel

    2010-01-01

    We develop a one-equation non-equilibrium model to describe the Darcy-scale transport of a solute undergoing biodegradation in porous media. Most of the mathematical models that describe the macroscale transport in such systems have been developed intuitively on the basis of simple conceptual schemes. There are two problems with such a heuristic analysis. First, it is unclear how much information these models are able to capture; that is, it is not clear what the model's domain of validity is...

  3. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K;

    1986-01-01

    The fate of 257 consecutive patients (100 women) aged 36-85 years (mean 65) first seen with intermittent claudication in 1977 was analysed after a mean of 6.5 (SD 0.5) years. When first seen none of the patients complained of rest pain or had ulcers or gangrenous lesions on the feet. At follow up...... 113 of the patients (44%) had died. Causes of death were no different from those in the general population. Mortality was twice that of the general population matched for age and sex. Mortality among the men was twice that among the women. In men under 60 mortality was four times that expected. The...

  4. Biological evaluation of two iodine-123-labeled D-glucose acetals prepared as glucose transporter radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Brunet-Desruet, Marie-Dominique; Ghezzi, Catherine; Morin, Christophe; Comet, Michel; Fagret, Daniel

    1998-07-01

    Two iodinated acetals of D-glucose, 4,6-(R)-O-(2'-iodoethylidene)-{alpha}, {beta}-D-glucose and 4,6-(R)-O-(4'-iodobenzylidene)-{alpha}, {beta}-D-glucose , were prepared and their potential as suitable SPECT radioligands for imaging of glucose transporters was studied. Both are analogs of acetal D-glucose derivatives, which are known to bind to the exofacial sites of the glucose transport protein (GluT). To assess whether iodinated acetals 1 and 2 interacted with the glucose transporter, they were tested in vitro in human erythrocytes (GluT1) and neonatal rat cardiomyocytes (GluT4). The results indicated that 1 and 2 had a very low affinity for the glucose transporter and probably accumulated in cells. Study of their tissue distribution was carried out in the mouse in vivo: Both compounds showed fast tissue clearance with preferential renal elimination. It is concluded that iodinated acetals of D-glucose 1 and 2 are not suitable for GluT targeting in vivo.

  5. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  6. Simultaneous transport of two bacterial strains in intact cores from Oyster, Virginia: biological effects and numerical modeling.

    Science.gov (United States)

    Dong, Hailiang; Rothmel, Randi; Onstott, Tullis C; Fuller, Mark E; DeFlaun, Mary F; Streger, Sheryl H; Dunlap, Robb; Fletcher, Madilyn

    2002-05-01

    The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 microm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with (35)S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with (14)C. The fast decay of (35)S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport. PMID:11976080

  7. Determination of biological transport of oxygen-15 and carbon-11 generated in rats

    International Nuclear Information System (INIS)

    The distribution of induced 15O and 11C activity in live and dead rats was determined following local irradiation with a 32 MeV proton beam. Results indicate that rapid biological redistribution of some of the induced activity occurs within a minute following irradiation. Sufficient activity remains, bound in the intracellular water, to define the proton beam in tissue. Thus, mapping of the induced 15O activity proves to be a valid means of beam localization

  8. Ecological fate and effects of solvent-refined-coal (SRC) materials: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A. III; Vaughan, B.E. (eds.)

    1981-10-01

    Non-occupational health effects associated with SRC operation will be determined by environmental factors governing the form, transport, and persistence of SRC materials and wastes - factors which also mediate exposure to man. Accordingly, the research described is an attempt to determine the fate of disposed solid wastes and spilled SRC materials, and it necessarily focuses on water soluble, persistent materials with greatest potential for mobility and incorporation into water and food supplies. Initially, aqueous equilibrations of SRC-II liquid material and SRC-I nongasified mineral residue were subjected to chemical characterization. Subsequently, laboratory studies were performed on the interaction of aqueous equilibrates of SRC-II liquid and SRC-I non-gasified mineral residue with soil materials isolated suspended sediments, and bottom sediments. These studies were designed to identify effects of specific sorption reactions ion or induced-ion exchange reactions, and toxicity of water soluble, biologically active materials derived from liquid and solid wastes. Results of these experiments have applicability to the environmental fate and effects of biologically active compounds released under different scenarios from product spills and solid waste disposal.

  9. The international transportation of zoo animals: conserving biological diversity and protecting animal welfare

    OpenAIRE

    Peter Linhart†; Adams, David B.; Thomas Voracek

    2008-01-01

    Issues pertaining to the long distance transportation of animals are examined according to the aspirations of the world’s zoo community. Guidance comes from the World Association of Zoos and Aquariums (WAZA), the civil society organisation that provides ‘leadership and support for zoos, aquariums and partner organisations of the world in animal care and welfare, conservation of biodiversity, environmental education and global sustainability’. The authors describe why it is necessary to transp...

  10. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested

  11. On the fate of anthropogenic nitrogen

    OpenAIRE

    Schlesinger, William H.

    2008-01-01

    This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earth's land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for ≈35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the lo...

  12. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    International Nuclear Information System (INIS)

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl

  13. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  14. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    International Nuclear Information System (INIS)

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development. (special issue article)

  15. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  16. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg-1 at three different temperatures. The derived parameters, such as apparent molar volume of solute (φV)), limiting apparent molar volume of solute (φV0), limiting apparent molar expansivity (φE0), thermal expansion coefficient (α*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT) ). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  17. Fate of glucuronide conjugated estradiol in the environment

    Science.gov (United States)

    The fate and transport of conjugated reproductive hormones, which are polar compared to parent hormones, are little understood. Laboratory bench-scale soil (Hamar; Sandy, mixed, frigid typic Endoaquolls) sorption studies were conducted using [14C] 17ß-estradiol-3-glucuronide for a range of concentra...

  18. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis

    OpenAIRE

    J. A. Cornwell; Hallett, R. M.; S. Auf der Mauer; A. Motazedian; Schroeder, T.; J. S. Draper; Harvey, R. P.; R. E. Nordon

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, an...

  19. Mass transport in physical and biological BTEX removal in a sandy aquifer

    International Nuclear Information System (INIS)

    Injection of oxygen and nutrient-amended water facilitated alkylbenzene biodegradation in a sandy aquifer. Pumping recovery wells and air-stripping groundwater further hastened contaminant removal downgradient from the source area. High monitoring well density allowed calculation of a contaminant mass balance using contour plots developed with Surfer reg-sign software. Physical removal (air-stripping) and in situ attenuation appear equally responsible for contaminant removal within this aquifer. Dissolved oxygen data implicate biodegradation as the responsible in situ mechanism with a good stoichiometric fit to BTEX attenuation data. Selective plating confirmed the presence of hydrocarbon-degrading bacteria. Calculations indicate desorption is a major source for recontamination of site groundwater. Contaminant reduction is most pronounced immediately downgradient from reinjection wells. Advective transport and mixing of oxygen in the contaminated zone, rather than microbial kinetics, appears to limit in situ contaminant attenuation

  20. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  1. Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma

    International Nuclear Information System (INIS)

    Introduction: The purpose of this study was to investigate the correlative association between tumoral 2-deoxy-2-[18 F]-fluoro-D-glucose (FDG) uptake, and the expressions of glucose transporter 1 (GLUT-1), glucose transporter 3 (GLUT-3), hexokinase II (HK-2), and Ki-67 expression in malignant melanoma. Methods: Nineteen patients with histologically proven malignant melanoma and pretreatment FDG PET/CT performance were involved in this preliminary study. For semi-quantitative analysis of FDG PET/CT, maximal standardized uptake values (SUVmax) were estimated. Immunohistochemical staining of tumor sections was performed for GLUT-1, GLUT-3, and HK-2, and for the cell proliferation maker Ki-67. Especially, by combining proportions and intensity of immunochemical staining, we evaluated modified immunohistologic scores of GLUT-1 and GLUT-3. Results: The SUVmax of malignant melanoma lesions ranged from 2 to 18.7 (average; 9.1 ± 5.4). Comparison between nodal and extranodal lesions revealed no significant difference of SUVmax (p = 0.97). GLUT-1 staining showed the most positive expression level (89.5%, 17/19) among the diverse immunohistochemical markers. There were significant relationships between FDG uptake of malignant melanoma and GLUT-1 proportion (p < 0.0001), GLUT-1 intensity (p < 0.0001), GLUT-3 proportion (p = 0.031), GLUT-3 intensity (p = 0.009), GLUT-1 immunohistologic scores (p < 0.0001), and GLUT-3 immunohistologic scores (p = 0.028). HK-2 was not expressed in all melanoma samples. Although Ki-67 expression showed a high grade in all staining, there was no significant link between FDG uptake and Ki-67 grades (p = 0.38). Conclusions: The data in this preliminary study indicate that FDG uptake in malignant melanoma is determined by GLUT-1 and GLUT-3, whereas HK-2 and Ki-67 play no role in FDG uptake of malignant melanoma.

  2. Transport behavior of surrogate biological warfare agents in a simulated landfill: Effect of leachate recirculation and water infiltration

    KAUST Repository

    Saikaly, Pascal

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD. © 2010 American Chemical Society.

  3. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  4. BROMOC suite: Monte Carlo/Brownian dynamics suite for studies of ion permeation and DNA transport in biological and artificial pores with effective potentials.

    Science.gov (United States)

    De Biase, Pablo M; Markosyan, Suren; Noskov, Sergei

    2015-02-01

    The transport of ions and solutes by biological pores is central for cellular processes and has a variety of applications in modern biotechnology. The time scale involved in the polymer transport across a nanopore is beyond the accessibility of conventional MD simulations. Moreover, experimental studies lack sufficient resolution to provide details on the molecular underpinning of the transport mechanisms. BROMOC, the code presented herein, performs Brownian dynamics simulations, both serial and parallel, up to several milliseconds long. BROMOC can be used to model large biological systems. IMC-MACRO software allows for the development of effective potentials for solute-ion interactions based on radial distribution function from all-atom MD. BROMOC Suite also provides a versatile set of tools to do a wide variety of preprocessing and postsimulation analysis. We illustrate a potential application with ion and ssDNA transport in MspA nanopore. PMID:25503688

  5. Wind forcing and fate of Sardinella aurita eggs and larvae in the Sicily Channel (Mediterranean Sea)

    Science.gov (United States)

    Torri, M.; Corrado, R.; Falcini, F.; Cuttitta, A.; Palatella, L.; Lacorata, G.; Patti, B.; Arculeo, M.; Mazzola, S.; Santoleri, R.

    2015-09-01

    Multidisciplinary studies are recently seeking to define diagnostic tools for fishery sustainability by coupling ichthyoplanktonic datasets, physical and bio-geochemical oceanographic measurements, and ocean modelling. The main goal of these efforts is the understanding of those processes that control fate and dispersion of fish larvae and eggs and thus tune the inter-annual variability of biomass of fish species. We here analyzed eggs and larvae distribution and biological features of Sardinella aurita in the northeast sector of the Sicily Channel (Mediterranean Sea) collected during the 2010 and 2011 summer cruises. We make use of satellite sea surface temperature, wind, and chlorophyll data to recognize the main oceanographic patterns that mark eggs and larvae transport processes and we pair these data with Lagrangian runs. To provide a physical explanation of the transport processes that we observe, we hire a potential vorticity (PV) model that takes into account the role of wind stress in generating those cold filaments responsible for the offshore delivery of eggs and larvae. Our results show that the strong offshore transport towards Malta occurring in 2010 is related to a persistent wind forcing along the southern Sicilian coast that generated an observable cold filament. Such a pattern is not found in the 2011 analysis, which indeed shows a more favorable condition for sardinella larvae recruiting with a weak offshore transport. Our results want to add some insights regarding operational oceanography for sustainable fishery.

  6. The Atmospheric Fate of Organic Nitrogen Compounds

    Science.gov (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  7. Cell fate regulation in early mammalian development

    International Nuclear Information System (INIS)

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell–cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species. (paper)

  8. Cell fate regulation in early mammalian development

    Science.gov (United States)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  9. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  10. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media

    OpenAIRE

    Glaser, Adam K.; Kanick, Stephen C.; Zhang, Rongxiao; Arce, Pedro; Pogue, Brian W.

    2013-01-01

    We describe a tissue optics plug-in that interfaces with the GEANT4/GAMOS Monte Carlo (MC) architecture, providing a means of simulating radiation-induced light transport in biological media for the first time. Specifically, we focus on the simulation of light transport due to the Čerenkov effect (light emission from charged particle’s traveling faster than the local speed of light in a given medium), a phenomenon which requires accurate modeling of both the high energy particle and subsequen...

  11. Divergent Paths Lnc Cell Fates.

    Science.gov (United States)

    Ounzain, Samir; Pedrazzini, Thierry

    2016-05-01

    Long noncoding RNAs (lncRNAs) comprise a class of regulatory molecules that may control diverse stem cell properties. Now in Cell Stem Cell, Luo et al. (2016) show that a specific group of lncRNAs, those transcribed divergently from protein coding genes, activate key developmental genes to control embryonic stem cell fate. PMID:27152437

  12. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend

  13. Development of a unified transport approach for the assessment of power-plant impact. [Environmental impact of chemical, biological, radioactive, or thermal effluents from power plants

    Energy Technology Data Exchange (ETDEWEB)

    Akin, E.J.; Barton, J.M.; Bledsoe, J.L.

    1977-03-01

    Progress during the first 18 months in implementation of the Unified Transport Approach (UTA) is summarized in this report, which covers the period through December 1976. The goal of this project is to develop mathematical models for fast-transient, one-and two-dimensional transport of thermal, radiological, chemical, and biological properties in rivers, estuaries, lakes, and coastal regions for assessing the impact of power-plant operations. Development and validation of these models are illustrated in applications at several sites where data is available. The models include submodels for sediment transport, exchange of a soluble isotope with sediment, and zone-matching models to connect near-field problems of reentrainment and recirculation with far-field convective transport. Several types of automated data preparation have been introduced, and the codes have been designed to allow input of specified plant operating conditions for given durations. The UTA provides a common basis for calculating the transport of intensive quantities that depend on basic flow properties, which can be obtained from a common set of data for geometry, bathymetry, and meteorology that must be prepared only once. The formulation and calculation are based on a stable set of algorithms that have been tested and proven valid. The user can then focus on understanding and interpreting thermal, chemical, or radiological transport results with confidence that the basic calculations are direct, efficient, and meaningful. Recent work in each of the three areas is described.

  14. Evaluating our understanding of the biological carbon pump using the transport matrix method and global nutrient distributions.

    Science.gov (United States)

    Bernardello, Raffaele; Martin, Adrian; Khatiwala, Samar; Kriest, Iris; Henson, Stephanie; Dunne, John; Totterdell, Ian; Allen, Icarus; Yool, Andrew

    2015-04-01

    Global net primary production by marine phytoplankton plays a key role in the Earth system, fuelling the marine ecosystem and supporting resources such as fisheries. A fraction of the resulting organic material sinks out of the euphotic zone as 'export production', sequestering large amounts of carbon at depth, away from the atmosphere. Model studies have demonstrated that atmospheric pCO2 concentrations can be very sensitive to small changes in the depth at which this organic material is remineralised into CO2 and nutrients. The accuracy of parameterisations for remineralisation has often been assessed by direct comparison of simulated and sparse observed fluxes of sinking material. The consequences of remineralisation, i.e. the global distribution of inorganic nutrients, provide a much stronger test of our knowledge concerning the impact of remineralisation on ocean nutrient cycles because they are much more densely sampled. In this study, we investigate how alternative paradigms for the Biological Carbon Pump (BCP) have distinctive signatures in the consequent global distribution of nutrients. We compare several combinations of parameterisations for export production and remineralisation within two different representations of ocean circulation using the Transport Matrix Method (Khatiwala, 2007). Export production is represented using an NPZD-DOP model (Kriest et al., 2010) and three remote sensing-derived estimates while remineralisation is represented by either constant or spatially variable values of the Martin's curve exponent (Martin et al., 1987). In order to evaluate the ability of each export-remineralisation combination to correctly represent the BCP, we introduce a set of diagnostics to allow the intercomparison between in-situ data and simulations. These diagnostics are based on both nutrient fields and water masses and are designed to minimize the influence of biases originating from the representation of ocean circulation on the model

  15. Lower biological efficacy of 90Y-loaded glass microspheres results from microspheres transport in the arterial hepatic tree

    International Nuclear Information System (INIS)

    centred around 103 Gy (FWHM = 20 Gy). In the last simulation the dose distribution became significantly asymmetric with a shift of the maximum from 103 Gy to 30 Gy and about 35% of lobules got a dose lower than 40 Gy for the hepatocytes, the central vein and the portal tracts. Conclusions: the larger microspheres non-uniform trapping produced by their transport in the arterial tree seems to explain the lower biological efficacy of the glass microspheres. (authors)

  16. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    OpenAIRE

    Pascal E. Saikaly; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus...

  17. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model.

    Science.gov (United States)

    Nizzetto, Luca; Butterfield, Dan; Futter, Martyn; Lin, Yan; Allan, Ian; Larssen, Thorjørn

    2016-02-15

    Models for pollution exposure assessment typically adopt an overly simplistic representation of geography, climate and biogeochemical processes. This strategy is unsatisfactory when high temporal resolution simulations for sub-regional spatial domains are performed, in which parameters defining scenarios can vary interdependently in space and time. This is, for example, the case when assessing the influence of biogeochemical processing on contaminant fate. Here we present INCA-Contaminants, the Integrated Catchments model for Contaminants; a new model that simultaneously and realistically solves mass balances of water, carbon, sediments and contaminants in the soil-stream-sediment system of catchments and their river networks as a function of climate, land use/management and contaminant properties. When forced with realistic climate and contaminant input data, the model was able to predict polychlorinated biphenyls (PCBs) concentrations in multiple segments of a river network in a complex landscape. We analyzed model output sensitivity to a number of hydro-biogeochemical parameters. The rate of soil organic matter mineralization was the most sensitive parameter controlling PCBs levels in river water, supporting the hypothesis that organic matter turnover rates will influence re-mobilization of previously deposited PCBs which had accumulated in soil organic matrix. The model was also used to project the long term fate of PCB 101 under two climate scenarios. Catchment diffuse run-off and riverine transport were the major pathways of contaminant re-mobilization. Simulations show that during the next decade the investigated boreal catchment will shift from being a net atmospheric PCB sink to a net source for air and water, with future climate perturbation having little influence on this trend. Our results highlight the importance of using credible hydro-biogeochemical simulations when modeling the fate of hydrophobic contaminants. PMID:26674684

  18. [Quality of life and fate].

    Science.gov (United States)

    Spaemann, C

    1992-01-01

    While the term "happiness of life", the "eudaimonia" of the greek philosophers, includes the good as such and therefore a metaphysical and moral component, the modern term of the "quality of life" is wholly defined by the criteria of a person's functional capacity and subjective wellbeing. The doctor's orientation by these criteria meets its limits, where he is confronted with fatality. This shows that we cannot really comprehend the quality of life without man's fundamental task of mastering his fate. PMID:1296397

  19. Environmental fate of herbicides in Hawaii, Peru and Panama

    International Nuclear Information System (INIS)

    Data on the fate and behaviour of herbicides in tropical soils are often unavailable. Here, the environmental fate of herbicides was compared in controlled field plots with the results derived from 'real world' pesticide use in tropical situations. As the intended herbicide use was to control illicit narcotic crops, sampling and verification are major problems because of the geographical remoteness, security concerns and political accessibility. Another fundamental problem is that exclusive use of either chemical analysis or biological monitoring may lead to an incomplete understanding of the environmental fate and ecological consequences of pesticide use. For hexazinone, tebuthiuron and imazapyr, the soil persistence and mobility, and the residual phytotoxicity to seven crops, were determined under controlled field conditions in Hawaii. This information was compared with field results in Peru and Panaman for hexazinone, tebuthiuron and glyphsate. Herbicide dissipation was much faster under tropical than temperate zone conditions; also, herbicide persistence in Hawaii closely matched that found in the coca fields of Peru and Panama. Chemical and biological approaches together gave greater reliability to risk interpretation than would either approach alone; both showed low environmental risk for the pesticides tested. (author). 17 refs, 1 fig., 3 tabs

  20. Chemicals as the Sole Transformers of Cell Fate

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-01-01

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes. PMID:27426081

  1. Fate of nitrogen for subsurface drip dispersal of effluent from small wastewater systems

    Science.gov (United States)

    Beggs, R. A.; Hills, D. J.; Tchobanoglous, G.; Hopmans, J. W.

    2011-09-01

    Subsurface drip irrigation systems apply effluent from onsite wastewater systems in a more uniform manner at a lower rate than has been possible with other effluent dispersal methods. The effluent is dispersed in a biologically active part of the soil profile for optimal treatment and where the water and nutrients can be utilized by landscape plants. Container tests were performed to determine the fate of water and nitrogen compounds applied to packed loamy sand, sandy loam, and silt loam soils. Nitrogen removal rates measured in the container tests ranged from 63 to 95% despite relatively low levels of available carbon. A Hydrus 2D vadose zone model with nitrification and denitrification rate coefficients calculated as a function of soil moisture content fit the container test results reasonably well. Model results were sensitive to the denitrification rate moisture content function. Two-phase transport parameters were needed to model the preferential flow conditions in the finer soils. Applying the model to generic soil types, the greatest nitrogen losses (30 to 70%) were predicted for medium to fine texture soils and soils with restrictive layers or capillary breaks. The slow transport with subsurface drip irrigation enhanced total nitrogen losses and plant nitrogen uptake opportunity.

  2. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  3. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  4. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  5. Fate and removal of various antibiotic resistance genes in typical pharmaceutical wastewater treatment systems.

    Science.gov (United States)

    Zhai, Wenchao; Yang, Fengxia; Mao, Daqing; Luo, Yi

    2016-06-01

    The high levels of antibiotic residues in pharmaceutical wastewater treatment plants (PWWTPs) make these plants the hotspots for the proliferation of antibiotic resistance genes (ARGs). This study investigated the fate and removal of 11 ARG subtypes for sulfonamide, tetracycline, β-lactam, and macrolide resistance in each processing stage of two full-scale PWWTPs in northern China. The levels of typical ARG subtypes in the final effluents ranged from (2.56 ± 0.13) × 10(1) to (2.36 ± 0.11) × 10(7) copies/ml. The absolute abundance of ARGs in effluents accounted for only 0.03-78.1 % of influents of the two PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (2.65 ± 0.43) × 10(5) to (4.27 ± 0.03) × 10(10) copies/g dry weight (dw). The total loads of ARGs discharged through dewatered sludge plus effluent was 1.01-14.09-fold higher than that in the raw influents, suggesting the proliferation of ARGs occurred in the wastewater treatment. The proliferation of ARGs mainly occurs in biological treatment process, such as aeration tank, anoxic tank, sequencing batch reactor (SBR), and bio-contact oxidation, facilitates the proliferation of various ARGs, implying significant replication of certain ARG subtypes may be attributable to microbial growth. Chemical oxidation seems promising to remove ARGs, with removal efficiency ranged from 29.3 to 85.7 %, while the partial correlation analysis showed significant correlations between antibiotic concentration and ARG removal. Thus, the high antibiotic residues within the PWWTPs may have an influence on the proliferation, fate, and removal of the associated ARG subtypes. PMID:26961534

  6. The Fated Death of Tess

    Institute of Scientific and Technical Information of China (English)

    李莉

    2012-01-01

      The theme of this essay is about the fated deaths of Tess.The emphasis is‘inevitability’. Tess’s Death is mainly due to the social influence and man-made factors. Because of the low social status and moral conceptions, there is no living room left for Tess. Her parents push her get closer to her tragedy as well. Alec and Angel are the two persons who directly and indirectly cause Tess’s death. In addition, there are also some subjective causes for her doom. The symbolic red in the novel intentionally indicates the’inevitability’of her death.

  7. Effect of antisense transfecting of monocarboxylate transporter gene on biological characteristics of lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-zhi; HUANG Gui-jun; GUO Xian-jian; QIAN Gui-sheng

    2002-01-01

    Objective: To study the influence of transfecting antisense expression vector of the first subtype of the monocarboxylate transporter (MCT1) gene into lung cancer cells on pHi regulation, lactate transportation and cell growth, Methods: MCT1 antisense gene recombinant vector was introduced into human lung cancer cell line A549 by electroporation. The transfected A549 cells resistant to G418 were selected. Positive clones were examined by using PCR. The changes of intracellular pH and lactate were examined with spectrophotometric method. Cell growth was studied with cell growth curve. Results: Intracellular pH and lactate were remarkably decreased in the cells transfected pLXSN-MCT1 in comparison with A549 cells without transfection (P<0. 001). The growth of A549 cells transfected pLXSN-MCT1 was also inhibited remarkably. Conclusion: MCT1 gene may play an important role in pHi regulation, lactate transportation and cell growth in tumor cells.

  8. The Most Important Concept of Transport and Circulatory Systems: Turkish Biology Student Teachers' Cognitive Structure

    Science.gov (United States)

    Kurt, Hakan; Ekici, Gulay; Aksu, Ozlem; Aktas, Murat

    2013-01-01

    The purpose of this study is to determine biology student teachers' cognitive structure with regard to "Blood". Qualitative research method has been used. The free word association test and the draw-write technique have been used in collection of data. The data obtained have been evaluated and divided into categories based on…

  9. Simultaneous Transport of Two Bacterial Strains in Intact Cores from Oyster, Virginia: Biological Effects and Numerical Modeling

    OpenAIRE

    Dong, Hailiang; Rothmel, Randi; Onstott, Tullis C.; Fuller, Mark E.; DeFlaun, Mary F.; Streger, Sheryl H.; Dunlap, Robb; Fletcher, Madilyn

    2002-01-01

    The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 μm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. ...

  10. An evaluation of the environmental fate and behavior of munitions material (TNT, RDX) in soil and plant systems: Environmental fate and behavior of RDX

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.

    1990-08-01

    The objective of the present investigation was to elucidate the environmental behavior and fate of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX), particularly as related to its transport and chemical form in the food chain. To meet this goal, we needed to adapt and develop suitable analytical methodology to fractionate and characterize both RDX and RDX-derived residues in soil and plant matrices. Using the methodology that we developed, we assessed the chemical and physical fate of RDX in soils and plants. In general, the plant availability and plant mobility of RDX is substantially greater than that previously reported for TNT. 30 refs., 27 figs., 26 tabs.

  11. Characterization of the environmental fate of Bacillus thuringiensis var. kaurstaki (Btk) after pest eradication efforts in Seattle, WA and Fairfax county, VA

    Energy Technology Data Exchange (ETDEWEB)

    Ticknor, Lawrence [Los Alamos National Laboratory; Van Cuyk, Sheila M [Los Alamos National Laboratory; Deshpande, Alina [Los Alamos National Laboratory; Omberg, Kristin M [Los Alamos National Laboratory

    2008-01-01

    Understanding the fate of biological agents in the environment will be critical to recovery and restoration efforts after a biological attack. Los Alamos National Laboratory (LANL) is conducting experiments in the Seattle, WA and Fairfax County, VA areas to study agent fate in urban environments. As part of their gypsy moth suppression efforts, Washington State and Fairfax County have sprayed Bacillus thuringiensis var. kurstaki (Btk), a common organic pesticide for decades. Many of the spray zones have been in or near urban areas. LANL has collected surface and bulk samples from historical Seattle spray zones to characterize how long Btk persists at detectable levels in the environment, and how long it remains viable in different environmental matrices. This work will attempt to address three questions. First, how long does the agent remain viable at detectable levels? Second, what is the approximate magnitude and duration of resuspension? And third, does the agent transport into buildings? Data designed to address the first question will be presented. Preliminary results indicate Btk remains viable in the environment for at least two years.

  12. FY08 LDRD Final Report Stem Cell Fate Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A

    2009-03-02

    A detailed understanding of the biological control of fate decisions of stem and progenitor cells is needed to harness their full power for tissue repair and/or regeneration. Currently, internal and external factors that regulate stem cell fate are not fully understood. We aim to engineer biocompatible tools to facilitate the measurement and comparison of the roles and significance of immobilized factors such as extracellular matrix and signaling peptides, synergistic and opposing soluble factors and signals, and cell-to-cell communication, in stem cell fate decisions. Our approach is based on the development of cell microarrays to capture viable stem/progenitor cells individually or in small clusters onto substrate-bound signals (e.g. proteins), combined with conventional antibody and customized subcellular markers made in-house, to facilitate tracking of cell behavior during exposure to relevant signals. Below we describe our efforts, including methods to manipulate a model epithelial stem cell system using a custom subcellular reporter to track and measure cell signaling, arrays with surface chemistry that support viable cells and enable controlled presentation of immobilized signals to cells on the array and fluorescence-based measurement of cell response, and successful on-array tests via conventional immunofluorescence assays that indicate correct cell polarity, localization of junctional proteins, and phenotype, properties which are essential to measuring true cell responses.

  13. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss;

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  14. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  15. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  16. Fate of organochlorine 14C-dicofol in a lab-scale wastewater treatment

    OpenAIRE

    Jaime L. M. Oliveira; Langenbach, Tomaz; Dezotti, Márcia

    2008-01-01

    The fate of organochlorine 14C-dicofol in activated sludge process was investigated. Results showed that the major part of radioactivity remained adsorbed on biological sludge. Consequently, its final disposal deserves special attention. The small amounts of dicofol, biotransformed or not, which remained in the treated effluent could contaminate receiving bodies.

  17. Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance.

    Science.gov (United States)

    White, R D; Tattersall, W; Boyle, G; Robson, R E; Dujko, S; Petrovic, Z Lj; Bankovic, A; Brunger, M J; Sullivan, J P; Buckman, S J; Garcia, G

    2014-01-01

    We present a study of electron and positron transport in water in both the gaseous and liquid states using a Boltzmann equation analysis and a Monte-Carlo simulation technique. We assess the importance of coherent scattering processes when considering transport of electrons/positrons in dense gases and liquids. We highlight the importance of electron and positron swarm studies and experiments as a test of the accuracy and completeness of cross-sections, as well as a technique for benchmarking Monte-Carlo simulations. The thermalization of low-energy positrons (<150 eV) in water is discussed and the sensitivity of the profiles to the form of the cross-sections in this energy region, and assumptions in the microscopic processes, is considered. PMID:23395226

  18. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  19. Migration and fate of pollutants in soils and subsoils

    International Nuclear Information System (INIS)

    The book presents, in three sections, 20 contributions concerning the fate of pollutants in soil and ground water which are not individually recorded. It is the outcome of a conference of the NATO Advanced Study Institute in Italy in May/June 1992. Papers deal mainly in the form of mathematical model approaches with subjects such as the sorption, transport, and chemical conversions of harmful substances like metal ions, other ions, surfactants, other organic pollutants, and radionuclides. In this context, soil is modelled as a permeable medium. The influence of 'organic matter' and clay minerals is particularly taken into account. (UWA)

  20. Prediction of the Fate of Oxytetracycline and Oxolinic Acid in a Fish Pond Using Simulation Model -A Preliminary Study

    OpenAIRE

    Phong, Thai Khanh; Nhung, Dang Thi Tuyet; Hiramatsu, Kazuaki; Watanabe, Hirozumi

    2009-01-01

    The fate of two popular antibiotics, oxytetracycline and oxolinic acid, in a fish pond were simulated using a computational model. The VDC model, which is designed based on a model for predicting pesticide fate and transport in paddy fields, was modified to take into account the differences between the pond and the paddies as well as those between the fish and the rice plant behaviors. The pond conditions were set following the typical practice in South East Asia aquaculture. The two antibiot...

  1. Species-specific fate of bacteria in house flies and impact on vector potential for pathogens

    Science.gov (United States)

    House flies ingest bacteria during filth-feeding and consequently can transport microbes from septic environments to human habitats and food. Vector potential is influenced both by flies encountering pathogens and by the fate of bacteria in the fly alimentary canal. In order for pathogens to be tran...

  2. Simulating the fate of water in field soil crop environment

    Science.gov (United States)

    Cameira, M. R.; Fernando, R. M.; Ahuja, L.; Pereira, L.

    2005-12-01

    This paper presents an evaluation of the Root Zone Water Quality Model(RZWQM) for assessing the fate of water in the soil-crop environment at the field scale under the particular conditions of a Mediterranean region. The RZWQM model is a one-dimensional dual porosity model that allows flow in macropores. It integrates the physical, biological and chemical processes occurring in the root zone, allowing the simulation of a wide spectrum of agricultural management practices. This study involved the evaluation of the soil, hydrologic and crop development sub-models within the RZWQM for two distinct agricultural systems, one consisting of a grain corn planted in a silty loam soil, irrigated by level basins and the other a forage corn planted in a sandy soil, irrigated by sprinklers. Evaluation was performed at two distinct levels. At the first level the model capability to fit the measured data was analyzed (calibration). At the second level the model's capability to extrapolate and predict the system behavior for conditions different than those used when fitting the model was assessed (validation). In a subsequent paper the same type of evaluation is presented for the nitrogen transformation and transport model. At the first level a change in the crop evapotranspiration (ETc) formulation was introduced, based upon the definition of the effective leaf area, resulting in a 51% decrease in the root mean square error of the ETc simulations. As a result the simulation of the root water uptake was greatly improved. A new bottom boundary condition was implemented to account for the presence of a shallow water table. This improved the simulation of the water table depths and consequently the soil water evolution within the root zone. The soil hydraulic parameters and the crop variety specific parameters were calibrated in order to minimize the simulation errors of soil water and crop development. At the second level crop yield was predicted with an error of 1.1 and 2.8% for

  3. Complex metabolic network of 1,3-propanediol transport mechanisms and its system identification via biological robustness.

    Science.gov (United States)

    Guo, Yanjie; Feng, Enmin; Wang, Lei; Xiu, Zhilong

    2014-04-01

    The bioconversion of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate metabolic network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. Since there are some uncertain factors in the fermentation, especially the transport mechanisms of 1,3-PD across cell membrane, the metabolic network contains multiple possible metabolic systems. Considering the genetic regulation of dha regulon and inhibition of 3-hydroxypropionaldehyde to the growth of cells, we establish a 14-dimensional nonlinear hybrid dynamical system aiming to determine the most possible metabolic system and the corresponding optimal parameter. The existence, uniqueness and continuity of solutions are discussed. Taking the robustness index of the intracellular substances together as a performance index, a system identification model is proposed, in which 1,395 continuous variables and 90 discrete variables are involved. The identification problem is decomposed into two subproblems and a parallel particle swarm optimization procedure is constructed to solve them. Numerical results show that it is most possible that 1,3-PD passes the cell membrane by active transport coupled with passive diffusion. PMID:24002752

  4. Biological fate of butylated hydroxytoluene (BHT) in rats, (3)

    International Nuclear Information System (INIS)

    Butylated hydroxytoluene (BHT) is the chemical widely used not only as the antioxidant for food additives but also as that for containers. 14C-BHT was administered orally to rats, and the subcellular distribution and the change of existence mode in course of time in kidneys were investigated, also the separation and identification of the metabolites in urine were tested. Radioactivity was determined with a liquid scintillation counter. Subcellular fractions were separated by the gel-filtration with Sephadex, and thin layer autoradiography was performed, and radioactive parts were confirmed. The radioactivity in each fraction of the reference group showed the highest 6 hours after the administration, and then it decreased rapidly, but the radioactivity in microsome fraction was the highest at 12 hours after the administration. Only BHT acids was identified out of the metabolites in urine by the thin layer autoradiography, and further investigation will be made about other metabolites. (Kobatake, H.)

  5. Developmental biology: cell fate in the mammary gland

    Science.gov (United States)

    Most breast cancers have their origin in the luminal epithelial cells of the mammary gland. Defining how a master regulator controls the development of this cell lineage could provide important hints about why this should be. ...

  6. Biological fate of butylated hydroxytoluene (BHT) in rats, (4)

    International Nuclear Information System (INIS)

    The absorption, distribution and excretion of BHT were studied by the subcutaneous administration of 14C-labelled BHT in rats, and the following results were obtained. The absorption of radioactive BHT after the subcutaneous administration was slow. The distributions of 14C-BHT in blood, serum, spleen, liver, kidney, heart, intestine, lung, brain, testis, fat and skin were slow and low. The excretion of 14C-BHT in urine and feces increased rapidly after 24 hours, and the excretion ratio for 3 days reached 5 percent of the total amount of administration. The olive oil solution injected subcutaneously for a long time, and after 3 days, the olive oil solution was found around the injection points. The radioactivity in the skin around the injection parts was 11.6% of the total injection dose. (J.P.N.)

  7. In vivo degeneration and the fate of inorganic nanoparticles.

    Science.gov (United States)

    Feliu, Neus; Docter, Dominic; Heine, Markus; Del Pino, Pablo; Ashraf, Sumaira; Kolosnjaj-Tabi, Jelena; Macchiarini, Paolo; Nielsen, Peter; Alloyeau, Damien; Gazeau, Florence; Stauber, Roland H; Parak, Wolfgang J

    2016-05-01

    What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure. Thus, the NPs may be decomposed into different parts, whose biodistribution and fate would need to be analyzed individually. Multiple labeling and quantification strategies for such a purpose will be discussed. All reviewed data indicate that NPs in vivo should no longer be considered as homogeneous entities, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked distribution and degradation pathways. PMID:26862602

  8. New fluorinated ligands for the dopamine transporter. Synthesis and first biological evaluation in pig and rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, B.; Sihver, W.; Coenen, H.H. [Forschungszentrum Juelich (Germany). Inst. fuer Nuklearchemie

    2004-07-01

    A change in the density of the dopamine transporter (DAT) is a widely accepted indicator for the integrity of the presynaptic nigrostriatal dopaminergic system. In spite of the advantageous properties of fluorine-18 for PET imaging up to now there is no suitable radiofluorinated DAT ligand available although numerous investigations have been performed by different working groups. Presently the SPECT ligand [{sup 123}I]FP-CIT known as DaTSCAN is the only commercially available DAT radiotracer for routine clinical use. The present study describes the syntheses of new fluorinated tropanes as potential DAT ligands (Figure) and their first in vitro evaluation in pig and rat brain. Several known DAT ligands are also synthesized and evaluated as standards for comparison. (orig.)

  9. Biological transport of radionuclides at low-level waste storage sites. Annual report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Objectives formulated and accomplished are discussed. Capability for assay of several transuranic elements in sequence was developed at both UCLA and UCB labs. Capacity to sample vegetation under statistically meaningful circumstances was further developed by a frequency distribution study of radionuclides and stable elements in plants under reasonably uniform conditions. Reasons for a several fold-range in the concentration ratios used to predict plant uptake of transuranium elements were demonstrated and hence it will be necessary to recognize this reality in model building and in any kind of nuclear siting. The objective of developing a more accurate multiple regression model of soil parameters on the concentration ratio of five different transuranium elements in plants involved in the food chain of man was vigorously pursued and a preliminary version will soon be available. The objective of determining how much radionuclides can be mobilized by deep rooting of plants from depths in soil was put into an experimental test which is not yet completed. The relative importance of stable strontium vs calcium on radiostrontium transport and of stable Cs vs potassium on radiocesium transport under waste management conditions received preliminary study. Several waste management soils were characterized (Fayette, Fuquay, Carjo, and Puye) as preliminary steps to growing plants on those soils with spiked levels of radionuclides and with actual waste chemicals otherwise added (cooperative with LASL). Plans were developed for FY 1979 studies and activities and include field plant work at Maxey Flats, Kentucky; review and synthesis of the vast store of published information relating to models and ideas used in the decision making processes with the view to identify gaps, errors, false assumptions in that data base; and to verify and confirm old models but with parameters carefully identified and quantified

  10. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); Kim, Grace E. [UCSF School of Medicine, Department of Pathology, San Francisco, CA (United States); Lin, Lawrence; Giacomini, Kathy [UCSF School of Pharmacy, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA (United States); Naranjo, Arlene; Van Ryn, Collin [University of Florida, Children' s Oncology Group Statistics and Data Center, Gainesville, FL (United States); Yanik, Gregory A. [University of Michigan, CS Mott Children' s Hospital, Ann Arbor, MI (United States); Kreissman, Susan G. [Duke University Medical Center, Durham, NC (United States); Hogarty, Michael [University of Pennsylvania, Children' s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA (United States); DuBois, Steven G. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); UCSF School of Medicine, San Francisco, CA (United States)

    2016-03-15

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  11. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  12. Roles of micro-organisms in the environmental fate of radionuclides

    International Nuclear Information System (INIS)

    Micro-organisms play important roles in the environmental fate of radionuclides in both aquatic and terrestrial ecosystems, with a multiplicity of physicochemicical and biological mechanisms effecting changes in mobility and speciation. Physico-chemical mechanisms of removal, which may be encompassed by the general term 'biosorption', include adsorption, ion exchange and entrapment. These are features of living and dead organisms as well as their derived products. In living cells biosorptive processes can be directly and indirectly influenced by metabolism, and may be reversible and affected by changing environmental conditions. Metabolism-dependent mechanisms of radionuclide immobilization include metal precipitation as sulfides, sequestration by metal-binding proteins and peptides, and transport and intracellular compartmentation. Chemical transformations of radionuclide species, particularly by reduction can result in immobilization. Microbial processes involved in solubilization include autotrophic and heterotrophic leaching, complexation by siderophores and other metabolites, and chemical transformations. Such mechanisms are important components of natural biogeochemical cycles for radionuclides and should be considered in any analyses of environmental radionuclide contamination. Several micro-organisim-based biotechnologies, e.g. those based on biosorption of precipitation, are of potential use for the treatment of radionuclide contamination. (Author)

  13. A planar conducting micro-loop structure for transportation of magnetic beads: An approach towards rapid sensing and quantification of biological entities

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2012-03-01

    Magnetic beads are utilized effectively in a wide variety of medical applications due to their small size, biocompatibility and large surface to volume ratio. Microfluidic lab-on-a-chip (LOC) devices, which utilize magnetic beads, are promising tools for accurate and rapid cell sorting and counting. Effective manipulation of beads is a critical factor for the performance of LOC devices. In this paper we propose a planar conducting micro-loop structure to trap, manipulate and transport magnetic beads. Current through the micro-loops produces magnetic field gradients that are proportional to the force required to manipulate the beads. Numerical analyses were performed to study the magnetic forces and their spatial distributions. Experimental results showed that magnetic beads could not only be transported towards a target region, e.g., for sensing purposes, but also the trapping rate could be increased by switching current between the different loops in the micro-loop structure. This method could lead to rapid and accurate quantification of biological entities tagged with magnetic beads. Copyright © 2012 American Scientific Publishers. All rights reserved.

  14. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm

    Science.gov (United States)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.

    2016-04-01

    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  15. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van, E-mail: msbatalha@oi.com.b, E-mail: rvangenuchten@yahoo.co [Federal University of Rio de Janeiro (LTTC/COPPE/UFRJ), RJ (Brazil). Dept. of Mechanical Engineering. Lab. de Transmissao e Tecnologia do Calor; Bezerra, Camila Rosa, E-mail: camila.rosabz@gmail.co [Federal University of Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Dept. of Civil Engineering; Pontedeiro, Elizabeth May, E-mail: bettymay@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ({sup 238}U and {sup 234}U) and phosphogypsum as an amendment ({sup 226}Ra and {sup 210}Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  16. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    International Nuclear Information System (INIS)

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers (238U and 234U) and phosphogypsum as an amendment (226Ra and 210Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  17. The fate of volatiles in mid-ocean ridge magmatism

    CERN Document Server

    Keller, Tobias; Hirschmann, Marc M

    2016-01-01

    Deep-Earth volatile cycles couple the mantle with near-surface reservoirs. Volatiles are emitted by volcanism and, in particular, from mid-ocean ridges, which are the most prolific source of basaltic volcanism. Estimates of volatile extraction from the asthenosphere beneath ridges typically rely on measurements of undegassed lavas combined with simple petrogenetic models of the mean degree of melting. Estimated volatile fluxes have large uncertainties; this is partly due to a poor understanding of how volatiles are transported by magma in the asthenosphere. Here, we assess the fate of mantle volatiles through numerical simulations of melting and melt transport at mid-ocean ridges. Our simulations are based on two-phase, magma/mantle dynamics theory coupled to an idealised thermodynamic model of mantle melting in the presence of water and carbon dioxide. We combine simulation results with catalogued observations of all ridge segments to estimate a range of likely volatile output from the global mid-ocean ridge...

  18. [Do hormones determine our fate?].

    Science.gov (United States)

    Vermeulen, A

    1994-01-01

    The hormonal system is a communication system between cells and organs. Hence it is not surprising that it influences almost all physiological functions and, at least partially, our behaviour and fate. The sexual phenotype is determined by the sex hormones. Normally, the phenotype is in accordance with gonadal and genetic sex, but occasionally, as a consequence of enzymatic defects in the biosynthesis of sex hormones or of androgen resistance, gonadal and genetic sex are in discordance with the phenotype, the latter determining generally the civil sex and the sex of rearing. Whereas the gender role is generally determined by the sex of rearing and the phenotype, itself under hormonal influence, homo- and transsexuality constitute notorious exceptions to this rule. Although several authors consider homo- and transsexuality to be the consequence of an impairment in androgenic impregnation in the perinatal period, there are at present no convincing arguments for an hormonal origin for either homo- or transsexuality, although such a possibility can't be excluded either. Besides their role in psychosexual behaviour, sex hormones play also a role in our life expectancy. Indeed, although maximal life expectancy of man is genetically determined, a major determinant of individual life expectancy is cardiovascular pathology. The latter is partly responsible for the difference in life expectancy between men and women, cardiovascular mortality increasing rapidly at menopause and being halved by oestrogen replacement therapy. Also atherogenesis as such is, to a large extend, under hormonal control. Indeed insulin resistance and hyperinsulinism, which develop as a corollary of the aging process, is an important cause of atherosclerosis as well as of hypertension. Other hormones also play an important role in our behaviour. We can mention here the role of the thyroid hormones in the physical and mental development of children as well as in the regression of the intellectual

  19. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider the...

  20. Chapter 2: Properties, sources, global fate and transport

    OpenAIRE

    Bidleman, Terry; Kurt-Karakus, Perihan; Armitage, James; Brown, Tanya; Danon Schaffer, Monica; Helm, Paul; Hung, Haley; Jantunen, Liisa; Kylin, Henrik; Li, Yi-Fan; Loock, Daniela; Luttmer, Carol; Ma, Jianmin; Macdonald, Robie; Mackay, Don

    2013-01-01

    Part II of the second Canadian Arctic Contaminants Assessment Report (CACAR-II) began with a section on “Physicochemical Properties of Persistent Organic Pollutants”, which identified key physicochemical (pchem) properties, provided the rationale for their measurement or prediction and tabulated literature citations for chemicals that are of concern to the NCP (Bidleman et al. 2003). The section also discussed temperature dependence of pchem properties and their applications to describing par...

  1. EMERGING CONTAMINANTS IN THE WATER CYCLE: FATE AND TRANSPORT

    Science.gov (United States)

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations in surface, ground and drinking water. The most common pathway for...

  2. Sphingosine 1-phosphate in blood: function, metabolism, and fate.

    Science.gov (United States)

    Thuy, Andreas V; Reimann, Christina-Maria; Hemdan, Nasr Y A; Gräler, Markus H

    2014-01-01

    Sphingosine 1-phosphate (S1P) is a lipid metabolite and a ligand of five G protein-coupled cell surface receptors S1PR1 to S1PR5. These receptors are expressed on various cells and cell types of the immune, cardiovascular, respiratory, hepatic, reproductive, and neurologic systems, and S1P has an impact on many different pathophysiological conditions including autoimmune, cardiovascular, and neurodegenerative diseases, cancer, deafness, osteogenesis, and reproduction. While these diverse signalling properties of S1P have been extensively reviewed, the particular role of S1P in blood is still a matter of debate. Blood contains the highest S1P concentration of all body compartments, and several questions are still not sufficiently answered: Where does it come from and how is it metabolized? Why is the concentration of S1P in blood so high? Are minor changes of the high blood S1P concentrations physiologically relevant? Do blood cells and vascular endothelial cells that are constantly exposed to high blood S1P levels still respond to S1P via S1P receptors? Recent data reveal new insights into the functional role and the metabolic fate of blood-borne S1P. This review aims to summarize our current knowledge regarding the source, secretion, transportation, function, metabolism, and fate of S1P in blood. PMID:24977489

  3. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis.

    Science.gov (United States)

    Cornwell, J A; Hallett, R M; der Mauer, S Auf; Motazedian, A; Schroeder, T; Draper, J S; Harvey, R P; Nordon, R E

    2016-01-01

    The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here we show that competing risks and concordance statistics, previously applied to clinical data and the study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics provide a robust and unbiased approach for evaluating hypotheses at the single-cell level. PMID:27250534

  4. On the Formation of Tess’ Tragic Fate

    Institute of Scientific and Technical Information of China (English)

    张颖

    2014-01-01

    "Tess of the d’Urbervilles"is one of the most important books of Thomas Hardy.The heroine Tess is the most outstanding female image created by Hardy and also an idealized artistic model.Her fate moves the readers deeply and represents the beauty of the book.By analysing the special social conditions,we can see the typicalness and the inevitability of Tess’tragic fate.Tess naturally becomes the typical victim of the cruel social reality.Hardy’s realistic thought about the society and his progressive ideas to which oughts to be paid attention by us embodies in the novel.

  5. Trichloromethyl compounds - natural background concentrations and fates within and

    DEFF Research Database (Denmark)

    Albers, Christian Nyrop; Hansen, Poul Erik; Jacobsen, Ole Stig

    2010-01-01

    atmospheric input of trichloromethyl compounds is found to be minor, with significant contributions for trichloroacetic acid (TCAA), only. In top soil, where the formation of the compounds is expected to occur, there is a clear positive relationship between chloroform and trichloroacetyl containing compounds...... occurrence and cycling of organic compounds with a trichloromethyl moiety in common. The study areas are temperate coniferous forests. Trichloromethyl compounds can be found in all compartments of the forests (groundwater, soil, vegetation and throughfall), but not all compounds in all compartments. The....... Other positive relations occur, which in combination with chlorination experiments performed in the laboratory, point to the fact that all the trichloromethyl compounds may be formed concurrently in the soil, and their subsequent fates then differ due to different physical, chemical and biological...

  6. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  7. Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions

    OpenAIRE

    Li, AJ; Zhang, T.; LI, XY

    2010-01-01

    Aerobic sludge granulation is an attractive new technology for biological wastewater treatment. However, the instability of aerobic granules caused by fungal growth is still one of the main problems encountered in granular bioreactors. In this study, laboratory experiments were conducted to investigate the fate and transformation of aerobic granules under different organic loading conditions. Bacterial granules (2-3 mm) in a poor condition with fungi-like black filamentous growth were seeded ...

  8. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier;

    2011-01-01

    A modified version of theMultimedia Activity Model for Ionics MAMI, including two-layered atmosphere,air–water interface partitioning, intermittent rainfall and variable cloud coverage was developed to simulate the atmospheric fate of ten low volatility or ionizable organic chemicals. Probabilistic...... simulations describing the uncertainty of substance and environmental input properties were run to evaluate the impact of atmospheric parameters, ionization and air–water (or air–ice) interface enrichment. The rate of degradation and the concentration of OH radicals, the duration of dry and wet periods, and...... the parameters describing air–water partitioning (KAW and temperature) and ionization (pKa and pH) are the key parameters determining the potential for long range transport. Wet deposition is an important removal process, but its efficiency is limited, primarily by the duration of the dry period...

  9. Organoarsenicals in poultry litter: detection, fate, and toxicity.

    Science.gov (United States)

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee

    2015-02-01

    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. PMID:25461415

  10. Biological evaluation of a technetium-99m-labeled integrated tropane-BAT and its piperidine congener as potential dopamine transporter imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, Davy M. [Laboratory of Radiopharmaceutical Chemistry, University of Leuven, UZ Gasthuisberg, B-3000 Leuven (Belgium); Vanbilloen, Hubert P. [Radiopharmacy, UZ Gasthuisberg, B-3000 Leuven (Belgium); Cleynhens, Bernard J. [Radiopharmacy, UZ Gasthuisberg, B-3000 Leuven (Belgium); Terwinghe, Christelle Y. [Radiopharmacy, UZ Gasthuisberg, B-3000 Leuven (Belgium); Mortelmans, Luc [Nuclear Medicine, UZ Gasthuisberg, B-3000 Leuven (Belgium); Bormans, Guy M. [Laboratory of Radiopharmaceutical Chemistry, University of Leuven, UZ Gasthuisberg, B-3000 Leuven (Belgium); Verbruggen, Alfons M. [Laboratory of Radiopharmaceutical Chemistry, University of Leuven, UZ Gasthuisberg, B-3000 Leuven (Belgium)]. E-mail: alfons.verbruggen@uz.kuleuven.ac.be

    2006-01-15

    Introduction: Recently, we have reported modification of {sup 99m}Tc-TRODAT-1 by integrating the N2S2 metal chelating unit and the tropane skeleton. Results of a preliminary biodistribution study in rats were promising with respect to brain uptake. The present report deals with the further biological characterization of the {sup 99m}Tc-labelled integrated TRODAT derivatives ({sup 99m}Tc-TropaBAT and {sup 99m}Tc-norchloro-TropaBAT) and with the synthesis and biological evaluation of a novel {sup 99m}Tc-labelled piperidine-based derivative ({sup 99m}Tc-PipBAT). Methods: Biodistribution of all radiolabelled complexes was studied in normal mice. A more detailed ex vivo intracerebral distribution study of the two {sup 99m}Tc-TropaBAT complexes was additionally performed in normal rats. Autoradiography of brain sections of normal mice (with or without pretreatment with FP-{beta}-CIT or haloperidol) and rats was performed. Affinity for the dopamine transporter (DAT) was also assessed in vitro in the presence or absence of cocaine. Results: Both {sup 99m}Tc-TropaBAT complexes show a slightly higher brain uptake than {sup 99m}Tc-TRODAT-1, but the striatum/cerebellum activity ratio is less favourable. Nevertheless, significant striatal uptake was detected after ex vivo autoradiography, but this uptake was also observed after pretreatment with FP-{beta}-CIT. Unexpectedly, no striatal uptake was detected after in vitro incubation of mouse brain sections with the tracer agents. For {sup 99m}Tc-PipBAT, neither brain uptake nor in vitro striatal uptake was found. Conclusion: Both {sup 99m}Tc-TropaBAT complexes exhibit similar diffusion into brain as {sup 99m}Tc-TRODAT-1, and ex vivo autoradiography shows significant striatal uptake. However, the inferior striatum/cerebellum activity ratio, the striatal uptake in mice pretreated with FP-{beta}-CIT or haloperidol, and the lack of striatal uptake during in vitro incubation prove that the DAT is not targeted. Brain uptake disappears

  11. SIMPLEBOX: a generic multimedia fate evaluation model

    NARCIS (Netherlands)

    van de Meent D

    1993-01-01

    This document describes the technical details of the multimedia fate model SimpleBox, version 1.0 (930801). SimpleBox is a multimedia box model of what is commonly referred to as a "Mackay-type" model ; it assumes spatially homogeneous environmental compartments (air, water, suspended m

  12. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.;

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The...

  13. Phantom Field and the Fate of Universe

    OpenAIRE

    Sami, M.; Toporensky, Alexey

    2003-01-01

    In this paper we analyze the cosmological dynamics of phantom field in a variety of potentials unbounded from above. We demonstrate that the nature of future evolution generically depends upon the steepness of the phantom potential and discuss the fate of Universe accordingly.

  14. Medicinal Water? The occurrence and fate of pharmaceuticals in aquatic environments A short communication

    OpenAIRE

    Ricardo Sánchez-Murillo

    2016-01-01

    Although very little is known about the transport, fate and toxic effects of medical compounds in aquatic environments, the presence of these compounds in potable water sources can no longer be overlooked. We can argue that trace concentrations of drugs in the water is relatively a minor problem, however, the current and future demands on global potable freshwater supplies will probably lead to greater incidents of indirect and direct water-reuse situations at the local, regional, and cr...

  15. Fate of nitrate in seepage from a restored wetland receiving agricultural tailwater

    OpenAIRE

    Brauer, N; Maynard, JJ; Dahlgren, RA; O'Geen, AT

    2015-01-01

    © 2015 Elsevier B.V. Constructed and restored wetlands are a common practice to filter agricultural runoff, which often contains high levels of pollutants, including nitrate. Seepage waters from wetlands have potential to contaminate groundwater. This study used soil and water monitoring and hydrologic and nitrogen mass balances to document the fate and transport of nitrate in seepage and surface waters from a restored flow-through wetland adjacent to the San Joaquin River, California. A 39% ...

  16. Use of column experiments to investigate the fate of organic micropollutants – a review

    OpenAIRE

    Banzhaf, Stefan; Hebig, Klaus H.

    2016-01-01

    Although column experiments are frequently used to investigate the transport of organic micropollutants, little guidance is available on what they can be used for, how they should be set up, and how the experiments should be carried out. This review covers the use of column experiments to investigate the fate of organic micropollutants. Alternative setups are discussed together with their respective advantages and limitations. An overview is presented of published column experiments investiga...

  17. Remote sensing for water quality and biological measurements in coastal waters

    Science.gov (United States)

    Johnson, R. W.; Harriss, R. C.

    1980-01-01

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts.

  18. Remote sensing for water quality and biological measurements in coastal waters

    International Nuclear Information System (INIS)

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts

  19. Transport coefficients for low and high-rate mass transfer along a biological horizontal cylinder Coeficientes de transporte para baixas e altas taxas de transferência de massa ao longo de um cilindro biológico horizontal

    Directory of Open Access Journals (Sweden)

    Alberto A. Barreto

    2006-06-01

    Full Text Available Knowledge of heat and mass transfer coefficients is essential for drying simulation studies or design of food and grain thermal processes, including drying. This work presents the full development of a segregated finite element method to solve convection-diffusion problems. The developed scheme allows solving the incompressible, steady-state Navier-Stokes equations and convective-diffusive problems with temperature and moisture dependent properties. The problem of simultaneous energy, momentum and species transfer along an infinite, horizontal cylinder under drying conditions in forced convection is presented, considering conditions normally found in biological material thermal treatment or drying. Numerical results for Nusselt and Sherwood numbers were compared against available empirical expressions; the results agreed within the associated experimental errors. For high rate mass transport processes, the proposed methodology allows to simulate drying conditions involving wall convective mass flux by a simple inclusion of the appropriated boundary conditions.O conhecimento dos coeficientes de transferência de calor e massa é essencial para o estudo de simulação de secagem e para o projeto de processamento térmico de grãos e alimentos, inclusive secagem. Este trabalho apresenta o desenvolvimento completo de um método de elementos finitos segregado para resolver problemas de convecção-difusão. O esquema desenvolvido permite que se resolvam as equações de Navier-Stokes incompressíveis em regime permanente, além de problemas convectivos-difusivos com propriedades dependentes da temperatura e da umidade. Apresenta-se o problema de transferência simultânea de energia, momentum e espécies ao longo de um cilindro horizontal, infinito sob condições de secagem em convecção forçada, considerando-se condições normalmente encontradas em tratamento térmico ou secagem de material biológico. Compararam-se resultados numéricos para

  20. Septic systems as hot-spots of pollutants in the environment: Fate and mass balance of micropollutants in septic drainfields

    Science.gov (United States)

    Effluent discharged from septic systems, also known as onsite wastewater treatment systems, can be an important source of micropollutants in the environment. We investigated the fate and transport of 17 micropollutants, including human excretion markers, hormones, pharmaceuticals and personal care p...

  1. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices.

    Science.gov (United States)

    Net, Sopheak; Sempéré, Richard; Delmont, Anne; Paluselli, Andrea; Ouddane, Baghdad

    2015-04-01

    Because of their large and widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in all the environmental compartements. They have been widely detected throughout the worldwide environment. Indoor air where people spend 65-90% of their time is also highly contaminated by various PAEs released from plastics, consumer products as well as ambient suspended particulate matter. Because of their widespread application, PAEs are the most common chemicals that humans are in contact with daily. Based on various exposure mechanisms, including the ingestion of food, drinking water, dust/soil, air inhalation and dermal exposure the daily intake of PAEs may reach values as high as 70 μg/kg/day. PAEs are involved in endocrine disrupting effects, namely, upon reproductive physiology in different species of fish and mammals. They also present a variety of additional toxic effects for many other species including terrestrial and aquatic fauna and flora. Therefore, their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. This paper is a synthesis of the extensive literature data on behavior, transport, fate and ecotoxicological state of PAEs in environmental matrices: air, water, sediment, sludge, wastewater, soil, and biota. First, the origins and physicochemical properties of PAEs that control the behavior, transport and fate in the environment are reviewed. Second, the compilation of data on transport and fate, adverse environmental and human health effects, legislation, restrictions, and ecotoxicological state of the environment based on PAEs is presented. PMID:25730609

  2. Overview of radionuclides transport

    International Nuclear Information System (INIS)

    There has been recognition of radioactivity levels and the fate of radionuclides that could have modified the biogeochemical cycles in the ecological environment. These modifications can disturb a variety of the ecosystems on which human life depends. It is essential to understand the pathways of radionuclides that are transported and deposited in the atmosphere and in terrestrial and aquatic ecosystems related to their impacts on human life. This paper is mainly focused on the transport in the atmospheric part. Various physical processes that control the transport of radionuclides in the atmosphere are reviewed. The transport processes used in terrestrial and aquatic ecosystems, as well as underground are briefly described. For the purpose of demonstration, dose calculations due to the exposures of radionuclides, and the numerical model simulations of transport of 210Pb particles and dust aerosols in the atmosphere are presented. Each transport process is complex. More sampling data are needed to refine the transport models for assessing and predicting the fate of radionuclides and their impacts on ecosystems. Long-lived radionuclides are remained in the atmosphere and can be transported in a long distance over wider areas. Although a numerical model can handle complex transport processes, a Gaussian model offers an attraction for ease and quickness of interpretation of exposures to radionuclides during emergency. Radionuclides entering the atmosphere go through the transfer process from air to soil, soil to plants, and plants to animals. The transfer is a long-term process. Therefore, a longer-term study of environmental sampling of radionuclides is required to accurately assess the transport processes and long-term impacts on health and ecosystems. Also, it should get involving in a study of modeling transport of radionuclides over urban area having various heights and sizes of buildings, i.e., skyscrapers with high population, in the case of an event occurring

  3. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    International Nuclear Information System (INIS)

    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  4. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  5. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media.

    Science.gov (United States)

    Wang, Zhongying; von dem Bussche, Annette; Qiu, Yang; Valentin, Thomas M; Gion, Kyle; Kane, Agnes B; Hurt, Robert H

    2016-07-01

    Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1-30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk. PMID:27267956

  6. The Fate of Intracluster Radio Plasma

    OpenAIRE

    Ensslin, Torsten A.

    2002-01-01

    Radio plasma injected by active radio galaxies into clusters of galaxies quickly becomes invisible due to radiative losses of the relativistic electrons. In this talk, the fate of radio plasma and its role for the galaxy cluster is discussed: buoyancy removes it from the central regions and allows to transfer its energy into the ambient gas. The remaining low energy electron populations are still able to emit a low luminosity glow of observable radiation via synchrotron-self Comptonized emiss...

  7. Fate and effects of acrolein.

    Science.gov (United States)

    Ghilarducci, D P; Tjeerdema, R S

    1995-01-01

    ). Acrolein is highly reactive, and intercompartmental transport is limited. However, it is eliminated from aqueous environments by volatilization and hydration to beta-hydroxypropanal, after which biotransformation occurs, with a half-life of 7-10 d. The Koc for acrolein is 24, and it is not likely to be retained in soil; activated carbon adsorbs only 30% from solution. Thus, the aldehyde is either leached extensively in moist soil or volatilizes quickly from dry soil. It is eliminated from air by reaction with .OH (half-life, 0.5-1.2 d), NOx (half-life, 16 d), and O3 (half-life, 59 d), as well as by photolysis and wet deposition. As expected from its high water solubility, bioaccumulation is low. Acrolein is highly toxic by all routes of exposure. The respiratory system is the most common target: exposure causes localized irritation, respiratory distress, pulmonary edema, cellular necrosis, and increased susceptibility to microbial diseases. Additionally, acute inhalation studies verify that it is a severe respiratory irritant that affects respiratory rates. Respiratory rate depression may have a protective effect by minimizing vapor inhalation, thereby explaining the subadditive effect of acrolein when combined with the other toxic combustion by-products CO and HCHO. Liquid contact with the skin and eyes causes severe irritation, opaque or cloudy corneas, and localized epidermal necrosis, but no allergic contact dermatitis. The cardiovascular system is affected, resulting in increased blood pressure, platelet aggregation, and quick cessation of beating in perfused rat hearts. It may also inhibit mitochondrial oxidative phosphorylation in the myocardium. Acute LD50s and LC50s are low. Levels are 7-46 mg/kg and 18-750 mg/m3, respectively, in rats; aquatic organisms are affected above 11.4 micrograms/L.(ABSTRACT TRUNCATED) PMID:8599034

  8. Fate of indicator microorganisms under nutrient management plan conditions.

    Science.gov (United States)

    Bradford, Scott A; Segal, Eran

    2009-01-01

    Nutrient management plans (NMPs) for application of wastewater from concentrated animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was implemented on a field plot to test this assumption by monitoring the fate of several fecal indicator microorganisms (Enterococcus, fecal coliforms, somatic coliphage, and total Escherichia coli). When well-water and wastewater were applied to meet measured evapotranspiration (ET), little advective transport of the indicator microorganisms occurred below the root zone and the remaining microorganisms rapidly died-off (within 1 mo). Additional experiments were conducted in the laboratory to better quantify microorganism transport and survival in the field soil. Batch survival experiments revealed much more rapid die-off rates for the bacterial indicator microorganisms in native than in sterilized soil, suggesting that biotic factors controlled survival. Saturated column experiments with packed field soil, demonstrated much greater transport potential for somatic coliphage than bacterial indicators (Enterococcus and total E. coli) and that the retention rates for the indicator microorganisms were not log-linear with depth. A worst case transport scenario of ponded infiltration on a large undistributed soil column from the field was also initiated and indicator microorganisms were not detected in the column outflow or in the soil at a depth of 65 cm. All of these observations support the hypothesis that a NMP at this site will protect groundwater supplies from microorganism contamination, especially when applied water and wastewater meet ET. PMID:19549950

  9. JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Shree Ram SINGH; Xiu CHEN; Steven X.HOU

    2005-01-01

    In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.

  10. Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities.

    Science.gov (United States)

    Chen, Sisi; Bremer, Andrew W; Scheideler, Olivia J; Na, Yun Suk; Todhunter, Michael E; Hsiao, Sonny; Bomdica, Prithvi R; Maharbiz, Michel M; Gartner, Zev J; Schaffer, David V

    2016-01-01

    Recreating heterotypic cell-cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell-cell signalling networks, we prepared heterotypic cell-cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals. PMID:26754526

  11. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  12. The role of the global cryosphere in the fate of organic contaminants

    Directory of Open Access Journals (Sweden)

    A. M. Grannas

    2013-03-01

    Full Text Available The cryosphere is an important component of global organic contaminant cycles. Snow is an efficient scavenger of atmospheric organic pollutants while a seasonal snowpack, sea ice, glaciers and ice caps are contaminant reservoirs on time scales ranging from days to millennia. Important physical and chemical processes occurring in the various cryospheric compartments impact contaminant cycling and fate. A variety of interactions and feedbacks also occur within the cryospheric system, most of which are susceptible to perturbations due to climate change. In this article, we review the current state of knowledge regarding the transport and processing of organic contaminants in the global cryosphere with an emphasis on the role of a changing climate. Given the complexity of contaminant interactions with the cryosphere and limitations on resources and research capacity, interdisciplinary research and extended collaborations are essential to close identified knowledge gaps and to improve our understanding of contaminant fate under a changing climate.

  13. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  14. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems

    Science.gov (United States)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.

    2012-12-01

    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  15. Fate Written on the Forehead in Serbian Oral Narratives

    OpenAIRE

    Nemanja Radulović

    2014-01-01

    This paper examines narratives about fate from the Serbian corpus, as well as beliefs related to them. A characteristic motif is that the demons of fate write fate on people’s forehead. Such motifs and beliefs are also encountered elsewhere on the Balkans, especially in the areas that were under Turkish influence (Greece, Albania, Bulgaria), so it is undoubtedly a Balkanism. The presence of the motif among Turks and Arabs indicates oriental roots. However, the bottom source seems to be India ...

  16. Biological Threats

    Science.gov (United States)

    ... Workplace Plans School Emergency Plans Main Content Biological Threats Biological agents are organisms or toxins that can ... for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may or ...

  17. Transporte de NO3- e NH4+ em agregados de Latossolo Vermelho com e sem atividade biológica NO3- and NH4+ transport in a typic Haplortox aggregates with and without biological activity

    Directory of Open Access Journals (Sweden)

    Fábio C. Coelho

    2007-08-01

    Full Text Available Objetivou-se, com este trabalho, avaliar a influência do tamanho dos agregados de um Latossolo Vermelho distrófico sobre as transformações e transporte do amônio e do nitrato em condições de presença e ausência de atividade biológica. Utilizou-se o fatorial 2³ x 4, com fatores e níveis: vegetação de cobertura do solo (cerrado e milho ; atividade biológica (com e sem esterilização do solo; fontes de N da solução com 10 mimol L-1 de N, para saturação das colunas (Ca(NO32 e NH4CI e classes de agregados (2,0 a 1,0; 1,0 a 0,5; 0,5 a 0,25 e 0,25 a 0,105 mm. Na primeira eluição, o efluente das colunas contendo microbiota ativa e saturação com Ca(NO32 apresentou teor de NO3- menor no efluente dos agregados de 0,25 a 0,105 mm; já em condições de esterilização, ocorreu o inverso: maior concentração do NO3- no efluente dos agregados de 0,25 a 0,105 mm. Para as colunas saturadas com NH4CI, na primeira eluição os teores do NH4+ foram maiores nos efluentes dos agregados de 0,25 a 0,105 mm para todas as combinações de cobertura de solo e esterilização, enquanto na presença da microbiota ativa o efluente dos agregados de 0,25 a 0,105 mm apresentou teor semelhante ao dos agregados de 0,5 a 0,25 mm.A laboratory experiment was carried out in a randomized block design with three replications, in which columns with aggregate classes 2.0-1.0; 1.0-0,5; 0.5-0.25 and 0.25-0.105 mm of a typic Haplortox were used. The treatments corresponded to a 2³ x 4 factorial, with soil covering vegetation (savannah and maize; biological activity (with and without soil sterilization with methyl bromide; sources of N with 10 mumol L-1 of N for saturation of the columns (Ca(NO32 and NH4CI; and aggregate classes (2.0-1.0; 1.0-0.5; 0.5-0.25 and 0.25-0.105 mm. After seven days of incubation of the columns with aggregates at maximum water retention, percolations were made with water, after two days under saturated condition, totaling six samples (0, 2

  18. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  19. Glucocorticoid dose determines osteocyte cell fate

    OpenAIRE

    Jia, Junjing; Yao, Wei; Guan, Min; Dai, WeiWei; Shahnazari, Mohammad; Kar, Rekha; Bonewald, Lynda; Jiang, Jean X.; Lane, Nancy E.

    2011-01-01

    In response to cellular insult, several pathways can be activated, including necrosis, apoptosis, and autophagy. Because glucocorticoids (GCs) have been shown to induce both osteocyte apoptosis and autophagy, we sought to determine whether osteocyte cell fate in the presence of GCs was dose dependent by performing in vivo and in vitro studies. Male Swiss-Webster mice were treated with slow-release prednisolone pellets at 1.4, 2.8, and 5.6 mg/kg/d for 28 d. An osteocyte cell line, MLO-Y4 cells...

  20. Kelp, cobbles, and currents: biological reduction of coarse sediment entrainment stress

    Science.gov (United States)

    Masteller, C.; Finnegan, N. J.; Miller, I. M.; Warrick, J. A.

    2013-12-01

    Kelp forests support diverse assemblages of organisms and grow along many rocky coastlines. Since the flow of water through kelp forests controls the transport and fate of nutrients in near shore environments, the hydrodynamics of kelp forests are well studied. In addition, a number of studies have observed transport of large grains attached to seaweed and/or kelp holdfasts. Such observations suggest that the biology colonizing the littoral zone may fundamentally influence coarse sediment transport processes. In this contribution, we set out to quantify the effect of kelp on near shore, current driven coarse sediment transport. By exploiting an existing model for kelp hydrodynamics, we build a physical model for incipient motion of a coarse grain coupled to a kelp frond under a unidirectional current. This model accounts for the additional buoyant, drag, and tensional forces transmitted from a kelp frond to the attached sediment. Application of the model demonstrates that the large surface area of kelp results in an increase in drag force, while the pull of the buoyant kelp frond reduces friction on the grain. Further, as the fluid flows over the kelp frond, it will 'go with the flow', stretching, and applying a tensional stress. Together, these effects significantly reduce the threshold stress for the initiation of motion. Thus kelp-assisted transport can occur at reduced fluid velocities where coarse sediment transport would otherwise be impossible. In addition, the results of this study provide an example of a system where biology must be explicitly accounted for in order to model coarse sediment transport accurately.

  1. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  2. The "occlusis" model of cell fate restriction.

    Science.gov (United States)

    Lahn, Bruce T

    2011-01-01

    A simple model, termed "occlusis", is presented here to account for both cell fate restriction during somatic development and reestablishment of pluripotency during reproduction. The model makes three assertions: (1) A gene's transcriptional potential can assume one of two states: the "competent" state, wherein the gene is responsive to, and can be activated by, trans-acting factors in the cellular milieu, and the "occluded" state, wherein the gene is blocked by cis-acting, chromatin-based mechanisms from responding to trans-acting factors such that it remains silent irrespective of whether transcriptional activators are present in the milieu. (2) As differentiation proceeds in somatic lineages, lineage-inappropriate genes shift progressively and irreversibly from competent to occluded state, thereby leading to the restriction of cell fate. (3) During reproduction, global deocclusion takes place in the germline and/or early zygotic cells to reset the genome to the competent state in order to facilitate a new round of organismal development. PMID:20954221

  3. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  4. Fate in the religion of the Lepchas

    Directory of Open Access Journals (Sweden)

    Halfdan Siiger

    1967-02-01

    Full Text Available The Lepchas are mountainous agriculturalists who live in the State of Sikkim in the Himalayas and in some adjacent Indian districts. To the Lepchas the supernatural world is divided into two groups, the rum, or the mainly benevolent supernatural beings, and the mung, or the malignant supernatural beings. Any evil occurrence is in the first instance ascribed to the malignant activities of the mung, but it may, under certain conditions, also be due to temporary on the part of some or other rum. If it is obvious that the evil occurrence is caused by a human being, this person is considered to be governed by some mung, or he may, which is much worse, be a mung in human disguise. At all events, any evil occurrence is experienced as the result of the evil will-power of some or other malignant supernatural being. Consequently, we cannot apply our technical term "Fate" to such occurrences, and Fate as an abstract concept cannot be used, when we speak of the Lepchas.

  5. The uptake and intracellular fate of a series of different surface coated quantum dots in vitro

    International Nuclear Information System (INIS)

    Highlights: → Assessing an important issue relevant to the toxicity of nanoparticles. → Use of novel confocal laser scanning and electron microscopy techniques. → Novel findings for intracellular fate of quantum dots in vitro. -- Abstract: Quantum dots (QDs) are potentially beneficial semi-conductor nanocrystals for use in diagnostics and therapeutics. The chemical composition of QDs however, has raised concerns as to their potential toxicity. Although a thorough examination using specific biochemical endpoints is necessary to assess QD toxicity, an understanding of the interaction of QDs, specifically their uptake and intracellular fate, with biological systems is also essential in determining their potential hazardous effects. The aim of this study was to investigate the uptake and intracellular fate of a series of different surface coated QDs (organic, carboxylated (COOH) and amino (NH2) polyethylene glycol (PEG)) in J774.A1 'murine macrophage-like' cells. Model 20 nm and 200 nm COOH polystyrene beads (PBs) were also studied. Results showed that COOH and NH2 (PEG) QDs, as well as 20 nm and 200 nm PBs were located within lysosomes and the mitochondria of macrophages after 2 h. Additionally, elemental transmission electron microscopy confirmed both COOH and NH2 (PEG) QDs to be located within membrane-bound compartments at this time point. The data from this study combined with current knowledge, indicates that the intracellular localisation of QDs could be directly related to their toxicity.

  6. Time-variant clustering model for understanding cell fate decisions.

    Science.gov (United States)

    Huang, Wei; Cao, Xiaoyi; Biase, Fernando H; Yu, Pengfei; Zhong, Sheng

    2014-11-01

    Both spatial characteristics and temporal features are often the subjects of concern in physical, social, and biological studies. This work tackles the clustering problems for time course data in which the cluster number and clustering structure change with respect to time, dubbed time-variant clustering. We developed a hierarchical model that simultaneously clusters the objects at every time point and describes the relationships of the clusters between time points. The hidden layer of this model is a generalized form of branching processes. A reversible-jump Markov Chain Monte Carlo method was implemented for model inference, and a feature selection procedure was developed. We applied this method to explore an open question in preimplantation embryonic development. Our analyses using single-cell gene expression data suggested that the earliest cell fate decision could start at the 4-cell stage in mice, earlier than the commonly thought 8- to 16-cell stage. These results together with independent experimental data from single-cell RNA-seq provided support against a prevailing hypothesis in mammalian development. PMID:25339442

  7. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  8. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review

    NARCIS (Netherlands)

    Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; Brink, van den N.W.; Nickel, C.

    2014-01-01

    Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids

  9. Synthesis and biological evaluation of [{sup 11}C]talopram and [{sup 11}C]talsupram: candidate PET ligands for the norepinephrine transporter

    Energy Technology Data Exchange (ETDEWEB)

    McConathy, Jonathan; Owens, Michael J.; Kilts, Clinton D.; Malveaux, Eugene J.; Camp, Vernon M.; Votaw, John R.; Nemeroff, Charles B.; Goodman, Mark M. E-mail: mgoodma@emory.edu

    2004-08-01

    PET and SPECT ligands for the norepinephrine transporter (NET) will be important tools for studying the physiology, pathophysiology and pharmacology of the CNS noradrenergic system in vivo. A series of candidate NET ligands were synthesized and characterized in terms of their affinity for human monoamine transporters. The two most promising compounds, talopram and talsupram, were radiolabeled with carbon-11 and evaluated through biodistribution studies in rats and PET imaging studies in a rhesus monkey. Although both compounds displayed high affinity and selectivity for the human NET in vitro, these compounds did not enter the CNS in adequate amounts to be used in PET imaging studies.

  10. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554. ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  11. SIMAP oil and Orimulsion fate and effects model

    International Nuclear Information System (INIS)

    SIMAP, ASA's Spill Impact MAPping model system, simulates the physical fates and biological effects of spilled oils and fuels in 3-dimensional space, allow evaluation of the effectiveness of spill response activities, and evaluate probabilities of trajectories and resulting impacts. It may be used for real-time spill simulation, contingency planning, and ecological risk assessments. SIMAP has been verified for oil spills using data from the Exxon Valdez, the August 1993 No. 6 fuel spill in Tampa Bay, the North Cape No. 2 oil spill in RI January 1996, and others. SIMAP has been extended to apply to the alternative fuel Orimulsion trademark by development of algorithms describing the characteristics of this fuel and mechanisms of dispersion if it is spilled. Orimulsion is a mixture of approximately70% bitumen, surfactant, and water (about 30%). This emulsion readily mixes into the water column when it is spilled, as opposed to remaining as a surface slick as do oils. Thus, Orimulsion is tracked in the model as two fractions dispersed in an initial water volume: (1) fuel (bitumen) droplets with attached surfactant, and (2) dissolved low molecular weight aromatics. The toxicity of each component is considered separately and as additive. The model evaluates exposure, toxicity, mortality, and sublethal losses of biota resulting from the spill. Toxic effects are a function of time and temperature of exposure to concentrations, exposure to surface slicks and shoreline oil, and physiological response based on biological classifications. Losses of fish, shellfish, and wildlife are evaluated in the context of natural and harvest mortality rates in the absence of the spill

  12. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  13. Modeling the release, behavior, and fate of bitumen-water emulsions

    International Nuclear Information System (INIS)

    A modeling approach was developed for simulating the release, fate, and transport of an Orimulsion spill in lakes, rivers or seas. Orimulsion (a new substitute for heavy fuel oils), is a bitumen and water emulsion which can have a positive, neutral or negative buoyancy depending on the properties of the surrounding water. The unique physical characteristics of Orimulsion make it necessary to modify existing oil behaviour models. Three areas of experimentation were identified: (1) estimating discharge rates from a leaking tanker, (2) understanding weathering of the product, and (3) examining the consequences of subsurface transport. A formula was devised for generalizing oil sedimentation models to include bitumens. It was shown that any bitumen in a marine spill that does not aggregate, sink to the bottom, or adhere to suspended sediment will be transported by the subsurface current. 25 refs

  14. Modeling and measuring the fate of Methabenzthiazuron at the lysimeter scale

    Science.gov (United States)

    Herbst, M.; Pütz, T.; Ciocanaru, M.; Vereecken, H.

    2003-04-01

    For the modeling of pesticide fate at regional scales we try to scale up local scale process knowledge. The validation at the local scale can be seen as a prerequisite for large scale modeling of pesticide transport. The aim of this study is to evaluate the performance of the coupled multi-scale model system TRACE/3dLEWASTE to predict water flow, crop development and pesticide transport in a lysimeter for a two year simulation period. TRACE/3dLEWASTE is tested at the local scale and will be used at regional scale. The experimental setup consists of a 1.1 m undisturbed soil column (eutric Luvisol) with 1 m2 surface. Winter wheat, winter barley and oat was grown according to common farming practice. The measurement of evapotranspiration, drainage flow, soil moisture content and pesticide concentrations allows the validation of model output. TRACE is a finite element model based on a numerical solution of the Richards' equation. For solute transport we use 3dLEWASTE which applies a hybrid Eulerian-Lagrangian approach. Linear sorption and a first order decay was assumed. Sorption and degradation parameters are taken from laboratory experiments. The quantification of model performance reveals a good agreement between model prediction and measurements for the water flow, whereas a less accurate prediction of pesticide fate was detected. This can be seen as a result of uncertain sorption and degradation parameters or even as a result of an inadequate process description.

  15. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kate L. Loveland

    2015-01-01

    Full Text Available Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.

  16. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  17. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    Science.gov (United States)

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium. PMID:19818021

  18. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  19. Design of Indium Arsenide nanowire sensors for pH and biological sensing and low temperature transport through p-doped Indium Arsenide nanowires

    DEFF Research Database (Denmark)

    Upadhyay, Shivendra

    H sensing, we apply the same to a more complex system - proteins. The sensing protocol involves the functionalization of the sensor surface with a receptor protein followed by the addition of the protein of interest. Sensor response to oppositely charged proteins is used to confirm the sensitivity of the......With the goal of real time electrical detection of chemical and biological species, nanowires have shown great promise with high sensitivity due to their large surface to volume ratio. While the focus of such electrical detection has shifted to one dimensional semiconductor nanostuctures, Silicon...... remains the primary material of choice. This research is about investigating Indium Arsenide nanowires as alternative platform for sensing charged species - chemical and biological, in solution. Starting with nanowires grown via molecular beam epitaxy in an ultra-high vacuum chamber, we discuss the...

  20. Binary cell fate decisions and fate transformation in the Drosophila larval eye.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Mishra

    Full Text Available The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5 or the green-sensitive Rhodopsin 6 (Rh6. Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.

  1. Fibronectin mediates mesendodermal cell fate decisions

    Science.gov (United States)

    Cheng, Paul; Andersen, Peter; Hassel, David; Kaynak, Bogac L.; Limphong, Pattraranee; Juergensen, Lonny; Kwon, Chulan; Srivastava, Deepak

    2013-01-01

    Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm. PMID:23715551

  2. A D Sakharov: personality and fate

    International Nuclear Information System (INIS)

    A D Sakharov was an amazingly gifted person for whom, with his combined talents as a physicist and inventor, ''physical laws and the relation among phenomena were directly visualized and tangible in all their inherent simplicity'' (I E Tamm). The author of the key ideas involved in the hydrogen weapons and fusion reactor programs, and well aware of his scientific and public status, Sakharov was, nevertheless, a modest and highly decent man, always trustful of people in discussing their or his problems. Although his greatest satisfaction lay in successfully solving fundamental problems in physics and cosmology, fate and duty made him turn to matters of universal human significance, particularly human rights, to the gruelling struggle to which he devoted many years of his life. (conferences and symposia)

  3. A D Sakharov: personality and fate

    Science.gov (United States)

    Ritus, Vladimir I.

    2012-02-01

    A D Sakharov was an amazingly gifted person for whom, with his combined talents as a physicist and inventor, "physical laws and the relation among phenomena were directly visualized and tangible in all their inherent simplicity" (I E Tamm). The author of the key ideas involved in the hydrogen weapons and fusion reactor programs, and well aware of his scientific and public status, Sakharov was, nevertheless, a modest and highly decent man, always trustful of people in discussing their or his problems. Although his greatest satisfaction lay in successfully solving fundamental problems in physics and cosmology, fate and duty made him turn to matters of universal human significance, particularly human rights, to the gruelling struggle to which he devoted many years of his life.

  4. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    Science.gov (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  5. Phenomenological and Spectroscopic Analysis on the Effects of Sediment Ageing and Organic Carbon on the Fate of a PCB Congener Spiked to Sediment

    Science.gov (United States)

    This study assesses the full cycle transport and fate of a polychlorinated biphenyl (PCB) congener spiked to sediment to empirically and spectroscopically investigate the effects of sediment ageing and organic carbon on the adsorption, desorption, and reaction of the PCB. Caesar ...

  6. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  7. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  8. Attenuation of Selected Emerging Contaminants During River Transport

    Science.gov (United States)

    Reinhard, M.; Gross, B.; Hadeler, A.

    2002-12-01

    The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant

  9. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  10. Fate, weathering, and modelling research: A Canadian perspective

    International Nuclear Information System (INIS)

    Fate and behavior studies are fundamental to oil spill research and their results are important for operational response. Knowledge of the ultimate fate and behavior of oil should drive countermeasures decisions. Research has been conducted around the world on oil fate and behavior. The effort has not been, in this author's opinion, focussed and long-term as it should have been. Unfortunately, research funding for oil spills is very oscillatory. Fate and behavior studies require a long, concerted effort to yield valuable results. Because of this, fate and behavior studies have suffered much more than others from funding spurts. Little research has been maintained at universities because of the lack of sustained funding. Few other research organizations have facilities, equipment and expertise to carry out fundamental studies. A second difficulty in the field has been the tendency to fund one-year studies. In many cases little can be answered in a year. Specialized apparatus take 6-12 months to build or to acquire. Little time is left to operate these. The learning curve is also a factor. It is generally accepted in a specialized field that it takes a new scientist 6 months to produce any useful work, 2 years to become productive, and 5 years to be fully productive. Hopefully, future efforts will allow for longer-term studies on fate and behavior. The state-of-the-art in the field of fate, behavior, weathering and modelling could be summarized as variable. There are many deficiencies in our knowledge about the fate, weathering and modelling of oil spills. The fate, behavior and transformation of oil is dominated by the reality that oil is a varying mixture of hundreds of compounds

  11. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015.

    Science.gov (United States)

    van Mourik, Louise M; Gaus, Caroline; Leonards, Pim E G; de Boer, Jacob

    2016-07-01

    This review provides an update on information regarding the production volumes, regulations, as well as the environmental levels, trends, fate and human exposure to chlorinated paraffin mixtures (CPs). CPs encompas thousands congeners with varying properties and environmental fate. Based on their carbon chain lengths, CPs are divided into short- (SCCPs; C10-13), medium- (MCCPs; C14-17) and long- (LCCPs; C ≥ 18) chained groups. They are high production volume and persistent chemicals, and their cumulative global production already surpasses that of other persistent anthropogenic chemicals (e.g. PCBs). However, international regulations are still curbed by insufficient information on their levels and fate, including bioaccumulation and toxicity potential. An increasing number of studies since 2010 demonstrate that CPs are detected in almost every compartment in the environment, including remote areas. Consensus on the long range transport and high bioaccumulation potential (BCF > 5000 & TMF > 1) has recently been reached for SCCPs, fulfilling criteria under the Stockholm Convention for designation as a persistent organic pollutant; information on their levels is, however, still sparse for many countries. M/LCCPs have received comparatively little attention in the past, but as replacement chemicals for SCCPs, MCCPs are now considered in an increasing number of studies. The limited data to date suggests MCCPs are widely used. Although data on their bioaccumulation and toxicity are still inconclusive, MCCPs and LCCPs with Cenvironment, a better understanding on the levels and fate of all CPs is needed. PMID:27135701

  12. Subversion of membrane transport pathways by vacuolar pathogens

    OpenAIRE

    Alix, Eric; Mukherjee, Shaeri; Roy, Craig R.

    2011-01-01

    Mammalian phagocytes control bacterial infections effectively through phagocytosis, the process by which particles engulfed at the cell surface are transported to lysosomes for destruction. However, intracellular pathogens have evolved mechanisms to avoid this fate. Many bacterial pathogens use specialized secretion systems to deliver proteins into host cells that subvert signaling pathways controlling membrane transport. These bacterial effectors modulate the function of proteins that regula...

  13. Randomness and Criticality in Biological Interactions

    OpenAIRE

    Grilli, Jacopo

    2015-01-01

    In this thesis we study from a physics perspective two problems related to biological interactions. In the first part of this thesis we consider ecological interactions, that shape ecosystems and determine their fate, and their relation with stability of ecosystems. Using random matrix theory we are able to identify the key aspect, the order parameters, determining the stability of large ecosystems. We then consider the problem of determining the persistence of a population living in a random...

  14. Biological and Clinical Study of 6-Deoxy-6-Iodo-D-Glucose: a iodinated tracer of glucose transport and of insulin-resistance in human

    International Nuclear Information System (INIS)

    Insulin resistance (IR), characterized by a depressed cellular sensitivity to insulin in insulin-sensitive organs, is a central feature to obesity, the metabolic syndrome, and diabetes mellitus and leads to increase cardiovascular diseases, particularly heart failure. All these events are today serious public health problems. But actually, there is no simple tool to measure insulin resistance. The gold standard technique remains the hyperinsulinemic euglycemic clamp. However, the complexity and length of this technique render it unsuitable for routine clinical use. Many methods or index have been proposed to assess insulin resistance in human, but none have shown enough relevance to be used in clinical use. The U1039 INSERM unit previously has validated a new tracer of glucose transport, radiolabelled with 123 iodine and has developed a fast and simple imaging protocol with a small animal gamma camera, which allows the obtaining of an IR index for each organ, showing more discriminating for the heart. The project of my thesis was the human transfer of this measurement technique, perfectly validated in animal. The first part of this thesis evaluated to tolerance, in vivo kinetics, distribution and dosimetry of novel tracer of glucose transport, the [123I]-6DIG. The safeties of new tracer and measurement technique were adequate. There were no adverse effects with excellent tolerance of the whole protocol. 6DIG eliminating was fast, primarily in the urine and complete within 72 h. The effective whole-body absorbed dose for a complete scan with injection of 92.5 * 2 MBq was between 3 to 4 mSv. The second part of this thesis evaluated in human feasibility and reproducibility of the measurement technique validated in animal. The third part showed techniques used to allow human transfer of this method. The study protocol was applied on 12 subjects (healthy volunteers (n=6) and type 2 diabetic patients (n=6)). With a method adapted to measure in humans, we determined an IR

  15. Synthesis and biological evaluation of I-125/I-123-labelled analogues of citalopram and escitalopram as potential radioligands for imaging of the serotonin transporter

    DEFF Research Database (Denmark)

    Madsen, Jacob; Elfving, Betina; Frokjaer, Vibe G.;

    2011-01-01

    Two novel radioligands for the serotonin transporter (SERT), [I-125]{3-[5-iodo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl]-propyl}-dimethylamine ([I-125]-2) and S-[I-125]{3-[5-iodo-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-1-yl]-propyl}-dimethylamine ([I-125]-(S)-2) were synthesized in a ...... radioligand in imaging cortical SERT distribution in vivo. These data suggest that the iodine-labelled derivatives of citalopram and escitalopram are not superior to another SPECT tracer for the SERT, namely [I-123] ADAM....

  16. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  17. Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Bourbonnais, A.; Wallmann, K.

    2016-06-01

    Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12 °S from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modeling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large 'hidden' pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide during 'dissimilatory nitrate reduction to ammonium' (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development.

  18. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    Science.gov (United States)

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  19. Oct4 shuffles Sox partners to direct cell fate

    OpenAIRE

    AlFatah Mansour, Abed; Hanna, Jacob H.

    2013-01-01

    Early cell fate decisions demand rapid rewiring of transcriptional circuits. Stanton and colleagues report on enhancer-dependent partnering of Oct4 with either Sox2 or Sox17 to switch from pluripotency to differentiation.

  20. FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405

    International Nuclear Information System (INIS)

    A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATETM, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

  1. Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident

    International Nuclear Information System (INIS)

    The compartment model POSEIDON-R was modified and applied to the Northwestern Pacific and adjacent seas to simulate the transport and fate of radioactivity in the period 1945–2010, and to perform a radiological assessment on the releases of radioactivity due to the Fukushima Dai-ichi accident for the period 2011–2040. The model predicts the dispersion of radioactivity in the water column and in sediments, the transfer of radionuclides throughout the marine food web, and subsequent doses to humans due to the consumption of marine products. A generic predictive dynamic food-chain model is used instead of the biological concentration factor (BCF) approach. The radionuclide uptake model for fish has as a central feature the accumulation of radionuclides in the target tissue. The three layer structure of the water column makes it possible to describe the vertical structure of radioactivity in deep waters. In total 175 compartments cover the Northwestern Pacific, the East China and Yellow Seas and the East/Japan Sea. The model was validated from 137Cs data for the period 1945–2010. Calculated concentrations of 137Cs in water, bottom sediments and marine organisms in the coastal compartment, before and after the accident, are in close agreement with measurements from the Japanese agencies. The agreement for water is achieved when an additional continuous flux of 3.6 TBq y−1 is used for underground leakage of contaminated water from the Fukushima Dai-ichi NPP, during the three years following the accident. The dynamic food web model predicts that due to the delay of the transfer throughout the food web, the concentration of 137Cs for piscivorous fishes returns to background level only in 2016. For the year 2011, the calculated individual dose rate for Fukushima Prefecture due to consumption of fishery products is 3.6 μSv y−1. Following the Fukushima Dai-ichi accident the collective dose due to ingestion of marine products for Japan increased in 2011 by a factor

  2. The aquatic fate of triclopyr in whole-pond treatments.

    Science.gov (United States)

    Petty, D G; Skogerboe, J G; Getsinger, K D; Foster, D R; Houtman, B A; Fairchild, J F; Anderson, L W

    2001-09-01

    The aquatic fate of the triethylamine salt formulation of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) was determined in whole-pond applications in closed (no water exchange) systems in California, Missouri and Texas in two studies conducted in 1995 and 1996. These studies determined dissipation rates of triclopyr and its principal metabolites, 3,5,6-trichloropyridinol (TCP) and 3,5,6-trichloro-2-methoxypridine (TMP) in water, sediment and finfish. Ponds at each site containing a healthy biological community were treated at 2.5 mg AE litre-1 triclopyr. Water and sediment samples were collected through 12 weeks post-treatment, and non-target animals were collected through 4 weeks post-treatment. Dissipation rates for triclopyr, TCP and TMP were similar at each of the study sites, despite differences in weather, water quality, biotic community, light transmission and geographic location. Half-lives of triclopyr in water ranged from 5.9 to 7.5 days, while those of TCP and TMP ranged from 4 to 8.8 and 4 to 10 days, respectively. Levels of triclopyr and TCP declined in sediments at half-lives ranging from 2.8 to 4.6 days and 3.8 to 13.3 days, respectively. No TMP was detected in sediment. Triclopyr and TCP cleared from fish in relation to concentrations found in the water column. TMP levels in fish were generally an order of magnitude higher than levels of triclopyr and TCP, particularly in the visceral portion of the animals. No adverse effects on water quality or on the non-target biotic community were found following triclopyr applications. Results of these studies were comparable to those of triclopyr dissipation studies conducted in reservoirs, lakes and riverine systems in Georgia, Florida, Minnesota and Washington, indicating that the degradation and dissipation of triclopyr and its metabolites are similar in representative systems throughout the USA. PMID:11561400

  3. Formation, fate and leaching of chloroform in coniferous forest soils

    International Nuclear Information System (INIS)

    Research highlights: → Chloroform may be formed in coniferous forest soil. → The formed chloroform may enter the groundwater in μg/L concentrations. → Clear seasonal patterns in chloroform formation in soil are observed. → Sorption and degradation affects the fate of chloroform in forest soil. - Abstract: Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5-1.5 μg L-1 at one site to 2-5 μg L-1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3-4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C-CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C-CHCl3.

  4. Fast Neutron Transport in the Biological Shielding Model and Other Regions of the VVER-1000 Mock-Up on the LR-0 Research Reactor

    Science.gov (United States)

    Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey

    2016-02-01

    A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.

  5. Modelling the fate of organic micropollutants in stormwater ponds

    OpenAIRE

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna; Mikkelsen, Peter Steen

    2011-01-01

    Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk ass...

  6. Fate of adsorbable micropollutants through sludge drying and composting processes

    OpenAIRE

    Besnault, S.; Martin Ruel, S.; Choubert, JM.; Budzinski, H.; Miege, C.; Esperanza, M.; Noyon, N.; Garnaud, S.; Coquery, M.

    2012-01-01

    The objective of the paper was to evaluate the fate of 79 adsorbed micropollutants through 9 sludge treatment processes. A specific sampling strategy was applied to follow a “batch” of sludge through the treatment (inlet and outlet sludge, intermediary mixture for some processes such as composting and condensates). Mass balances were established to calculate micropollutants removal efficiencies and the fate of the substances through these facilities was evaluated. In order to limi...

  7. Proliferating cell nuclear antigen in neutrophil fate.

    Science.gov (United States)

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  8. Observations on the Chinese idea of fate

    Directory of Open Access Journals (Sweden)

    Gunnar Sjöholm

    1967-02-01

    Full Text Available Throughout the history of Chinese religion, ideas of fate are present. The earliest forms of Chinese writing occur on thousands of tortoise shells found 65 years ago in the province of Honan. At that time inscriptions on bronze vessels from the first millennium B.C. were already known. But the new material was more difficult to interpret. The amount of material has grown since then: there are now about 100 000 inscribed shells and bones, some hundreds of whole tortoise shields with inscriptions as well as other archaeological material. One third of the signs has been deciphered. The inscriptions are mostly quite brief and contain oracle formulas. The people of the Shang-Yin dynasty (1500-1028 B.C. knew the useful and the beautiful. What did the oracle stand for? Did it represent something necessary? An oracular technique had been developed, "which consisted in touching shells or bones on one side with a little red-hot rod and interpreting according to certain patterns the cracks that arose on the other side as the answers of the ancestral spirits to the questions of the kings. After the consultation of the oracle the questions and often the answers were inscribed beside the cracks. Often also pure memoranda concerning weather, war expeditions etc. were inscribed.

  9. The fate of the earth. 5. ed.

    International Nuclear Information System (INIS)

    As a result of thorough investigations and based upon the latest findings of scientific research work, this book ''Fate of the Earth'' quite drastically illustrates the manifold and horrible ways mankind and numberless other creatures will have to suffer before perishing in the wake of the pollution of nature and atmosphere for an unforeseeable time, should it happen one day that even only part of the existing nuclear weapons potential of 20.000 megatons of TNT be used at any spot of this world. In view of this global threat, every one of us has to do his bit in trying to safeguard the future of our world. The author discusses all important scientific, political and moral perspectives to be taken into account not only by the superpowers but literally by all states and all people in the face of a possible nuclear holocaust. Presenting his doubts whether the concept of deterrence will in future suffice to prevent a third world war, he implores us, the inhabitants of this planet, to wake up and act before it will be too late. (orig./HSCH)

  10. Origin and fate of surface drift in the oceanic convergence zones of the eastern Pacific

    Science.gov (United States)

    Maes, Christophe; Blanke, Bruno; Martinez, Elodie

    2016-04-01

    This study investigates the structure and intensity of the surface pathways connecting to and from the central areas of the large-scale convergence regions of the eastern Pacific Ocean. Surface waters are traced with numerical Lagrangian particles transported in the velocity field of three different ocean models with horizontal resolutions that range from ¼° to 1/32°. The connections resulting from the large-scale convergent Ekman dynamics agree qualitatively but are strongly modulated by eddy variability that introduces meridional asymmetry in the amplitude of transport. Lagrangian forward-in-time integrations are used to analyze the fate of particles originating from the central regions of the convergence zones and highlight specific outflows not yet reported for the southeastern Pacific when using the currents at the highest resolutions (1/12° and 1/32°). The meridional scales of these outflows are comparable to the characteristic width of the fine-scale striation of mean currents.

  11. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  12. Assessing the fate of radioactive nickel in cultivated soil cores

    International Nuclear Information System (INIS)

    Parameters regarding fate of 63Ni in the soil-plant system (soil: solution distribution coefficient, Kd and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of 63Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq 63NiCl2. Maize was harvested 135 days after 63Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of 63Ni by maize was calculated for leaves and kernels. Water drainage and leaching of 63Ni were monitored over the course of the experiment. Values of Kd in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that 63Ni was strongly retained at the soil surface. Prediction of the 63Ni downward transfer could not be reliably assessed using the Kd values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of 63Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment

  13. Integrated Biological Control

    International Nuclear Information System (INIS)

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  14. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications; Simulation du transport d`un faisceau d`ions lourds relativistes dans la matiere: contribution du processus de fragmentation et implication sur le plan biologique

    Energy Technology Data Exchange (ETDEWEB)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).

  15. Glycan Engineering for Cell and Developmental Biology

    Science.gov (United States)

    Griffin, Matthew E.; Hsieh-Wilson, Linda C.

    2016-01-01

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. PMID:26933739

  16. Structural biology of the sequestration and transport of heavy metal toxins: NMR structure determination of proteins containing the -Cys-X-Y-Cys-metal binding motifs. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The overall goal of the research is to apply the methods of structural biology, which have been previously used primarily in biomedical applications, to bioremediation. The authors are doing this by using NMR spectroscopy to determine the structures of proteins involved in the bacterial mercury detoxification system. The research is based on the premise that the proteins encoded in the genes of the bacterial detoxification system are an untapped source of reagents and, more fundamentally, chemical strategies that can be used to remove heavy metal toxins from the environment. The initial goals are to determine the structures of the proteins of the bacterial mercury detoxification systems responsible for the sequestration and transport of the Hg(II) ions in to the cell where reduction to Hg(O) occurs. These proteins are meP, which is water soluble and can be investigated with multidimensional solution NMR methods, and merT, the transport protein in the membrane that requires solid-state NMR methods. As of June 1998, this report summarizes work after about one and half years of the three-year award. The authors have made significant accomplishments in three aspects of the NMR studies of the proteins of the bacterial mercury detoxification system.'

  17. A New Stem Cell Biology: The Continuum and Microvesicles

    OpenAIRE

    Quesenberry, Peter J.; Dooner, Mark S.; Goldberg, Laura R.; Aliotta, Jason M.; Pereira, Mandy; Amaral, Ashley; Del Tatto, Michael M.; Hixson, Douglas C.; Ramratnam, Bharat

    2012-01-01

    The hierarchical models of stem cell biology have been based on work first demonstrating pluripotental spleen-colony-forming units, then showing progenitors with many differentiation fates assayed in in vitro culture; there followed the definition and separation of “stem cells” using monoclonal antibodies to surface epitopes and fluorescent-activated cell characterization and sorting (FACS). These studies led to an elegant model of stem cell biology in which primitive dormant G0 stem cells wi...

  18. Surface transport in the Ria de Vigo - Transport barriers in a tidal estuary with a complex geometry

    Science.gov (United States)

    Huhn, F.; von Kameke, A.; Montero, P.; Allen-Perkins, S.; Venancio, A.; Pérez-Muñuzuri, V.

    2012-04-01

    We study the submesoscale surface transport in the Ria de Vigo, NW Spain, an estuary with tidal and wind-driven circulation, analyzing the output of the coastal model MOHID with state-of-the-art Lagrangian methods, and comparing the results to drifter experiments. We extract Lagrangian Coherent Structures (LCS) as ridges in fields of the Finite-Time Lyapunov Exponent (FTLE) that can be identified with transport barriers. The LCS reveal the fundamental structure of the modelled circulation in the estaury that is a superposition of the tidal inflow and outflow, the wind-driven currents and the long-term drift on the shelf. In the Ria de Vigo, LCS are attached to prominent coastal boundaries, as islands or capes, indicating that the geometry of the flow patterns is dominated by bathymetry. Although the vertical flow which is not represented in the horizontal surface flow can be important at the coast, the found transport patterns can be seen as the surface footprint of the 3D circulation in the estaury. Comparing the trajectories of real surface drifters from four deployments to the computed transport barriers in different typical meteorological sitiations, we find that the drifter trajectories are in agreement with the different coherent water masses predicted by the model. The knowledge of the global transport patterns of water masses in this highly populated coastal region is indispensable for the assessment of the fate of contaminations, like possible oil spills or released waste water, but also for biological studies that deal with the drift of eggs and larvae of fish and other marine species, or investigate plankton blooms.

  19. Heterogeneous processes at the intersection of chemistry and biology: A computational approach

    International Nuclear Information System (INIS)

    Heterogeneous processes hold the key to understanding many problems in biology and atmospheric science. In particular, recent experiments have shown that heterogeneous chemistry at the surface of sea-salt aerosols plays a large role in important atmospheric processes with far reaching implications towards understanding of the fate and transport of aerosolized chemical weapons (i.e. organophosphates such as sarin and VX). Unfortunately, the precise mechanistic details of the simplest surface enhanced chemical reactions remain unknown. Understanding heterogeneous processes also has implications in the biological sciences. Traditionally, it is accepted that enzymes catalyze reactions by stabilizing the transition state, thereby lowering the free energy barrier. However, recent findings have shown that a multitude of phenomena likely contribute to the efficiency of enzymes, such as coupled protein motion, quantum mechanical tunneling, or strong electrostatic binding. The objective of this project was to develop and validate a single computational framework based on first principles simulations using tera-scale computational resources to answer fundamental scientific questions about heterogeneous chemical processes relevant to atmospheric chemistry and biological sciences

  20. Synthesis and biological evaluation of one novel technetium-99m-labeled nitroquipazine derivative as an imaging agent for serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yunhang; Chen Xiangji; Jia Hongmei; Ji Xinmin [Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Liu Boli [Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)], E-mail: liuboli@bnu.edu.cn

    2008-12-15

    Imaging of serotonin transporter (SERT) by positron emission tomography (PET) or single-photon emission-computed tomography (SPECT) in humans would provide useful information in diagnosis and therapy of several neurodegenerative and neuropsychiatric disorders. 6-Nitroquipazine is a highly potent and selective inhibitor of the SERT. For the development of new {sup 99m}Tc-labeled 6-nitroquipazine derivatives as SERT imaging agents, novel [N-[2-((3-(4-(6-nitroquinolin-2-yl)piperazin-1-yl)propyl)(2-mercaptoethyl) amino]-acetyl-2-aminoethanethiolato] [{sup 99m}Tc]technetium (V) oxide ({sup 99m}Tc-MAMA-3-PQ) and its rhenium analog were synthesized and characterized. {sup 99m}Tc-MAMA-3-PQ displayed high initial brain uptake (0.52% ID/organ at 2 min post-injection (pi)) and relatively fast washout in mice (0.09% ID/organ at 60 min pi). The regional brain distribution studies in rats showed high-specific binding ratios at 60 min pi. Maximum regional contrast ratio observed for thalamus/cerebellum was 2.94, followed by 2.62 for hypothalamus/cerebellum. These encouraging results lead us to further explore its derivatives as new imaging agents for the SERT in the brain.

  1. Synthesis and biological evaluation of one novel technetium-99m-labeled nitroquipazine derivative as an imaging agent for serotonin transporter

    International Nuclear Information System (INIS)

    Imaging of serotonin transporter (SERT) by positron emission tomography (PET) or single-photon emission-computed tomography (SPECT) in humans would provide useful information in diagnosis and therapy of several neurodegenerative and neuropsychiatric disorders. 6-Nitroquipazine is a highly potent and selective inhibitor of the SERT. For the development of new 99mTc-labeled 6-nitroquipazine derivatives as SERT imaging agents, novel [N-[2-((3-(4-(6-nitroquinolin-2-yl)piperazin-1-yl)propyl)(2-mercaptoethyl) amino]-acetyl-2-aminoethanethiolato] [99mTc]technetium (V) oxide (99mTc-MAMA-3-PQ) and its rhenium analog were synthesized and characterized. 99mTc-MAMA-3-PQ displayed high initial brain uptake (0.52% ID/organ at 2 min post-injection (pi)) and relatively fast washout in mice (0.09% ID/organ at 60 min pi). The regional brain distribution studies in rats showed high-specific binding ratios at 60 min pi. Maximum regional contrast ratio observed for thalamus/cerebellum was 2.94, followed by 2.62 for hypothalamus/cerebellum. These encouraging results lead us to further explore its derivatives as new imaging agents for the SERT in the brain

  2. Effects of bioturbation on the fate of oil in coastal sandy sediments - An in situ experiment

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Klinge, Lars;

    2011-01-01

    Effects of bioturbation by the common lugworm Arenicola marina on the fate of oil hydrocarbons (alkanes and PAHs) were studied in situ during a simulated oil spill in a shallow coastal area of Roskilde fjord, Denmark. The fate of selected oil compounds was monitored during 120 d using GC–MS and...... bioturbation activity (feces production and irrigation) was measured regularly during the experiment and used as input parameters in a mechanistic model describing the effects of A. marina on the transport and degradation of oil compounds in the sediment. The chemical analytical data and model results...... indicated that A. marina had profound and predictable effects on the distribution, degradation and preservation of oil and that the net effect depended on the initial distribution of oil. In sediment with an oil contaminated subsurface-layer A. marina buried the layer deeper in the sediment which clearly...

  3. The Fate of Unstable Circumbinary Planets

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  4. Fate of circulating renin in conscious rats

    International Nuclear Information System (INIS)

    Highly purified 125I-labeled rat renal renin (125I-renin) was given intravenously to conscious rats to study the fate of circulating renin. Specific antirat renin antiserum was used to identify the labeled renin molecules. In sham-operated rats, the disappearance of 125I-renin from the plasma showed two exponential components with a half-life of 6.7 +/- 0.4 min for the rapid component and 65.1 +/- 5.7 min for the slow component. The metabolic clearance rate was 11.4 +/- 1.0 ml X min-1 X kg-1. In bilaterally nephrectomized rats, the metabolic clearance rate of 125I-renin was reduced by 55%, but the half-life of the slow component remained unchanged. Seventy percent hepatectomy caused a 54% decrement in the metabolic clearance and prolonged the half-life of the slow component. Five minutes after injection of 125I-renin, approximately 59 and 11% of the administered 125I-renin had accumulated in the liver and the kidneys, respectively, and at later time points the 125I-renin was highly concentrated in these organs. High-performance liquid chromatographic analysis of the liver and kidney extracts demonstrated that 125I-renin was catabolized by these organs. Biliary excretion of 125I-renin was negligible. Urinary excretion of 125I-renin up to 120 min was approximately 2% of the injected dose. We conclude that both the liver and the kidney are responsible for the clearance of circulating renin, with participation of the liver being predominant

  5. Geochemical fate of arsenic in swine litter

    Science.gov (United States)

    Quazi, S.; Makris, K.; Sarkar, D.; Datta, R.; Punamiya, P.

    2007-12-01

    Swine diet is often supplemented by organoarsenicals, such as roxarsone to treat diseases and to promote growth. Recent data reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in unprotected lagoons in concentrated animal feeding operations (CAFOs). However, serious environmental health risk may arise upon significant arsenic (As) release into solution. The problem may be exacerbated under certain environmental conditions where organoarsenicals, such as roxarsone transform into the more toxic inorganic As, posing serious health risk to the surrounding ecosystem. The objective of this study were to analyze swine wastes collected from 19 randomly selected CAFOs in the USA for As concentrations, and to determine the geochemical fate of As in the swine waste suspensions. Swine wastes were analyzed for total-recoverable, total soluble, and water-extractable As, which were measured by ICP-MS. Speciation of As was performed following a well-established hyphenated technique using HPLC- ICPMS. Swine waste suspensions differed in solids contents; thus, the particulate matters with varying As concentrations were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions. Findings show the prevalence of inorganic As [As(V)] in swine waste suspension solutions. Roxarsone underwent degradation to both organoarsenicals, such as p-ASA, as well as inorganic arsenate and to a number of unidentified metabolites. Roxarsone degradation kinetics was influenced by the solids content and the air conditions (anaerobic/aerobic) of the swine waste suspensions. Maximum degradation rates were observed under anaerobic conditions, in suspensions which were low in solids content. Roxarsone degradation was primarily microbially-mediated, but in certain cases abiotic degradation was also observed, which were significantly slower.

  6. Tropospheric fate of Tunguska generated nitrogen oxides

    OpenAIRE

    Curci, G.; Visconti, G.; Jacob, Daniel James; M. Evans

    2004-01-01

    We report on the production and transport of the 0.4 Tg of nitric oxide generated in the Siberian upper troposphere by the 1908 Tunguska object. The simulation uses a three-dimensional chemistry and transport model of the global troposphere. We find that much of the nitric oxide forms nitric acid that deposits downwind of the blast site within the first month, with no severe damage to the ecosystem caused by acid rain. Ozone and OH are totally scavenged locally soon after the impact, then the...

  7. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Babu, P.V.R.; Acharyya, T.; Bandyopadhyay, D.

    Stress and toxicity of four biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in Godavari River (a tropical freshwater system) were studied to understand the fate of phytoplankton of freshwater if it receives metal...

  8. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  9. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    Science.gov (United States)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  10. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    Science.gov (United States)

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  11. Control of stem cell fate by engineering their micro andnanoenvironment

    Institute of Scientific and Technical Information of China (English)

    Michelle F Griffin; Peter E Butler; Alexander M Seifalian; Deepak M Kalaskar

    2015-01-01

    Stem cells are capable of long-term self-renewal anddifferentiation into specialised cell types, making theman ideal candidate for a cell source for regenerativemedicine. The control of stem cell fate has become amajor area of interest in the field of regenerative medicineand therapeutic intervention. Conventional methodsof chemically inducing stem cells into specific lineagesis being challenged by the advances in biomaterialtechnology, with evidence highlighting that materialproperties are capable of driving stem cell fate. Materialsare being designed to mimic the clues stem cells receivein their in vivo stem cell niche including topographicaland chemical instructions. Nanotopographical clues thatmimic the extracellular matrix (ECM) in vivo have shownto regulate stem cell differentiation. The delivery of ECMcomponents on biomaterials in the form of short peptidessequences has also proved successful in directing stem celllineage. Growth factors responsible for controlling stemcell fate in vivo have also been delivered via biomaterialsto provide clues to determine stem cell differentiation. Analternative approach to guide stem cells fate is to providegenetic clues including delivering DNA plasmids andsmall interfering RNAs via scaffolds. This review, aims toprovide an overview of the topographical, chemical andmolecular clues that biomaterials can provide to guidestem cell fate. The promising features and challenges ofsuch approaches will be highlighted, to provide directionsfor future advancements in this exciting area of stem celltranslation for regenerative medicine.

  12. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  13. Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works.

    Science.gov (United States)

    Reif, Rubén; Santos, Ana; Judd, Simon J; Lema, Juan M; Omil, Francisco

    2011-01-01

    The occurrence and fate of eight pharmaceutical and personal care products (PPCPs) during sewage treatment has been studied in a pilot-scale treatment plant, comprising a primary settler (2.85 m(3)), an aeration tank (1.845 m(3)) and a secondary clarifier (0.5 m(3)), placed on site at a wastewater treatment works in the north west of the UK. It was fed both with raw sewage and the return liquor produced after sludge centrifugation, thus representing the most common configuration for a municipal sewage treatment plant based on the activated sludge process. Samples were taken at six different locations, including the return liquor stream, and analysed for musk fragrances and pharmaceutically active compounds belonging to various therapeutic groups such as anti-inflammatory drugs, tranquillisers and antiepileptics. Mass balances were conducted for those PPCPs that were quantifiable. The fate of the PPCPs was found to differ according to their physical-chemical characteristics. Anti-inflammatories underwent a degradation process and were almost completely removed from sewage during the biological treatment step. Musk fragrances were only partially removed, through adsorption onto the primary suspended solids and the biomass in the aerobic process, due to their strong lipophilic characteristics. The results of this study provide increasing evidence that the partial removal of these substances through the sewage treatment process contribute to the environmental occurrence of PPCPs. Consequently, existing STPs should be upgraded in order to attenuate the release of these substances into the aquatic environment. PMID:21057683

  14. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    Science.gov (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. PMID:24216232

  15. Comparison of Methods to Assess the Fate of Methane in a Landfill-Cover Soil

    Science.gov (United States)

    Gomez, K. E.; Schroth, M. H.; Eugster, W.; Niklaus, P.; Oester, P.; Zeyer, J.

    2008-12-01

    A substantial fraction of the greenhouse gas methane released into the atmosphere is produced in terrestrial environments such as wetlands, rice paddy fields, and landfills. However, the amount of methane that is emitted from these environments is often reduced by microbial methane oxidation, mediated by methanotrophic microorganisms. Methanotrophs are ubiquitous in soils and represent the largest biological sink for methane. We performed a series of field experiments in summer 2008 to compare several state-of- the-art methods to assess the fate of methane in a landfill-cover soil near Liestal (BL), Switzerland. Methods employed included eddy-covariance and field-chamber measurements to quantify net methane flux at the landfill surface. In addition, methane concentrations at the landfill surface were monitored using a portable methane detector. Methane fluxes within the cover soil were estimated from methane-concentration profiles in conjunction with radon measurements. Additionally, gas push-pull tests were employed for in-situ quantification of methane oxidation in the cover soil. Finally, methane stable-carbon-isotope measurements were conducted to corroborate methane oxidation in the cover soil. Preliminary results indicate that each method provides unique information, and when combined, the data provide detailed insight in the fate of methane in the cover soil. The investigated landfill-cover soil appears to be ordinarily a net sink for methane. However, it can quickly turn into a net source of methane under adverse meteorological conditions.

  16. Fate of Organic Micropollutants during Hydrothermal Carbonization

    Science.gov (United States)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    contaminated biomass. Chlorinated aromatic compounds are not fully degraded during HTC. Therefore, the addition of catalysts and reagents for a possible reduction has been studied. Zero-valent environmentally acceptable metals, such as Fe or Si, are presented as potential additives for the dechlorination of chloronaphthalene as a representative of chloroaromatics. Furthermore, when using municipal household waste, such as the 'organic' bin, or gardening greens as biomass educts, these materials often contain traces of synthetic plastics, which can lead to problems during waste incineration. Initial studies on the fate of synthetic polymers will also be presented.

  17. The final fate of planetary systems

    Science.gov (United States)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  18. Fate of Carbamazepine during Water Treatment

    DEFF Research Database (Denmark)

    Kosjek, T.; Andersen, Henrik Rasmus; Kompare, Boris; Ledin, Anna; Heath, E.

    2009-01-01

    Seven transformation products of carbamazepine generated by at least one of three common water treatment technologies (W-radiation, oxidation with chlorine dioxide (ClO2), and biological treatment with activated Sludge) were identified by complementary use of ion trap, single quadrupole, and...... quadrupole-time-of-flight mass spectrometers. Acridine was formed during all of the three treatment processes, while acridine 9-carbaldehyde was identified as an intermediate during ClO2 oxidation. Further treatment of acridine with ClO2 produced 9-hydroxy-acridine, UV-treatment resulted in the formation of...... compared the treatment technologies according to the removal of carbamazepine and the production and decay of its transformation products. The most successful method for the removal of carbamazepine was UV treatment, while acridine and acridone were more susceptible to biological treatment. Therefore...

  19. Cranial osteopathy: its fate seems clear

    OpenAIRE

    Hartman Steve E

    2006-01-01

    Abstract Background According to the original model of cranial osteopathy, intrinsic rhythmic movements of the human brain cause rhythmic fluctuations of cerebrospinal fluid and specific relational changes among dural membranes, cranial bones, and the sacrum. Practitioners believe they can palpably modify parameters of this mechanism to a patient's health advantage. Discussion This treatment regime lacks a biologically plausible mechanism, shows no diagnostic reliability, and offers little ho...

  20. The Transport and Impact of Metal Nanoparticles in Soil

    Science.gov (United States)

    Dror, Ishai; Berkowitz, Brian

    2014-05-01

    The fate, transport and mobility of nanoparticles in soil are strongly dependent on environmental conditions. In this study we present the effect of soil properties on the transport of silver nanoparticles (AgNPs) in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. AgNPs are shown to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. The AgNP mobility through the column decreases when the fraction of smaller soil aggregates is larger. An early breakthrough pattern was found for the AgNP but not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. It is further noted that little is known about the possible effects of nanoparticles on soil chemical, physical and biological properties. Here we show that although copper oxide nanoparticles (nCuO) had little impact on the macroscopic properties of the soil, they did cause changes to humic substance structure and affected the soil bacterial community composition. In particular, the nCuO was found to have a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. These results indicate that CuO NPs are potentially harmful to soil environments. Furthermore, the results suggest that the clay fraction and organic matter in different soils interact with the nCuO and reduce its toxicity.