WorldWideScience

Sample records for biological engineering review

  1. Biological process of soil improvement in civil engineering: A review

    OpenAIRE

    Murtala Umar; Khairul Anuar Kassim; Kenny Tiong Ping Chiet

    2016-01-01

    The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically co...

  2. Biological process of soil improvement in civil engineering: A review

    Directory of Open Access Journals (Sweden)

    Murtala Umar

    2016-10-01

    Full Text Available The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified.

  3. A review on biological adaptation: with applications in engineering science

    Directory of Open Access Journals (Sweden)

    LiMin Luo

    2014-06-01

    Full Text Available Biological adaptation refers to that organisms change themselves at morphological, physiological, behavioral and molecular level to better survive in a changing environment. It includes phenotype adaptation and molecular adaptation. Biological adaptation is a driving force of evolution. Biological adaptation was described from Darwinian theory of evolution to the theory of molecular evolution in present paper. Adaptive control and adaptive filtering were briefly described also.

  4. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  5. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  6. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  7. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  8. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  9. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  10. Engineering reduced evolutionary potential for synthetic biology

    Science.gov (United States)

    Renda, Brian A.; Hammerling, Michael J.

    2014-01-01

    The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales. PMID:24556867

  11. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control. 

  12. Review: Metabolic engineering of unusual lipids in the synthetic biology era.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Durrett, Timothy P

    2017-10-01

    The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  14. Synthetic biology: engineering molecular computers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  15. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  16. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  17. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  18. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  19. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  20. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  1. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  2. Synthetic Biological Engineering of Photosynthesis

    Science.gov (United States)

    2015-11-16

    sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a 25-30% enhancement in...the cellular ‘metabolic sink’, allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a

  3. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Guo, Shuqi; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-03-01

    Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  6. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Engineering Technical Review Planning Briefing

    Science.gov (United States)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  9. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  10. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  11. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  12. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  13. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Software Engineering Reviews and Audits

    CERN Document Server

    Summers, Boyd L

    2011-01-01

    Accurate software engineering reviews and audits have become essential to the success of software companies and military and aerospace programs. These reviews and audits define the framework and specific requirements for verifying software development efforts. Authored by an industry professional with three decades of experience, Software Engineering Reviews and Audits offers authoritative guidance for conducting and performing software first article inspections, and functional and physical configuration software audits. It prepares readers to answer common questions for conducting and perform

  15. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required...... to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...

  16. Micromechanics of engineered and biological systems

    Indian Academy of Sciences (India)

    Microsystems are good examples of integrated engineered systems of small size. Although this .... In develop- mental biology, the application of controlled forces on growing embryos is shown to help in under- standing ..... Optimization is a useful tool for synthesis. Many optimal synthesis methods have been developed for.

  17. Mechanical Engineering Department Technical Review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Denney, R.M. (eds.)

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  18. Mechanical Engineering Department Technical Review

    International Nuclear Information System (INIS)

    Carr, R.B.; Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication

  19. Engineering plant metabolism into microbes: from systems biology to synthetic biology.

    Science.gov (United States)

    Xu, Peng; Bhan, Namita; Koffas, Mattheos A G

    2013-04-01

    Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A Synthetic Biology Approach to Engineering Living Photovoltaics.

    Science.gov (United States)

    Schuergers, N; Werlang, C; Ajo-Franklin, C M; Boghossian, A A

    2017-05-01

    The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.

  1. Genome-scale engineering for systems and synthetic biology

    Science.gov (United States)

    Esvelt, Kevin M; Wang, Harris H

    2013-01-01

    Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering. PMID:23340847

  2. Systems Biology of Metabolism: Annual Review of Biochemistry

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2017-01-01

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology......, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed....

  3. Engineering Liposomes and Nanoparticles for Biological Targeting

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Feldborg, Lise Nørkjær; Andersen, Simon

    2011-01-01

    Our ability to engineer nanomaterials for biological and medical applications is continuously increasing, and nanomaterial designs are becoming more and more complex. One very good example of this is the drug delivery field where nanoparticle systems can be used to deliver drugs specifically...... to diseased tissue. In the early days, the design of the nanoparticles was relatively simple, but today we can surface functionalize and manipulate material properties to target diseased tissue and build highly complex drug release mechanisms into our designs. One of the most promising strategies in drug...

  4. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  5. Recent applications of synthetic biology tools for yeast metabolic engineering.

    Science.gov (United States)

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Advances and Computational Tools towards Predictable Design in Biological Engineering

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    2014-01-01

    Full Text Available The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  7. Applying elastic fibre biology in vascular tissue engineering.

    Science.gov (United States)

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C Adrian

    2007-08-29

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.

  8. Review of domestic radiation biology research

    International Nuclear Information System (INIS)

    Zheng Chun; Song Lingli; Ai Zihui

    2011-01-01

    Radiation biology research in China during the past ten years are reviewed. It should be noticed that radiation-biology should focus on microdosimetry, microbeam application, and radiation biological mechanism. (authors)

  9. Engineered Ribosomes for Basic Science and Synthetic Biology.

    Science.gov (United States)

    d'Aquino, Anne E; Kim, Do Soon; Jewett, Michael C

    2018-03-28

    The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discusse Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 9 is June 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  10. Engineering and Biology: Counsel for a Continued Relationship

    Science.gov (United States)

    Levy, Arnon; Siegal, Mark L.; Soyer, Orkun S.; Wagner, Andreas

    2015-01-01

    Biologists frequently draw on ideas and terminology from engineering. Evolutionary systems biology—with its circuits, switches, and signal processing—is no exception. In parallel with the frequent links drawn between biology and engineering, there is ongoing criticism against this cross-fertilization, using the argument that over-simplistic metaphors from engineering are likely to mislead us as engineering is fundamentally different from biology. In this article, we clarify and reconfigure the link between biology and engineering, presenting it in a more favorable light. We do so by, first, arguing that critics operate with a narrow and incorrect notion of how engineering actually works, and of what the reliance on ideas from engineering entails. Second, we diagnose and diffuse one significant source of concern about appeals to engineering, namely that they are inherently and problematically metaphorical. We suggest that there is plenty of fertile ground left for a continued, healthy relationship between engineering and biology. PMID:26085824

  11. Biological hydrogen methanation - A review.

    Science.gov (United States)

    Lecker, Bernhard; Illi, Lukas; Lemmer, Andreas; Oechsner, Hans

    2017-12-01

    Surplus energy out of fluctuating energy sources like wind and solar energy is strongly increasing. Biological hydrogen (H 2 ) methanation (BHM) is a highly promising approach to move the type of energy from electricity to natural gas via electrolysis and the subsequent step of the Sabatier-reaction. This review provides an overview of the numerous studies concerning the topic of BHM. The technical and biological parameters regarding the research results of these studies are compared and analyzed hereafter. A holistic view on how to overcome physical limitations of the fermentation process, such as gas-liquid mass transfer or a rise of the pH value, and on the enhancement of environmental circumstances for the bacterial biomass are delivered within. With regards to ex-situ methanation, the evaluated studies show a distinct connection between methane production and the methane percentage in the off-gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mechanical engineering department technical review

    International Nuclear Information System (INIS)

    Carr, R.B.; Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work

  13. Mechanical Engineering Department. Technical review

    Energy Technology Data Exchange (ETDEWEB)

    Simecka, W.B.; Condouris, R.A.; Talaber, C. (eds.)

    1980-01-01

    The Mechanical Engineering Department Technical Review is published to (1) inform the readers of various technical activities within the Department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical achievements and publication abstracts. The first is divided into eight sections, one for each Division in the Department providing the reader with the names of the personnel and the Division accomplishing the work.

  14. Mechanical engineering department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B. Denney, R.M. (eds.)

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work.

  15. Mechanical Engineering Department. Technical review

    International Nuclear Information System (INIS)

    Simecka, W.B.; Condouris, R.A.; Talaber, C.

    1980-01-01

    The Mechanical Engineering Department Technical Review is published to (1) inform the readers of various technical activities within the Department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical achievements and publication abstracts. The first is divided into eight sections, one for each Division in the Department providing the reader with the names of the personnel and the Division accomplishing the work

  16. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  17. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials.

    Science.gov (United States)

    Esensten, Jonathan H; Bluestone, Jeffrey A; Lim, Wendell A

    2017-01-24

    Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.

  18. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Engineering the robustness of industrial microbes through synthetic biology.

    Science.gov (United States)

    Zhu, Linjiang; Zhu, Yan; Zhang, Yanping; Li, Yin

    2012-02-01

    Microbial fermentations and bioconversions play a central role in the production of pharmaceuticals, enzymes and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximized carbon flux towards target metabolites regardless of fluctuations in intracellular or extracellular environments. This requires cellular systems that maintain functional stability and dynamic homeostasis in a given physiological state, or manipulate transitions between different physiological states. Stable maintenance or smooth transition can be achieved through engineering of dynamic controllability, modular and hierarchical organization, or functional redundancy, three key features of biological robustness in a cellular system. This review summarizes how synthetic biology can be used to improve the robustness of industrial microbes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms.

    Science.gov (United States)

    Park, Beom Gi; Kim, Minsuk; Kim, Joonwon; Yoo, Heewang; Kim, Byung-Gee

    2017-01-01

    Heterotrophic oleaginous microorganisms continue to draw interest as they can accumulate a large amount of lipids which is a promising feedstock for the production of biofuels and oleochemicals. Nutrient limitation, especially nitrogen limitation, is known to effectively trigger the lipid production in these microorganisms. For the aim of developing improved strains, the mechanisms behind the lipid production have been studied for a long time. Nowadays, system-level understanding of their metabolism and associated metabolic switches is attainable with modern systems biology tools. This work reviews the systems biology studies, based on (i) top-down, large-scale 'omics' tools, and (ii) bottom-up, mathematical modeling methods, on the heterotrophic oleaginous microorganisms with an emphasis on further application to metabolic engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  2. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  3. Antireflective surface inspired from biology: A review

    Directory of Open Access Journals (Sweden)

    Z.W. Han

    2016-12-01

    Full Text Available Optical anti-reflection means the decrease of reflection as much as possible, which has been used in many fields such as solar cells, diodes, optical and optoelectronic devices, screens, sensors, anti-glare glasses and so on. Over millions of years, natural creatures have been uninterruptedly combating with extreme environmental conditions. In particular, some biology has evolved a diversity of antireflective functional surfaces gradually. More importantly, as a result of the same order of magnitude in the ingenious structures and the wavelength of visible light, these structures can interact strongly and present excellent antireflective performance. It is worth to be mentioned that these wonderful architectures lead to a perfect performance on antireflection. This review mainly covers recent progress on the bionic antireflective structures. Then, the mechanism of the structure-based antireflective properties of some biology is analyzed. Besides, some typical models and the basic theory of these bionic structures for antireflection have been reported to facilitate mechanism analysis. At last, the prospects and the challenge researchers may faced with are also addressed. It is hoped that this review could be beneficial to provide some innovative inspirations and new ideas to the researchers in the fields of engineering, and materials science.

  4. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  5. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  6. IntegromeDB: an integrated system and biological search engine.

    Science.gov (United States)

    Baitaluk, Michael; Kozhenkov, Sergey; Dubinina, Yulia; Ponomarenko, Julia

    2012-01-19

    With the growth of biological data in volume and heterogeneity, web search engines become key tools for researchers. However, general-purpose search engines are not specialized for the search of biological data. Here, we present an approach at developing a biological web search engine based on the Semantic Web technologies and demonstrate its implementation for retrieving gene- and protein-centered knowledge. The engine is available at http://www.integromedb.org. The IntegromeDB search engine allows scanning data on gene regulation, gene expression, protein-protein interactions, pathways, metagenomics, mutations, diseases, and other gene- and protein-related data that are automatically retrieved from publicly available databases and web pages using biological ontologies. To perfect the resource design and usability, we welcome and encourage community feedback.

  7. A transatlantic perspective on 20 emerging issues in biological engineering.

    Science.gov (United States)

    Wintle, Bonnie C; Boehm, Christian R; Rhodes, Catherine; Molloy, Jennifer C; Millett, Piers; Adam, Laura; Breitling, Rainer; Carlson, Rob; Casagrande, Rocco; Dando, Malcolm; Doubleday, Robert; Drexler, Eric; Edwards, Brett; Ellis, Tom; Evans, Nicholas G; Hammond, Richard; Haseloff, Jim; Kahl, Linda; Kuiken, Todd; Lichman, Benjamin R; Matthewman, Colette A; Napier, Johnathan A; ÓhÉigeartaigh, Seán S; Patron, Nicola J; Perello, Edward; Shapira, Philip; Tait, Joyce; Takano, Eriko; Sutherland, William J

    2017-11-14

    Advances in biological engineering are likely to have substantial impacts on global society. To explore these potential impacts we ran a horizon scanning exercise to capture a range of perspectives on the opportunities and risks presented by biological engineering. We first identified 70 potential issues, and then used an iterative process to prioritise 20 issues that we considered to be emerging, to have potential global impact, and to be relatively unknown outside the field of biological engineering. The issues identified may be of interest to researchers, businesses and policy makers in sectors such as health, energy, agriculture and the environment.

  8. Engineering Biology by Controlling Tissue Folding.

    Science.gov (United States)

    Hookway, Tracy A

    2018-04-01

    Achieving complex self-organization in vitro has remained a fundamental challenge in tissue engineering. A recent study in Developmental Cell by Hughes and colleagues uses computational and experimental approaches to understand and control the morphogenic process of tissue folding. These approaches provide an engineering framework to reproducibly control tissue shape. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation

    Science.gov (United States)

    O'Connell, Grace D.; Leach, J. Kent; Klineberg, Eric O.

    2015-01-01

    Abstract The intervertebral disc is a critical part of the intersegmental soft tissue of the spinal column, providing flexibility and mobility, while absorbing large complex loads. Spinal disease, including disc herniation and degeneration, may be a significant contributor to low back pain. Clinically, disc herniations are treated with both nonoperative and operative methods. Operative treatment for disc herniation includes removal of the herniated material when neural compression occurs. While this strategy may have short-term advantages over nonoperative methods, the remaining disc material is not addressed and surgery for mild degeneration may have limited long-term advantage over nonoperative methods. Furthermore, disc herniation and surgery significantly alter the mechanical function of the disc joint, which may contribute to progression of degeneration in surrounding tissues. We reviewed recent advances in tissue engineering and regenerative medicine strategies that may have a significant impact on disc herniation repair. Our review on tissue engineering strategies focuses on cell-based and inductive methods, each commonly combined with material-based approaches. An ideal clinically relevant biological repair strategy will significantly reduce pain and repair and restore flexibility and motion of the spine. PMID:26634189

  10. Accessing Nature's diversity through metabolic engineering and synthetic biology.

    Science.gov (United States)

    King, Jason R; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through "scaffold diversification", and subsequent "derivatization" of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the "privileged" chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  11. Synthetic biology and its alternatives. Descartes, Kant and the idea of engineering biological machines.

    Science.gov (United States)

    Kogge, Werner; Richter, Michael

    2013-06-01

    The engineering-based approach of synthetic biology is characterized by an assumption that 'engineering by design' enables the construction of 'living machines'. These 'machines', as biological machines, are expected to display certain properties of life, such as adapting to changing environments and acting in a situated way. This paper proposes that a tension exists between the expectations placed on biological artefacts and the notion of producing such systems by means of engineering; this tension makes it seem implausible that biological systems, especially those with properties characteristic of living beings, can in fact be produced using the specific methods of engineering. We do not claim that engineering techniques have nothing to contribute to the biotechnological construction of biological artefacts. However, drawing on Descartes's and Kant's thinking on the relationship between the organism and the machine, we show that it is considerably more plausible to assume that distinctively biological artefacts emerge within a paradigm different from the paradigm of the Cartesian machine that underlies the engineering approach. We close by calling for increased attention to be paid to approaches within molecular biology and chemistry that rest on conceptions different from those of synthetic biology's engineering paradigm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  13. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.

    Science.gov (United States)

    Lee, Sang Yup; Park, Jin Hwan

    2010-01-01

    Random mutation and selection or targeted metabolic engineering without consideration of its impact on the entire metabolic and regulatory networks can unintentionally cause genetic alterations in the region, which is not directly related to the target metabolite. This is one of the reasons why strategies for developing industrial strains are now shifted towards targeted metabolic engineering based on systems biology, which is termed systems metabolic engineering. Using systems metabolic engineering strategies, all the metabolic engineering works are conducted in systems biology framework, whereby entire metabolic and regulatory networks are thoroughly considered in an integrated manner. The targets for purposeful engineering are selected after all possible effects on the entire metabolic and regulatory networks are thoroughly considered. Finally, the strain, which is capable of producing the target metabolite to a high level close to the theoretical maximum value, can be constructed. Here we review strategies and applications of systems biology successfully implemented on bioprocess engineering, with particular focus on developing L: -threonine production strains of Escherichia coli.

  14. XIV Mediterranean Conference on Medical and Biological Engineering and Computing

    CERN Document Server

    Christofides, Stelios; Pattichis, Constantinos

    2016-01-01

    This volume presents the proceedings of Medicon 2016, held in Paphos, Cyprus. Medicon 2016 is the XIV in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon 2016 is to provide updated information on the state of the art on Medical and Biological Engineering and Computing under the main theme “Systems Medicine for the Delivery of Better Healthcare Services”. Medical and Biological Engineering and Computing cover complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems. Research and development in these areas are impacting the science and technology by advancing fundamental concepts in translational medicine, by helping us understand human physiology and function at multiple levels, by improving tools and techniques for the detection, prevention and treatment of disease. Medicon 2016 provides a common platform for the cross fer...

  15. Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2013-06-01

    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is typically combined with experiments on model organisms as well as mathematical modeling and simulation. What is especially interesting about this combinational modeling practice is that, apart from greater integration between these different epistemic activities, it has also led to the questioning of some central assumptions and notions on which synthetic biology is based. As a result synthetic biology is in the process of becoming more "biology inspired." Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  17. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  18. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  19. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  20. Fabrication of scaffolds in tissue engineering: A review

    Science.gov (United States)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  1. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  2. Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations

    Science.gov (United States)

    Infanger, David W.; Pathi, Siddharth P.; Fischbach, Claudia

    Tumor angiogenesis is fundamental to tumor growth and metastasis, and antiangiogenic therapies have been developed to target this process. However, the clinical success of these treatments has been limited, which may be due, in part, to an incomplete understanding of cell-microenvironment interactions and their role in tumor angiogenesis. Traditionally, two-dimensional (2D) culture approaches have been used to study tumor progression in vitro, but these systems fail to faithfully recreate tumor microenvironmental conditions contributing to tumor angiogenesis in vivo. By integrating cancer biology with tissue engineering and drug delivery approaches, the development of biologically inspired tumor models has emerged. Such 3D model systems allow studying the specific role of soluble factor signaling, cell-extracellular matrix (ECM) interactions, cell-cell interactions, mechanical cues, and metabolic stress. This chapter discusses specific biological and engineering design considerations for tissue-engineered tumor models and highlights their application for defining the underpinnings of tumor angiogenesis.

  3. Genome modularity and synthetic biology: Engineering systems.

    Science.gov (United States)

    Mol, Milsee; Kabra, Ritika; Singh, Shailza

    2018-01-01

    Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Applying elastic fibre biology in vascular tissue engineering

    OpenAIRE

    Kielty, Cay M; Stephan, Simon; Sherratt, Michael J; Williamson, Matthew; Shuttleworth, C. Adrian

    2007-01-01

    For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and pate...

  5. A discussion of molecular biology methods for protein engineering.

    Science.gov (United States)

    Zawaira, Alexander; Pooran, Anil; Barichievy, Samantha; Chopera, Denis

    2012-05-01

    A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. We discuss the basic principles of these methods in a repertoire that may be used to achieve the elemental steps in protein engineering. These include site-directed, deletion and insertion mutagenesis. We provide detailed case studies, drawn from our own experiences, packaged together with conceptual discussions and include an analysis of the techniques presented with regards to their uses in protein engineering.

  6. Biological Web Service Repositories Review.

    Science.gov (United States)

    Urdidiales-Nieto, David; Navas-Delgado, Ismael; Aldana-Montes, José F

    2017-05-01

    Web services play a key role in bioinformatics enabling the integration of database access and analysis of algorithms. However, Web service repositories do not usually publish information on the changes made to their registered Web services. Dynamism is directly related to the changes in the repositories (services registered or unregistered) and at service level (annotation changes). Thus, users, software clients or workflow based approaches lack enough relevant information to decide when they should review or re-execute a Web service or workflow to get updated or improved results. The dynamism of the repository could be a measure for workflow developers to re-check service availability and annotation changes in the services of interest to them. This paper presents a review on the most well-known Web service repositories in the life sciences including an analysis of their dynamism. Freshness is introduced in this paper, and has been used as the measure for the dynamism of these repositories. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  9. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  10. Engineering Titanium for Improved Biological Response

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C; Bearinger, J; Dimasi, E; Gilbert, J

    2002-01-23

    The human body and its aggressive environment challenge the survival of implanted foreign materials. Formidable biocompatibility issues arise from biological, chemical, electrical, and tribological origins. The body's electrolytic solution provides the first point of contact with any kind of implant, and is responsible for transport, healing, integration, or attack. Therefore, determining how to successfully control the integration of a biomaterial should begin with an analysis of the early interfacial dynamics involved. setting, a complicated feedback system of solution chemistry, pH, ions, and solubility exists. The introduction of a fixation device instantly confounds this system. The body is exposed to a range of voltages, and wear can bring about significant shifts in potentials across an implant. In the environment of a new implant the solution pH becomes acidic, ionic concentrations shift, cathodic currents can lead to corrosion, and oxygen levels can be depleted; all of these impact the ability of the implant to retain its protective oxide layer and to present a stable interface for the formation of a biolayer. Titanium has been used in orthopedic and maxilofacial surgery for many years due to its reputation as being biocompatible and its ability to osseointegrate. Osseointegration is defined as direct structural and functional connection between ordered, living bone, and the surface of a load carrying implant. Branemark discovered this phenomenon in the 60's while examining titanium juxtaposed to bone. The mechanism by which titanium and its passivating oxide encourage osseosynthetic activity remains unknown. However in general terms the oxide film serves two purposes: first to provide a kinetic barrier that prevents titanium from corroding and second to provide a substrate that allows the constituents of bone (calcium phosphate crystals, cells, proteins, and collagen) to bond to it. We believe that the electrochemical environment dictates the

  11. Towards Engineering Biological Systems in a Broader Context.

    Science.gov (United States)

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Reverse engineering development: Crosstalk opportunities between developmental biology and tissue engineering.

    Science.gov (United States)

    Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D

    2017-11-01

    The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  14. Cell-free synthetic biology forin vitroprototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  15. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  16. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  17. Biologic width dimensions--a systematic review.

    Science.gov (United States)

    Schmidt, Julia C; Sahrmann, Philipp; Weiger, Roland; Schmidlin, Patrick R; Walter, Clemens

    2013-05-01

    Consideration of the biologic width in restorative dentistry seems to be important for maintaining periodontal health. To evaluate the dimensions of the biologic width in humans. A systematic literature search was performed for publications published by 28 September 2012 using five different electronic databases; this search was complemented by a manual search. Two reviewers conducted the study selection, data collection, and validity assessment. The PRISMA criteria were applied. From 615 titles identified by the search strategy, 14 publications were included and six were suitable for meta-analyses. Included studies were published from the years 1924 to 2012. They differed with regard to measurements of the biologic width. Mean values of the biologic width obtained from two meta-analyses ranged from 2.15 to 2.30 mm, but large intra- and inter-individual variances (subject sample range: 0.2 - 6.73 mm) were observed. The tooth type and site, the presence of a restoration and periodontal diseases/surgery affected the dimensions of the biologic width. Pronounced heterogeneity among studies regarding methods and outcome measures exists. No universal dimension of the biologic width appears to exist. Establishment of periodontal health is suggested prior to the assessment of the biologic width within reconstructive dentistry. © 2013 John Wiley & Sons A/S.

  18. Recent advances in synthetic biology for engineering isoprenoid production in yeast.

    Science.gov (United States)

    Vickers, Claudia E; Williams, Thomas C; Peng, Bingyin; Cherry, Joel

    2017-10-01

    Isoprenoids (terpenes/terpenoids) have many useful industrial applications, but are often not produced at industrially viable level in their natural sources. Synthetic biology approaches have been used extensively to reconstruct metabolic pathways in tractable microbial hosts such as yeast and re-engineer pathways and networks to increase yields. Here we review recent advances in this field, focusing on central carbon metabolism engineering to increase precursor supply, re-directing carbon flux for production of C10, C15, or C20 isoprenoids, and chemical decoration of high value diterpenoids (C20). We also overview other novel synthetic biology strategies that have potential utility in yeast isoprenoid pathway engineering. Finally, we address the question of what is required in the future to move the field forwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Christopher [Massachusetts Institute of Technology

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  20. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Ramser

    2012-07-01

    Full Text Available This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS, polymethylmethacrylate (PMMA, polystyrene (PS, polycarbonate (PC, cyclic olefin copolymer (COC, glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.

  1. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  3. Dental pulp stem cells. Biology and use for periodontal tissue engineering

    Directory of Open Access Journals (Sweden)

    Nahid Y. Ashri

    2015-12-01

    Full Text Available Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  4. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.

    Science.gov (United States)

    Wang, Chonglong; Zada, Bakht; Wei, Gongyuan; Kim, Seon-Won

    2017-10-01

    Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q 10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neurophysiology and neural engineering: a review.

    Science.gov (United States)

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  6. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for th...

  8. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  9. Human factors engineering program review model

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  10. Engineered ion channels as emerging tools for chemical biology.

    Science.gov (United States)

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  11. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  12. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  13. Concise Review: Organ Engineering: Design, Technology, and Integration

    NARCIS (Netherlands)

    Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling

  14. Biological role of lectins: A review

    Directory of Open Access Journals (Sweden)

    K Kiran Kumar

    2012-01-01

    Full Text Available Lectins comprise a stracturally vary diverse class of proteins charecterized by their ability to selectively bind carbohydrate moieties of the glycoproteins of the cell surface. Lectins may be derived from plants, microbial or animal sources and may be soluble or membrane bound. Lectins is a tetramer made up of four nearly identical subunits. In human, lectins have been reported to cause food poisoning, hemolytic anemia, jaundice, digestive distress, protein and carbohydrate malabsorption and type I allergies. The present review focuses on the classification, structures, biological significance and application of lectins.

  15. Is nanotechnology the key to unravel and engineer biological processes?

    Science.gov (United States)

    Navarro, Melba; Planell, Josep A

    2012-01-01

    Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.

  16. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.

    Science.gov (United States)

    Schuler, Mara L; Mantegazza, Otho; Weber, Andreas P M

    2016-07-01

    C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. PREFACE: Nanobiology: from physics and engineering to biology

    Science.gov (United States)

    Nussinov, Ruth; Alemán, Carlos

    2006-03-01

    Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of

  18. Cell-Free Synthetic Biology: Engineering Beyond the Cell.

    Science.gov (United States)

    Perez, Jessica G; Stark, Jessica C; Jewett, Michael C

    2016-12-01

    Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Testing the universality of biology: a review

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    2007-08-01

    We discuss whether it is possible to test the universality of biology, a quest that is of paramount relevance for one of its most recent branches, namely astrobiology. We review this topic in terms of the relative roles played on the Earth biota by contingency and evolutionary convergence. Following the seminal contribution of Darwin, it is reasonable to assume that all forms of life known to us so far are not only terrestrial, but are descendants of a common ancestor that evolved on this planet at the end of a process of chemical evolution. We also raise the related question of whether the molecular events that were precursors to the origin of life on Earth are bound to occur elsewhere in the universe, wherever the environmental conditions are similar to the terrestrial ones. We refer to 'cosmic convergence' as the possible occurrence elsewhere in the universe of Earth-like environmental conditions. We argue that cosmic convergence is already suggested by observational data. The set of hypotheses for addressing the question of the universality of biology can be tested by future experiments that are feasible with current technology. We focus on landing on Europa and the broader implications of selecting the specific example of the right landing location. We had discussed earlier the corresponding miniaturized equipment that is already in existence. The significance of these crucial points needs to be put into a wider scientific perspective, which is one of the main objectives of this review. (author)

  20. Testing the universality of biology: a review

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    2007-05-01

    We discuss whether it is possible to test the universality of biology, a quest that is of paramount relevance for one of its most recent branches, namely astrobiology. We review this topic in terms of the relative roles played on the Earth biota by contingency and evolutionary convergence. Following the seminal contribution of Darwin, it is reasonable to assume that all forms of life known to us so far are not only terrestrial, but are descendants of a common ancestor that evolved on this planet at the end of a process of chemical evolution. We also raise the related question of whether the molecular events that were precursors to the origin of life on Earth are bound to occur elsewhere in the universe, wherever the environmental conditions are similar to the terrestrial ones. We refer to 'cosmic convergence' as the possible occurrence elsewhere in the universe of Earth-like environmental conditions. We argue that cosmic convergence is already suggested by observational data. The set of hypotheses for addressing the question of the universality of biology can be tested by future experiments that are feasible with current technology. We focus on landing on Europe and the broader implications of selecting the specific example of the right landing location. We had discussed earlier the corresponding miniaturized equipment that is already in existence. The significance of these crucial points needs to be put into a wider scientific perspective, which is one of the main objectives of this review. (author)

  1. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  2. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  3. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  4. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  5. Invited Review Article: Advanced light microscopy for biological space research

    International Nuclear Information System (INIS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  6. Invited review article: Advanced light microscopy for biological space research.

    Science.gov (United States)

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  7. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    Science.gov (United States)

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Recent Progress on Systems and Synthetic Biology Approaches to Engineer Fungi As Microbial Cell Factories.

    Science.gov (United States)

    Amores, Gerardo Ruiz; Guazzaroni, María-Eugenia; Arruda, Letícia Magalhães; Silva-Rocha, Rafael

    2016-04-01

    Filamentous fungi are remarkable organisms naturally specialized in deconstructing plant biomass and this feature has a tremendous potential for biofuel production from renewable sources. The past decades have been marked by a remarkable progress in the genetic engineering of fungi to generate industry-compatible strains needed for some biotech applications. In this sense, progress in this field has been marked by the utilization of high-throughput techniques to gain deep understanding of the molecular machinery controlling the physiology of these organisms, starting thus the Systems Biology era of fungi. Additionally, genetic engineering has been extensively applied to modify wellcharacterized promoters in order to construct new expression systems with enhanced performance under the conditions of interest. In this review, we discuss some aspects related to significant progress in the understating and engineering of fungi for biotechnological applications, with special focus on the construction of synthetic promoters and circuits in organisms relevant for industry. Different engineering approaches are shown, and their potential and limitations for the construction of complex synthetic circuits in these organisms are examined. Finally, we discuss the impact of engineered promoter architecture in the single-cell behavior of the system, an often-neglected relationship with a tremendous impact in the final performance of the process of interest. We expect to provide here some new directions to drive future research directed to the construction of high-performance, engineered fungal strains working as microbial cell factories.

  10. Experiential Engineering through iGEM--An Undergraduate Summer Competition in Synthetic Biology

    Science.gov (United States)

    Mitchell, Rudolph; Dori, Yehudit Judy; Kuldell, Natalie H.

    2011-01-01

    Unlike students in other engineering disciplines, undergraduates in biological engineering typically have limited opportunity to develop design competencies, and even fewer chances to implement their designed projects. The international Genetically Engineered Machines (iGEM) competition is a student Synthetic Biology competition that, in 2009,…

  11. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering

    CERN Document Server

    Wang, Shyh-Hau; Yeh, Ming-Long

    2015-01-01

    This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.

  12. Harnessing systems biology approaches to engineer functional microvascular networks.

    Science.gov (United States)

    Sefcik, Lauren S; Wilson, Jennifer L; Papin, Jason A; Botchwey, Edward A

    2010-06-01

    Microvascular remodeling is a complex process that includes many cell types and molecular signals. Despite a continued growth in the understanding of signaling pathways involved in the formation and maturation of new blood vessels, approximately half of all compounds entering clinical trials will fail, resulting in the loss of much time, money, and resources. Most pro-angiogenic clinical trials to date have focused on increasing neovascularization via the delivery of a single growth factor or gene. Alternatively, a focus on the concerted regulation of whole networks of genes may lead to greater insight into the underlying physiology since the coordinated response is greater than the sum of its parts. Systems biology offers a comprehensive network view of the processes of angiogenesis and arteriogenesis that might enable the prediction of drug targets and whether or not activation of the targets elicits the desired outcome. Systems biology integrates complex biological data from a variety of experimental sources (-omics) and analyzes how the interactions of the system components can give rise to the function and behavior of that system. This review focuses on how systems biology approaches have been applied to microvascular growth and remodeling, and how network analysis tools can be utilized to aid novel pro-angiogenic drug discovery.

  13. Prospects and progress in the production of valuable carotenoids: Insights from metabolic engineering, synthetic biology, and computational approaches.

    Science.gov (United States)

    Sankari, Mohan; Rao, Priya Rajendra; Hemachandran, Hridya; Pullela, Phani Kumar; Doss C, George Priya; Tayubi, Iftikhar Aslam; Subramanian, Babu; Gothandam, K M; Singh, Pooja; Ramamoorthy, Siva

    2018-01-20

    Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli. With advancements in metabolic engineering techniques, there has been tremendous progress in the production of industrially valuable secondary metabolites such as carotenoids. Application of metabolic engineering and synthetic biology has become essential for the successful and improved production of carotenoids. Synthetic biology is an emerging discipline; metabolic engineering approaches may provide insights into novel ideas for biosynthetic pathways. In this review, we discuss the current knowledge on carotenoid biosynthetic pathways and genetic engineering of carotenoids to improve their nutritional value. In addition, we investigated synthetic biological approaches for the production of carotenoids. Theoretical biology approaches that may aid in understanding the biological sciences are discussed in this review. A combination of theoretical knowledge and experimental strategies may improve the production of industrially relevant secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....

  16. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  17. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  18. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  19. The rise of nanotoxicology: A successful collaboration between engineering and biology

    Directory of Open Access Journals (Sweden)

    Kristen K. Comfort

    2016-07-01

    Full Text Available The field of nanotechnology has grown exponentially in the last decade, due to increasing capabilities in material science which allows for the precise and reproducible synthesis of nanomaterials (NMs. However, the unique physicochemical properties of NMs that make them attractive for nanotechnological applications also introduce serious health and safety concerns; thus giving rise to the field of nanotoxicology. Initial efforts focused on evaluating the toxic potential of NMs, however, it became clear that due to their distinctive characteristics it was necessary to design and develop new assessment metrics. Through a prolific collaboration, engineering practices and principles were applied to nanotoxicology in order to accurately evaluate NM behavior, characterize the nano-cellular interface, and measure biological responses within a cellular environment. This review discusses three major areas in which the field of nanotoxicology progressed as a result of a strong engineering-biology partnership: 1 the establishment of standardized characterization tools and techniques, 2 the examination of NM dosimetry and the development of mathematical, predictive models, and 3 the generation of physiologically relevant exposure systems that incorporate fluid dynamics and high-throughput mechanisms. The goal of this review is to highlight the multidisciplinary efforts behind the successes of nanotoxicology and celebrate the partnerships that have emerged from this research field.

  20. [Biosynthesis and metabolic engineering of dithiolopyrrolone - A review].

    Science.gov (United States)

    Huang, Sheng; Yu, Yi

    2016-03-04

    Dithiolopyrrolones are a family of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4, 3-b] pyrrol-5-one) skeleton. This family of natural products can be divided into three subfamilies: N-methyl-N- acylpyrrothine, N-acylpyrrothine and thiomarinols. So far, more than 27 members of this group of natural products have been reported including the well-known antibiotics holomycin, thiolutin, aureothricin and recently isolated thiomarinols. Dithiolopyrrolones exhibit relatively broad-spectrum antibiotic activities against many Gram-positive, Gram-negative bacteria and parasites. Some dithiolopyrrolones even have antitumor activities. In recent years, several dithiolopyrrolone biosynthetic gene clusters have been reported and their biosynthetic mechanisms have also been intensively studied. This review will give an overview about the biosynthesis and metabolic engineering of the dithiolopyrrolone natural products, and provides references to guide the creation of hybrid "unnatural" dithiolopyrrolones with better bioactivity and low toxicity by synthetic biology.

  1. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  2. Review of Biological Network Data and Its Applications

    Directory of Open Access Journals (Sweden)

    Donghyeon Yu

    2013-12-01

    Full Text Available Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  3. A Review of Learning-by-Teaching for Engineering Educators

    Science.gov (United States)

    Carberry, Adam R.; Ohland, Matthew W.

    2012-01-01

    Learning-by-teaching is a pedagogical approach grossly underused in the education of engineers at all levels. The existing learning-by-teaching literature across all disciplines was reviewed with the intent of formally presenting this teaching method to engineering educators. The review defines learning-by-teaching, presents theoretical support…

  4. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  5. Biological aspects of application of nanomaterials in tissue engineering

    Directory of Open Access Journals (Sweden)

    Markovic Dejan

    2016-01-01

    Full Text Available Millions of patients worldwide need surgery to repair or replace tissue that has been damaged through trauma or disease. To solve the problem of lost tissue, a major emphasis of tissue engineering (TE is on tissue regeneration. Stem cells and highly porous biomaterials used as cell carriers (scaffolds have an essential role in the production of new tissue by TE. Cellular component is important for the generation and establishment of the extracellular matrix, while a scaffold is necessary to determine the shape of the newly formed tissue and facilitate migration of cells into the desired location, as well as their growth and differentiation. This review describes the types, characteristics and classification of stem cells. Furthermore, it includes functional features of cell carriers - biocompatibility, biodegradability and mechanical properties of biomaterials used in developing state-of-the-art scaffolds for TE applications, as well as suitability for different tissues. Moreover, it explains the importance of nanotechnology and defines the challenges and the purpose of future research in this rapidly advancing field. [Projekat Ministarstva nauke Republike Srbije, br. 41030 i br. 172026

  6. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Directory of Open Access Journals (Sweden)

    Christian Claude Lachaud

    2015-08-01

    Full Text Available Tissue engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large coelomic cavities (peritoneal, pericardial and pleural and internal organs housed inside. Interestedly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic, characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable and non-immunogenic may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

  7. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  8. Biological mechanisms beyond network analysis via mathematical modeling. Comment on "Network science of biological systems at different scales: A review" by Marko Gosak et al.

    Science.gov (United States)

    Pedersen, Morten Gram

    2018-03-01

    Methods from network theory are increasingly used in research spanning from engineering and computer science to psychology and the social sciences. In this issue, Gosak et al. [1] provide a thorough review of network science applications to biological systems ranging from the subcellular world via neuroscience to ecosystems, with special attention to the insulin-secreting beta-cells in pancreatic islets.

  9. LHCb RICH1 Engineering Design Review Report

    CERN Document Server

    Brook, N; Metlica, F; Muir, A; Phillips, A; Buckley, A; Gibson, V; Harrison, K; Jones, C R; Katvars, S G; Lazzeroni, C; Storey, J; Ward, CP; Wotton, S; Alemi, M; Arnabaldi, C; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Negri, P; Perego, D L; Pessina, G; Chamonal, R; Eisenhardt, S; Lawrence, J; McCarron, J; Muheim, F; Playfer, S; Walker, A; Cuneo, S; Fontanelli, F; Gracco, Valerio; Mini, G; Musico, P; Petrolini, A; Sannino, M; Bates, A; MacGregor, A; O'Shea, V; Parkes, C; Paterson, S; Petrie, D; Pickford, A; Rahman, M; Soler, F; Allebone, L; Barber, J H; Cameron, W; Clark, D; Dornan, Peter John; Duane, A; Egede, U; Hallam, R; Howard, A; Plackett, R; Price, D; Savidge, T; Vidal-Sitjes, G; Websdale, D M; Adinolfi, M; Bibby, J H; Cioffi, C; Gligorov, Vladimir V; Harnew, N; Harris, F; McArthur, I A; Newby, C; Ottewell, B; Rademacker, J; Senanayake, R; Somerville, L P; Soroko, A; Smale, N J; Topp-Jørgensen, S; Wilkinson, G; Yang, S; Benayoun, M; Khmelnikov, V A; Obraztsov, V F; Densham, C J; Easo, S; Franek, B; Kuznetsov, G; Loveridge, P W; Morrow, D; Morris, JV; Papanestis, A; Patrick, G N; Woodward, M L; Aglieri-Rinella, G; Albrecht, A; Braem, André; Campbell, M; D'Ambrosio, C; Forty, R W; Frei, C; Gys, Thierry; Jamet, O; Kanaya, N; Losasso, M; Moritz, M; Patel, M; Piedigrossi, D; Snoeys, W; Ullaland, O; Van Lysebetten, A; Wyllie, K

    2005-01-01

    This document describes the concepts of the engineering design to be adopted for the upstream Ring Imaging Cherenkov detector (RICH1) of the reoptimized LHCb detector. Our aim is to ensure that coherent solutions for the engineering design and integration for all components of RICH1 are available, before proceeding with the detailed design of these components.

  10. REVIEW - Recent developments in biological nutrient removal ...

    African Journals Online (AJOL)

    While several questions remain to be answered for more consistent, reliable and stable performance for enhanced biological P removal (EBPR), recent developments in this technology have focused on (i) increasing capacity and reducing the plant space footprint and (ii) improving N removal. To increase capacity and ...

  11. Book review: Safety of Biologics Therapy

    Directory of Open Access Journals (Sweden)

    Robak T

    2017-01-01

    Full Text Available Tadeusz Robak Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, PolandSafety of Biologics Therapy: Monoclonal Antibodies, Cytokines, Fusion Proteins, Hormones, Enzymes, Coagulation Proteins, Vaccines, Botulinum Toxins (Cham, Switzerland: Springer International Publishing; 2016 by Brian A Baldo from the Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, and the Department of Medicine, University of Sydney, Australia, is a book that belongs on the shelf of everyone in the field of biologic therapies research and clinical practice. In writing this book, the author’s intention was to produce an up-to-date text book on approved biologic therapies, as far as that is possible in this time of rapidly evolving developments in biotherapeutic research and the introduction of new and novel agents for clinical use.The monograph comprises 610 pages in 13 chapters, each including a summary and further reading suggestions. All chapters include a discussion of basic and clinical material. Well-designed, comprehensive tables and color figures are present throughout the book. The book itself examines the biologic products that have regulatory approval in the USA and/or European Union and that show every indication of remaining important therapies. It covers in great detail all the latest work on peptide hormones and enzymes, monoclonal antibodies, fusion proteins, and cytokine therapies. Beyond that, it also presents the latest information on blood coagulation proteins, vaccines, botulinum neurotoxins, and biosimilars. 

  12. Book review: Baculovirus Molecular Biology, Second Edition

    Science.gov (United States)

    The application of cell culture and molecular biology methodologies to the study of baculoviruses has resulted in an explosion of information on this group of insect pathogens. The quantity of the corresponding literature on baculoviruses has reached a level difficult for any one researcher to mast...

  13. Engineering Changes in Product Design - A Review

    Science.gov (United States)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  14. Network science of biological systems at different scales: A review

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Slak Rupnik, Marjan; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present

  15. Review of biological monitoring programs at nuclear facilities

    International Nuclear Information System (INIS)

    Quintana, L.R.; Oakes, T.W.; Shank, K.E.

    Biological monitoring programs, as well as relevant radioecological research studies, are reviewed at specific Department of Energy facilities; the program at Oak Ridge National Laboratory is discussed in detail. The biological measurements that are being used for interpreting the impact of a facility on its surrounding environment and nearby population are given. Suggestions which could facilitate interlaboratory comparison studies are presented

  16. Constrained saccharides: a review of structure, biology, and synthesis.

    Science.gov (United States)

    Rodriguez, Jacob; O'Neill, Sloane; Walczak, Maciej A

    2018-03-01

    Review primarily covers from 1995-2018Carbohydrate function, recognized in a multitude of biological processes, provides a precedent for developing carbohydrate surrogates that mimic the structure and function of bioactive compounds. In order to constrain highly flexible oligosaccharides, synthetic tethering techniques like those exemplified by stapled peptides are utilized to varying degrees of success. Naturally occurring constrained carbohydrates, however, exist with noteworthy cytotoxic and chemosensitizing properties. This review highlights the structure, biology, and synthesis of this intriguing class of molecules.

  17. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  18. Physical activity and biological maturation: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Denise Araújo Bacil

    2015-03-01

    Full Text Available OBJECTIVE: To analyze the association between physical activity (PA and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders.

  19. [Biological fragility syndrome in the elderly: systematic review].

    Science.gov (United States)

    Tribess, Sheilla; de Oliveira, Ricardo Jacó

    2011-10-01

    The aim of this study was to identify the prevalence and assessment strategies of Biological Fragility Syndrome in the Elderly. For the development of this study was it was done a search in electronic databases (Medline/PubMed) and the reference lists of articles identified using the following key words/terms in English: "frailty" and `frail" in conjunction with the terms "elderly", "aging" and "prevalence". These terms/descriptors were combined using the logical operators available in search engines. The initial electronic search resulted in 1 865 manuscripts. The process of analysis of the studies involved reading titles, abstracts and full texts. After all these phases, 35 manuscripts met the inclusion criteria of the review. The results indicated that women, with rage from 7.3 % to 21.6 %, are frailer than men, with percentages ranging from 4 % to 19.2 %. Differences in prevalence rates of prefrailty and frailty should be minimized, with stimulus for standardization for the evaluation of human frailty.

  20. Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech

    Science.gov (United States)

    Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey

    2011-01-01

    In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…

  1. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  2. Survey of French research in biological and medical engineering - aims, means, results

    International Nuclear Information System (INIS)

    Teissier, J.

    1975-01-01

    A review of the aims and means available is followed by an outline of the results of French research in biological and medical engineering. Most of the work undertaken has given very positive results from the scientific view-point, followed up by industrial applications. Scintigraphic image processing research has led to CINE 200. A study of heart output quantification in real time has produced a haemodynamic investigation system, the Sysconoram, now commercialized. The study of heart signal recording methods has led to a marketable and reliable system for the detection of pathological heart conditions. Research in neurosurgery on the use of pressure transducers in integrated technology, using a piezoelectric detector associated with a field effect amplifier, has enabled two types of extradural pressure transducer and one cervical intraventricular pressure transducer to be industrialized. Finally the study of a gamma detector combined with a light-amplifier tube has led to the development of camera giving quite exceptional results [fr

  3. Harnessing biological motors to engineer systems for nanoscale transport and assembly.

    Science.gov (United States)

    Goel, Anita; Vogel, Viola

    2008-08-01

    Living systems use biological nanomotors to build life's essential molecules--such as DNA and proteins--as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.

  4. Accessing Nature’s diversity through metabolic engineering and synthetic biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jason R. King

    2016-03-01

    Full Text Available In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents.

  5. Accessing Nature’s diversity through metabolic engineering and synthetic biology

    Science.gov (United States)

    King, Jason R.; Edgar, Steven; Qiao, Kangjian; Stephanopoulos, Gregory

    2016-01-01

    In this perspective, we highlight recent examples and trends in metabolic engineering and synthetic biology that demonstrate the synthetic potential of enzyme and pathway engineering for natural product discovery. In doing so, we introduce natural paradigms of secondary metabolism whereby simple carbon substrates are combined into complex molecules through “scaffold diversification”, and subsequent “derivatization” of these scaffolds is used to synthesize distinct complex natural products. We provide examples in which modern pathway engineering efforts including combinatorial biosynthesis and biological retrosynthesis can be coupled to directed enzyme evolution and rational enzyme engineering to allow access to the “privileged” chemical space of natural products in industry-proven microbes. Finally, we forecast the potential to produce natural product-like discovery platforms in biological systems that are amenable to single-step discovery, validation, and synthesis for streamlined discovery and production of biologically active agents. PMID:27081481

  6. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  7. Biological control agent for mosquito larvae: Review on the killifish ...

    African Journals Online (AJOL)

    This review attempts to give an account on the recent advances on the killifish Aphanius dispar dispar as a biological control agent for mosquito larvae. Thirty six (36) articles of literature (scientific papers, technical and workshop reports) on this subject covering the period between 1980 and 2009 were reviewed.

  8. Ethical Risk Management Education in Engineering: A Systematic Review.

    Science.gov (United States)

    Guntzburger, Yoann; Pauchant, Thierry C; Tanguy, Philippe A

    2017-04-01

    Risk management is certainly one of the most important professional responsibilities of an engineer. As such, this activity needs to be combined with complex ethical reflections, and this requirement should therefore be explicitly integrated in engineering education. In this article, we analyse how this nexus between ethics and risk management is expressed in the engineering education research literature. It was done by reviewing 135 articles published between 1980 and March 1, 2016. These articles have been selected from 21 major journals that specialize in engineering education, engineering ethics and ethics education. Our review suggests that risk management is mostly used as an anecdote or an example when addressing ethics issues in engineering education. Further, it is perceived as an ethical duty or requirement, achieved through rational and technical methods. However, a small number of publications do offer some critical analyses of ethics education in engineering and their implications for ethical risk and safety management. Therefore, we argue in this article that the link between risk management and ethics should be further developed in engineering education in order to promote the progressive change toward more socially and environmentally responsible engineering practices. Several research trends and issues are also identified and discussed in order to support the engineering education community in this project.

  9. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Aravind [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Rajiv Gandhi Centre for Biotechnology, Trivandrum (India); Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran, E-mail: sindhurgcb@gmail.com; Sukumaran, Rajeev K. [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Pandey, Ashok [Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum (India); Center for Innovative and Applied Bioprocessing, Mohali, Punjab (India); Castro, Galliano Eulogio [Dpt. Ingeniería Química, Ambiental y de los Materiales Edificio, Universidad de Jaén, Jaén (Spain)

    2017-04-25

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  10. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    Directory of Open Access Journals (Sweden)

    Raveendran Sindhu

    2017-04-01

    Full Text Available The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  11. Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

    International Nuclear Information System (INIS)

    Madhavan, Aravind; Jose, Anju Alphonsa; Binod, Parameswaran; Sindhu, Raveendran; Sukumaran, Rajeev K.; Pandey, Ashok; Castro, Galliano Eulogio

    2017-01-01

    The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools’ development and application should focus on unexplored non-conventional yeast species.

  12. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  13. Biologics in dermatology: An integrated review

    Directory of Open Access Journals (Sweden)

    Virendra N Sehgal

    2014-01-01

    Full Text Available The advent of biologics in dermatologic treatment armentarium has added refreshing dimensions, for it is a major breakthrough. Several agents are now available for use. It is therefore imperative to succinctly comprehend their pharmacokinetics for their apt use. A concerted endeavor has been made to delve on this subject. The major groups of biologics have been covered and include: Drugs acting against TNF-α, Alefacept, Ustekinumab, Rituximab, IVIG and Omalizumab. The relevant pharmacokinetic characteristics have been detailed. Their respective label (approved and off-label (unapproved indications have been defined, highlighting their dosage protocol, availability and mode of administration. The evidence level of each indication has also been discussed to apprise the clinician of their current and prospective uses. Individual anti-TNF drugs are not identical in their actions and often one is superior to the other in a particular disease. Hence, the section on anti-TNF agents mentions the literature on each drug separately, and not as a group. The limitations for their use have also been clearly brought out.

  14. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  15. A Study of Technical Engineering Peer Reviews at NASA

    Science.gov (United States)

    Chao, Lawrence P.; Tumer, Irem Y.; Bell, David G.

    2003-01-01

    This report describes the state of practices of design reviews at NASA and research into what can be done to improve peer review practices. There are many types of reviews at NASA: required and not, formalized and informal, programmatic and technical. Standing project formal reviews such as the Preliminary Design Review and Critical Design Review are a required part of every project and mission development. However, the technical, engineering peer reviews that support teams' work on such projects are informal, some times ad hoc, and inconsistent across the organization. The goal of this work is to identify best practices and lessons learned from NASA's experience, supported by academic research and methodologies to ultimately improve the process. This research has determined that the organization, composition, scope, and approach of the reviews impact their success. Failure Modes and Effects Analysis (FMEA) can identify key areas of concern before or in the reviews. Product definition tools like the Project Priority Matrix, engineering-focused Customer Value Chain Analysis (CVCA), and project or system-based Quality Function Deployment (QFD) help prioritize resources in reviews. The use of information technology and structured design methodologies can strengthen the engineering peer review process to help NASA work towards error-proofing the design process.

  16. Inhibition of Anaerobic Biological Treatment: A Review

    Science.gov (United States)

    Hou, Li; Ji, Dandan; Zang, Lihua

    2018-01-01

    Anaerobic digestion is a method for treating living and industrial wastewater by anaerobic degradation of organic compounds, which can produce biogas (carbon dioxide and methane mixture) and microbial biomass. And biogas as a renewable resource, can replace the use of ore fuel. In the process of anaerobic digestion, the problems of low methane yield and unstable reaction process are often encountered, which limits the widespread use of this technology. Various inhibitors are the main limiting factors for anaerobic digestion. In this paper, the main factors limiting anaerobic digestion are reviewed, and the latest research progress is introduced.

  17. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its

  18. TEACHING ENGINEERING STUDENTS CREATIVITY: A REVIEW OF APPLIED STRATEGIES

    Directory of Open Access Journals (Sweden)

    Chunfang Zhou

    2012-06-01

    Full Text Available Recent studies have emphasized the necessity of educating creative engineers. This paper aims to provide a literature review by answering what strategies can be applied to develop creativity in engineering education. As the literature demonstrates, creativity has been studied by a diversity of perspectives such as psychology, social psychology and sociology. Studies on engineering creativity indicate the importance of problem-solving skills for engineers. For developing creativity, strategies such as using thinking tools, learning by solving problems and building learning environment conductive to creativity have been suggested in engineering education. Problem-Based Learning (PBL is a good example of fostering creative engineers, so characteristics of PBL, learning cycle in PBL and methods for enhancing group dynamics in PBL are discussed in this paper.

  19. Women and Minorities in Engineering: A Review of the Literature

    Science.gov (United States)

    Mamaril, Natasha J. A; Royal, Kenneth D.

    2008-01-01

    This review of the literature investigates the various factors identified by researchers to explain women's underrepresentation in the engineering field. Because a great deal of research has been published through the years, a compilation summary of existing research was necessary. This literature review utilized searches from thousands of…

  20. Adipose Tissue Biology: An Update Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2009-12-01

    Full Text Available BACKGROUND: Obesity is a major health problem in most countries in the world today. It increases the risk of diabetes, heart disease, fatty liver and some form of cancer. Adipose tissue biology is currently one of the “hot” areas of biomedical science, as fundamental for the development of novel therapeutics for obesity and its related disorders.CONTENT: Adipose tissue consist predominantly of adipocytes, adipose-derived stromal cells (ASCs, vascular endothelial cells, pericytes, fibroblast, macrophages, and extracellular matrix. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissue to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. Obesity causes adipose tissue dysfunction and results in obesity-related disorders. SUMMARY: It is now clear that adipose tissue is a complex and highly active metabolic and endocrine organ. Undestanding the molecular mechanisms underlying obesity and its associated disease cluster is also of great significance as the need for new and more effective therapeutic strategies is more urgent than ever.  KEYWORDS: obesity, adipocyte, adipose, tissue, adipogenesis, angiogenesis, lipid droplet, lipolysis, plasticity, dysfunction.

  1. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  2. Tissue engineering in plastic surgery: an up-to-date review of the current literature.

    Science.gov (United States)

    Sterodimas, Aris; De Faria, Jose; Correa, Wanda Elizabeth; Pitanguy, Ivo

    2009-01-01

    Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function. This field has enjoyed tremendous growth in the past 10 years fuelled by its potential role in regenerating new tissues and naturally healing injured or diseased organs. Stem cells due to their pluripotentiality and unlimited capacity for self-renewal, may allow significant advances for distinct reconstructive and cosmetic procedures. This review aims at outlining the principles of tissue engineering, focusing on the use of adult-derived stem cells as applied to the research and practice of plastic surgery. Review categories have been divided into tissue engineering of the skin and connective tissue, bone marrow, cartilage, adipose tissue, and breast tissue. An analytical review of the current literature on stem cell technology on the above mentioned areas is presented. There have been reports of side effects and unsuccessful treatments. The key to the progress of tissue engineering is an understanding between basic scientists, biochemical engineers, clinicians, and industry. Although there has been an ongoing research pointing to the enormous potential of using stem cells in cosmetic and reconstructive surgery, at this stage, stem cell therapy is still a hope that has not been fully studied and approved. More long-term studies are needed and many questions remain to be answered.

  3. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  4. Bibliographical review on the teaching of Biology and research

    Directory of Open Access Journals (Sweden)

    Mª Luz Rodríguez Palmero

    2000-09-01

    Full Text Available This review complements another one done by the same author, in 1997, regarding the role of comprehending the concept of cell in the learning of Biology. In addition, some general papers on science education that provide a better understanding of research approaches used in the investigation of this topic have been included. The reviewed papers have been organized into categories according to the object of study, the relevance assigned to the cell concept, and the framework of analysis. The review shows that the concept of cell is very important in the biological conceptualization, however, it also shows the need of additional research on this matter, from theoretical frameworks that pay more attention to the psychological level, in order to provide some guidance to improve the teaching and learning processes of the biological content that presupose the comprehension of living beings.

  5. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    Science.gov (United States)

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  6. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  7. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  8. Milestones in software engineering and knowledge engineering history: a comparative review.

    Science.gov (United States)

    del Águila, Isabel M; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.

  9. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  10. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  11. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  12. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    Science.gov (United States)

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  13. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  14. Hydrogen engines based on liquid fuels, a review

    Science.gov (United States)

    Houseman, J.; Voecks, G. E.

    1981-01-01

    The concept of storing hydrogen as part of a liquid fuel, such as gasoline or methanol, and subsequent onboard generation of the hydrogen from such liquids, is reviewed. Hydrogen generation processes, such as steam reforming, partial oxidation, and thermal decomposition are evaluated in terms of theoretical potential and practical limitations, and a summary is presented on the major experimental work on conversion of gasoline and methanol. Results of experiments indicate that onboard hydrogen generation from methanol is technically feasible and will yield substantial improvements in fuel economy and emissions, especially if methanol decomposition is brought about by the use of engine exhaust heat; e.g., a methanol decomposition reactor of 3.8 provides hydrogen-rich gas for a 4 cylinder engine (1.952), and 80% of the methanol is converted, engine exhaust gas being the only heat supply. A preliminary outline of the development of a methanol-based hydrogen engine and a straight hydrogen engine is presented.

  15. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  16. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  17. A systematic review of context bias in invasion biology.

    Science.gov (United States)

    Warren, Robert J; King, Joshua R; Tarsa, Charlene; Haas, Brian; Henderson, Jeremy

    2017-01-01

    The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  18. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  19. Prostephanus truncatus in Africa: A review of biological trends and ...

    African Journals Online (AJOL)

    Since P. truncatus invaded Africa from approximately 1970, research mostly addressed its biology, ecology, dispersal and control methods. This review paper aims at evaluating P. truncatus pest status in Africa as a basis for designing pragmatic strategies for its control. Prostephanus truncatus pest status in Africa is high ...

  20. Book Review Abalone of the World: Biology, Fisheries and Culture

    African Journals Online (AJOL)

    Although this book originated from the First International. Symposium on Abalone Biology, which was held in La Paz,. Mexico in 1989, it is far more than a collection of symposium papers. The symposium papers are included in the volume but, in addition to this, the editors solicited review articles on several of the more ...

  1. Circulating immune complexes – reviewing the biological roles in ...

    African Journals Online (AJOL)

    Circulating immune complexes – reviewing the biological roles in human immune function and exercise. ... studies that have investigated CIC's following exercise and proposes that a comprehensive understanding and interpretation of immune system responses to exercise should take these complexes into consideration.

  2. LHCb RICH 2 engineering design review report

    CERN Document Server

    Adinolfi, M; Allebone, L R; Ameri, M; Barber, G J; Barczyk, A; Bellunato, T F; Benayoun, M; Bibby, J; Braem, André; Brew, C A J; Brook, N; Buckley, A; Calvi, M; Campbell, M; Chamonal, R; Cole, J; Cuneo, S; D'Ambrosio, C; Damerell, G; Densham, C J; Dornan, Peter John; Duane, A; Easo, S; Egede, U; Eisenhardt, S; Flavell, AJ; Fontanelli, F; Forty, R W; Franek, B J; Frei, C; George, K; Gibson, V; Girone, M; Gracco, Valerio; Guy, J; Gys, Thierry; Harnew, N; Head, R; Hill, R; Jolly, S; Jones, C; Katvars, S G; Khan, A; Laub, M; Lawrence, J; Libby, J; Lidbury, J A; Losasso, M; MacGregor, A; Matteuzzi, C; Mini, G; Morris, J V; Muheim, F; Musico, P; Musy, M; Negri, P; Newby, C; O'Shea, V; Papanestis, A; Parkes, CJ; Patrick, G N; Petrolini, A; Phillips, A; Piazzoni, C; Pickford, A N; Piedigrossi, D; Playfer, S; Presland, A; Price, D R; Radermacker, J; Sannino, M; Savage, P; Shepherd-Themistocleous, C H; Smale, N J; Snoeys, W; Soler, F J P; Temple, S A; Topp-Jørgensen, S; Ullaland, O; Ward, C P; Websdale, D M; White, R; Wilkinson, G; Wilson, F; Woodward, M L; Wotton, S A; Wyllie, Ken H

    2002-01-01

    The LHCb detector is a single arm spectrometer designed to exploit the large number of b-hadrons produced at the LHC in order to make precision studies of CP asymmetries and of rare decays in the B-meson system. It is therefore essential for the experiment that the detector configuration includes a particle identification system with high separation power between kaons and pions. We will present in this note the engineering solutions for the lightweight, high precision Ring Imaging Cherenkov detector, RICH2, of the spectrometer. The design is built around a large space frame used as a high stability support for the optical system and as a supporting structure for the magnetic shielding needed for the photon detectors. All material not essential for the operation of the detector is located outside the acceptance of the spectrometer. The space frame also defines the Cherenkov gas volume.

  3. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl......-CoA can be formed from glucose in high yield. Here the perspective of generating yeast platform strains that have such properties is discussed in the context of a major breakthrough with expression of a functional pyruvate dehydrogenase complex in the cytosol....

  4. Biological Aspects of Emerging Benzothiazoles: A Short Review

    Directory of Open Access Journals (Sweden)

    Ruhi Ali

    2013-01-01

    Full Text Available In recent years heterocyclic compounds analogues and derivatives have attracted wide attention due to their useful biological and pharmacological properties. Benzothiazole is among the usually occurring heterocyclic nuclei in many marine as well as natural plant products. Benzothiazole is a privileged bicyclic ring system with multiple applications. It is known to exhibit a wide range of biological properties including anticancer, antimicrobial, and antidiabetic, anticonvulsant, anti-inflammatory, antiviral, antitubercular activities. A large number of therapeutic agents are synthesized with the help of benzothiazole nucleus. During recent years there have been some interesting developments in the biological activities of benzothiazole derivatives. These compounds have special significance in the field of medicinal chemistry due to their remarkable pharmacological potentialities. This review is mainly an attempt to present the research work reported in the recent scientific literature on different biological activities of benzothiazole compounds.

  5. Biological treatment options for cyanobacteria metabolite removal--a review.

    Science.gov (United States)

    Ho, Lionel; Sawade, Emma; Newcombe, Gayle

    2012-04-01

    The treatment of cyanobacterial metabolites can consume many resources for water authorities which can be problematic especially with the recent shift away from chemical- and energy-intensive processes towards carbon and climate neutrality. In recent times, there has been a renaissance in biological treatment, in particular, biological filtration processes, for cyanobacteria metabolite removal. This in part, is due to the advances in molecular microbiology which has assisted in further understanding the biodegradation processes of specific cyanobacteria metabolites. However, there is currently no concise portfolio which captures all the pertinent information for the biological treatment of a range of cyanobacterial metabolites. This review encapsulates all the relevant information to date in one document and provides insights into how biological treatment options can be implemented in treatment plants for optimum cyanobacterial metabolite removal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  7. Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    OpenAIRE

    Beal, Jacob; Haddock-Angelli, Traci; Gershater, Markus; De Mora, Kim; Lizarazo, Meagan; Hollenhorst, Jim; Rettberg, Randy; Demling, Philipp; Hanke, Rene; Osthege, Michael; Schechtel, Anna; Sudarsan, Suresh; Zimmermann, Arne; Gabryelczyk, Bartosz; Ikonen, Martina

    2016-01-01

    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1....

  8. 5th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    European IFMBE MBEC : Cooperation for Effective Healthcare

    2012-01-01

    This volume presents the 5th European Conference of the International Federation for Medical and Biological Engineering (EMBEC),  held in Budapest, 14-18 September, 2011. The scientific discussion on the conference and in this conference proceedings include the following issues: - Signal & Image Processing - ICT - Clinical Engineering and Applications - Biomechanics and Fluid Biomechanics - Biomaterials and Tissue Repair - Innovations and Nanotechnology - Modeling and Simulation - Education and Professional

  9. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  10. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  11. Impulse Plasma In Surface Engineering - a review

    Science.gov (United States)

    Zdunek, K.; Nowakowska-Langier, K.; Chodun, R.; Okrasa, S.; Rabinski, M.; Dora, J.; Domanowski, P.; Halarowicz, J.

    2014-11-01

    The article describes the view of the plasma surface engineering, assuming the role of non-thermal energy effects in the synthesis of materials and coatings deposition. In the following study it was underlined that the vapor excitation through the application of an electric field during coatings deposition gives new possibilities for coatings formation. As an example the IPD method was chosen. During the IPD (Impulse Plasma Deposition) the impulse plasma is generated in the coaxial accelerator by strong periodic electrical pulses. The impulse plasma is distributed in the form of energetic plasma pockets. Due to the almost completely ionization of gas, the nucleation of new phases takes place on ions directly in the plasma itself. As a result the coatings of metastable materials with nano-amorphous structure and excellent adhesion to the non-heated intentionally substrates could be deposited. Recently the novel way of impulse plasma generation during the coatings deposition was proposed and developed by our group. An efficient tool for plasma process control, the plasma forming gas injection to the interelectrode space was used. Periodic changing the gas pressure results in increasing both the degree of dispersion and the dynamics of the plasma pulses. The advantage of the new technique in deposition of coatings with exceptionally good properties has been demonstrated in the industrial scale not only in the case of the IPD method but also in the case of very well known magnetron sputtering method.

  12. The future of metabolic engineering and synthetic biology: towards a systematic practice.

    Science.gov (United States)

    Yadav, Vikramaditya G; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-05-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Can an engineer fix an immune system?--Rethinking theoretical biology.

    Science.gov (United States)

    Mattiussi, Claudio

    2013-06-01

    In an instant classic paper (Lazebnik, in Cancer Cell 2(3); 2002: 179-182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and "fix" biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik's analysis by concretely showing how to apply the engineering approach to biological problems. I use an actual example of electronic circuit troubleshooting to ground the thesis that, in engineering, the crucial phases of any non-trivial troubleshooting process are aimed at generating a mechanistic explanation of the functioning of the system, which makes extensive recourse to problem-driven qualitative reasoning possibly based on cognitive artifacts applied to systems that are known to have been designed for function. To show how to translate these findings into biological practice I consider a concrete example of biological model building and "troubleshooting", aimed at the identification of a "fix" for the human immune system in presence of progressing cancer, autoimmune disease, and transplant rejection. The result is a novel immune system model--the danger model with regulatory cells--and new, original hypotheses concerning the development, prophylaxis, and therapy of these unwanted biological processes. Based on the manifest efficacy of the proposed approach, I suggest a refocusing of the activity of theoretical biologists along the engineering-inspired lines illustrated in the paper.

  14. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  15. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    2017-01-01

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing.

  16. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review

    NARCIS (Netherlands)

    Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; Brink, van den N.W.; Nickel, C.

    2014-01-01

    Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids

  17. Mechanical Engineering Department quarterly review, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Stone, R.G.; Bathgate, M.B. (eds.)

    1978-06-30

    The review is presented in sections on x-ray spectrograph development, sampling of gases in a post shot cavity, oil shale retort heat losses, development of an automated thermocouple, seismic engineering, testing fuel rod casks, and nuclear materials control. A separate abstract was prepared for each section. (JRD)

  18. A review of fibrin and fibrin composites for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Noori A

    2017-07-01

    Full Text Available Alireza Noori,1 Seyed Jamal Ashrafi,2 Roza Vaez-Ghaemi,3 Ashraf Hatamian-Zaremi,4 Thomas J Webster5 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 2School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; 3Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada; 4Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels, there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient’s own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the

  19. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  20. Preliminary report of biological intrusion studies at the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Arthur, W.J.

    1983-01-01

    As part of a larger study on the effects of biological intrusion of plants and animals into the soil cover placed over low-level radioactive wastes stored at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA), research was initiated in the summer of 1982 to determine the burrow characteristics and movement patterns of several small mammal species, and the rooting depths of various plants. The depth, length, and volume of burrows were determined for four small mammal species: deer mouse (Peromyscus maniculatus), Ord's kangaroo rat (Dipodomys ordii), montane vole (Microtus montanus), and Townsend's ground squirrel (Spermophilis townsendii). The latter species excavated the greatest mean burrow depth (39 cm), length (404 cm), and volume (14.8 1). Movement patterns of three species were determined by radiotelemetry. The mean area of use for P. maniculatus, D. ordii, and M. montanus was 2.3, 1.5, and 1.2 ha respectively. Limited data on rooting depths of various native and introduced plant species at the SDA were obtained by literature review and excavation. During FY-83, experiments will be conducted, using the information obtained from the first year of this study, to evaluate the impact of burrowing mammals and root intrusion on the integrity of the soil cover currently existing at the SDA. Details of these experimental studies are presented

  1. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  2. ANALYTICAL METHODS FOR KINETIC STUDIES OF BIOLOGICAL INTERACTIONS: A REVIEW

    Science.gov (United States)

    Zheng, Xiwei; Bi, Cong; Li, Zhao; Podariu, Maria; Hage, David S.

    2015-01-01

    The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies. PMID:25700721

  3. A review of key challenges of electrospun scaffolds for tissue-engineering applications.

    Science.gov (United States)

    Khorshidi, Sajedeh; Solouk, Atefeh; Mirzadeh, Hamid; Mazinani, Saeedeh; Lagaron, Jose M; Sharifi, Shahriar; Ramakrishna, Seeram

    2016-09-01

    Tissue engineering holds great promise to develop functional constructs resembling the structural organization of native tissues to improve or replace biological functions, with the ultimate goal of avoiding organ transplantation. In tissue engineering, cells are often seeded into artificial structures capable of supporting three-dimensional (3D) tissue formation. An optimal scaffold for tissue-engineering applications should mimic the mechanical and functional properties of the extracellular matrix (ECM) of those tissues to be regenerated. Amongst the various scaffolding techniques, electrospinning is an outstanding one which is capable of producing non-woven fibrous structures with dimensional constituents similar to those of ECM fibres. In recent years, electrospinning has gained widespread interest as a potential tissue-engineering scaffolding technique and has been discussed in detail in many studies. So why this review? Apart from their clear advantages and extensive use, electrospun scaffolds encounter some practical limitations, such as scarce cell infiltration and inadequate mechanical strength for load-bearing applications. A number of solutions have been offered by different research groups to overcome the above-mentioned limitations. In this review, we provide an overview of the limitations of electrospinning as a tissue-engineered scaffolding technique, with emphasis on possible resolutions of those issues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Biology, Biography, and Technology: Review in Kinship and Genetics

    OpenAIRE

    Frois, Catarina

    2009-01-01

    This review considers four recent works on in vitro fertilization; human egg donation; the relation among family, kinship and nature; genetic databases, and medical research. Assisted reproductive technology has increasingly become a tool for the artificial production of body parts. Anthropology is reformulating kinship and family theories, taking into account their relationship with biology (in the strict sense of body) and technology as primary ‘‘agents’’ of reproductio...

  5. Zirconia based ceramics, some clinical and biological aspects: Review

    Directory of Open Access Journals (Sweden)

    Ossama Saleh Abd El-Ghany

    2016-12-01

    Full Text Available Improved material strength, enhanced esthethic and high biocompatibility give Zirconia ceramic a great possibility to be used for a wide range of promising clinical applications. This review presents the different types of zirconia materials available for dental application, the effect of machining procedures on these materials, the esthetic of zirconia ceramics and bonding of the veneering ceramics in addition to the biologic properties of these new materials.

  6. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    Science.gov (United States)

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  7. Biodiesel Performance within Internal Combustion Engine Fuel System - A Review

    Directory of Open Access Journals (Sweden)

    Z.A. Khan

    2016-06-01

    Full Text Available This review paper highlights the tribological performance of biodiesel at contacting surfaces in the fuel delivery system of compression ignition (diesel engines. The focus is on the injection components that include low and high pressure injection pumps, diesel fuel injectors, electro-hydraulic valves, diesel fuel lubricity measurements and effects of biodiesel on the running conditions in a diesel fuel injection system. The common rail system and the distributor pump injection systems with electronic diesel control are among the modern trends that are specifically highlighted. Boundary, mixed and hydrodynamic lubrication regimes together with lubricant oil film thickness, pressure and engine performance are also considered.

  8. The emerging role of systems biology for engineering protein production in CHO cells.

    Science.gov (United States)

    Kuo, Chih-Chung; Chiang, Austin Wt; Shamie, Isaac; Samoudi, Mojtaba; Gutierrez, Jahir M; Lewis, Nathan E

    2017-12-06

    To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Tsallis Entropy Theory for Modeling in Water Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Vijay P. Singh

    2017-11-01

    Full Text Available Water engineering is an amalgam of engineering (e.g., hydraulics, hydrology, irrigation, ecosystems, environment, water resources and non-engineering (e.g., social, economic, political aspects that are needed for planning, designing and managing water systems. These aspects and the associated issues have been dealt with in the literature using different techniques that are based on different concepts and assumptions. A fundamental question that still remains is: Can we develop a unifying theory for addressing these? The second law of thermodynamics permits us to develop a theory that helps address these in a unified manner. This theory can be referred to as the entropy theory. The thermodynamic entropy theory is analogous to the Shannon entropy or the information theory. Perhaps, the most popular generalization of the Shannon entropy is the Tsallis entropy. The Tsallis entropy has been applied to a wide spectrum of problems in water engineering. This paper provides an overview of Tsallis entropy theory in water engineering. After some basic description of entropy and Tsallis entropy, a review of its applications in water engineering is presented, based on three types of problems: (1 problems requiring entropy maximization; (2 problems requiring coupling Tsallis entropy theory with another theory; and (3 problems involving physical relations.

  10. Human factors engineering plan for reviewing nuclear plant modernization programs

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, John; Higgins, James [Brookhaven National Laboratory, Upton, NY (United States)

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation.

  11. Human factors engineering plan for reviewing nuclear plant modernization programs

    International Nuclear Information System (INIS)

    O'Hara, John; Higgins, James

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation

  12. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves?

    Science.gov (United States)

    Dainese, L; Biglioli, P

    2010-06-01

    Tissue-engineered heart valves (TEHVs) promise to be the ideal heart valve replacement: they have the potential to grow and repair within the host, to minimise inflammatory and immunological responses and to limit thromboembolism. Viable cells included in TEHVs can theoretically adapt to a growing and changing environment exactly as a native biological structure. This could be extremely important in case of paediatric applications, where reoperations are frequently required to replace failed valve substitutes or to accommodate the growth of the patient. At present time the biological matrix from allogenic or xenogenic decellularized valves represents an appropriate valve scaffold in TEHVs, showing theoretically an ability to grow and repair within the host. Viable cells included in extracellular valve matrix can theoretically adapt to a growing and changing environment like the native biological structure. The aim of this paper is to present a review concerning the use of homograft and allograft valves as an ideal substrate for cardiac engineered tissue valves that represent an exciting possibility for in situ regeneration and repair of heart valves.

  13. A review of fibrin and fibrin composites for bone tissue engineering.

    Science.gov (United States)

    Noori, Alireza; Ashrafi, Seyed Jamal; Vaez-Ghaemi, Roza; Hatamian-Zaremi, Ashraf; Webster, Thomas J

    2017-01-01

    Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the

  14. A comparison of the role of beamwidth in biological and engineered sonar.

    Science.gov (United States)

    Todd, Bryan Donald; Mueller, Rolf

    2017-11-13

    Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In nature, biosonar is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and ears) representing bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large, if not wider, than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches. © 2017 IOP Publishing Ltd.

  15. 77 FR 66464 - Federal Acquisition Regulation; Submission for OMB Review; Value Engineering Requirements

    Science.gov (United States)

    2012-11-05

    ... Regulation; Submission for OMB Review; Value Engineering Requirements AGENCIES: Department of Defense (DOD... approved information collection requirement concerning Value Engineering Requirements. A notice was...: Submit comments identified by Information Collection 9000- 0027, Value Engineering Requirements, by any...

  16. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  17. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  18. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  19. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    Science.gov (United States)

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  20. A review of engineered zirconia surfaces in biomedical applications

    OpenAIRE

    Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu

    2017-01-01

    Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influenc...

  1. Postmortem Reviews: Purpose and Approaches in Software Engineering

    OpenAIRE

    Dingsøyr, Torgeir

    2005-01-01

    Conducting postmortems is a simple and practical method for organisational learning. Yet, not many companies have implemented such practices, and in a survey, few expressed satisfaction with how postmortems were conducted. In this article, we discuss the importance of postmortem reviews as a method for knowledge sharing in software projects, and give an overview of known such processes in the field of software engineering. In particular, we present three lightweight methods for conducting pos...

  2. A Review of Deterministic Optimization Methods in Engineering and Management

    Directory of Open Access Journals (Sweden)

    Ming-Hua Lin

    2012-01-01

    Full Text Available With the increasing reliance on modeling optimization problems in practical applications, a number of theoretical and algorithmic contributions of optimization have been proposed. The approaches developed for treating optimization problems can be classified into deterministic and heuristic. This paper aims to introduce recent advances in deterministic methods for solving signomial programming problems and mixed-integer nonlinear programming problems. A number of important applications in engineering and management are also reviewed to reveal the usefulness of the optimization methods.

  3. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  4. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    OpenAIRE

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2014-01-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classic...

  5. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    Science.gov (United States)

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    Science.gov (United States)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1992-10-01

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  9. The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors.

    Science.gov (United States)

    Boudry, Maarten; Pigliucci, Massimo

    2013-12-01

    The scientific study of living organisms is permeated by machine and design metaphors. Genes are thought of as the "blueprint" of an organism, organisms are "reverse engineered" to discover their functionality, and living cells are compared to biochemical factories, complete with assembly lines, transport systems, messenger circuits, etc. Although the notion of design is indispensable to think about adaptations, and engineering analogies have considerable heuristic value (e.g., optimality assumptions), we argue they are limited in several important respects. In particular, the analogy with human-made machines falters when we move down to the level of molecular biology and genetics. Living organisms are far more messy and less transparent than human-made machines. Notoriously, evolution is an opportunistic tinkerer, blindly stumbling on "designs" that no sensible engineer would come up with. Despite impressive technological innovation, the prospect of artificially designing new life forms from scratch has proven more difficult than the superficial analogy with "programming" the right "software" would suggest. The idea of applying straightforward engineering approaches to living systems and their genomes-isolating functional components, designing new parts from scratch, recombining and assembling them into novel life forms-pushes the analogy with human artifacts beyond its limits. In the absence of a one-to-one correspondence between genotype and phenotype, there is no straightforward way to implement novel biological functions and design new life forms. Both the developmental complexity of gene expression and the multifarious interactions of genes and environments are serious obstacles for "engineering" a particular phenotype. The problem of reverse-engineering a desired phenotype to its genetic "instructions" is probably intractable for any but the most simple phenotypes. Recent developments in the field of bio-engineering and synthetic biology reflect these

  10. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  11. Radionuclides in biology and medicine-review and future

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, J.R. [Cameron Consultant, Lone Rock, WI (United States)

    1996-12-31

    Radioactivity was discovered by Becquerel in France on March 1, 1896. It is appropriate in this centennial year to review its history, especially its applications in biology and medicine. Its future is currently {open_quotes}under a cloud{close_quotes} because of the exaggerated fear of health risks from low-level radioactivity. The author is optimistic about its future, but one will have to wait a few decades for the cloud of ignorance to pass and the sunshine of education about radiation to greatly reduce radiation phobia.

  12. Radionuclides in biology and medicine-review and future

    International Nuclear Information System (INIS)

    Cameron, J.R.

    1996-01-01

    Radioactivity was discovered by Becquerel in France on March 1, 1896. It is appropriate in this centennial year to review its history, especially its applications in biology and medicine. Its future is currently open-quotes under a cloudclose quotes because of the exaggerated fear of health risks from low-level radioactivity. The author is optimistic about its future, but one will have to wait a few decades for the cloud of ignorance to pass and the sunshine of education about radiation to greatly reduce radiation phobia

  13. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  14. Inverse Problems in Systems Biology: A Critical Review.

    Science.gov (United States)

    Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola

    2018-01-01

    Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.

  15. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  16. Proceedings of the 8. Mediterranean Conference on Medical and Biological Engineering and Computing (Medicon '98)

    International Nuclear Information System (INIS)

    Christofides, Stelios; Pattichis, Constantinos; Schizas, Christos; Keravnou-Papailiou, Elpida; Kaplanis, Prodromos; Spyros, Spyrou; Christodoulides, George; Theodoulou, Yiannis

    1998-01-01

    Medicon '98 is the eighth in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon '98 is to provide updated information on the state of the art on medical and biological engineering and computing. Medicon '98 was held in Lemesos, Cyprus, between 14-17 June, 1998. The full papers of the proceedings were published on CD and consisted of 190 invited and submitted papers. A book of abstracts was also published in paper form and was available to all the participants. Twenty seven papers fall within the scope of INIS and are dealing with Nuclear Medicine,Computerized Tomography, Radiology, Radiotherapy, Magnetic Resonance Imaging and Personnel Dosimetry (eds)

  17. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  18. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  19. Basic biology of Pneumocystis carinii: a mini review

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2005-12-01

    Full Text Available Basic aspects of cell biology of Pneumocystis carinii are reviewed with major emphasis on its life cycle and the structural organization of the trophozoites and cyst forms. Initially considered as a protozoan it is now established that Pneumocystis belongs to the Fungi Kingdom. Its life cycle includes two basic forms: (a trophozoites, which are haploid cells that divide by binary fission and may conjugate with each other forming an early procyst and (b cysts where division takes place through a meiotic process with the formation of eight nuclei followed by cytoplasmic delimitation and formation of intracystic bodies which are subsequently released and transformed into trophozoites. Basic aspects of the structure of the two developmental stages of P. carinii are reviewed.

  20. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli

    International Nuclear Information System (INIS)

    Whitaker, W. Brian; Bennett, R. Kyle

    2016-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. In conclusion, by incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  1. Laser Surface Engineering of Magnesium Alloys: A Review

    Science.gov (United States)

    Singh, Ashish; Harimkar, Sandip P.

    2012-06-01

    Magnesium (Mg) and its alloys are well known for their high specific strength and low density. However, widespread applications of Mg alloys in structural components are impeded by their insufficient wear and corrosion resistance. Various surface engineering approaches, including electrochemical processes (plating, conversion coatings, hydriding, and anodizing), gas-phase deposition (thermal spray, chemical vapor deposition, physical vapor deposition, diamond-like coatings, diffusion coatings, and ion implantation), and organic polymer coatings (painting and powder coating), have been used to improve the surface properties of Mg and its alloys. Recently, laser surface engineering approaches are attracting significant attention because of the wide range of possibilities in achieving the desired microstructural and compositional modifications through a range of laser-material interactions (surface melting, shock peening, and ablation). This article presents a review of various laser surface engineering approaches such as laser surface melting, laser surface alloying, laser surface cladding, laser composite surfacing, and laser shock peening used for surface modification of Mg alloys. The laser-material interactions, microstructural/compositional changes, and properties development (mostly corrosion and wear resistance) accompanied with each of these approaches are reviewed.

  2. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2017-02-01

    Full Text Available Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.

  3. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments.

    Science.gov (United States)

    Lee, Kangwon; Silva, Eduardo A; Mooney, David J

    2011-02-06

    The identification and production of recombinant morphogens and growth factors that play key roles in tissue regeneration have generated much enthusiasm and numerous clinical trials, but the results of many of these trials have been largely disappointing. Interestingly, the trials that have shown benefit all contain a common denominator, the presence of a material carrier, suggesting strongly that spatio-temporal control over the location and bioactivity of factors after introduction into the body is crucial to achieve tangible therapeutic effect. Sophisticated materials systems that regulate the biological presentation of growth factors represent an attractive new generation of therapeutic agents for the treatment of a wide variety of diseases. This review provides an overview of growth factor delivery in tissue engineering. Certain fundamental issues and design strategies relevant to the material carriers that are being actively pursued to address specific technical objectives are discussed. Recent progress highlights the importance of materials science and engineering in growth factor delivery approaches to regenerative medicine.

  4. The evidence for biologic immunotherapy in Sarcoidosis: A systematic review

    Directory of Open Access Journals (Sweden)

    Pooja Shah

    2017-09-01

    Full Text Available Background Sarcoidosis is a chronic inflammatory disease with a myriad of clinical manifestations. Treatment involves immunosuppression with corticosteroids or steroid-sparing agents. A proportion of patients does not respond to or are intolerant to therapy. Targeted immunotherapy with biologic agents has emerged as a novel approach with plausible mechanistic reasons to warrant study. Aims The aim of this review was to evaluate the evidence for the efficacy of biological therapy in sarcoidosis. Methods We conducted a systematic literature review and meta-analysis of all published randomised-controlled trials (RCT evaluating biological therapy in sarcoidosis, using MEDLINE and Embase databases, through to September 2017. The search terms included sarcoidosis, infliximab, adalimumab, etanercept, golimumab, certolizumab, rituximab, abatacept, tocilizumab, anakinra, ustekinumab, secukinumab. Only articles reporting RCTs were selected. Improvements in respiratory disease were assessed by changes in forced vital capacity (FVC by weighted mean difference (WMD. There were insufficient data on outcome measures in other organ systems to comparatively assess efficacy. Results The search identified 2,324 studies of which only 5 provided relevant and original data. This comprised a total of 364 patients, evaluating pulmonary, cutaneous and ocular sarcoidosis. One study in pulmonary disease and one study in cutaneous disease demonstrated improvements in the primary outcome. In pulmonary disease, meta-analysis of the treatment effect of anti-TNF therapy versus placebo on FVC revealed a WMD of 1.69 per cent (95 per cent confidence interval, 1.44–1.94. Conclusion There are insufficient data to suggest the long-term efficacy of anti-TNFα inhibitors in the treatment of sarcoidosis. This may be due to heterogeneity, small sample sizes and the lack of consistent reporting of outcome measures.

  5. A review of biological sulfate conversions in wastewater treatment.

    Science.gov (United States)

    Hao, Tian-wei; Xiang, Peng-yu; Mackey, Hamish R; Chi, Kun; Lu, Hui; Chui, Ho-kwong; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-11-15

    Treatment of waters contaminated with sulfur containing compounds (S) resulting from seawater intrusion, the use of seawater (e.g. seawater flushing, cooling) and industrial processes has become a challenging issue since around two thirds of the world's population live within 150 km of the coast. In the past, research has produced a number of bioengineered systems for remediation of industrial sulfate containing sewage and sulfur contaminated groundwater utilizing sulfate reducing bacteria (SRB). The majority of these studies are specific with SRB only or focusing on the microbiology rather than the engineered application. In this review, existing sulfate based biotechnologies and new approaches for sulfate contaminated waters treatment are discussed. The sulfur cycle connects with carbon, nitrogen and phosphorus cycles, thus a new platform of sulfur based biotechnologies incorporating sulfur cycle with other cycles can be developed, for the removal of sulfate and other pollutants (e.g. carbon, nitrogen, phosphorus and metal) from wastewaters. All possible electron donors for sulfate reduction are summarized for further understanding of the S related biotechnologies including rates and benefits/drawbacks of each electron donor. A review of known SRB and their environmental preferences with regard to bioreactor operational parameters (e.g. pH, temperature, salinity etc.) shed light on the optimization of sulfur conversion-based biotechnologies. This review not only summarizes information from the current sulfur conversion-based biotechnologies for further optimization and understanding, but also offers new directions for sulfur related biotechnology development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Aplicación de biomateriales de base biológica, moléculas bioactivas e ingeniería de tejidos en cirugía plástica periodontal: Una revisión Application of biological based biomaterials, bioactive molecules and tissue engineering in periodontal plastic surgery: A review

    Directory of Open Access Journals (Sweden)

    JC Durán Yaneth

    2012-12-01

    Full Text Available Objetivo: Describir, clasificar y discutir las indicaciones de los biomateriales de base biológica, moléculas bioactivas e ingeniería de tejidos que se están usando para el manejo de recesiones y aumento de encía en cirugía plástica periodontal. En esta revisión de la literatura, se utilizó una combinación de los términos de búsqueda específicos que consideraran los materiales en revisión, para el aumento de encía adherida, y el recubrimiento radicular. Materiales y Métodos: Se usaron las siguientes fuentes: Medline, Biblioteca Cochrane, y búsqueda manual de revistas específicas como el Journal of Periodontology, International Journal of Periodontics and Restorative Dentistry y Journal of Clinical Periodontology entre años 1985 y 2011. Se revisaron un total de 117 artículos y se seleccionaron 74 entre estudios clínicos controlados, estudios clínicos randomizados, reportes de casos y estudios en animales. Los artículos fueron revisados por los autores y aceptados por consenso para su discusión. Conclusiones: 1 Existe una serie de materiales que presentan gran potencial y podrían ser una alternativa viable a los injertos autógenos, pero se requiere más estudios a largo plazo. 2 Existe necesidad de estudios con la investigación de estos procedimientos en relación a resultados orientados a la estabilidad, seguridad y efectividad de los diferentes materiales existentes.Objective: To describe, classify and discuss the clinical applications of biologically based biomaterials, bioactive molecules and tissue engineering being utilized in gingival recession therapy and gingival augmentation procedures in plastic periodontal surgery. In this literature review, a combination of specific search key words were used, including materials being reviewed, indicated for gingival augmentation and root coverage procedures. Materials and Methods: The following sources were consulted: Medline, Cochrane Library and manual search of specific

  7. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    Science.gov (United States)

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  9. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  10. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology

    Science.gov (United States)

    Sewell-Loftin, M.K.; Chun, Young Wook; Khademhosseini, Ali; Merryman, W. David

    2012-01-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation (EMT). By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue engineered heart valve may one day be realized. A viable tissue engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children. PMID:21751069

  11. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology.

    Science.gov (United States)

    Sewell-Loftin, M K; Chun, Young Wook; Khademhosseini, Ali; Merryman, W David

    2011-10-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.

  12. 2014 Space Human Factors Engineering Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2014-01-01

    The 2014 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 17, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated research plans for the Risk of Incompatible Vehicle/Habitat Design (HAB Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP also received a status update on the Risk of Inadequate Critical Task Design (Task Risk), the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), and the Risk of Inadequate Human-Computer Interaction (HCI Risk).

  13. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    Parrott, L.J.; Lawrence, C.D.

    1992-01-01

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  14. Scrutinizing Systematic Literature Review Process in Software Engineering

    Directory of Open Access Journals (Sweden)

    Zlatko Stapic

    2016-02-01

    Full Text Available Performing the Systematic Literature Review (SLR in the turbulent field of Software Engineering (SE brings different obstacles and uncertainties. The commonly used guidelines for performing the SLR in this field are adapted from health sciences and presented by Kitchenham and Charters in 2007. This paper follows the Kitchenham’s three-phases-review-process and fulfils it with the findings, observations and recommendations from other influential authors in the field. The process of SLR is observed from the perspective of appliance in the field of SE and supplemented by the important precautious measures that should be undertaken by the authors performing it. Thus, this paper aims to present the state-of-the-art in performing the SLR in SE

  15. Tissue engineering for human urethral reconstruction: systematic review of recent literature.

    Science.gov (United States)

    de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O

    2015-01-01

    Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.

  16. An Alternative Perspective for Malaysian Engineering Education: A Review from Year 2000-2012

    Science.gov (United States)

    Jayarajah, Kamaleswaran; Saat, Rohaida Mohd; Rauf, Rose Amnah Abdul

    2013-01-01

    The purpose of this study is to explore the research base of engineering education in the "Journal of Engineering Education" ("JEE") through an analysis review of articles for a 12-year period, from 2000 to 2012. The research base review focuses on identifying five characteristics of engineering education: (a) temporal…

  17. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    Science.gov (United States)

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search

  18. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  19. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  20. BOOK REVIEW Handbook of Physics in Medicine and Biology Handbook of Physics in Medicine and Biology

    Science.gov (United States)

    Tabakov, Slavik

    2010-11-01

    This is a multi-author handbook (66 authors) aiming to describe various applications of physics to medicine and biology, from anatomy and physiology to medical equipment. This unusual reference book has 44 chapters organized in seven sections: 1. Anatomical physics; 2. Physics of perception; 3. Biomechanics; 4. Electrical physics; 5. Diagnostic physics; 6. Physics of accessory medicine; 7. Physics of bioengineering. Each chapter has separate page numbering, which is inconvenient but understandable with the number of authors. Similarly there is some variation in the emphasis of chapters: for some the emphasis is more technical and for others clinical. Each chapter has a separate list of references. The handbook includes hundreds of diagrams, images and tables, making it a useful tool for both medical physicists/engineers and other medical/biology specialists. The first section (about 40 pages) includes five chapters on physics of the cell membrane; protein signaling; cell biology and biophysics of the cell membrane; cellular thermodynamics; action potential transmission and volume conduction. The physics of these is well explained and illustrated with clear diagrams and formulae, so it could be a suitable reference for physicists/engineers. The chapters on cellular thermodynamics and action potential transmission have a very good balance of technical/clinical content. The second section (about 85 pages) includes six chapters on medical decision making; senses; somatic senses: touch and pain; hearing; vision; electroreception. Again these are well illustrated and a suitable reference for physicists/engineers. The chapter on hearing stands out with good balance and treatment of material, but some other chapters contain less physics and are close to typical physiological explanations. One could query the inclusion of the chapter on medical decision making, which also needs more detail. The third section (about 80 pages) includes eight chapters on biomechanics

  1. Brevibacillus as a biological tool: a short review.

    Science.gov (United States)

    Panda, Amrita Kumari; Bisht, Satpal Singh; DeMondal, Surajit; Senthil Kumar, N; Gurusubramanian, G; Panigrahi, Ashok Kumar

    2014-04-01

    The significance of Brevibacillus has been documented scientifically in the published literature and commercially in heterologous recombinant protein catalogs. Brevibacillus is one of the most widespread genera of Gram-positive bacteria, recorded from the diverse environmental habitats. The high growth rate, better transformation efficiency by electroporation, availability of shuttle vectors, production of negligible amount of extracellular protease, and the constitutive expression of heterologous proteins make some strains of this genus excellent laboratory models. Regarding biotechnological applications, this genus continues to be a source of various enzymes of great biotechnological interest due to their ability to biodegrade low density polyethylene, ability to act as a candidate bio-control agent, and more recently acknowledged as a tool for the overexpression. This article reviews the properties of Brevibacillus spp. as better biological tools with varied applications.

  2. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis.

    Science.gov (United States)

    Nguyen, Lich Thi; Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Saibaba, Balaji; Ahn, Moo-Eob; Lee, Sang-Soo

    2017-03-12

    Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.).

  4. A review on biological and chemical diversity in Berberis (Berberidaceae)

    Science.gov (United States)

    Srivastava, Sharad; Srivastava, Manjoosha; Misra, Ankita; Pandey, Garima; Rawat, AKS

    2015-01-01

    Berberis is an important genus and well known in the Indian as well as European systems of traditional medicine. It is used since ancient times for curing eye disease, fever, jaundice, rheumatism, vomiting during pregnancy, kidney and gall balder stones and various other ailments due to the presence of biologically active alkaloid berberine. Action of the root extracts of few species are believed to be as powerful as quinine in the treatment of malarial fever. A plethora of literature pertaining to the taxonomy, biology, chemistry, traditional and ethnic uses of Berberis in different countries and indigenous cultures was collected by both offline (library, journals, textbooks etc.) and online mode (electronic search of available databases). In addition to this, books on traditional medicine and ethno pharmacological knowledge were also referred to extract ancient uses of Berberis in different traditional medicine systems. Most of the folklore, traditional and ethno botanical claims about Berberis species were validated by broad spectrum in vitro and vivo pharmacological studies. The present article summarizes its usage in eye and liver disorder, fever, kidney and gall stones along with anticancer activity. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. PMID:26535033

  5. Review: Bioenergetic Fields and Their Biologic Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Zahra Movaffaghi

    2007-04-01

    Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.

  6. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  7. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  8. Independent engineering review of the Hanford Waste Vitrification System

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs

  9. Towards biologically relevant synthetic designer matrices in 3D bioprinting for tissue engineering and regenerative medicine

    KAUST Repository

    Costa, Rúben M.

    2017-05-12

    3D bioprinting is one of the most promising technologies in tissue engineering and regenerative medicine. As new printing techniques and bioinks are getting developed, new cellular constructs with high resolution and functionality arise. Different to bioinks of animal, algal or plant origin, synthesized bioinks are proposed as superior biomaterials because their characteristics are fully under control. In this review, we will highlight the potential of synthetic biomaterials to be used as bioinks in 3D bioprinting to produce functionally enhanced matrices.

  10. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    Science.gov (United States)

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using 13 C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    . With the progress in molecular biology it has become possible to optimize industrial fermentations through introduction of directed genetic modification - an approach referred to as metabolic engineering. Furthermore, as a consequence of large sequencing programs the complete genomic sequence has become available...... for an increasing number of microorganisms. This has resulted in substantial research efforts in assigning function to all identified open reading frames - referred to as functional genomics. In both metabolic engineering and functional genomics there is a trend towards application of a macroscopic view on cell......Microbial physiology has traditionally played a very important role in both fundamental research and in industrial applications of microorganisms. The classical approach in microbial physiology has been to analyze the role of individual components (genes or proteins) in the overall cell function...

  12. Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli.

    Directory of Open Access Journals (Sweden)

    Jacob Beal

    Full Text Available We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.

  13. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    Science.gov (United States)

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  14. The role of fractional calculus in modeling biological phenomena: A review

    Science.gov (United States)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  15. Biological Markers for Pulpal Inflammation: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Dan-Krister Rechenberg

    Full Text Available Pulpitis is mainly caused by an opportunistic infection of the pulp space with commensal oral microorganisms. Depending on the state of inflammation, different treatment regimes are currently advocated. Predictable vital pulp therapy depends on accurate determination of the pulpal status that will allow repair to occur. The role of several players of the host response in pulpitis is well documented: cytokines, proteases, inflammatory mediators, growth factors, antimicrobial peptides and others contribute to pulpal defense mechanisms; these factors may serve as biomarkers that indicate the status of the pulp. Therefore, the aim of this systematic review was to evaluate the presence of biomarkers in pulpitis.The electronic databases of MEDLINE, EMBASE, Scopus and other sources were searched for English and non-English articles published through February 2015. Two independent reviewers extracted information regarding study design, tissue or analyte used, outcome measures, results and conclusions for each article. The quality of the included studies was assessed using a modification of the Newcastle-Ottawa-Scale.From the initial 847 publications evaluated, a total of 57 articles were included in this review. In general, irreversible pulpitis was associated with different expression of various biomarkers compared to normal controls. These biomarkers were significantly expressed not only in pulp tissue, but also in gingival crevicular fluid that can be collected non-invasively, and in dentin fluid that can be analyzed without extirpating the entire pulpal tissue. Such data may then be used to accurately differentiate diseased from healthy pulp tissue. The interplay of pulpal biomarkers and their potential use for a more accurate and biologically based diagnostic tool in endodontics is envisaged.

  16. 77 FR 18268 - Proposal Review Panel for Engineering Education and Centers; Notice of Meeting

    Science.gov (United States)

    2012-03-27

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Engineering Education and Centers; Notice of... Science Foundation announces the following meeting: Name: Proposal Review Panel for Engineering Education... Meeting: NSF site visit to conduct a renewal review during year 6 of the award period as stipulated in the...

  17. Clay-based materials for engineered barriers: a review

    International Nuclear Information System (INIS)

    Lajudie, A.; Raynal, J.; Petit, J.C.; Toulhoat, P.

    1994-01-01

    The potential importance of backfilling and plugging in underground radioactive waste repositories has led different research institutions to carry out extensive studies of swelling clay materials for the development of engineered barriers in underground conditions. These materials should combine a variety of hydro-thermo-mechanical and geochemical properties: impermeability, swelling ability in order to fill all void space, heat transfer and retention capacity for the most noxious radionuclides. Smectite clays best exhibit these properties and most of the research effort has been devoted to this type of materials. In this paper, mineralogical composition, sodium or calcium content, thermo-hydro-mechanical properties, swelling pressure, hydraulic and thermal conductivity, and chemical properties of five smectite clays selected by five major nuclear countries are reviewed: Avonseal montmorillonite (Canada), MX 80 montmorillonite (Sweden), Montigel montmorillonite (Switzerland), S-2 montmorillonite (Spain), and Fo-Ca inter stratified kaolinite/beidellite (France). (J.S.). 29 refs., 5 figs., 3 tabs

  18. Teaching synthetic biology, bioinformatics and engineering to undergraduates: the interdisciplinary Build-a-Genome course.

    Science.gov (United States)

    Dymond, Jessica S; Scheifele, Lisa Z; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S; Boeke, Jef D

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into approximately 750-bp fragments. Once trained in assembly of such DNA "building blocks" by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular "lab meeting" sessions help prepare them for future roles in laboratory science.

  19. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Thomas, Edward Victor; Slepoy, Alexander; Zhang, Zhaoduo; May, Elebeoba Eni; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-12-01

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

  20. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

    Science.gov (United States)

    Dvořák, Pavel; Nikel, Pablo I; Damborský, Jiří; de Lorenzo, Víctor

    2017-11-15

    Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Review and application of group theory to molecular systems biology

    Directory of Open Access Journals (Sweden)

    Rietman Edward A

    2011-06-01

    Full Text Available Abstract In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  2. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  3. Review: Serial Femtosecond Crystallography: A Revolution in Structural Biology

    Science.gov (United States)

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-01-01

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. PMID:27143509

  4. Relationship between corrosion and the biological sulfur cycle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.I.; Pope, R.K.

    2000-04-01

    Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking, and stress-oriented hydrogen-induced cracking of susceptible metals and alloys. Even though the metabolic by-products of the biological sulfur cycle are extremely corrosive, there are no correlations between numbers and types of sulfur-related organisms and the probability or rate of corrosion, Determination of specific mechanisms for corrosion caused by microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by the variety of potential metabolic-energy sources and by-products; the coexistence of reduced and oxidized sulfur species; competing reactions with inorganic and organic compounds; and the versatility and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the environment. The complete sulfur cycle of oxidation and reduction reactions can take place in macroenvironments, including sewers and polluted harbors, or within the microenvironment of biofilms. In this review, reactions of sulfur and sulfur compounds resulting in corrosion were discussed in the context of environmental processes important to corrosion.

  5. Therapeutic biology of Jatropha curcas: a mini review.

    Science.gov (United States)

    Thomas, Reena; Sah, Nand K; Sharma, P B

    2008-08-01

    Jatropha curcas is a drought resistant, perennial plant that grows even in the marginal and poor soil. Raising Jatropha is easy. It keeps producing seeds for many years. In the recent years, Jatropha has become famous primarily for the production of biodiesel; besides this it has several medicinal applications, too. Most parts of this plant are used for the treatment of various human and veterinary ailments. The white latex serves as a disinfectant in mouth infections in children. The latex of Jatropha contains alkaloids including Jatrophine, Jatropham and curcain with anti-cancerous properties. It is also used externally against skin diseases, piles and sores among the domestic livestock. The leaves contain apigenin, vitexin and isovitexin etc. which along with other factors enable them to be used against malaria, rheumatic and muscular pains. Antibiotic activity of Jatropha has been observed against organisms including Staphylococcus aureus and Escherichia coli. There are some chemical compounds including curcin (an alkaloid) in its seeds that make it unfit for common human consumption. The roots are known to contain an antidote against snake venom. The root extract also helps to check bleeding from gums. The soap prepared from Jatropha oil is efficient against buttons. Many of these traditional medicinal properties of Jatropha curcas need to be investigated in depth for the marketable therapeutic products vis-à-vis the toxicological effects thereof. This mini review aims at providing brief biological significance of this plant along with its up-to-date therapeutic applications and risk factors.

  6. Synthesis and biological evaluation of chalcone derivatives (mini review).

    Science.gov (United States)

    Bukhari, Syed Nasir Abbas; Jasamai, Malina; Jantan, Ibrahim

    2012-11-01

    Chalcones are the principal precursors for the biosynthesis of flavonoids and isoflavonoids. A three carbon α, β-unsaturated carbonyl system constitutes chalcones. Chalcones are the condensation products of aromatic aldehyde with acetophenones in attendance of catalyst. They go through an assortment of chemical reactions and are found advantageous in synthesis of pyrazoline, isoxazole and a variety of heterocyclic compounds. In synthesizing a range of therapeutic compounds, chalcones impart key role. They have showed worth mentioning therapeutic efficacy for the treatment of various diseases. Chalcone based derivatives have gained heed since they own simple structures, and diverse pharmacological actions. A lot of methods and schemes have been reported for the synthesis of these compounds. Amongst all, Aldol condensation and Claisen-Schmidt condensation still grasp high up position. Other distinguished techniques include Suzuki reaction, Witting reaction, Friedel-Crafts acylation with cinnamoyl chloride, Photo-Fries rearrangement of phenyl cinnamates etc. These inventive techniques utilize various catalysts and reagents including SOCl(2) natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, Na(2)CO(3), PEG400, silicasulfuric acid, ZrCl(4) and ionic liquid etc. The development of better techniques for the synthesis of α, β- unsaturated carbonyl compounds is still in high demand. In brief, we have explained the methods and catalysts used in the synthesis of chalcones along with their biological activities in a review form to provide information for the development of new-fangled processes targeting better yield, less reaction time and least side effects with utmost pharmacological properties.

  7. 2015 Space Human Factors Engineering Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 2 - 3, 2015. The SRP reviewed the updated research plans for the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), the Risk of Inadequate Human-Computer Interaction (HCI Risk), and the Risk of Inadequate Mission, Process and Task Design (MPTask Risk). The SRP also received a status update on the Risk of Incompatible Vehicle/Habitat Design (Hab Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP is pleased with the progress and responsiveness of the SHFE team. The presentations were much improved this year. The SRP is also pleased with the human-centered design approach. Below are some of the more extensive comments from the SRP. We have also made comments in each section concerning gaps/tasks in each. The comments below reflect more significant changes that impact more than just one particular section.

  8. Environmental behavior of engineered nanomaterials in porous media: a review.

    Science.gov (United States)

    Park, Chang Min; Chu, Kyoung Hoon; Heo, Jiyong; Her, Namguk; Jang, Min; Son, Ahjeong; Yoon, Yeomin

    2016-05-15

    A pronounced increase in the use of nanotechnology has resulted in nanomaterials being released into the environment. Environmental exposure to the most common engineered nanomaterials (ENMs), such as carbon-based and metal-based nanomaterials, can occur directly via intentional injection for remediation purposes, release during the use of nanomaterial-containing consumer goods, or indirectly via different routes. Recent reviews have outlined potential risks assessments, toxicity, and life cycle analyses regarding ENM emission. In this review, inevitable release of ENMs and their environmental behaviors in aqueous porous media are discussed with an emphasis on influencing factors, including the physicochemical properties of ENMs, solution chemistry, soil hydraulic properties, and soil matrices. Major findings of laboratory column studies and numerical approaches for the transport of ENMs are addressed, and studies on the interaction between ENMs and heavy metal ions in aqueous soil environments are examined. Future research is also presented with specific research directions and outlooks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  10. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  11. Systematic literature reviews in software engineering: preliminary results from interviews with researchers

    OpenAIRE

    Ali Babar, Muhammad; Zhang, He

    2009-01-01

    peer-reviewed Systematic Literature Reviews (SLRs) have been gaining significant attention from software engineering researchers since 2004. Several researchers have reported their experiences of and lessons learned from applying systematic reviews to different subject matters in software engineering. However, there has been no attempt at independently exploring experiences and perceptions of the practitioners of systematic reviews in order to gain an in-depth understanding of various aspe...

  12. 76 FR 55389 - Federal Acquisition Regulation; Submission for OMB Review; Architect-Engineer Qualifications (SF...

    Science.gov (United States)

    2011-09-07

    ...; Submission for OMB Review; Architect-Engineer Qualifications (SF 330) AGENCIES: Department of Defense (DOD... extension of a previously approved information collection requirement for the Architect-Engineer... 330, Part I is used by all Executive agencies to obtain information from architect-engineer firms...

  13. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology.

    Science.gov (United States)

    Panagiotopoulou, O

    2009-01-01

    A fundamental research question for morphologists is how morphological variation in the skeleton relates to function. Traditional approaches have advanced our understanding of form-function relationships considerably but have limitations. Strain gauges can only record strains on a surface, and the geometry of the structure can limit where they can be bonded. Theoretical approaches, such as geometric abstractions, work well on problems with simple geometries and material properties but biological structures typically have neither of these. Finite element analysis (FEA) is a method that overcomes these problems by reducing a complex geometry into a finite number of elements with simple geometries. In addition, FEA allows strain to be modelled across the entire surface of the structure and throughout the internal structure. With advances in the processing power of computers, FEA has become more accessible and as such is becoming an increasingly popular tool to address questions about form-function relationships in development and evolution, as well as human biology generally. This paper provides an introduction to FEA including a review of the sequence of steps needed for the generation of biologically accurate finite element models that can be used for the testing of biological and functional morphology hypotheses.

  14. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  15. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    Science.gov (United States)

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  16. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  17. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Kevin B. Reed

    2018-03-01

    Full Text Available Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.

  18. The biological effects of ionising radiation on Crustaceans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Neil; Lerebours, Adélaïde [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom); Smith, Jim T. [School of Earth & Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire PO1 3QL (United Kingdom); Ford, Alex T., E-mail: alex.ford@port.ac.uk [Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY (United Kingdom)

    2015-10-15

    Highlights: • We comprehensively review the effects of ionising radiation in crustaceans. • Current environmental radioprotection levels found to be inadequate in some cases. • Mutation is shown to be a sensitive endpoint of radiation exposure. • Lowest observed effect dose rate varies by orders of magnitude. - Abstract: Historic approaches to radiation protection are founded on the conjecture that measures to safeguard humans are adequate to protect non-human organisms. This view is disparate with other toxicants wherein well-developed frameworks exist to minimise exposure of biota. Significant data gaps for many organisms, coupled with high profile nuclear incidents such as Chernobyl and Fukushima, have prompted the re-evaluation of our approach toward environmental radioprotection. Elucidating the impacts of radiation on biota has been identified as priority area for future research within both scientific and regulatory communities. The crustaceans are ubiquitous in aquatic ecosystems, comprising greater than 66,000 species of ecological and commercial importance. This paper aims to assess the available literature of radiation-induced effects within this subphylum and identify knowledge gaps. A literature search was conducted pertaining to radiation effects on four endpoints as stipulated by a number of regulatory bodies: mortality, morbidity, reproduction and mutation. A major finding of this review was the paucity of data regarding the effects of environmentally relevant radiation doses on crustacean biology. Extremely few studies utilising chronic exposure durations or wild populations were found across all four endpoints. The dose levels at which effects occur was found to vary by orders of magnitude thus presenting difficulties in developing phyla-specific benchmark values and reference levels for radioprotection. Based on the limited data, mutation was found to be the most sensitive endpoint of radiation exposure, with mortality the least sensitive

  19. Reverse engineering: A key component of systems biology to unravel global abiotic stress cross-talk

    Directory of Open Access Journals (Sweden)

    Swetlana eFriedel

    2012-12-01

    Full Text Available Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarised the available tools of reverse-engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i abscisic acid (ABA and jasmonic acid (JA hormonal cross-talks and (ii the central role of WRKY transcription factors, potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein-protein or transcription factor (TF-gene networks.

  20. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.

    Science.gov (United States)

    Sreejalekshmi, Kumaran G; Nair, Prabha D

    2011-02-01

    Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field. 2010 Wiley Periodicals, Inc.

  1. Biologic activity of cyclic and caged phosphates: a review.

    Science.gov (United States)

    Lorke, Dietrich E; Stegmeier-Petroianu, Anka; Petroianu, Georg A

    2017-01-01

    The recognition in the early 1960s by Morifusa Eto that tri-o-cresyl phosphate (TOCP) is hydroxylated by the cytochrome P450 system to an intermediate that spontaneously cyclizes to a neurotoxic phosphate (saligenin phosphate ester) ignited the interest in this group of compounds. Only the ortho isomer can cyclize and clinically cause Organo Phosphate Induced Delayed Neurotoxicity (OPIDN); the meta and para isomers of tri-cresyl phosphate are not neuropathic because they are unable to form stable cyclic saligenin phosphate esters. This review identifies the diverse biological effects associated with various cyclic and caged phosphates and phosphonates and their possible use. Cyclic compounds that inhibit acetylcholine esterase (AChE), such as salithion, can be employed as pesticides. Others are neurotoxic, most probably because of inhibition of neuropathy target esterase (NTE). Cyclic phosphates that inhibit lipases, the cyclipostins, possibly represent promising therapeutic avenues for the treatment of type 2 diabetes mellitus and/or microbial infections; those compounds inhibiting β-lactamase may prevent bacterial resistance against β-lactam antibiotics. Naturally occurring cyclic phosphates, such as cyclic AMP, cyclic phosphatidic acid and the ryanodine receptor modulator cyclic adenosine diphosphate ribose, play an important physiological role in signal transduction. Moreover, some cyclic phosphates are GABA-antagonists, while others are an essential component of Molybdenum-containing enzymes. Some cyclic phosphates (cyclophosphamide, ifosfamide) are clinically used in tumor therapy, while the coupling of therapeutic agents with other cyclic phosphates (HepDirect® Technology) allows drugs to be targeted to specific organs. Possible clinical applications of these compounds are considered. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics

    OpenAIRE

    Somvanshi, Pramod Rajaram; Venkatesh, K. V.

    2013-01-01

    Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level respo...

  3. The Problem of Engineering Creativity in Russia: A Critical Review

    Science.gov (United States)

    Kukushkin, Sergey; Churlyaeva, Natalya

    2012-01-01

    The problem of technological creativity in Russia is briefly discussed. Special attention is paid to the development of indigenous engineering corpus in unfavourable conditions and some reasons for engineers' low creativity are revealed. The Soviet system of engineering higher education (HE) is criticised as not focused on fostering creative…

  4. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  5. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Science.gov (United States)

    Tien, Shin-Ming; Hsu, Chih-Yuan; Chen, Bor-Sen

    2016-01-01

    Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  6. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Directory of Open Access Journals (Sweden)

    Shin-Ming Tien

    Full Text Available Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  7. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. © 2014 Wiley Periodicals, Inc.

  8. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  9. Biologics for rheumatoid arthritis: an overview of Cochrane reviews

    DEFF Research Database (Denmark)

    Singh, Jasvinder A; Christensen, Robin; Wells, George A

    2010-01-01

    the biologic disease-modifying anti-rheumatic drugs (DMARDs) are very effective in treating rheumatoid arthritis (RA), however there is a lack of head-to-head comparison studies.......the biologic disease-modifying anti-rheumatic drugs (DMARDs) are very effective in treating rheumatoid arthritis (RA), however there is a lack of head-to-head comparison studies....

  10. Euclea undulata Thunb.: Review of its botany, ethnomedicinal uses, phytochemistry and biological activities.

    Science.gov (United States)

    Maroyi, Alfred

    2017-11-01

    Euclea undulata (E. undulata) is traditionally used for the treatment of body pains, chest complaints, cough, diabetes, diarrhoea, headaches, heart diseases and toothaches in southern Africa. This study was aimed at reviewing the botany, ethnopharmacology and biological activities of E. undulata in southern Africa. Results presented in this study are based on review of literature using search engines such as Science Direct, Springerlink, Scopus, PubMed, Web of Science, BioMed Central and Google Scholar. Herbal medicine is prepared from the decoctions of the roots, bark and leaves, and extracts of these plant parts have demonstrated anticholinesterase, anti-inflammatory, antimicrobial, antimycobacterial, antiplasmodial, antioxidant and hypoglycaemic activities. Multiple classes of phytochemical compounds such alkaloids, diterpenes, fatty acids, flavonoids, glycosides, naphthoquinones, phenolics, phytosterols, reducing sugars, saponins and tannins have been isolated from the species. E. undulata has a lot of potential as herbal medicine in tropical Africa, and advanced research is required aimed at correlating its medicinal uses with the phytochemistry and pharmacological properties. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  11. A systematic literature review on reviews and meta-analyses of biologically based CAM-practices for cancer patients

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Lunde, Anita; Johannessen, Helle

    2010-01-01

    levels of evidence and were excluded from further evaluation. Among the 32 high-quality reviews the most reviewed practices were soy/plant hormones (7), Chinese herbal medicine (7), antioxidants (5) and mistletoe (4). Fifteen of the 32 reviews included data on the efficacy of biologically-based CAM......-practices against cancer, but none of the reviews concluded a positive effect on the cancer. Reviews including data on quality of life (10) and/or reduction of side effects (12) showed promising, but yet insufficient evidence for Chinese herbal medicine against pain  and side effects of chemotherapy, and mistletoe......Purpose To provide an overview and evaluate the evidence of biologically based CAM-practices for cancer patients. Methods Pubmed, Social Science Citation Index, AMED and the Cochrane library were systematically searched for reviews on effects of biologically based CAM-practices, including herbal...

  12. Boracéia Biological Station: an ornithological review

    Directory of Open Access Journals (Sweden)

    Vagner Cavarzere

    2010-01-01

    Full Text Available Boracéia Biological Station, near the city of Salesópolis, SP, is located in one of the most well-defined centers of endemism in eastern Brazil - the Serra do Mar Center. While the station was established only in 1954 under the auspices of the Museu de Zoologia da Universidade de São Paulo, the avifauna of this locality had already attracted the attention of ornithologists by the 1940s, when the first specimens were collected. Here we describe the ornithological history of the Boracéia Biological Station with a review of all the bird species recorded during more than 68 years, including recent transect and mist-netting records. Boracéia's records were found in museums, literature and unpublished reports that totaled 323 bird species when recent data is also considered. Of these, 117 are endemic to the Atlantic forest and 28 are threatened in the state. Although there are a few doubtful records that need to be checked, some species are the only sightings in the state. Boracéia includes a recently discovered species near the station site and is extremely important for the conservation of Atlantic forest birds.A Estação Biológica de Boracéia, localizada em Salesópolis, SP, situa-se na Serra do Mar, importante região biogeográfica e um dos centros de endemismo mais bem definidos do Brasil. Apesar de instituída em 1954, quando passou a pertencer ao Museu de Zoologia da Universidade de São Paulo, a avifauna desta localidade já era objeto de pesquisas desde a década de 1940, época em que foram realizadas as primeiras coletas de aves. Aqui é apresentada pela primeira vez uma revisão de todos os registros avifaunísticos realizados nessa localidade ao longo de mais de 68 anos assim como a adição de novos registros com base em dados coletados recentemente com transectos lineares e redes de neblina. Os registros para Boracéia estiveram representados em museus, na literatura e em dados não publicados que, somados aos registros

  13. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  14. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Pariksha J. Kondiah

    2016-11-01

    Full Text Available Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM, due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.

  15. Genetically Engineered Phages: a Review of Advances over the Last Decade

    Science.gov (United States)

    Pires, Diana P.; Sillankorva, Sanna; Azeredo, Joana

    2016-01-01

    SUMMARY Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work. PMID:27250768

  16. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.

    Science.gov (United States)

    Qazi, Taimoor H; Rai, Ranjana; Boccaccini, Aldo R

    2014-11-01

    Conducting polymers have found numerous applications as biomaterial components serving to effectively deliver electrical signals from an external source to the seeded cells. Several cell types including cardiomyocytes, neurons, and osteoblasts respond to electrical signals by improving their functional outcomes. Although a wide variety of conducting polymers are available, polyaniline (PANI) has emerged as a popular choice due to its attractive properties such as ease of synthesis, tunable conductivity, environmental stability, and biocompatibility. PANI in its pure form has exhibited biocompatibility both in vitro and in vivo, and has been combined with a host of biodegradable polymers to form composites having a range of mechanical, electrical, and surface properties. Moreover, recent studies in literature report on the functionalization of polyaniline oligomers with end segments that make it biodegradable and improve its biocompatibility, two properties which make these materials highly desirable for applications in tissue engineering. This review will discuss the features and properties of PANI based composites that make them effective biomaterials, and it provides a comprehensive summary of studies where the use of PANI as a biomaterial component has enhanced cellular function and behavior. We also discuss recent studies utilizing functionalized PANI oligomers, and conclude that electroactive PANI and its derivatives show great promise in eliciting favorable responses from various cell lines that respond to electrical stimuli, and are therefore effective biomaterials for the engineering of electrically responsive biological tissues and organs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  18. A Review of Research on Bird Impacting on Jet Engines

    Science.gov (United States)

    Jin, Yuecheng

    2018-03-01

    Bird strikes can lead to permanent deformations, sudden decrease of thrust, even engine failure during the flight. Bird strikes on rotating blades can also cause slices of birds hitting other parts which may lead to greater damages. Bird strikes cannot be completely avoided. However, reduction of bird impacting on jet engines can be achieved by suitable design and manufacturing, through the mathematical modelling, simulation analysis and practical experiment of jet engines.

  19. ERG [Engineering Review Group] review of the SRP [Salt Repository Project] salt irradiation effects program: Technical report

    International Nuclear Information System (INIS)

    Clark, D.E.

    1986-11-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1985 meeting of the ERG reviewed the Salt Repository Project (SRP) salt irradiation effects program. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  20. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  1. Review of Canadian Light Source facilities for biological applications

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaun; Wysokinski, Tomasz W.; Belev, George; Korbas, Malgorzata; Rosendahl, Scott M.

    2017-11-01

    The newly-created Biological and Life Sciences Department at the Canadian Light Source (CLS) encompasses four sets of beamlines devoted to biological studies ranging in scope from the atomic scale to cells, tissues and whole organisms. The Canadian Macromolecular Crystallography Facility (CMCF) consists of two beamlines devoted primarily to crystallographic studies of proteins and other macromolecules. The Mid-Infrared Spectromicroscopy (Mid-IR) beamline focusses on using infrared energy to obtain biochemical, structural and dynamical information about biological systems. The Bio-Medical Imaging and Therapy (BMIT) facility consists of two beamlines devoted to advanced imaging and X-ray therapy techniques. The Biological X-ray Absorption Spectroscopy (BioXAS) facility is being commissioned and houses three beamlines devoted to X-ray absorption spectroscopy and multi-mode X-ray fluorescence imaging. Together, these beamlines provide CLS Users with a powerful array of techniques to study today's most pressing biological questions. We describe these beamlines along with their current powerful features and envisioned future capabilities.

  2. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  3. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Fansler, Todd D. [Univ. of Wisconsin, Madison, WI (United States); Reuss, D. L. [Univ. of Michigan, Ann Arbor, MI (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sick, V. [Univ. of Michigan, Ann Arbor, MI (United States); Dahms, R. N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  5. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  6. Review of AIDS development. [airborne computers for reliability engineering

    Science.gov (United States)

    Vermeulen, H. C.; Danielsson, S. G.

    1981-01-01

    The operation and implementation of the aircraft integrated data system AIDS are described. The system is described as an engineering tool with strong emphasis on analysis of recorded information. The AIDS is primarily directed to the monitoring of parameters related to: the safety of the flight; the performance of the aircraft; the performance of the flight guidance system; and the performance and condition of the engines. The system provide short term trend analysis on a trend chart that is updated by the flight engineer on every flight that lasts more than 4 flight hours. Engine data prints are automatically presented during take-off and in the case of limit excedance, e.g., the print shows an automatically reported impending hotstarts on engine nr. 1. Other significant features are reported.

  7. Applying Peer Reviews in Software Engineering Education: An Experiment and Lessons Learned

    Science.gov (United States)

    Garousi, V.

    2010-01-01

    Based on the demonstrated value of peer reviews in the engineering industry, numerous industry experts have listed it at the top of the list of desirable development practices. Experience has shown that problems (defects) are eliminated earlier if a development process incorporates peer reviews and that these reviews are as effective as or even…

  8. Biologically Hazardous Agents at Work and Efforts to Protect Workers' Health: A Review of Recent Reports

    Directory of Open Access Journals (Sweden)

    Kyung-Taek Rim

    2014-06-01

    Full Text Available Because information on biological agents in the workplace is lacking, biological hazard analyses at the workplace to securely recognize the harmful factors with biological basis are desperately needed. This review concentrates on literatures published after 2010 that attempted to detect biological hazards to humans, especially workers, and the efforts to protect them against these factors. It is important to improve the current understanding of the health hazards caused by biological factors at the workplace. In addition, this review briefly describes these factors and provides some examples of their adverse health effects. It also reviews risk assessments, protection with personal protective equipment, prevention with training of workers, regulations, as well as vaccinations.

  9. A Brief Review of the Biology of Anorexia Nervosa

    DEFF Research Database (Denmark)

    Sjögren, Magnus

    2015-01-01

    Background: The etiology of Anorexia Nervosa (AN) is unknown. A stress model for AN and other Eating Disorders, has been proposed by Connan and depicts risk factors and precipitating events, including biological, but several steps in this have yet to be evidenced. In order to elucidate the biology...... PUBMED and the following search terms: “Anorexia Nervosa” and “biomarker” revealed 180 articles (8th of May 2015). Additional searches included the search terms “gene”, “genetic”, “epigenetic”, “appetite”, “hormone”, and a specific search on “biology” and “review”. Furthermore, articles of interest were...

  10. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.

    Science.gov (United States)

    Das, Arya A; Ajayakumar Darsana, T; Jacob, Elizabeth

    2017-03-01

    Experiments in systems biology are generally supported by a computational model which quantitatively estimates the parameters of the system by finding the best fit to the experiment. Mathematical models have proved to be successful in reverse engineering the system. The data generated is interpreted to understand the dynamics of the underlying phenomena. The question we have sought to answer is that - is it possible to use an agent-based approach to re-engineer a biological process, making use of the available knowledge from experimental and modelling efforts? Can the bottom-up approach benefit from the top-down exercise so as to create an integrated modelling formalism for systems biology? We propose a modelling pipeline that learns from the data given by reverse engineering, and uses it for re-engineering the system, to carry out in-silico experiments. A mathematical model that quantitatively predicts co-expression of EGFR-HER2 receptors in activation and trafficking has been taken for this study. The pipeline architecture takes cues from the population model that gives the rates of biochemical reactions, to formulate knowledge-based rules for the particle model. Agent-based simulations using these rules, support the existing facts on EGFR-HER2 dynamics. We conclude that, re-engineering models, built using the results of reverse engineering, opens up the possibility of harnessing the power pack of data which now lies scattered in literature. Virtual experiments could then become more realistic when empowered with the findings of empirical cell biology and modelling studies. Implemented on the Agent Modelling Framework developed in-house. C ++ code templates available in Supplementary material . liz.csir@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. A review of the taxonomic status and biology of the Cape Parrot ...

    African Journals Online (AJOL)

    A review of the taxonomic status and biology of the Cape Parrot Poicephalus robustus , with reference to the Brown-necked Parrot P. fuscicollis fuscicollis and the Grey-headed Parrot P. f. suahelicus.

  12. The Effectiveness of Engineering Workshops in Attracting Females into Engineering Fields: A Review of the Literature

    Science.gov (United States)

    Sinkele, Carrie Nicole; Mupinga, Davison M.

    2011-01-01

    All-girl engineering workshops are increasing in popularity as a means to attract females into the male-dominated field of engineering. However, the effectiveness of such workshops as a recruitment tool is unclear. This report summarizes several research studies on this topic with the intent of showing the effectiveness of such workshops and other…

  13. Biological control agent for mosquito larvae: Review on the killifish ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... Biological control of mosquito larvae by using fish has shown many advantages over ... number of malaria cases in India that has been reduced from 75 million to 150,000 and deaths from 750,000 to ... aquatic weeds and G. affinis on the mosquito larvae. In addition to that G. affinis has some adverse effects ...

  14. Biological treatment of crop residues for ruminant feeding: A review ...

    African Journals Online (AJOL)

    Crop residues are often referred to as 'lignocellulosics' as they are rich in cellulose which is bound with a biopolymer lignin. Rumen microbiota (bacteria, protozoa and fungi), even with their hydrolytic enzymes, are not very competent enough to break these bonds efficiently. Biological treatment of such crop residues using ...

  15. Systems Biology of lactic acid bacteria: a critical review.

    NARCIS (Netherlands)

    Teusink, B.; Bachmann, H.; Molenaar, D.

    2011-01-01

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation

  16. Matching concepts and phenomena: A review of Biological Autonomy

    NARCIS (Netherlands)

    Keijzer, Fred

    2016-01-01

    This paper discusses Moreno and Mossio’s book Biological autonomy: A philosophical and theoretical enquiry. The book provides an up to date overview of the authors’ work within the organizational approach to mind and life, which is linked to the work of Maturana and Varela but which is here

  17. Biological activities of species in the genus Tulbaghia : A review ...

    African Journals Online (AJOL)

    Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from ...

  18. Book Review: Abalone of the World: Biology, Fisheries and Culture ...

    African Journals Online (AJOL)

    Book Title: Abalone of the World: Biology, Fisheries and Culture. Book Authors: Edited by S.A. Shepherd, M.J. Tegner & S.A. Guzman del Proo. Fishing News Books (Division of Blackwell Scientific. Publications Ltd.) Oxford, U.K. (1992). 608 pages. ISBN 0-85238-181-6.

  19. Review of marine biological studies on the Guyana shelf

    NARCIS (Netherlands)

    Geijskes, D.C.

    1968-01-01

    Until recently biological research in the sea off Suriname had not received much attention. There was no fishery in the open sea and there was no incentive to investigate this unknown world. But in the last twenty years, experiments have gradually led to serious study of the subject. Before the

  20. Book Review Advances in Littorinid Biology. Proceedings of the ...

    African Journals Online (AJOL)

    Advances in Litturinid Biology, reflects the considerable range of research fields covered by the .... Five papers had an ecological or evolutionary ring to them. Hughes presents a little gem of a paper (is it coincidence that it was the opening paper?). which applies life-history theory to a comparison of popUlations, ecotypes ...

  1. Book Review Abalone of the World: Biology, Fisheries and Culture

    African Journals Online (AJOL)

    Edited by S.A. Shepherd, M.J. Tegner and S.A.. Guzman del Proo. Fishing News Books (Division of Blackwell Scientific. Publications ltd.) Oxford, U.K. (1992). 608 pages. Price: £65. ISBN 0-85238-181-6. Although this book originated from the First International. Symposium on Abalone Biology, which was held in La Paz,.

  2. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.

    Science.gov (United States)

    Valentin, Jolene E; Freytes, Donald O; Grasman, Jonathan M; Pesyna, Colin; Freund, John; Gilbert, Thomas W; Badylak, Stephen F

    2009-12-15

    Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron. The oxygen diffusivity was calculated from Fick's first law of diffusion. Each material permitted measurable oxygen diffusion. The diffusivity of SIS was found to be dependent on the direction of oxygen transfer; the oxygen transfer in the abluminal-to-luminal direction was significantly greater than the luminal-to-abluminal direction. The oxygen diffusivity of UBM and UBS were similar despite the presence of an intact basement membrane on the luminal surface of UBM. Dacron showed oxygen diffusivity values seven times greater than the ECM biomaterials. The current study showed that each material has unique oxygen diffusivity values, and these values may be dependent on the scaffold's ultrastructure.

  3. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI.

    Science.gov (United States)

    Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Gur, Tamer; Cowley, Andrew; Li, Weizhong; Uludag, Mahmut; Pundir, Sangya; Cham, Jennifer A; McWilliam, Hamish; Lopez, Rodrigo

    2015-07-01

    The European Bioinformatics Institute (EMBL-EBI-https://www.ebi.ac.uk) provides free and unrestricted access to data across all major areas of biology and biomedicine. Searching and extracting knowledge across these domains requires a fast and scalable solution that addresses the requirements of domain experts as well as casual users. We present the EBI Search engine, referred to here as 'EBI Search', an easy-to-use fast text search and indexing system with powerful data navigation and retrieval capabilities. API integration provides access to analytical tools, allowing users to further investigate the results of their search. The interconnectivity that exists between data resources at EMBL-EBI provides easy, quick and precise navigation and a better understanding of the relationship between different data types including sequences, genes, gene products, proteins, protein domains, protein families, enzymes and macromolecular structures, together with relevant life science literature. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    Science.gov (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  5. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    Science.gov (United States)

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  6. Book Review of "The Molecular Biology of Cancer" by Stella Pelengaris, Michael Khan (Editors

    Directory of Open Access Journals (Sweden)

    Schmidt Christian

    2007-11-01

    Full Text Available Abstract Here, a review of "The Molecular Biology of Cancer" (Stella Pelengaris and Michael Khan [Editors] is given. The detailed description of the book is provided here: Pelengaris S, Khan M (Eds: The Molecular Biology of Cancer; Blackwell Publishing, Oxford (U.K.; 2006. 531 pages, 214 illustrations, ISBN 9-78140-511-814-9, £31.99.

  7. NASA-universities relationships in aero/space engineering: A review of NASA's program

    Science.gov (United States)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  8. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    Full Text Available BACKGROUND: Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. RESULTS: The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters connected to a fixed output device (a logic inverter expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. CONCLUSIONS: Promoters activities (referred to a standard promoter can vary when they are measured via different reporter devices (up to 22%, when they are used within a two-expression-cassette system (up to 35% and when they drive another device in a functionally interconnected circuit (up to 44%. This paper

  9. Satellite Data for All? Review of Google Earth Engine for Archaeological Remote Sensing

    Directory of Open Access Journals (Sweden)

    Omar A. Alcover Firpi

    2016-11-01

    Full Text Available A review of Google Earth Engine for archaeological remote sensing using satellite data. GEE is a freely accessible software option for processing remotely sensed data, part of the larger Google suite of products.

  10. 77 FR 3844 - Agency Information Collection (Architect-Engineer Fee Proposal) Activity Under OMB Review

    Science.gov (United States)

    2012-01-25

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0208] Agency Information Collection (Architect--Engineer Fee Proposal) Activity Under OMB Review AGENCY: Veterans Health Administration... . Please refer to ``OMB Control No. 2900-0208.'' SUPPLEMENTARY INFORMATION: Titles: a. Architect--Engineer...

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  12. The Use of Motivation Theory in Engineering Education Research: A Systematic Review of Literature

    Science.gov (United States)

    Brown, Philip R.; McCord, Rachel E.; Matusovich, Holly M.; Kajfez, Rachel L.

    2015-01-01

    Motivation is frequently studied in the context of engineering education. However, the use of the term motivation can be inconsistent, both in how clearly it is defined and in how it is implemented in research designs and practice. This systematic literature review investigates the use of motivation across recent engineering education…

  13. Experimental investigation review of biodiesel usage in bus diesel engine

    OpenAIRE

    Kegl, Breda; Kegl, Marko

    2017-01-01

    This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions,...

  14. Tyche 3.0 Simulation Engine Project Review

    Science.gov (United States)

    2014-10-09

    the new C# version of the simulation engine showed a significant improvement in processing speed over the Visual Basic-based one, the speed ...over years with asset activities measured in days. Asset speeds were also fixed and based on distance travelled per day. There was no provision...their selections would then propagate from the TYI file to the Simulation Engine and then the output ( TYO ) file and run statistics. Timescale

  15. Review on study of multi-physics in environment engineering

    International Nuclear Information System (INIS)

    Liu Shanli; Zhao Jian; Sheng Jinchang

    2006-01-01

    This paper analyzes some problems on multi-field coupling ones between seepage mechanics and other physical and chemical processes (such as temperature field. stress field, solute transport. chemical action and so on) in environment engineering, it explains the research theory of multi-field coupling, it summarizes the abroad and domestic research about the model of multi-field problem and finally it looks into the future of research tendency in environment engineering. (authors)

  16. Report of the Review Committee of the R and D subjects on Computational Science and Engineering

    International Nuclear Information System (INIS)

    1999-08-01

    The Ad Hoc Review Committee composed of seven experts was set up under the Research Evaluation Committee of JAERI in order to review the R and D subjects to be implemented for five years starting in a 2000 fiscal year at the Center for promotion of Computational Science and Engineering. The review meeting took place on April 26, 1999. According to the review methods consisting of review items, points of review and review criteria given by the Research Evaluation Committee, the review was conducted based on the materials submitted in advance and presentations of CCSE. The Research Evaluation Committee received the review report and its explanations from the Review Committee on July 5. The Research Evaluation Committee has acknowledged appropriateness of the review results. This report describes the review results. (author)

  17. Propolis volatile compounds: chemical diversity and biological activity: a review

    OpenAIRE

    Bankova, Vassya; Popova, Milena; Trusheva, Boryana

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived...

  18. The genus Eremophila (Scrophulariaceae): an ethnobotanical, biological and phytochemical review.

    Science.gov (United States)

    Singab, Abdel Nasser; Youssef, Fadia S; Ashour, Mohamed L; Wink, Michael

    2013-09-01

    Eremophila (Scrophulariaceae) is an endemic Australian genus with 214 species, which is commonly known as Fuchsia bush, Emu bush or Poverty bush. Plants of this genus played an important role for the Australian Aborigines who used them widely for medicinal and ceremonial purposes. Many studies have been carried out on many species of this genus and have generated immense data about the chemical composition and corresponding biological activity of extracts and isolated secondary metabolites. Thorough phytochemical investigations of different Eremophila species have resulted in the isolation of more than 200 secondary metabolites of different classes with diterpenes as major constituents. Biological studies and traditional clinical practice demonstrated that Eremophila and its bioactive compounds possess various pharmacological properties. Plants were employed especially as a cardiotonic drug and also as potent anti-inflammatory, antimicrobial and antiviral agents. Further investigations are required to explore other Eremophila species, to evaluate the different biological activities of either their extracts or the isolated compounds and the possible underlying modes of action. © 2013 Royal Pharmaceutical Society.

  19. Electrical and Biological Effects of Transmission Lines: A Review.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  20. Experimental investigation review of biodiesel usage in bus diesel engine

    Directory of Open Access Journals (Sweden)

    Kegl Breda

    2017-01-01

    Full Text Available This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions, with special emphasis on the influence of low temperature on fueling. Furthermore, for each tested fuel the optimal injection pump timing is determined. The obtained optimal injection pump timings for individual fuels are then used to determine and discuss the most important injection and combustion characteristics, engine performance, as well as the emission, economy, and tribology characteristics of the engine at all modes of emission test cycles test. The results show that for each tested fuel it is possible to find the optimized injection pump timing, which enables acceptable engine characteristics at all modes of the emission test cycles test.

  1. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste

    Science.gov (United States)

    Dhamole, Pradip B.; D'Souza, S. F.; Lele, S. S.

    2015-04-01

    Huge amount of wastewater containing nitrogen is produced by various chemical and biological industries. Nitrogen is present in the form of ammonia, nitrate and nitrite. This review deals with treatment of nitrate based effluent using biological denitrification. Because of its adverse effect on aquatic life and human health, treatment of nitrate bearing effluents has become mandatory before discharge. Treatment of such wastes is a liability for the industries and incurs cost. However, the economics of the process can be controlled by selection of proper method and reduction in the operating cost. This paper reviews the advantages and disadvantages of different methods of nitrate removal with emphasis on biological denitrification. The cost of biological denitrification is controlled by the carbon source. Hence, use of alternative carbon sources such as agricultural wastes, industrial effluent or by products is reviewed in this paper. Policies for reducing the cost of nitrate treatment and enhancing the efficiency have been recommended.

  2. Ecological engineering to control bioclogging: an original field study coupling infiltration and biological measurements

    Science.gov (United States)

    Gette-bouvarot, Morgane; Mermillod-Blondin, Florian; Lassabatere, Laurent; Lemoine, Damien; Delolme, Cécile; Volatier, Laurence

    2014-05-01

    biomass, bacterial abundances, microbial enzymatic activities, EPS composition, and photosynthetic efficiency) with in situ hydraulic conductivity measurements (falling head method, five measures per enclosure at t0 and tf). Our results showed that some treatments could regulate benthic biofilm growth and improve infiltration rate. For instance, V. viviparus treatment resulted in a decrease in chlorophyll-a, EPS sugar and protein contents and an associated increase of infiltration rate, while it decreased in the control treatment. These results are very promising for the future development of ecological engineering solutions to prevent biological clogging in systems dedicated to infiltration. To our knowledge, this study is the first to highlight such potential role of macro-organisms under field conditions.

  3. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  4. Book review of "Harvestmen: The Biology of the Opiliones"

    Science.gov (United States)

    This is a review of the book Harvestmen by Pinto-da-Rocha et al (eds.), which is a wonderfully balanced and staggeringly complete treatment that covers the gauntlet of taxonomy and systematics, internal physiology, ecology, and behavior of Opiliones. In addition to the breadth of material presented ...

  5. Review of research on simulation engineering in FY2009

    International Nuclear Information System (INIS)

    2011-03-01

    Research on simulation engineering for nuclear applications, based on 'the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes results of the evaluation by the committee on the followings. (1) Research and development on simulation engineering performed at CCSE/JAEA in FY2009. (2) Research and development on simulation engineering performed at CCSE/JAEA in the period of the midterm plan (October 1st, 2005 - March 31st, 2010). (author)

  6. Synthesis and characterization of polyglycerols dendrimers for applications in tissue engineering biological

    International Nuclear Information System (INIS)

    Passos, E.D.; Queiroz, A.A.A. de

    2014-01-01

    Full text: Introduction: Over the last twenty years is the growing development in the manufacture of synthetic scaffold in tissue engineering applications. These new materials are based on polyglycerol dendrimers (PGLD's). PGLD's are highly functional polymers with hydroxymethyl side groups, fulfill all structural prerequisites to replace poly(ethylene glycol)s in medical applications. Furthermore, since these materials are based on naturally occurring compounds that degrades over time in the body and can be safely excreted. The objective of this work was the synthesis, physicochemical, biological characterization of HPGL's with potential use as scaffolds in tissue engineering. HPGL's with oligomeric cores, of diglycerol triglycerol and tetraglycerol was used. Theoretical and Experimental Simulation Details: The synthesis of PGLD procedures involves the etherification of glycerol through anionic polymerization of glycidol. The PGLD's were characterized by chromatographic techniques (SEC and HPLC), spectroscopic (FTIR, 1H-NMR and 13C - NMR) electrochemical (zeta potential) and thermal analysis (DSC and TGA) techniques. The structure- activity relationships (SAR's) of compound prototype and its analogs were studied to determine the generation number (G) of the molecule responsible for the biological activity on the adhesion and cell proliferation process. A detailed study of the structure of PGLD's of G=0-4 was performed using the Hyperchem 7. 5 and Gromacs 4 software packages. The biocompatibility studies were studied by scanning electron microscopy (SEM) and fluorescence microscopy (EPF) technique after PGLD (G=0-4) blood contact. The overall electro-negativity/total charge density, dipole moment, frontier orbital's (HOMO - LUMO) and electrostatic potential maps (EPM) were calculated. The most stable form of the resulting compounds was determined by estimating the hydration energy and energy conformation. Results and

  7. Rotary engine developments at Curtiss-Wright over the past 20 years and review of general aviation engine potential. [with direct chamber injection

    Science.gov (United States)

    Jones, C.

    1978-01-01

    The development of the rotary engine as a viable power plant capable of wide application is reviewed. Research results on the stratified charge engine with direct chamber injection are included. Emission control, reduced fuel consumption, and low noise level are among the factors discussed in terms of using the rotary engine in general aviation aircraft.

  8. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol

    Science.gov (United States)

    Jeandet, Philippe; Delaunois, Bertrand; Aziz, Aziz; Donnez, David; Vasserot, Yann; Cordelier, Sylvain; Courot, Eric

    2012-01-01

    Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines. PMID:22654481

  9. Review of Requirement Engineering Approaches for Software Product Lines

    OpenAIRE

    Blanes Dominguez, David; Insfrán Pelozo, César Emilio

    2011-01-01

    The Software Product Lines (SPL) paradigm is one of the most recent topics of interest for the software engineering community. On the one hand, the Software Product Lines is based on a reuse strategy with the aim to reduce the global time-to-market of the software product, to improve the software product quality, and to reduce the cost. On the other hand, traditional Requirement Engineering approaches could not be appropriated to deal with the new challenges that arises the SPL adoption. In t...

  10. Review of research on simulation engineering in FY2007

    International Nuclear Information System (INIS)

    2009-02-01

    Research on simulation engineering for nuclear applications, based on the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the result of the evaluation by the committee on the research on simulation engineering performed at CCSE/JAEA in FY2007. (author)

  11. A Review on Implications of Tissue Engineering in Different Fields of Dentistry

    Directory of Open Access Journals (Sweden)

    Fahime Tabatabaei

    2012-02-01

    Full Text Available Dentistry has been a field dominated by a constant improvement of synthetic biomaterials. Tissue engineering of tooth is coming to change the panel of the dental materials such as restorative materials and implants. Certainly, it is the largest transition in history of dental materials science in terms of accepting this new and exciting technology. The objective of this article is to present various implications of tissue engineering in different fields of dentistry. To achieve this goal, a review of the literature was carried out by using Medline database to search topics including "dental stem cells", "teeth tissue engineering", "regenerative dentistry", "oral surgery", "periodontal regeneration" and "regenerative endodontics". These searches were limited to articles published after the year 2000. On the basis of our literature review, we have found that although there are significant challenges in oral tissues engineering, engineered tissues will find many applications in dentistry within the next few years.

  12. Experimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.

    Science.gov (United States)

    Eom, Kilho; Yang, Jaemoon; Park, Jinsung; Yoon, Gwonchan; Soo Sohn, Young; Park, Shinsuk; Yoon, Dae Sung; Na, Sungsoo; Kwon, Taeyun

    2009-09-10

    Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  13. Prostaglandins - universal biological regulators in the human body (literature review

    Directory of Open Access Journals (Sweden)

    О. V. Tymoshchuk

    2018-02-01

    Full Text Available Recently, researchers of different industries pay great attention to the problem of prostaglandins. Objective: to study and systematize the basic questions of structure, biological action and metabolism of prostaglandins in the human body and using their analogues in pharmacy through the domestic and foreign literature data analysis. Prostaglandins – biologically active substances which are similar in effect to hormones, but are synthesized in cells of different tissues. Prostaglandins as universal cellular mediators are widely distributed in the body, synthesized in small amounts in almost all tissues, have both local and systemic effects. For each prostaglandin there is a target organ. On chemical structure they are small molecules related to eicosanoids - a group of fat-like substances (lipids. Depending on the chemical structure prostaglandins are divided into series (A, B, C, D, E, F, G, H, I and J and three groups (1–3; type F isomers are to be indicated by additional letters α and β. Prostaglandins have an extremely wide range of physiological effects in the body and have three main functions: supporting, molecular, neurotransmitter. Most prostaglandins interact with specific receptors of plasma membranes, but some prostaglandins (group A can act without receptors. There is no stock of prostaglandins in the body, their life cycle is short, and they are quickly produced in response to biological stimulants exposure, have their effect in extremely small quantity and are rapidly inactivated in the bloodstream. Due to the extremely rapid breakdown of prostaglandins in the body they work near their place of secretion. Preparations of prostaglandins and their derivatives are used in experimental and clinical medicine for abortion and induction of labor, treatment of stomach ulcers, asthma, certain heart diseases, congenital heart defects in newborns, glaucoma, atherosclerosis, rheumatic and neurological diseases, kidney diseases, diabetes

  14. Status, Biology, and Management of Ferruginous Hawks: A Review

    OpenAIRE

    United States Bureau of Land Management

    1994-01-01

    The purpose of this paper is to promote the wise management of ferruginous hawk habitat to enable the species to maintain or increase its population levels. Twenty-seven recommendations are presented, supported by reviews of population status, nesting chronology, nest site characteristics, food habits, and spatial considerations. This is followed by discussion of the impacts of human activities on the ferruginous hawk, such as urbanization, cultivation, grazing, land conversion, poisoning a...

  15. Nanotechnologies, engineered nanomaterials and occupational health and safety - A review

    NARCIS (Netherlands)

    Savolainen, K.; Pylkkänen, L.; Norppa, H.; Falck, G.; Lindberg, H.; Tuomi, T.; Vippola, M.; Alenius, H.; Hämeri, K.; Koivisto, J.; Brouwer, D.; Mark, D.; Bard, D.; Berges, M.; Jankowska, E.; Posniak, M.; Farmer, P.; Singh, R.; Krombach, F.; Bihari, P.; Kasper, G.; Seipenbusch, M.

    2010-01-01

    The significance of engineered nanomaterials (ENM) and nanotechnologies grows rapidly. Nanotechnology applications may have a positive marked impact on many aspects of on human every day life, for example by providing means for the production of clean energy and pure drinking water. Hundreds of

  16. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  17. The methods of formaldehyde emission testing of engine: A review

    Science.gov (United States)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  18. Training Software Developers in Usability Engineering: A Literature Review

    DEFF Research Database (Denmark)

    Bruun, Anders

    2010-01-01

    to fund usability specialists or comprehensive consultancy. Training of non-usability personnel in critical usability engineering methods has the potential of easing these challenges. It is, however, unknown how much and what kind of research that has been committed to novice training in UE methods...

  19. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  20. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  1. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  2. Role of Molecular Biology in Cancer Treatment: A Review Article.

    Science.gov (United States)

    Imran, Aman; Qamar, Hafiza Yasara; Ali, Qurban; Naeem, Hafsa; Riaz, Mariam; Amin, Saima; Kanwal, Naila; Ali, Fawad; Sabar, Muhammad Farooq; Nasir, Idrees Ahmad

    2017-11-01

    Cancer is a genetic disease and mainly arises due to a number of reasons include activation of onco-genes, malfunction of tumor suppressor genes or mutagenesis due to external factors. This article was written from the data collected from PubMed, Nature, Science Direct, Springer and Elsevier groups of journals. Oncogenes are deregulated form of normal proto-oncogenes required for cell division, differentiation and regulation. The conversion of proto-oncogene to oncogene is caused due to translocation, rearrangement of chromosomes or mutation in gene due to addition, deletion, duplication or viral infection. These oncogenes are targeted by drugs or RNAi system to prevent proliferation of cancerous cells. There have been developed different techniques of molecular biology used to diagnose and treat cancer, including retroviral therapy, silencing of oncogenes and mutations in tumor suppressor genes. Among all the techniques used, RNAi, zinc finger nucleases and CRISPR hold a brighter future towards creating a Cancer Free World.

  3. Systems biology of lactic acid bacteria: a critical review.

    Science.gov (United States)

    Teusink, Bas; Bachmann, Herwig; Molenaar, Douwe

    2011-08-30

    Understanding the properties of a system as emerging from the interaction of well described parts is the most important goal of Systems Biology. Although in the practice of Lactic Acid Bacteria (LAB) physiology we most often think of the parts as the proteins and metabolites, a wider interpretation of what a part is can be useful. For example, different strains or species can be the parts of a community, or we could study only the chemical reactions as the parts of metabolism (and forgetting about the enzymes that catalyze them), as is done in flux balance analysis. As long as we have some understanding of the properties of these parts, we can investigate whether their interaction leads to novel or unanticipated behaviour of the system that they constitute. There has been a tendency in the Systems Biology community to think that the collection and integration of data should continue ad infinitum, or that we will otherwise not be able to understand the systems that we study in their details. However, it may sometimes be useful to take a step back and consider whether the knowledge that we already have may not explain the system behaviour that we find so intriguing. Reasoning about systems can be difficult, and may require the application of mathematical techniques. The reward is sometimes the realization of unexpected conclusions, or in the worst case, that we still do not know enough details of the parts, or of the interactions between them. We will discuss a number of cases, with a focus on LAB-related work, where a typical systems approach has brought new knowledge or perspective, often counterintuitive, and clashing with conclusions from simpler approaches. Also novel types of testable hypotheses may be generated by the systems approach, which we will illustrate. Finally we will give an outlook on the fields of research where the systems approach may point the way for the near future.

  4. Molecular Biology: Conference on Genetic Engineering Techniques (2nd) Held in London (United Kingdom) on 20-21 November 1986.

    Science.gov (United States)

    1987-05-27

    A181 T5 MOLECULAR BIOLOGY CONFERENCE O GENETIC ENGINEERING 1/ TECNIQUES (2ND) HEL (U) OFFICE OF NAVAL RESEARCH LONDON (ENGLAND) C F ZOMZELY-NEURATH...represented both genetic diseases. For example, Hunting- academic and industrial organizations in ton’s Chorea, Cystic Fibrosis , and a 1:1 ratio...be cloned in available vicinity of the Huntington’s Chorea and vectors or easily analyzed by standard Cystic Fibrosis mutations in human, and 3

  5. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education.

    Science.gov (United States)

    Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne

    2016-11-12

    In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  6. Using Peer Reviews to Examine Micropolitics and Disciplinary Development of Engineering Education: A Case Study

    Science.gov (United States)

    Beddoes, Kacey

    2014-01-01

    This article presents a case study of the peer review process for a feminist article submitted to an engineering education journal. It demonstrates how an examination of peer review can be a useful approach to further understanding the development of feminist thought in education fields. Rather than opposition to feminist thought per se, my…

  7. Using Mathematics and Engineering to Solve Problems in Secondary Level Biology

    Science.gov (United States)

    Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita

    2016-01-01

    There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…

  8. A Systematic Literature Review of Engineering Identity: Definitions, Factors, and Interventions Affecting Development, and Means of Measurement

    Science.gov (United States)

    Morelock, John R.

    2017-01-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity…

  9. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  10. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  11. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.

    Science.gov (United States)

    Zhang, Xiang-Yu; Fang, Gang; Zhou, Jie

    2017-01-10

    Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials. It starts with a brief description of architecture design strategies to meet the biological and mechanical property requirements of scaffolds. Then, it summarizes the working principles, advantages and limitations of each of AM methods suitable for creating porous structures and manufacturing scaffolds from powdered materials. It elaborates on the finite-element (FE) analysis applied to predict the mechanical behavior of AM scaffolds, as well as the effect of the architectural design of porous structure on its mechanical properties. The review ends up with the authors' view on the current challenges and further research directions.

  12. Book review: Biology and conservation of North American tortoises

    Science.gov (United States)

    Munoz, David; Aiello, Christina M.

    2015-01-01

    The charismatic North American tortoises hold a special place in our culture and natural history. Despite the perseverance of these tortoises over millions of years, biologists now question their ability to persist into the future. In light of documented declines, habitat loss, and numerous threats to tortoise populations, the editors gathered a diverse group of researchers to review what we have learned about this group after decades of study, to summarize gaps in the literature, and to reflect on how we may use the current state of knowledge to conserve these fascinating species. Initially intended as a focused review of the two most well-studied species in the genus Gopherus, G. agassizii (Mohave Desert Tortoise) and G. polyphemus (Gopher Tortoise), the book developed into a comprehensive treatment of the entire genus. The editors offer the work as a resource to professional biologists and agencies working with North American tortoises as well as a teaching aid, hobbyist’s reference, and casual read for nature-lovers—although we presume that the former group is more likely to benefit than the latter. Although the book’s size appears modest, the content delivers an in-depth look at the five recognized tortoise species.

  13. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  14. The potential of tissue engineering for developing alternatives to animal experiments: a systematic review.

    Science.gov (United States)

    de Vries, Rob B M; Leenaars, Marlies; Tra, Joppe; Huijbregtse, Robbertjan; Bongers, Erik; Jansen, John A; Gordijn, Bert; Ritskes-Hoitinga, Merel

    2015-07-01

    An underexposed ethical issue raised by tissue engineering is the use of laboratory animals in tissue engineering research. Even though this research results in suffering and loss of life in animals, tissue engineering also has great potential for the development of alternatives to animal experiments. With the objective of promoting a joint effort of tissue engineers and alternative experts to fully realise this potential, this study provides the first comprehensive overview of the possibilities of using tissue-engineered constructs as a replacement of laboratory animals. Through searches in two large biomedical databases (PubMed, Embase) and several specialised 3R databases, 244 relevant primary scientific articles, published between 1991 and 2011, were identified. By far most articles reviewed related to the use of tissue-engineered skin/epidermis for toxicological applications such as testing for skin irritation. This review article demonstrates, however, that the potential for the development of alternatives also extends to other tissues such as other epithelia and the liver, as well as to other fields of application such as drug screening and basic physiology. This review discusses which impediments need to be overcome to maximise the contributions that the field of tissue engineering can make, through the development of alternative methods, to the reduction of the use and suffering of laboratory animals. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Biology Explaining Tooth Repair and Regeneration: A Mini-Review.

    Science.gov (United States)

    Balic, Anamaria

    2018-03-13

    The tooth is an intricate composition of precisely patterned, mineralized matrices and soft tissues. Mineralized tissues include enamel (produced by the epithelial cells called ameloblasts), dentin and cementum (produced by mesenchymal cells called odontoblasts and cementoblasts, respectively), and soft tissues, which include the dental pulp and the periodontal ligament along with the invading nerves and blood vessels. It was perceived for a very long time that teeth primarily serve an esthetical function. In recent years, however, the role of healthy teeth, as well as the impact of oral health on general well-being, became more evident. Tooth loss, caused by tooth decay, congenital malformations (tooth agenesis), trauma, periodontal diseases, or age-related changes, is usually replaced by artificial materials which lack many of the important biological characteristics of the natural tooth. Human teeth have very low to almost absent regeneration potential, due to early loss of cell populations with regenerative capacity, namely stem cells. Significant effort has been made in recent decades to identify and characterize tooth stem cells, and to unravel the developmental programs which these cells follow in order to generate a tooth. © 2018 S. Karger AG, Basel.

  16. A review of the energetics of pollination biology.

    Science.gov (United States)

    McCallum, Kimberly P; McDougall, Freya O; Seymour, Roger S

    2013-10-01

    Pollination biology is often associated with mutualistic interactions between plants and their animal pollen vectors, with energy rewards as the foundation for co-evolution. Energy is supplied as food (often nectar from flowers) or as heat (in sun-tracking or thermogenic plants). The requirements of pollinators for these resources depend on many factors, including the costs of living, locomotion, thermoregulation and behaviour, all of which are influenced by body size. These requirements are modified by the availability of energy offered by plants and environmental conditions. Endothermic insects, birds and bats are very effective, because they move faster and are more independent of environmental temperatures, than are ectothermic insects, but they are energetically costly for the plant. The body size of endothermic pollinators appears to be influenced by opposing requirements of the animals and plants. Large body size is advantageous for endotherms to retain heat. However, plants select for small body size of endotherms, as energy costs of larger size are not matched by increases in flight speed. If high energy costs of endothermy cannot be met, birds and mammals employ daily torpor, and large insects reduce the frequency of facultative endothermy. Energy uptake can be limited by the time required to absorb the energy or eliminate the excess water that comes with it. It can also be influenced by variations in climate that determine temperature and flowering season.

  17. Biological uptake and transfer of radium-226: a review

    International Nuclear Information System (INIS)

    Williams, A.R.

    1982-01-01

    The theoretical basis of the biological uptake of radium is poorly developed. The simple linear concentration factor model has been used almost exclusively and often without any appreciation of its limitations. An analysis of the available data reveals that this model can be adequately validated only for freshwater algae. Deviations from this model are due to non-linearity of uptake response to increased radium concentration in the medium, to the lack of equilibrium being established within the time scale of the food-chain transfer, and to the existence of multiple sources (e.g. food and water) in some of the food-chain compartments. These theoretical weaknesses and the large errors of prediction indicate a need for more rigorous theoretical and experimental work. This need is further supported by the revised dose limits for the long-lived daughter products of uranium recently recommended by the International Commission on Radiological Protection (ICRP). These revised limits suggest that 226 Ra may no longer be a singularly critical nuclide, and thus dose assessment models will have to incorporate more radionuclide transfer terms, for which the errors are additive, and so should be made as low as possible. (author)

  18. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong

    2015-07-01

    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  19. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. Copyright © 2015. Published by Elsevier Ltd.

  20. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study

    Directory of Open Access Journals (Sweden)

    Clifford Tammy J

    2006-02-01

    Full Text Available Abstract Background Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG® and Ovid™. Our objective is to test the ability of an Ultraseek® search engine to rank MEDLINE® records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Methods Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS, provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000–6000 records when the MEDLINE search strategy was replicated. Results Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. Conclusion The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of

  1. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study.

    Science.gov (United States)

    Sampson, Margaret; Barrowman, Nicholas J; Moher, David; Clifford, Tammy J; Platt, Robert W; Morrison, Andra; Klassen, Terry P; Zhang, Li

    2006-02-24

    Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG and Ovid. Our objective is to test the ability of an Ultraseek search engine to rank MEDLINE records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000-6000 records when the MEDLINE search strategy was replicated. Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers.

  2. Magnetic separation techniques in sample preparation for biological analysis: a review.

    Science.gov (United States)

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  4. Using Biographies of Outstanding Women in Bioengineering to Dispel Biology Teachers' Misperceptions of Engineers

    Science.gov (United States)

    Hoh, Yin Kiong

    2009-01-01

    The perception that engineers and scientists are intelligent Caucasian men who are socially inept and absent-minded people is prevalent among students of all levels, from elementary school to college. While the media may, by chance or choice, promote this image, the reality is that most engineers are men. These stereotypical images of engineers…

  5. Engineering aspects of ferrate in water and wastewater treatment - a review.

    Science.gov (United States)

    Yates, Brian J; Zboril, Radek; Sharma, Virender K

    2014-01-01

    There is renewed interest in the tetra-oxy compound of +6 oxidation states of iron, ferrate(VI) (Fe(VI)O4(2-)), commonly called ferrate. Ferrate has the potential in cleaner ("greener") technologies for water treatment and remediation processes, as it produces potentially less toxic byproducts than other treatment chemicals (e.g., chlorine). Ferrate has strong potential to oxidize a number of contaminants, including sulfur- and nitrogen-containing compounds, estrogens, and antibiotics. This oxidation capability of ferrate combines with its efficient disinfection and coagulation properties as a multi-purpose treatment chemical in a single dose. This review focuses on the engineering aspects of ferrate use at the pilot scale to remove contaminants in and enhance physical treatment of water and wastewater. In most of the pilot-scale studies, in-line and on-line electrochemical ferrate syntheses have been applied. In this ferrate synthesis, ferrate was directly prepared in solution from an iron anode, followed by direct addition to the contaminant stream. Some older studies applied ferrate as a solid. This review presents examples of removing a range of contaminants by adding ferrate solution to the stream. Results showed that ferrate alone and in combination with additional coagulants can reduce total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD), and organic matter. Ferrate also oxidizes cyanide, sulfide, arsenic, phenols, anilines, and dyes and disinfects a variety of viruses and bacteria. Limitations and drawbacks of the application of ferrate in treating contaminated water on the pilot scale are also presented.

  6. A Review on Annona squamosa L.: Phytochemicals and Biological Activities.

    Science.gov (United States)

    Ma, Chengyao; Chen, Yayun; Chen, Jianwei; Li, Xiang; Chen, Yong

    2017-01-01

    Annona squamosa L. (Annonaceae) is a fruit tree with a long history of traditional uses. A. squamosa is an evergreen plant mainly located in tropical and subtropical regions. Srikayas, the fruits of A. squamosa, are extensively used to prepare candies, ice creams and beverages. A wide range of ethno-medicinal uses has been related to different portions of A. squamosa, such as tonic, apophlegmatisant, cool medicine, abortient and heart sedative. Numerous research projects on A. squamosa have found that it has anticancer, anti-oxidant, antidiabetic, antihypertensive, hepatoprotective, antiparasitic, antimalarial, insecticidal, microbicidel and molluscicidal activities. Phytochemistry investigations on A. squamosa have considered annonaceous acetogenins (ACGs), diterpenes (DITs), alkaloids (ALKs) and cyclopeptides (CPs) as the main constituents. Until 2016, 33 DITs, 19 ALKs, 88 ACGs and 13 CPs from this species were reported. On the basis of the multiple researches on A. squamosa, this review strives to integrate available information on its phytochemicals, folklore uses and bioactivities, hoping to promote a better understanding of its medicinal values.

  7. Amazon acai: chemistry and biological activities: a review.

    Science.gov (United States)

    Yamaguchi, Klenicy Kazumy de Lima; Pereira, Luiz Felipe Ravazi; Lamarão, Carlos Victor; Lima, Emerson Silva; da Veiga-Junior, Valdir Florêncio

    2015-07-15

    Acai (acai or assai) is one of the Amazon's most popular functional foods and widely used in the world. There are many benefits to its alleged use in the growing market for nutraceuticals. The acai extracts have a range of polyphenolic components with antioxidant properties, some of those present in greater quantity are orientin, isoorientin and vanillic acid, as well as anthocyanins cyanidin-3-glucoside and cyanidin-3-rutinoside. The presence of these substances is linked mainly to the antioxidant, anti- inflammatory, anti-proliferative and cardioprotective activities. Importantly, there are two main species of the Euterpe genus which produce acai. There are several differences between them but they are still quite unknown, from literature to producers and consumers. In this review are highlighted the chemical composition, botanical aspects, pharmacological, marketing and nutrition of these species based on studies published in the last five years in order to unify the current knowledge and dissimilarities between them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Maca (Lepidium meyenii Walp), a review of its biological properties].

    Science.gov (United States)

    Gonzales, Gustavo F; Villaorduña, Leonidas; Gasco, Manuel; Rubio, Julio; Gonzales, Carla

    2014-01-01

    Maca (Lepidium meyenii) is a plant that grows above 4000 altitude meters in Peru's Central Andes; it has different varieties according to the color of the hypocotyl. This review summarizes the results of studies about the effects of maca on sexual function, spermatogenesis, female reproductive function, memory, depression and anxiety, and energy as well as effects on benign prostatic hyperplasia, osteoporosis and metabolic syndrome. Its anti-aging effect is also discussed as well as safety in consumption. Differences have been shown between the effects of the black, yellow and red maca varieties. Black maca shows the best results on spermatogenesis, memory and fatigue, while red maca is the variety that reverses the benign prostatic hyperplasia and experimentally induced osteoporosis. In addition, maca reduces the glucose levels, and its consumption is related to the lowering of blood pressure and an improved health score. Experimental studies have proven that short and long term consumption don't show in vivo and in vitro toxicity. Although experimental studies have shown that maca has diverse beneficial effects, more clinical studies are needed to confirm these results.

  9. Training Software Developers in Usability Engineering: A Literature Review

    DEFF Research Database (Denmark)

    Bruun, Anders

    2010-01-01

    to fund usability specialists or comprehensive consultancy. Training of non-usability personnel in critical usability engineering methods has the potential of easing these challenges. It is, however, unknown how much and what kind of research that has been committed to novice training in UE methods......, training costs and training in user based evaluation methods........ This paper presents a comprehensive literature study of research conducted in this area, where 129 papers are analyzed in terms of research focus, empirical basis, types of training participants and training costs. Findings show a need for further empirical research regarding long term effects of training...

  10. LHCb Upgraded RICH 2 Engineering Design Review Report

    CERN Document Server

    Garsed, Philip John; Cardinale, Roberta; Petrolini, Alessandro; Benettoni, Massimo; Simi, Gabriele; Zago, M; Easo, Sajan; D'Ambrosio, Carmelo; Frei, Christoph; He, Jibo; Piedigrossi, Didier

    2016-01-01

    During the Long Shutdown 2 of the LHC, the LHCb experiment and, specifically, its two Ring Imaging Cherenkov (RICH) detectors will undergo a major upgrade. RICH 2 will be refurbished with new photon detectors and their associated electronics, with the capability of up to 40 MHz sustained acquisition rate. A new support and cooling system has been developed for the two photodetector arrays, retaining the vessel, gas and optical systems unchanged. This document describes their new mechanical arrangement, its engineering design, installation and alignment. A summary of the project schedule and Institute responsibilities is provided.

  11. Biologic mesh versus synthetic mesh in open inguinal hernia repair: system review and meta-analysis.

    Science.gov (United States)

    Fang, Zhixue; Ren, Feng; Zhou, Jianping; Tian, Jiao

    2015-12-01

    Biologic meshes are mostly used for abdominal wall reinforcement in infected fields, but no consensus has been reached on its use for inguinal hernia repairing. The purpose of this study was to compare biologic mesh with synthetic mesh in open inguinal herniorrhaphy. A systematic literature review and meta-analysis was undertaken to identify studies comparing the outcomes of biologic mesh and synthetic mesh in open inguinal hernia repair. Published studies were identified by the databases PubMed, EMBASE and the Cochrane Library. A total of 382 patients in five randomized controlled trials were reviewed (179 patients in biologic mesh group; 203 patients in synthetic mesh group). The two groups did not significantly differ in chronic groin pain (P = 0.06) or recurrence (P = 0.38). The incidence of seroma trended higher in biologic mesh group (P = 0.03). Operating time was significantly longer with biologic mesh (P = 0.03). There was no significant difference in hematomas (P = 0.23) between the two groups. From the data of this study, biologic mesh had no superiority to synthetic mesh in open inguinal hernia repair with similar recurrence rates and incidence of chronic groin pain, but higher rate of seroma and longer operating time. However, this mesh still needs to be assessed in a large, multicentre, well-designed randomized controlled trial. © 2015 Royal Australasian College of Surgeons.

  12. A selected review of recent biological psychiatric research in China (translated version).

    Science.gov (United States)

    Fu, Y; Hu, S H; Lam, L C W

    2010-03-01

    This review highlights significant biological psychiatric research published by Chinese researchers in recent years. Chinese periodicals with full-text database (Chinese National Knowledge Infrastructure) and English periodicals with PubMed, published from 2003 to 2009 on schizophrenia, depression, bipolar affective disorder, obsessive-compulsive disorder, anxiety disorder and Alzheimer's disease, were reviewed. Articles studying the above-mentioned psychiatric disorders focusing in the area of molecular genetics, neuroendocrine immunology, electrophysiology and psychopharmacology applied to animal models or clinical populations were included. The findings suggest that biological psychiatric research is being developed at a rapid pace and covers a wide perspective from disease mechanisms to clinical interventions.

  13. The trajectory of dispersal research in conservation biology. Systematic review.

    Science.gov (United States)

    Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management

  14. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    Science.gov (United States)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  15. The trajectory of dispersal research in conservation biology. Systematic review.

    Directory of Open Access Journals (Sweden)

    Don A Driscoll

    Full Text Available Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning and invasive species. We analysed temporal changes in the: (i questions asked by dispersal-related research; (ii methods used to study dispersal; (iii the quality of dispersal data; (iv extent that dispersal knowledge is lacking, and; (v likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i improve the quality of available data using new approaches; (ii understand the complementarities of different methods and; (iii define the value of different kinds of dispersal information for supporting

  16. Towards characterising design-based learning in engineering education: a review of the literature

    Science.gov (United States)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2011-05-01

    Design-based learning is a teaching approach akin to problem-based learning but one to which the design of artefacts, systems and solutions in project-based settings is central. Although design-based learning has been employed in the practice of higher engineering education, it has hardly been theorised at this educational level. The aim of this study is to characterise design-based learning from existing empirical research literature on engineering education. Drawing on a perspective that accounts for domain-specific, idiosyncratic and learner-centred aspects of design problems in the context of engineering education, 50 empirical studies on project-based and problem-based engineering education, to which the design of artefacts is central, were reviewed. Based on the findings, design-based learning is characterised with regard to domain-specificity, learner expertise and task authenticity. The implications of this study for the practice of engineering education are discussed.

  17. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing

    DEFF Research Database (Denmark)

    Baun, Anders; Hartmann, Nanna Isabella Bloch; Grieger, Khara Deanne

    2008-01-01

    Based on a literature review and an overview of toxic effects of engineered nanoparticles in aquatic invertebrates, this paper proposes a number of recommendations for the developing field of nanoecotoxicology by highlighting the importance of invertebrates as sensitive and relevant test organisms....... Results show that there is a pronounced lack of data in this field (less than 20 peer-reviewed papers are published so far), and the most frequently tested engineered nanoparticles in invertebrate tests are C-60, carbon nanotubes, and titanium dioxide. In addition, the majority of the studies have used...... through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long...

  18. Numerical Techniques for Chemical and Biological Engineers Using MATLAB A Simple Bifurcation Approach

    CERN Document Server

    Elnashaie, Said SEH; Affane, Chadia

    2007-01-01

    All reactive chemical and biological processes are highly nonlinear allowing for multiple steady states. This book addresses the bifurcation characteristics of chemical and biological processes as the general case and treats systems with a unique steady state as special cases. It includes a CD-ROM which contains nearly 100 MATLAB programs.

  19. Promoting convergence: The integrated graduate program in physical and engineering biology at Yale University, a new model for graduate education

    Science.gov (United States)

    Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.

    2016-01-01

    Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366

  20. Comparing Two Definitions of Work for a Biological Quantum Heat Engine

    International Nuclear Information System (INIS)

    Xu You-Yang; Zhao Shun-Cai; Liu Juan

    2015-01-01

    Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference — a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B. (paper)

  1. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  2. Report on the TESLA engineering study/review

    Energy Technology Data Exchange (ETDEWEB)

    C. Boffo et al.

    2002-07-18

    A team from Argonne National Lab, Cornell, Fermilab, Jefferson Lab, and SLAC has studied the TESLA TDR and its associated cost and manpower estimates, concentrating on the five largest cost sub-systems (Main Linac Modules, Main Linac RF Systems, Civil Engineering, Machine Infrastructure, and XFEL Incremental). These elements were concerned mainly with providing energy reach. We did not study the lower cost, but still technically challenging elements providing luminosity and physics capability, namely damping rings, beam delivery system, beam injection system, positron production, polarized beams, etc. The study did not attempt to validate the TDR cost estimates, but rather its purpose was to understand the technology and status of the large cost items, and the methodology by which their estimated cost was determined. In addition, topics of project oversight were studied.

  3. Molecularly engineered graphene surfaces for sensing applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingquan, E-mail: jliu@qdu.edu.cn [College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao (China); Liu, Zhen; Barrow, Colin J. [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia); Yang, Wenrong, E-mail: wenrong.yang@deakin.edu.au [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia)

    2015-02-15

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

  4. Class Cohesion Metrics for Software Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Habib Izadkhah

    2017-02-01

    Full Text Available Class cohesion or degree of the relations of class members is considered as one of the crucial quality criteria. A class with a high cohesion improves understandability, maintainability and reusability. The class cohesion metrics can be measured quantitatively and therefore can be used as a base for assessing the quality of design. The main objective of this paper is to identify important research directions in the area of class cohesion metrics that require further attention in order to develop more effective and efficient class cohesion metrics for software engineering. In this paper, we discuss the class cohesion assessing metrics (thirty-two metrics that have received the most attention in the research community and compare them from different aspects. We also present desirable properties of cohesion metrics to validate class cohesion metrics.

  5. Biomedical Engineering curriculum at UAM-I: a critical review.

    Science.gov (United States)

    Martinez Licona, Fabiola; Azpiroz-Leehan, Joaquin; Urbina Medal, E Gerardo; Cadena Mendez, Miguel

    2014-01-01

    The Biomedical Engineering (BME) curriculum at Universidad Autónoma Metropolitana (UAM) has undergone at least four major transformations since the founding of the BME undergraduate program in 1974. This work is a critical assessment of the curriculum from the point of view of its results as derived from an analysis of, among other resources, institutional databases on students, graduates and their academic performance. The results of the evaluation can help us define admission policies as well as reasonable limits on the maximum duration of undergraduate studies. Other results linked to the faculty composition and the social environment can be used to define a methodology for the evaluation of teaching and the implementation of mentoring and tutoring programs. Changes resulting from this evaluation may be the only way to assure and maintain leadership and recognition from the BME community.

  6. Synthetic biology of metabolism: using natural variation to reverse engineer systems.

    Science.gov (United States)

    Kliebenstein, Daniel J

    2014-06-01

    A goal of metabolic engineering is to take a plant and introduce new or modify existing pathways in a directed and predictable fashion. However, existing data does not provide the necessary level of information to allow for predictive models to be generated. One avenue to reverse engineer the necessary information is to study the genetic control of natural variation in plant primary and secondary metabolism. These studies are showing that any engineering model will have to incorporate information about 1000s of genes in both the nuclear and organellar genome to optimize the function of the introduced pathway. Further, these genes may interact in an unpredictable fashion complicating any engineering approach as it moves from the one or two gene manipulation to higher order stacking efforts. Finally, metabolic engineering may be influenced by a previously unrecognized potential for a plant to measure the metabolites within it. In combination, these observations from natural variation provide a beginning to help improve current efforts at metabolic engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. BioTCM-SE: a semantic search engine for the information retrieval of modern biology and traditional Chinese medicine.

    Science.gov (United States)

    Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui

    2014-01-01

    Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  8. BioTCM-SE: A Semantic Search Engine for the Information Retrieval of Modern Biology and Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-01-01

    Full Text Available Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM, essentially different from Western Medicine (WM, is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  9. Using game engine for 3D terrain visualisation of GIS data: A review

    Science.gov (United States)

    Che Mat, Ruzinoor; Shariff, Abdul Rashid Mohammed; Nasir Zulkifli, Abdul; Shafry Mohd Rahim, Mohd; Hafiz Mahayudin, Mohd

    2014-06-01

    This paper reviews on the 3D terrain visualisation of GIS data using game engines that are available in the market as well as open source. 3D terrain visualisation is a technique used to visualise terrain information from GIS data such as a digital elevation model (DEM), triangular irregular network (TIN) and contour. Much research has been conducted to transform the 2D view of map to 3D. There are several terrain visualisation softwares that are available for free, which include Cesium, Hftool and Landserf. This review paper will help interested users to better understand the current state of art in 3D terrain visualisation of GIS data using game engines.

  10. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. SM......). An essential subproblem of any SM based optimization algorithm is parameter extraction. The uniqueness of this optimization subproblem has been crucial to the success of SM optimization. Different approaches to enhance the uniqueness are reviewed. We also discuss new developments in Space Mapping...

  11. Bioterrorism and Biological Warfare, from Past to the Present: A classic review

    Directory of Open Access Journals (Sweden)

    Majid Zare Bidaki

    2015-10-01

    Full Text Available Bioterrorism is defined as any terrorist action of intentional release or dissemination of highly pathogenic biological agents, including a variety of microorganisms or biological toxins. With the growing threat of terrorism, is necessary that the potential danger of various microorganisms – as a powerful tool of aggression and threat- to be taken seriously. This review tries to explain the concept of biological weapons and their historical development process with an emphasis on efforts to control the proliferation of these types of weapons over the last century. Potential impact of infectious diseases on people and armed forces was known from since 600 BC. Using the victims of the plague as a weapon in medieval warfare and spread of smallpox as a weapon during the war against the Indians when initially America was discovered, the development of biological weapons during the World War I, World War II and the Cold War, and even since the beginning of the third millennium, all show the strategic importance of pathogenic microorganisms as a deterrent power for the superiority of some governments and cults. Historical attempts to use infectious diseases as biological weapons reveal that the distinction between a natural outbreak of an infectious disease and that of a deliberate biological attack is very difficult. Abusing this characteristic of infectious diseases has made it possible for the purposes of superiority. International agreements to control the development of biological weapons, such as “the 1925 Geneva Protocol” and “the Convention on the Prohibition of the Development, Production and Stockpiling of Biological and Toxic Weapons” have not been able to control the development and using of biological warfare.  The current paper is a classic review (Overview article aiming at increasing the knowledge and awareness of people especially of health authorities and government officials.

  12. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives

    International Nuclear Information System (INIS)

    Fesenko, S.; Isamov, N.; Barnett, C.L.; Beresford, N.A.; Howard, B.J.; Sanzharova, N.; Fesenko, E.

    2015-01-01

    Extensive studies on transfer of radionuclides to animals were carried out in the USSR from the 1950s. Few of these studies were published in the international refereed literature or taken into account in international reviews. This paper continues a series of reviews of Russian language literature on radionuclide transfer to animals, providing information on biological half-lives of radionuclides in various animal tissues. The data are compared, where possible, with those reported in other countries. The data are normally quantified using a single or double exponential accounting for different proportions of the loss. For some products, such as milk, biological half-lives tend to be rapid at 1–3 d for most radionuclides and largely described by a single exponential. However, for other animal products biological half-lives can vary widely as they are influenced by many factors such as the age and size of the animal. Experimental protocols, such as the duration of the study, radionuclide administration and/or sample collection protocol also influence the value of biological half-lives estimated. - Highlights: • The data on biological half-lives from Russian language literature were reviewed. • Radionuclides with the shortest half-lives in animals are those which accumulate in soft tissues. • Short term behaviour is affected by the form in which radionuclides are administered. • There is a tendency for more rapid radionuclide turnover in younger animals

  14. Engineering reliability and maintainability review - A regimen for discovering production deficiencies

    Science.gov (United States)

    McKelvey, Michael H.; Babin, Robert S.

    An engineering reliability and maintainability review (ER&MR) is a methodical disassembly, visual inspection, and physical examination of a production unit of airborne equipment by a team of reviewers from reliability, maintainability, and other technical disciplines. Established at Douglas Aircraft for the DC-10 program and recently upgraded, ER&MR facilitates detection of unit design and assembly flaws and deficiencies that traditional design reviews and inspections may fail to discover. ER&MR also verifies required circuit separation and segregation in the unit and incorporation of unit design changes authorized by the critical design review team.

  15. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis.

    Science.gov (United States)

    Xue, Jing-Dong; Gao, Jing; Fu, Qiang; Feng, Chao; Xie, Hong

    2016-07-01

    We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches. © 2016 by the Society for Experimental Biology and Medicine.

  16. Students' Use of Optional Online Reviews and Its Relationship to Summative Assessment Outcomes in Introductory Biology

    Science.gov (United States)

    Carpenter, Shana K.; Rahman, Shuhebur; Lund, Terry J. S.; Armstrong, Patrick I.; Lamm, Monica H.; Reason, Robert D.; Coffman, Clark R.

    2017-01-01

    Retrieval practice has been shown to produce significant enhancements in student learning of course information, but the extent to which students make use of retrieval to learn information on their own is unclear. In the current study, students in a large introductory biology course were provided with optional online review questions that could be…

  17. Review – Quantum Dots and Their Application in Lighting, Displays, and Biology

    Energy Technology Data Exchange (ETDEWEB)

    Frecker, Talitha [Vanderbilt Univ., Nashville, TN (United States); Bailey, Danielle [Vanderbilt Univ., Nashville, TN (United States); Arzeta-Ferrer, Xochitl [Vanderbilt Univ., Nashville, TN (United States); McBride, James [Vanderbilt Univ., Nashville, TN (United States); Rosenthal, Sandra J. [Vanderbilt Univ., Nashville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-18

    In this review, we focus on the advancement of white light emitting nanocrystals, their usage as the emissive layer in LEDs and display backlights, and examine the increased efficiency and longevity of quantum dots based colored LEDs. In addition, we also explore recent discoveries on quantum dots as biological labels, dynamic trackers, and applications in drug delivery.

  18. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Man's Responsibility to His Future

    Science.gov (United States)

    Hoagland, Hudson

    1972-01-01

    Biological evolution can be carried out in the laboratory. With new knowledge available in genetics, possibilities are raised that genetic characters can be transferred in the future to embryos according to a predetermined plan. (PS)

  19. Proceedings of the ninth annual conference of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains over 100 papers. Some of the titles are: Angular integrations and inter-projections correlation effects in CT reconstruction; Supercomputing environment for biomedical research; Program towards a computational molecular biology; Current problems in molecular biology computing; Signal averaging applied to positron emission tomography; First experimental results from a high spatial resolution PET prototype; and A coherent approach in computer-aided radiotherapy

  20. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.

    Science.gov (United States)

    Laurent, Cédric P; Vaquette, Cédryck; Liu, Xing; Schmitt, Jean-François; Rahouadj, Rachid

    2018-04-01

    Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.

  1. A medicoeconomic review of early intervention with biologic agents in the treatment of inflammatory bowel diseases

    Science.gov (United States)

    Odes, Shmuel; Greenberg, Dan

    2014-01-01

    The treatment of inflammatory bowel disease with standard therapy fails to control the disease in many patients. Biologic therapy has an increasing role in altering the natural history of Crohn’s disease and ulcerative colitis, and is improving patient prognosis. However, indications for treatment and issues with drug costs and value for money remain unclear. Also, when to perform early intervention with biologic agents is at present unclear. We performed an extensive literature search and review to address these issues. The biologics provide better care for many patients. The choice of biologic agent, the indications for its use, the switch between agents, and the considerations of cost are outlined, with a view to guiding the treating physician in managing these cases. Outstanding issues and anticipated future developments are defined. PMID:25336980

  2. Brushing Your Spacecrafts Teeth: A Review of Biological Reduction Processes for Planetary Protection Missions

    Science.gov (United States)

    Pugel, D.E. (Betsy); Rummel, J. D.; Conley, C. A.

    2017-01-01

    Much like keeping your teeth clean, where you brush away biofilms that your dentist calls plaque, there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardwares teeth in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.

  3. Parameter estimation using meta-heuristics in systems biology: a comprehensive review.

    Science.gov (United States)

    Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie

    2012-01-01

    This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.

  4. Clinical, biological, histological features and treatment of oral mucositis induced by radiation therapy: a literature review

    International Nuclear Information System (INIS)

    Bonan, Paulo Rogerio Ferreti; Lopes, Marcio Ajudarte; Almeida, Oslei Paes de; Alves, Fabio de Abreu

    2005-01-01

    The oral mucositis is a main side effect of radiotherapy on head and neck, initiating two weeks after the beginning of the treatment. It is characterized by sensation of local burning to intense pain, leading in several cases, to the interruption of the treatment. The purpose of this work is to review the main published studies that discuss the clinical, biological and histopathological features of oral mucositis induced by radiation therapy and to describe the main approaches recommended to prevent or to treat it. Although the clinical features of mucositis are intensively described in the literature, few studies address the histopathological alterations in oral mucositis and only recently, its biological processes have been investigated. The biological mechanisms involved in the radiation tissue damage have been only recently discussed and there is no consensus among treatment modalities. Yet, the progressive knowledge in the histopathology and biological characteristics of oral mucositis probably will lead to more effective in prevention and control strategies. (author)

  5. Tailoring the Systems Engineering Technical Review Implementation Within Naval Acquisition

    Science.gov (United States)

    2017-09-01

    they can become a computer guru by buying the latest and greatest product that a salesperson can talk them into, and don’t seem to realize that all...thinks they can become a computer guru by buying the latest and greatest product that a salesperson can talk them into, and don’t seem to realize that...adjudication process, and when stakeholders feel the review is ready to be closed. 8 The program had metrics set to meet threshold and objective criteria 9

  6. Review of methods for the integration of reliability and design engineering

    International Nuclear Information System (INIS)

    Reilly, J.T.

    1978-03-01

    A review of methods for the integration of reliability and design engineering was carried out to establish a reliability program philosophy, an initial set of methods, and procedures to be used by both the designer and reliability analyst. The report outlines a set of procedures which implements a philosophy that requires increased involvement by the designer in reliability analysis. Discussions of each method reviewed include examples of its application

  7. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review

    Science.gov (United States)

    1972-01-01

    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  8. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2017-01-01

    Full Text Available Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to investigate the alternatives for producing a better replacement for the material used in catalytic converter. This paper aims at reviewing the present development and improvement on the catalytic converter used on the reduction of exhaust emission in order to meet the regulations and market demand. The use of new catalyst such as to replace the noble metal material of Platinum (Pt, Palladium (Pd and Rhodium (Rh has been reviewed. Material such as zeolite, nickel oxide and metal oxide has been found to effectively reduce the emission than the commercial converter. The preparation method of the catalyst has also evolved through the years as it is to ensure a good characteristic of a good monolith catalyst. Ultrasonic treatment with combination of electroplating technique, citrate method and Plasma Electrolytic Oxidation (PEO has been found as the latest novel preparation method on producing an effective catalyst in reducing the exhaust emission.

  9. Different methods of dentin processing for application in bone tissue engineering: A systematic review.

    Science.gov (United States)

    Tabatabaei, Fahimeh Sadat; Tatari, Saeed; Samadi, Ramin; Moharamzadeh, Keyvan

    2016-10-01

    Dentin has become an interesting potential biomaterial for tissue engineering of oral hard tissues. It can be used as a scaffold or as a source of growth factors in bone tissue engineering. Different forms of dentin have been studied for their potential use as bone substitutes. Here, we systematically review different methods of dentin preparation and the efficacy of processed dentin in bone tissue engineering. An electronic search was carried out in PubMed and Scopus databases for articles published from 2000 to 2016. Studies on dentin preparation for application in bone tissue engineering were selected. The initial search yielded a total of 1045 articles, of which 37 were finally selected. Review of studies showed that demineralization was the most commonly used dentin preparation process for use in tissue engineering. Dentin extract, dentin particles (tooth ash), freeze-dried dentin, and denatured dentin are others method of dentin preparation. Based on our literature review, we can conclude that preparation procedure and the size and shape of dentin particles play an important role in its osteoinductive and osteoconductive properties. Standardization of these methods is important to draw a conclusion in this regard. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2616-2627, 2016. © 2016 Wiley Periodicals, Inc.

  10. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  11. Sensory processing sensitivity: a review in the light of the evolution of biological responsivity.

    Science.gov (United States)

    Aron, Elaine N; Aron, Arthur; Jagiellowicz, Jadzia

    2012-08-01

    This article reviews the literature on sensory processing sensitivity (SPS) in light of growing evidence from evolutionary biology that many personality differences in nonhuman species involve being more or less responsive, reactive, flexible, or sensitive to the environment. After briefly defining SPS, it first discusses how biologists studying animal personality have conceptualized this general environmental sensitivity. Second, it reviews relevant previous human personality/temperament work, focusing on crossover interactions (where a trait generates positive or negative outcomes depending on the environment), and traits relevant to specific hypothesized aspects of SPS: inhibition of behavior, sensitivity to stimuli, depth of processing, and emotional/physiological reactivity. Third, it reviews support for the overall SPS model, focusing on development of the Highly Sensitive Person (HSP) Scale as a measure of SPS then on neuroimaging and genetic studies using the scale, all of which bears on the extent to which SPS in humans corresponds to biological responsivity.

  12. Synthetic biology: from mainstream to counterculture.

    Science.gov (United States)

    Sleator, Roy D

    2016-09-01

    Existing at the interface of science and engineering, synthetic biology represents a new and emerging field of mainstream biology. However, there also exists a counterculture of Do-It-Yourself biologists, citizen scientists, who have made significant inroads, particularly in the design and development of new tools and techniques. Herein, I review the development and convergence of synthetic biology's mainstream and countercultures.

  13. Draft audit report, human factors engineering control room design review: Saint Lucie Nuclear Power Plant, Unit No. 2

    International Nuclear Information System (INIS)

    Peterson, L.R.; Lappa, D.A.; Moore, J.W.

    1981-01-01

    A human factors engineering preliminary design review of the Saint Lucie Unit 2 control room was performed at the site on August 3 through August 7, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The review team included human factors consultants from BioTechnology, Inc., Falls Church, Virginia, and from Lawrence Livermore National Laboratory (University of California), Livermore, California

  14. Risks and health effects from exposure to engineered nanostructures: A critical review

    International Nuclear Information System (INIS)

    Nikodinovska, Violeta Vasilevska; Mladenovska, Kristina; Grozdanov, Anita

    2015-01-01

    Nanotechnology and engineered nanostructures (ENSs) are becoming part of everyday life, starting from industrial application, even in food products, to gene therapy. Thus, tons and tons of nanoparticles (NPs) enter the environment and indirectly or directly - into the biological systems, including the human body. There are many controversial papers that describe interactions of the ENSs with biological systems and raise concern that intentional or unintentional human exposure to certain types of ENSs, may lead to significant health, i.e. toxicological effects. Because of our insufficient and contradictory knowledge about the health effects associated with the ENSs exposure, the aim of this paper is to summarize and systematize the already confirmed data and the latest found facts about ENSs and their health effects and to discuss the future opportunities and tasks in the field of nanotoxicology. Keywords: engineered nano sized structures, nanotoxicology.

  15. Engine Tune-up Service. Unit 2: Charging System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the exercises and pretests is testing the charging system. Pretests and performance checklists are provided for each of the three performance objectives contained in…

  16. Straight vegetable oils usage in a compression ignition engine - A review

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.; Murthy, M.S. [Mechanical Engineering Department, National Institute of Technology, Silchar 788010, Assam (India)

    2010-12-15

    The ever increasing fossil fuel usage and cost, environmental concern has forced the world to look for alternatives. Straight vegetable oils in compression ignition engine are a ready solution available, however, with certain limitations and with some advantages as reported by many researchers. A comprehensive and critical review is presented specifically pertaining to straight vegetable oils usage in diesel engine. A detailed record of historical events described. Research carried out specifically under Indian conditions and international research work on the usage of straight vegetable oils in the diesel engine is separately reviewed. Many researchers have reported that straight vegetable oils in small percentage blends with diesel when used lower capacity diesel engines have shown great promise with regards to the thermal performance as well exhaust emissions. This has been explained in detail. Finally based on the review of international as well as Indian research a SWOT analysis is carried out. The review concludes that there is still scope for research in this area. (author)

  17. Elimination of Coast Guard plan review for non-critical engineering systems and cargo barges

    Science.gov (United States)

    1994-06-21

    The purpose of this Circular is to publish policy that provides for the elimination of Coast Guard review and approval of certain engineering system drawings for all vessels as well as structural drawings for Coast Guard inspected non-self propelled ...

  18. Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies

    International Nuclear Information System (INIS)

    Gottschalk, Fadri; Sun, TianYin; Nowack, Bernd

    2013-01-01

    Scientific consensus predicts that the worldwide use of engineered nanomaterials (ENM) leads to their release into the environment. We reviewed the available literature concerning environmental concentrations of six ENMs (TiO 2 , ZnO, Ag, fullerenes, CNT and CeO 2 ) in surface waters, wastewater treatment plant effluents, biosolids, sediments, soils and air. Presently, a dozen modeling studies provide environmental concentrations for ENM and a handful of analytical works can be used as basis for a preliminary validation. There are still major knowledge gaps (e.g. on ENM production, application and release) that affect the modeled values, but over all an agreement on the order of magnitude of the environmental concentrations can be reached. True validation of the modeled values is difficult because trace analytical methods that are specific for ENM detection and quantification are not available. The modeled and measured results are not always comparable due to the different forms and sizes of particles that these two approaches target. -- Highlights: •Modeled environmental concentrations of engineered nanomaterials are reviewed. •Measured environmental concentrations of engineered nanomaterials are reviewed. •Possible validation of modeled data by measurements is critically evaluated. •Different approaches in modeling and measurement methods complicate validation. -- Modeled and measured environmental concentrations of engineered nanomaterials are reviewed and critically discussed

  19. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  20. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    Science.gov (United States)

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  1. Enhancing the Internationalisation of Distance Education in the Biological Sciences: The DUNE Project and Genetic Engineering.

    Science.gov (United States)

    Leach, C. K.; And Others

    1997-01-01

    Describes the Distance Educational Network of Europe (DUNE) project that aims at enhancing the development of distance education in an international context. Highlights issues relating to the delivery of distance-learning courses in a transnational forum. Describes the genetic engineering course that aims at explaining the core techniques of…

  2. Risks from accidental exposures to engineered nanoparticles and neurological health effects: A critical review

    Directory of Open Access Journals (Sweden)

    Mattsson Mats-Olof

    2010-12-01

    Full Text Available Abstract There are certain concerns regarding the safety for the environment and human health from the use of engineered nanoparticles (ENPs which leads to unintended exposures, as opposed to the use of ENPs for medical purposes. This review focuses on the unintended human exposure of ENPs. In particular, possible effects in the brain are discussed and an attempt to assess risks is performed. Animal experiments have shown that investigated ENPs (metallic nanoparticles, quantum dots, carbon nanotubes can translocate to the brain from different entry points (skin, blood, respiratory pathways. After inhalation or instillation into parts of the respiratory tract a very small fraction of the inhaled or instilled ENPs reaches the blood and subsequently secondary organs, including the CNS, at a low translocation rate. Experimental in vivo and in vitro studies have shown that several types of ENPs can have various biological effects in the nervous system. Some of these effects could also imply that ENPs can cause hazards, both acutely and in the long term. The relevance of these data for risk assessment is far from clear. There are at present very few data on exposure of the general public to either acute high dose exposure or on chronic exposure to low levels of air-borne ENPs. It is furthermore unlikely that acute high dose exposures would occur. The risk from such exposures for damaging CNS effects is thus probably very low, irrespective of any biological hazard associated with ENPs. The situation is more complicated regarding chronic exposures, at low doses. The long term accumulation of ENPs can not be excluded. However, we do not have exposure data for the general public regarding ENPs. Although translocation to the brain via respiratory organs and the circulation appears to be very low, there remains a possibility that chronic exposures, and/or biopersistent ENPs, can influence processes within the brain that are triggering or aggravating

  3. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  4. Invited review liquid crystal models of biological materials and silk spinning.

    Science.gov (United States)

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  5. Synthetic Versus Biological Mesh-Related Erosion After Laparoscopic Ventral Mesh Rectopexy: A Systematic Review.

    Science.gov (United States)

    Balla, Andrea; Quaresima, Silvia; Smolarek, Sebastian; Shalaby, Mostafa; Missori, Giulia; Sileri, Pierpaolo

    2017-04-01

    This review reports the incidence of mesh-related erosion after ventral mesh rectopexy to determine whether any difference exists in the erosion rate between synthetic and biological mesh. A systematic search of the MEDLINE and the Ovid databases was conducted to identify suitable articles published between 2004 and 2015. The search strategy capture terms were laparoscopic ventral mesh rectopexy, laparoscopic anterior rectopexy, robotic ventral rectopexy, and robotic anterior rectopexy. Eight studies (3,956 patients) were included in this review. Of those patients, 3,517 patients underwent laparoscopic ventral rectopexy (LVR) using synthetic mesh and 439 using biological mesh. Sixty-six erosions were observed with synthetic mesh (26 rectal, 32 vaginal, 8 recto-vaginal fistulae) and one (perineal erosion) with biological mesh. The synthetic and the biological mesh-related erosion rates were 1.87% and 0.22%, respectively. The time between rectopexy and diagnosis of mesh erosion ranged from 1.7 to 124 months. No mesh-related mortalities were reported. The incidence of mesh-related erosion after LVR is low and is more common after the placement of synthetic mesh. The use of biological mesh for LVR seems to be a safer option; however, large, multicenter, randomized, control trials with long follow-ups are required if a definitive answer is to be obtained.

  6. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  7. Biology versus engineering: the TMI accident as a case study in problems of dosimetry

    International Nuclear Information System (INIS)

    Aamodt, N.O.

    2000-01-01

    Contradictions between official results of studying impact on the environment arising from the Three-Mile-Island (TMI) accident in 1979 and scarce information about biological objects irradiation years later are considered. It is shown that some populations (public and animals) underwent radiation exposure by several orders exceeding the previously calculated doses, which is confirmed by cytogenetic and immune tests. The use of meteorological models, which do not consider complicated topography, gives rise to incorrect results. The situation that took shape around TMI provides a unique potentiality for biological dosimetry to demonstrate its efficiency and advantages in technical reconstruction of radiation exposure doses [ru

  8. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  9. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    Science.gov (United States)

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  10. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  11. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  12. Review: engineering particles using the aerosol-through-plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia C [UNM; Richard, Monique [TEMA

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  13. Human factors engineering design review acceptance criteria for the safety parameter display

    International Nuclear Information System (INIS)

    McGevna, V.; Peterson, L.R.

    1981-01-01

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established

  14. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics.

    Science.gov (United States)

    Mafart, P

    2005-04-15

    Predictive microbiology is mainly applied in the area of risk assessment, but unusually regarded as a tool for the optimisation of processes, which needs the implementation of food engineering. Combination of predictive microbiology and food engineering allows both the assessment of a process in relation to risk and its optimisation. Intrinsic comparison between processes in relation to risk, on one hand, and the development of process optimisation tools on the other hand, necessitates the implementation of new concepts and the involvement of simplified and standard calculations based upon reference target strains and environmental conditions. Some conventional concepts related to heat treatments are extended, while some new ones related to bacterial growth are derived from the gamma concept of Marcel Zwietering.

  15. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production.

    Science.gov (United States)

    Bi, Changhao; Su, Peter; Müller, Jana; Yeh, Yi-Chun; Chhabra, Swapnil R; Beller, Harry R; Singer, Steven W; Hillson, Nathan J

    2013-11-13

    The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5' mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters P(BAD), T7, P(xyls/PM), P(lacUV5), and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well.

  16. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    OpenAIRE

    Lim, Mim Mim; Sun, Tao; Sultana, Naznin

    2015-01-01

    The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and bl...

  17. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    Science.gov (United States)

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  18. [Effects of earthworm on soil microbes and biological fertility: A review].

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Huang, Yan; Ji, Ding-ge; Lou, Yi

    2015-05-01

    Earthworms are considered as 'ecosystem engineers', as they affect soil microbial community and function by improving micro-habitat, increasing surface area of organic compound, feeding, and transporting microorganisms. Multi-scale cavities created through earthworm movements help improve soil porosity and aeration, thus supporting microbial growth and reproduction. Earthworms also break down complex organic compounds into microbe-accessible nutrients by means of feeding on, crushing, and mixing soil. This results in elevated mineralization and improvement of cycling of key soil nutrients including carbon, nitrogen, and phosphorus, overall enhancing the soil biological fertility.

  19. BOOK REVIEW: Physics for Scientists and Engineers Third Edition

    Science.gov (United States)

    Giancoli, Douglas C.

    2000-09-01

    There are a large number of textbooks for the college and university student produced in the USA and here is one that I had not seen before even though it is now in the third edition. But it is so similar to many others. The standard version as reviewed here covers the usual topics of classical physics, namely kinematics, energy, waves and oscillations, thermodynamics, electricity and magnetism and light. Also, as is usual with the American coverage, it includes fluids, special relativity and a short chapter on quantum theory and the atom. An extended version is available covering modern physics, astrophysics and cosmology. There is also available back-up material such as instructor's manual, CD-ROM, video and other extra teaching material Full colour is used and the book is lavishly illustrated with diagrams and photographs. Calculus is used throughout the book, although this is limited to basic differentiation and integration. There is an extensive range of worked examples plus end-of-chapter questions and problems, with numerical answers given to the odd-numbered problems. The physics is illustrated with many everyday examples. The styles of course presentation and hence the styles of book used in the USA and the UK seem to be diverging. It is unlikely such a book as this would be used at A-level. This is not only because of the calculus, albeit simple, but because of the detailed coverage of classical topics. Increasingly there has been a trend in this country to be more selective in content, and yet at the same time to incorporate more modern topics such as solids, environmental and atmospheric physics, particle physics and cosmology, but described in a fairly elementary way. The book would be suitable for preliminary year and first-year university physics courses but its size and weight are daunting. I am not sure why physics described in such an encyclopaedic way is popular in the US but less so here. However, of its type this book is both attractive and

  20. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review

    KAUST Repository

    Vallinayagam, R.

    2015-11-01

    This review work focuses on biofuels with lower viscosity and cetane number and their mode of operation in a diesel engine. Though there were a number of review works describing the production, characterization and utilization of biodiesel, synthesized from vegetable oils, a comprehensive summary on other category of biofuels endowed with lower viscosity and cetane number has not come to light so far. In this backdrop, this review work would bring forth the existence of biofuels having lower viscosity and cetane number, classify them under one category and elucidate their operational feasibility in a diesel engine. Considerably, alcohol based fuels such as methanol, ethanol and butanol, and plant based light biofuels such as eucalyptus oil and pine oil have been chosen and classified as LVLC (less viscous and lower cetane) fuels in the current work. Besides describing the operation feasibility of these fuels, an extensive exploration of their physical, thermal and critical properties as well as their compositional attributes has been made. Despite their distinct properties, these fuels have found use in diesel engine by various strategies and apparently, they could be used in blends with diesel/biodiesel, dual fuel mode and as sole fuel. In this regard, herein, a detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed. © 2015 Elsevier Ltd.